
Dr. Angelina Kraft

ORCiD: https://orcid.org/0000-0002-6454-335X

Thüringer FDM-Tage 2020: FAIR Research Software and Beyond:

How to make the most of your code

02 July 2020

Moving towards FAIRness in

Research Data and Software

Management

https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X

Agenda

• FAIR Principles: Data vs. Software – general concepts

• Measures for increasing FAIRness

• Data/Software Management Plans

• PIDs

• Software citation

• Software licences

• Version control & Project management

• Summary

Seite 3

FAIR Data (and Software) Principles I

Wilkinson et al. (2016) The FAIR Guiding Principles

for scientific data management and stewardship.

Scientific Data https://doi.org/10.1038/sdata.2016.18

Key point:

FAIR means FAIR

for machines (e.g. machine-readable

 metadata) and only secondarily

for humans…

In 2016:

In 2017, 2nd paper:

i. Re-useless data

ii. Findable (PID)

iii. FAIR metadata

(PID + machine readable MD)

iv. FAIR: restricted access

v. FAIR: open access

vi. FAIR: open access, functionally linked

‚Internet of FAIR data and services‘

Mons, Barend et al. (2017) ‘Cloudy, Increasingly

FAIR; Revisiting the FAIR Data Guiding Principles

for the European Open Science Cloud’: 49 – 56.

https://doi.org/10.3233/ISU-170824

https://doi.org/10.1038/sdata.2016.18
http://www.einfracentral.eu/news/einfracentral-and-fair-principles
https://doi.org/10.3233/ISU-170824
https://doi.org/10.3233/ISU-170824
https://doi.org/10.3233/ISU-170824

Seite 4

→ FAIR: not a standard

→ Different approaches

→ About FAIRness for machines (and humans)

„Partly FAIR may be FAIR enough“

FAIR Data (and Software) Principles II

Mons, Barend et al. (2017) ‘Cloudy, Increasingly FAIR;

Revisiting the FAIR Data Guiding Principles for the

European Open Science Cloud’: 49 – 56.

https://doi.org/10.3233/ISU-170824

https://doi.org/10.3233/ISU-170824
https://doi.org/10.3233/ISU-170824
https://doi.org/10.3233/ISU-170824

Seite 5

▪ Software quality guidelines existed for decades in military, industry, academia & FLOSS initative

▪ FLOSS = Free/Libre and Open Source Software

Examples:

▪ ISO 9000-3, 9126-1, 25010:2011

▪ GNU Quality Code

▪ ECSS Software Product Assurance

▪ CLARIAH software quality guidelines

FAIR for Software?

https://en.wikipedia.org/wiki/ISO/IEC_90003
https://en.wikipedia.org/wiki/ISO/IEC_90003
https://en.wikipedia.org/wiki/ISO/IEC_90003
https://en.wikipedia.org/wiki/ISO/IEC_9126#History
https://en.wikipedia.org/wiki/ISO/IEC_9126#History
https://en.wikipedia.org/wiki/ISO/IEC_9126#History
https://www.gnu.org/software/gnustandards/qualitycode.html
http://ecss.nl/standard/ecss-q-st-80c-software-product-assurance/
http://ecss.nl/standard/ecss-q-st-80c-software-product-assurance/
http://ecss.nl/standard/ecss-q-st-80c-software-product-assurance/
http://ecss.nl/standard/ecss-q-st-80c-software-product-assurance/
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf

Seite 6

Open Source Software (OSS) Recommendations:

1. Make source code publicly accessible from day one

 Git, Cloud, Hub, Project Page…

2. Make software easy to discover by providing software

metadata via a popular community registry

 e.g. via DataCite DOI

3. Adopt a licence and comply with the licence of third-

party dependencies

 Apache, BSD 2&3, GNU GPL&LGPL, MIT …

4. Define clear and transparent contribution, governance

and communication processes

 e.g. Project website includes information

FAIR for Software?

Example:

Jiménez RC et al. (2017) Four simple

recommendations to encourage best practices in

research software. F1000Research 2017, 6:876:

https://doi.org/10.12688/f1000research.11407.1 OSS Recommendations = FAIR ?

Remember:

FAIR data principles have emphasis on

enhancing machine-readability.

 This emphasis is not present in the OSS

Recommendations (expect machine readable

software metadata to be available via software

registries)

OSS focus:

 Uptake of best practices

 Measurability

 Reuseability

https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.12688/f1000research.11407.1

Seite 7

Measures for increasing FAIRness

Research Data Research Software

Data Management Plan Software Management Plan

PIDs & Machine Readable Metadata PIDs & Machine Readable Metadata

Machine Readable Data(sets) in

Data Repositories

Machine Readable Software/Code in

Software Repositories

Data Licences Software Licences

Documentation ?
Documentation ?

