
Dr. Angelina Kraft

ORCiD: https://orcid.org/0000-0002-6454-335X

Thüringer FDM-Tage 2020: FAIR Research Software and Beyond:

How to make the most of your code

02 July 2020

Moving towards FAIRness in

Research Data and Software

Management

https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X
https://orcid.org/0000-0002-6454-335X

Agenda

• FAIR Principles: Data vs. Software – general concepts

• Measures for increasing FAIRness

• Data/Software Management Plans

• PIDs

• Software citation

• Software licences

• Version control & Project management

• Summary

Seite 3

FAIR Data (and Software) Principles I

Wilkinson et al. (2016) The FAIR Guiding Principles

for scientific data management and stewardship.

Scientific Data https://doi.org/10.1038/sdata.2016.18

Key point:

FAIR means FAIR

for machines (e.g. machine-readable

 metadata) and only secondarily

for humans…

In 2016:

In 2017, 2nd paper:

i. Re-useless data

ii. Findable (PID)

iii. FAIR metadata

(PID + machine readable MD)

iv. FAIR: restricted access

v. FAIR: open access

vi. FAIR: open access, functionally linked

‚Internet of FAIR data and services‘

Mons, Barend et al. (2017) ‘Cloudy, Increasingly

FAIR; Revisiting the FAIR Data Guiding Principles

for the European Open Science Cloud’: 49 – 56.

https://doi.org/10.3233/ISU-170824

https://doi.org/10.1038/sdata.2016.18
http://www.einfracentral.eu/news/einfracentral-and-fair-principles
https://doi.org/10.3233/ISU-170824
https://doi.org/10.3233/ISU-170824
https://doi.org/10.3233/ISU-170824

Seite 4

→ FAIR: not a standard

→ Different approaches

→ About FAIRness for machines (and humans)

„Partly FAIR may be FAIR enough“

FAIR Data (and Software) Principles II

Mons, Barend et al. (2017) ‘Cloudy, Increasingly FAIR;

Revisiting the FAIR Data Guiding Principles for the

European Open Science Cloud’: 49 – 56.

https://doi.org/10.3233/ISU-170824

https://doi.org/10.3233/ISU-170824
https://doi.org/10.3233/ISU-170824
https://doi.org/10.3233/ISU-170824

Seite 5

▪ Software quality guidelines existed for decades in military, industry, academia & FLOSS initative

▪ FLOSS = Free/Libre and Open Source Software

Examples:

▪ ISO 9000-3, 9126-1, 25010:2011

▪ GNU Quality Code

▪ ECSS Software Product Assurance

▪ CLARIAH software quality guidelines

FAIR for Software?

https://en.wikipedia.org/wiki/ISO/IEC_90003
https://en.wikipedia.org/wiki/ISO/IEC_90003
https://en.wikipedia.org/wiki/ISO/IEC_90003
https://en.wikipedia.org/wiki/ISO/IEC_9126#History
https://en.wikipedia.org/wiki/ISO/IEC_9126#History
https://en.wikipedia.org/wiki/ISO/IEC_9126#History
https://www.gnu.org/software/gnustandards/qualitycode.html
http://ecss.nl/standard/ecss-q-st-80c-software-product-assurance/
http://ecss.nl/standard/ecss-q-st-80c-software-product-assurance/
http://ecss.nl/standard/ecss-q-st-80c-software-product-assurance/
http://ecss.nl/standard/ecss-q-st-80c-software-product-assurance/
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf

Seite 6

Open Source Software (OSS) Recommendations:

1. Make source code publicly accessible from day one

 Git, Cloud, Hub, Project Page…

2. Make software easy to discover by providing software

metadata via a popular community registry

 e.g. via DataCite DOI

3. Adopt a licence and comply with the licence of third-

party dependencies

 Apache, BSD 2&3, GNU GPL&LGPL, MIT …

4. Define clear and transparent contribution, governance

and communication processes

 e.g. Project website includes information

FAIR for Software?

Example:

Jiménez RC et al. (2017) Four simple

recommendations to encourage best practices in

research software. F1000Research 2017, 6:876:

https://doi.org/10.12688/f1000research.11407.1 OSS Recommendations = FAIR ?

Remember:

FAIR data principles have emphasis on

enhancing machine-readability.

 This emphasis is not present in the OSS

Recommendations (expect machine readable

software metadata to be available via software

registries)

OSS focus:

 Uptake of best practices

 Measurability

 Reuseability

https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.12688/f1000research.11407.1

Seite 7

Measures for increasing FAIRness

Research Data Research Software

Data Management Plan Software Management Plan

PIDs & Machine Readable Metadata PIDs & Machine Readable Metadata

Machine Readable Data(sets) in

Data Repositories

Machine Readable Software/Code in

Software Repositories

Data Licences Software Licences

Documentation ?
Documentation ?