 Version control!

http://www.einfracentral.eu/news/einfracentral-and-fair-principles

Page 8

A Data management plan …

▪ might be required by funding bodies (NSF, EU H2020)

▪ is a (formal) document developed at the start of a research project

which outlines all aspects of data created/used

▪ must be updated throughout the course of research

Future:

• Post-Static/Dynamic/Machine-Actionable DMPs with PIDs

(DOI, ORCiDs)

What is a Data management plan (DMP)?

Common checklist (all DMPs):

▪ Administrative information

▪ Data collection

▪ Documentation & metadata

▪ Ethics & legal compliance

▪ Storage & backup

▪ Selection & preservation

▪ Data sharing

▪ Resources & responsibilities

Stakeholders of a DMP:

➢ Researchers

➢ Institutions/Organizations

➢ Repositories/Infrastructure

➢ Funders

➢ Publishers

Source: pixabay.com, pixabay licence

https://dmptool.org/

Page 9

Software Management Plan (SMP)

Adapted after recommendations of the Software Sustainability Institute, see:

The Software Sustainability Institute (2018) Checklist for a Software

Management Plan (Version 0.2). Zenodo.

http://doi.org/10.5281/zenodo.1460504

Minimum:

• Information on outputs, documentation & related material

• Institution/Person responsible for software release

• Development/revision /version control process used

• PID & licence for published version

Good practice:

• Identify software development model to be used

• Identify possible external software used & associated licences

• Method used to accept each output (e.g. review process)

• Dependencies between outputs and with external dependencies

• Major risks that might impact on the delivery of the outputs

Source: pixabay.com, pixabay licence

Stakeholders of a SMP:

➢ Developers/Researchers

➢ Institutions/Organizations

➢ Repositories/Infrastructure

➢ Funders

➢ Publishers

http://doi.org/10.5281/zenodo.1460504
http://doi.org/10.5281/zenodo.1460504

Seite 10

PIDs are everywhere:

Resource IDs (articles, data, software, …)

Researcher IDs Organisation IDs, Funder IDs

https://datacite.org/

Seite 11

A PID is

• Provenance

• Metadata

• Policies & Guarantees

• Machine readability

• Metrics

Researchers & developers should know that…

Provenance means validation & credibility – a researcher/developer should comply to good scientific practices and be sure

about what should get a PID (and what not).

Metadata is central to visibility and citability – metadata behind a PID should be provided with consideration.

Policies behind a PID system ensure persistence in the WWW - point. At least metadata will be available for a long time.

Machine readability will be an essential part of future discoverability – resources should be checked and formats should be

adjusted (as far possible).

Metrics (e.g. altmetrics) are supported by PID systems.

Source: pixabay.com, pixabay licence

Proxy Prefix Suffix

https://doi.org/10.15468/dl.n1glrt

Seite 12

• Official integration thanks to Codemeta project:

science.Mozilla.org/projects/codemeta

• Intrinsic IDs (e.g. Git’s SHA1 hashes) vs. “minted” PIDs

• technical vs. procedural persistence

• Zenodo: file backup & persistent landing page for each release version,

powered by CERN

• Detailed guide: https://guides.github.com/activities/citable-code/ &

further reading: https://genr.eu/wp/cite/

• DOI minting requires metadata information

→ Use https://search.datacite.org/works?resource-type-id=software

→ Research software with a DOI listed in results

• DOI used for persistent citation

GitHub + Zenodo.org = DOI

https://science.mozilla.org/projects/codemeta
https://science.mozilla.org/projects/codemeta
https://science.mozilla.org/projects/codemeta
https://science.mozilla.org/projects/codemeta
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://genr.eu/wp/cite/
https://genr.eu/wp/cite/
https://search.datacite.org/works?resource-type-id=software
https://search.datacite.org/works?resource-type-id=software
https://search.datacite.org/works?resource-type-id=software
https://search.datacite.org/works?resource-type-id=software
https://search.datacite.org/works?resource-type-id=software
https://datacite.org/
https://www.doi.org/

Page 13

Why citing software?