 Version control!

http://www.einfracentral.eu/news/einfracentral-and-fair-principles

Page 8

A Data management plan …

▪ might be required by funding bodies (NSF, EU H2020)

▪ is a (formal) document developed at the start of a research project

which outlines all aspects of data created/used

▪ must be updated throughout the course of research

Future:

• Post-Static/Dynamic/Machine-Actionable DMPs with PIDs

(DOI, ORCiDs)

What is a Data management plan (DMP)?

Common checklist (all DMPs):

▪ Administrative information

▪ Data collection

▪ Documentation & metadata

▪ Ethics & legal compliance

▪ Storage & backup

▪ Selection & preservation

▪ Data sharing

▪ Resources & responsibilities

Stakeholders of a DMP:

➢ Researchers

➢ Institutions/Organizations

➢ Repositories/Infrastructure

➢ Funders

➢ Publishers

Source: pixabay.com, pixabay licence

https://dmptool.org/

Page 9

Software Management Plan (SMP)

Adapted after recommendations of the Software Sustainability Institute, see:

The Software Sustainability Institute (2018) Checklist for a Software

Management Plan (Version 0.2). Zenodo.

http://doi.org/10.5281/zenodo.1460504

Minimum:

• Information on outputs, documentation & related material

• Institution/Person responsible for software release

• Development/revision /version control process used

• PID & licence for published version

Good practice:

• Identify software development model to be used

• Identify possible external software used & associated licences

• Method used to accept each output (e.g. review process)

• Dependencies between outputs and with external dependencies

• Major risks that might impact on the delivery of the outputs

Source: pixabay.com, pixabay licence

Stakeholders of a SMP:

➢ Developers/Researchers

➢ Institutions/Organizations

➢ Repositories/Infrastructure

➢ Funders

➢ Publishers

http://doi.org/10.5281/zenodo.1460504
http://doi.org/10.5281/zenodo.1460504

Seite 10

PIDs are everywhere:

Resource IDs (articles, data, software, …)

Researcher IDs Organisation IDs, Funder IDs

https://datacite.org/

Seite 11

A PID is

• Provenance

• Metadata

• Policies & Guarantees

• Machine readability

• Metrics

Researchers & developers should know that…

Provenance means validation & credibility – a researcher/developer should comply to good scientific practices and be sure

about what should get a PID (and what not).

Metadata is central to visibility and citability – metadata behind a PID should be provided with consideration.

Policies behind a PID system ensure persistence in the WWW - point. At least metadata will be available for a long time.

Machine readability will be an essential part of future discoverability – resources should be checked and formats should be

adjusted (as far possible).

Metrics (e.g. altmetrics) are supported by PID systems.

Source: pixabay.com, pixabay licence

Proxy Prefix Suffix

https://doi.org/10.15468/dl.n1glrt

Seite 12

• Official integration thanks to Codemeta project:

science.Mozilla.org/projects/codemeta

• Intrinsic IDs (e.g. Git’s SHA1 hashes) vs. “minted” PIDs

• technical vs. procedural persistence

• Zenodo: file backup & persistent landing page for each release version,

powered by CERN

• Detailed guide: https://guides.github.com/activities/citable-code/ &

further reading: https://genr.eu/wp/cite/

• DOI minting requires metadata information

→ Use https://search.datacite.org/works?resource-type-id=software

→ Research software with a DOI listed in results

• DOI used for persistent citation

GitHub + Zenodo.org = DOI

https://science.mozilla.org/projects/codemeta
https://science.mozilla.org/projects/codemeta
https://science.mozilla.org/projects/codemeta
https://science.mozilla.org/projects/codemeta
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://genr.eu/wp/cite/
https://genr.eu/wp/cite/
https://search.datacite.org/works?resource-type-id=software
https://search.datacite.org/works?resource-type-id=software
https://search.datacite.org/works?resource-type-id=software
https://search.datacite.org/works?resource-type-id=software
https://search.datacite.org/works?resource-type-id=software
https://datacite.org/
https://www.doi.org/

Page 13

Why citing software?