 Ability to replicate research that has used software, knowing exactly the version of a research software used

 Improve research software itself — help software developers (speed, lessons learned, …)

 FORCE11 recommendations: Software Citation Implementation Working Group

Smith, Katz & Niemeyer 2016: Set of software citation principles across disciplines & venues

 → https://doi.org/10.7717/peerj-cs.86 contains

 → Use cases & discussion, suggestions on how to apply the principles

  6 Principles: Importance, Credit & Attribution, Unique Identification, Persistence, Accessibility, Specificity

Note:

Some communities already have their own conventions, e.g. R and CRAN

 Examples: https://www.rdocumentation.org/packages/utils/versions/3.3/topics/citation &

 https://cran.r-project.org/web/packages/knitr/citation.html

 Software & data are similar in with regard to credit & metrics, but both have traditionally not been cited in publications

 Citation practice needs to change

Citing software – the background

https://www.rdocumentation.org/packages/utils/versions/3.3/topics/citation
https://www.rdocumentation.org/packages/utils/versions/3.3/topics/citation
https://cran.r-project.org/web/packages/knitr/citation.html
https://cran.r-project.org/web/packages/knitr/citation.html
https://cran.r-project.org/web/packages/knitr/citation.html
https://cran.r-project.org/web/packages/knitr/citation.html

Page 14

How To: Best practices for software citation

Making software citable

i. Publish it – if it’s on GitHub, follow steps in

https://guides.github.com/activities/citable-code/

ii. Otherwise, submit it to Software repository with appropriate metadata, & get a DOI

iii. Create a CITATION file (e.g. https://citation-file-format.github.io/), update the

README

iv. Integrate software citation in researcher profile, e.g. ORCiD (https://orcid.org)

v. Optional: Writing a software paper for publication in a software journal

Citing someone else’s software

Check for a CITATION file or README; if this says how to cite the software itself, if not,

do your best following the principles:

• Try to include all contributors to the software (maybe by just naming the project)

• Include method for identification that is machine actionable, globally unique &

interoperable  ideally via a PID(DOI), or URL to a release or product number

• If there’s a landing page including metadata, point to that (not to software directly)

• Include specific version/release information

• If there’s a software paper, you can cite this too, but not in place of citing the

software

https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://citation-file-format.github.io/
https://citation-file-format.github.io/
https://citation-file-format.github.io/
https://citation-file-format.github.io/
https://citation-file-format.github.io/
https://citation-file-format.github.io/
https://orcid.org/
https://www.doi.org/

Page 15

(Data &) Software licences I

Purpose of licences – mostly the same for research data &

research software:

To share

  Practice FAIR

To protect & restrict the use

 Disallow commercialization or any other further use

 Enable commercialization

To get credit & acknowledgement

 Register amount of use & citations

Refuse warranties

Refuse liability

Clarify which license is best for you and other stakeholders

Deliver a contract with your work

Source: pixabay.com, pixabay licence

Page 16

(Data &) Software licences II

Note/Disclaimer: Nothing in this presentation is intended as legal advice. When in doubt, ask your

institution’s/employer’s/funder’s legal counsel!

Research Data:

• “As open as possible, as closed as necessary” (new EU H2020 credo)

→ there is a shift from ‘open data’ towards ‘FAIR data’

• Special protection & ethical questions regarding ‘sensitive’ data & ‘mission oriented research’

• Urheberrecht - Geistige Schöpfungshöhe might / or might not apply

• Other laws which might apply: Patent law, Data privacy law, Contract law, Constitutional law, Business/trade law,

Sui generis database right, …

 For data accompanying scientific publications: Using Creative Commons licences are often recommended

Research Software:

• Creative work (mostly)!  Urheberrecht - Geistige Schöpfungshöhe likely to apply!

→ Copyright protects the expression of an idea (in source code & object code)

→ A licence is a way for a copyright holder to grant rights (e.g. to copy/modify/distribute) to other people

→ End users are covered by whatever license you place on software/code you write

• Other laws which might apply: Patent law, Data privacy law, Contract law, Constitutional law, Business/trade law,

Sui generis database right, …

Note: Some ‘data’ repositories also offer ‘software’ licences, as they treat data as software!

Page 17

Software licences III

Note/Disclaimer: Nothing in this presentation is intended as legal advice. When in doubt, ask your

institution’s/employer’s/funder’s legal counsel!

Some licensing issues:

• Development of complex open source solutions  adapting & integrating multiple existing components

• Resulting application/solution may look as a single program from the user point of view, but is in fact a combined work

 → Different components may be covered by different licences;

 → Question if components are compatible & legally interoperable?

• Licences for open source software: 2 families - Copyleft licences vs. Permissive licences

• Copyleft: Impose the use of the same licence as soon as the distributed work is a derivative of the covered work

(e.g. GNU GPLs and the EUPL)

• Permissive: Non-copyleft open source license, compatible with most other licences, tolerating to merge, combine

or improve the covered code and to re-distribute it under different licences (e.g. BSD-style, MIT/X11-style, ASLv2)

• Get help: e.g. Open Source Initiative (OSI)

• Promote awareness & importance of non-proprietary software; review-process

• OSI Approved licence trademark & program;

>80 approved licences: https://opensource.org/licenses/alphabetical

Note: Some ‘data’ repositories also offer ‘software’ licences, as they treat data as software!

https://opensource.org/licenses/alphabetical
https://opensource.org/licenses/alphabetical

Page 18

Software licences IV

Note/Disclaimer: Nothing in this presentation is intended as legal advice. When in doubt, ask your

institution’s/employer’s/funder’s legal counsel!