 Ability to replicate research that has used software, knowing exactly the version of a research software used

 Improve research software itself — help software developers (speed, lessons learned, …)

 FORCE11 recommendations: Software Citation Implementation Working Group

Smith, Katz & Niemeyer 2016: Set of software citation principles across disciplines & venues

 → https://doi.org/10.7717/peerj-cs.86 contains

 → Use cases & discussion, suggestions on how to apply the principles

 6 Principles: Importance, Credit & Attribution, Unique Identification, Persistence, Accessibility, Specificity

Note:

Some communities already have their own conventions, e.g. R and CRAN

 Examples: https://www.rdocumentation.org/packages/utils/versions/3.3/topics/citation &

 https://cran.r-project.org/web/packages/knitr/citation.html

 Software & data are similar in with regard to credit & metrics, but both have traditionally not been cited in publications

 Citation practice needs to change

Citing software – the background

https://www.rdocumentation.org/packages/utils/versions/3.3/topics/citation
https://www.rdocumentation.org/packages/utils/versions/3.3/topics/citation
https://cran.r-project.org/web/packages/knitr/citation.html
https://cran.r-project.org/web/packages/knitr/citation.html
https://cran.r-project.org/web/packages/knitr/citation.html
https://cran.r-project.org/web/packages/knitr/citation.html

Page 14

How To: Best practices for software citation

Making software citable

i. Publish it – if it’s on GitHub, follow steps in

https://guides.github.com/activities/citable-code/

ii. Otherwise, submit it to Software repository with appropriate metadata, & get a DOI

iii. Create a CITATION file (e.g. https://citation-file-format.github.io/), update the

README

iv. Integrate software citation in researcher profile, e.g. ORCiD (https://orcid.org)

v. Optional: Writing a software paper for publication in a software journal

Citing someone else’s software

Check for a CITATION file or README; if this says how to cite the software itself, if not,

do your best following the principles:

• Try to include all contributors to the software (maybe by just naming the project)

• Include method for identification that is machine actionable, globally unique &

interoperable ideally via a PID(DOI), or URL to a release or product number

• If there’s a landing page including metadata, point to that (not to software directly)

• Include specific version/release information

• If there’s a software paper, you can cite this too, but not in place of citing the

software

https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://citation-file-format.github.io/
https://citation-file-format.github.io/
https://citation-file-format.github.io/
https://citation-file-format.github.io/
https://citation-file-format.github.io/
https://citation-file-format.github.io/
https://orcid.org/
https://www.doi.org/

Page 15

(Data &) Software licences I

Purpose of licences – mostly the same for research data &

research software:

To share

 Practice FAIR

To protect & restrict the use

 Disallow commercialization or any other further use

 Enable commercialization

To get credit & acknowledgement

 Register amount of use & citations

Refuse warranties

Refuse liability

Clarify which license is best for you and other stakeholders

Deliver a contract with your work

Source: pixabay.com, pixabay licence

Page 16

(Data &) Software licences II

Note/Disclaimer: Nothing in this presentation is intended as legal advice. When in doubt, ask your

institution’s/employer’s/funder’s legal counsel!

Research Data:

• “As open as possible, as closed as necessary” (new EU H2020 credo)

→ there is a shift from ‘open data’ towards ‘FAIR data’

• Special protection & ethical questions regarding ‘sensitive’ data & ‘mission oriented research’

• Urheberrecht - Geistige Schöpfungshöhe might / or might not apply

• Other laws which might apply: Patent law, Data privacy law, Contract law, Constitutional law, Business/trade law,

Sui generis database right, …

 For data accompanying scientific publications: Using Creative Commons licences are often recommended

Research Software:

• Creative work (mostly)! Urheberrecht - Geistige Schöpfungshöhe likely to apply!

→ Copyright protects the expression of an idea (in source code & object code)

→ A licence is a way for a copyright holder to grant rights (e.g. to copy/modify/distribute) to other people

→ End users are covered by whatever license you place on software/code you write

• Other laws which might apply: Patent law, Data privacy law, Contract law, Constitutional law, Business/trade law,

Sui generis database right, …

Note: Some ‘data’ repositories also offer ‘software’ licences, as they treat data as software!

Page 17

Software licences III

Note/Disclaimer: Nothing in this presentation is intended as legal advice. When in doubt, ask your

institution’s/employer’s/funder’s legal counsel!

Some licensing issues:

• Development of complex open source solutions adapting & integrating multiple existing components

• Resulting application/solution may look as a single program from the user point of view, but is in fact a combined work

 → Different components may be covered by different licences;

 → Question if components are compatible & legally interoperable?

• Licences for open source software: 2 families - Copyleft licences vs. Permissive licences

• Copyleft: Impose the use of the same licence as soon as the distributed work is a derivative of the covered work

(e.g. GNU GPLs and the EUPL)

• Permissive: Non-copyleft open source license, compatible with most other licences, tolerating to merge, combine

or improve the covered code and to re-distribute it under different licences (e.g. BSD-style, MIT/X11-style, ASLv2)

• Get help: e.g. Open Source Initiative (OSI)

• Promote awareness & importance of non-proprietary software; review-process

• OSI Approved licence trademark & program;

>80 approved licences: https://opensource.org/licenses/alphabetical

Note: Some ‘data’ repositories also offer ‘software’ licences, as they treat data as software!

https://opensource.org/licenses/alphabetical
https://opensource.org/licenses/alphabetical

Page 18

Software licences IV

Note/Disclaimer: Nothing in this presentation is intended as legal advice. When in doubt, ask your

institution’s/employer’s/funder’s legal counsel!