Examples Copyleft licences:

• GNU General Public License (GPL)

• GNU Library or "Lesser" General Public License (LGPL)

• Eclipse Public License (EPL)

• Mozilla Public License 2.0 (MPL)

• Common Development and Distribution License (CDDL)

• GNU Affero General Public License (AGPL)

• European Union Public Licence (EUPL)

Examples Permissive licences:

• Apache (Software) License 2.0

• BSD 3-Clause "New" or "Revised" license

• BSD 2-Clause "Simplified" or "FreeBSD" license

• MIT license

Note:

 Some ‘data’ repositories also offer ‘software’ licences, as they treat data as software

 Not all licences are compatible; see licence specific compatibility (upstream/downstream) matrices & information,

 and constitution of an exception lists

Page 19

Licence provision – Example:

/*

 * EasyWave - A realtime tsunami simulation program with GPU support.

 * Copyright (C) 2014 Andrey Babeyko, Johannes Spazier

 * GFZ German Research Centre for Geosciences (http://www.gfz-potsdam.de)

 *

 * Parts of this program (especially the GPU extension) were developed

 * within the context of the following publicly funded project:

 * - TRIDEC, EU 7th Framework Programme, Grant Agreement 258723

 * (http://www.tridec-online.eu)

 *

 * Licensed under the EUPL, Version 1.1 or - as soon they will be approved by

 * the European Commission - subsequent versions of the EUPL (the "Licence"),

 * complemented with the following provision: For the scientific transparency

 * and verification of results obtained and communicated to the public after

 * using a modified version of the work, You (as the recipient of the source

 * code and author of this modified version, used to produce the published

 * results in scientific communications) commit to make this modified source

 * code available in a repository that is easily and freely accessible for a

 * duration of five years after the communication of the obtained results.

 *

 * You may not use this work except in compliance with the Licence.

 *

 * You may obtain a copy of the Licence at:

 * https://joinup.ec.europa.eu/software/page/eupl

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the Licence is distributed on an "AS IS" basis,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the Licence for the specific language governing permissions and

 * limitations under the Licence.

 */

Copyright note

Project

description

Licence

specification

(rights to

copy/modify/

distribute

Additional

Provision

Licence title

Page 20

Source Code:

• Self-documenting/-explaining a project’s evolution

• Git often used because of strongest network effects, with easy publication & collaboration opportunites

• Pull/Merge Requests enable smooth review workflow & automation potential

• Git, GitHub, Gitlab enable issue tracker, website hosting, project management, etc.

• Issue = idea, discussion, problem report, question, etc.  Labels, assignees, milestones / due dates, etc.

• (Peer-)Reviewing pull/merge request can be used for knowledge transfer within team

Beyond Code, e.g. documentation:

• Text documents: Markdown, LaTeX, GitHub/Lab Pages

• Alternative to fast-syncing tools like EtherPad, HackMD, GDocs, etc.

• Also: Overleaf.com, GitBook.com, Authorea.com, PenFlip.com, others

Version control & Project management

Page 21

 FAIR refers to ‘as open as possible, as closed as necessary’

 There are different degrees of FAIRness, as research disciplines, resource types (e.g. data and

software) and their requirements are strongly varied - but the shared goal is good scientific

practice

 FAIR (in its origins) focuses first and foremost on machine to machine interactions, only

secondary on human to machine (or human to human) interactions

 DMPs/SMPs, PIDs, version control, documentation & a licence help to keep data/software FAIR

Summary / On the FAIR principles

https://github.com/FAIR-Data-EG/Action-Plan

Creative Commons Attribution 3.0 Germany

https://creativecommons.org/licences/by/3.0/de/deed.en

Contact information:

Angelina.Kraft@TIB.eu

T +49 511 762-14238

Thank you!

 Slides derived/adapted from

Leinweber, Kraft, Kuzak, Johnston,

Hammitzsch & Förstner (2018). FAIR

Data and Software: A Carpentries-

based workshop at TIB, Hannover.

Zenodo.

http://doi.org/10.5281/zenodo.3707745

mailto:Angelina.Kraft@TIB.eu
http://doi.org/10.5281/zenodo.3707745
http://doi.org/10.5281/zenodo.3707745