Examples Copyleft licences:

• GNU General Public License (GPL)

• GNU Library or "Lesser" General Public License (LGPL)

• Eclipse Public License (EPL)

• Mozilla Public License 2.0 (MPL)

• Common Development and Distribution License (CDDL)

• GNU Affero General Public License (AGPL)

• European Union Public Licence (EUPL)

Examples Permissive licences:

• Apache (Software) License 2.0

• BSD 3-Clause "New" or "Revised" license

• BSD 2-Clause "Simplified" or "FreeBSD" license

• MIT license

Note:

 Some ‘data’ repositories also offer ‘software’ licences, as they treat data as software

 Not all licences are compatible; see licence specific compatibility (upstream/downstream) matrices & information,

 and constitution of an exception lists

Page 19

Licence provision – Example:

/*

 * EasyWave - A realtime tsunami simulation program with GPU support.

 * Copyright (C) 2014 Andrey Babeyko, Johannes Spazier

 * GFZ German Research Centre for Geosciences (http://www.gfz-potsdam.de)

 *

 * Parts of this program (especially the GPU extension) were developed

 * within the context of the following publicly funded project:

 * - TRIDEC, EU 7th Framework Programme, Grant Agreement 258723

 * (http://www.tridec-online.eu)

 *

 * Licensed under the EUPL, Version 1.1 or - as soon they will be approved by

 * the European Commission - subsequent versions of the EUPL (the "Licence"),

 * complemented with the following provision: For the scientific transparency

 * and verification of results obtained and communicated to the public after

 * using a modified version of the work, You (as the recipient of the source

 * code and author of this modified version, used to produce the published

 * results in scientific communications) commit to make this modified source

 * code available in a repository that is easily and freely accessible for a

 * duration of five years after the communication of the obtained results.

 *

 * You may not use this work except in compliance with the Licence.

 *

 * You may obtain a copy of the Licence at:

 * https://joinup.ec.europa.eu/software/page/eupl

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the Licence is distributed on an "AS IS" basis,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the Licence for the specific language governing permissions and

 * limitations under the Licence.

 */

Copyright note

Project

description

Licence

specification

(rights to

copy/modify/

distribute

Additional

Provision

Licence title

Page 20

Source Code:

• Self-documenting/-explaining a project’s evolution

• Git often used because of strongest network effects, with easy publication & collaboration opportunites

• Pull/Merge Requests enable smooth review workflow & automation potential

• Git, GitHub, Gitlab enable issue tracker, website hosting, project management, etc.

• Issue = idea, discussion, problem report, question, etc. Labels, assignees, milestones / due dates, etc.

• (Peer-)Reviewing pull/merge request can be used for knowledge transfer within team

Beyond Code, e.g. documentation:

• Text documents: Markdown, LaTeX, GitHub/Lab Pages

• Alternative to fast-syncing tools like EtherPad, HackMD, GDocs, etc.

• Also: Overleaf.com, GitBook.com, Authorea.com, PenFlip.com, others

Version control & Project management

Page 21

 FAIR refers to ‘as open as possible, as closed as necessary’

 There are different degrees of FAIRness, as research disciplines, resource types (e.g. data and

software) and their requirements are strongly varied - but the shared goal is good scientific

practice

 FAIR (in its origins) focuses first and foremost on machine to machine interactions, only

secondary on human to machine (or human to human) interactions

 DMPs/SMPs, PIDs, version control, documentation & a licence help to keep data/software FAIR

Summary / On the FAIR principles

https://github.com/FAIR-Data-EG/Action-Plan

Creative Commons Attribution 3.0 Germany

https://creativecommons.org/licences/by/3.0/de/deed.en

Contact information:

Angelina.Kraft@TIB.eu

T +49 511 762-14238

Thank you!

 Slides derived/adapted from

Leinweber, Kraft, Kuzak, Johnston,

Hammitzsch & Förstner (2018). FAIR

Data and Software: A Carpentries-

based workshop at TIB, Hannover.

Zenodo.

http://doi.org/10.5281/zenodo.3707745

mailto:Angelina.Kraft@TIB.eu
http://doi.org/10.5281/zenodo.3707745
http://doi.org/10.5281/zenodo.3707745

