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1. Introduction

During in vitro fertilization (IVF) cycles,
multiple mature oocytes are retrieved from
the ovary and are fertilized in the lab. The
newly generated embryos can be trans-
ferred into the uterus on day-3, -4, or -5
of incubation, cryopreserved for subse-
quent transfers or discarded. Lacking a
reliable noninvasive evaluation method of
the potential to implant, pregnancy rates
can be improved by cotransferring multiple
embryos thus introducing health risks that
are associated with multiple pregnancies.[1]

Hence, the evaluation of embryo quality
is required for improving live birth rates
while minimizing medical complications
and shortening time to pregnancy.[2–6]

Machine learning was used for assessing
the potential of embryos to blastulate[7,8]

and to implant[9–11] based on manually
annotated morphological and/or morpho-

kientic features. Deep learning, which offers a powerful toolbox
for carrying out automated and standardized classification tasks
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In in vitro fertilization (IVF) treatments, early identification of embryos with high
implantation potential is required for shortening time to pregnancy while
avoiding clinical complications to the newborn and the mother caused by
multiple pregnancies. Current classification tools are based on morphological
and morphokinetic parameters that are manually annotated using time-lapse
video files. However, manual annotation introduces interobserver and intraob-
server variability and provides a discrete representation of preimplantation
development while ignoring dynamic features that are associated with embryo
quality. A fully automated and standardized classifiers are developed by training
deep neural networks directly on the raw video files of>6200 blastulation-labeled
and >5500 implantation-labeled embryos. Prediction of embryo implantation is
more accurate than the current state-of-the-art morphokientic classifier. Embryo
classification improves with video length where the most predictive images show
only partial association with morphological features. Deep learning substitute to
human evaluation of embryo developmental competence thus contributes to
implementing single embryo transfer methodology.
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involving expansive datasets, is gradually incorporated into the
health-care system worldwide[12–14] and IVF clinics specifi-
cally.[15] Deep learning was used for performing automated mor-
phokientic annotation[16] and morphological scoring of
blastocysts based on the last frame that was acquired just before
transfer.[17] Tran et al. also used deep learning for predicting the
implantation outcome of day-5 embryos by training on the time-
lapse images. However, negative implantation outcome was mis-
labeled by including discarded embryos that were not transferred
to the uterus (80% of the entire dataset).[18] A recent publication
reports the prediction of implantation of day-5 transferred
embryos using single “static” images of blastocyst stage.[19] By
training a deep neural network (DNN) using whole-video
time-lapse images of preimplantation embryo development,
we achieved high accuracy and provide an early prediction of
embryo blastulation and embryo implantation already on day-3.

2. Results

2.1. The SHIFRA Database

We conducted a retrospective study in which we trained DNNs
directly on the raw video files to generate automated and stan-
dardized classification algorithms of embryo blastulation and
implantation. DNN training requires large datasets of labeled
embryos. Therefore, we assembled and compiled a database that
we term “SHIFRA” by collecting video files of >20 000 fresh
embryos that were cultured in nine time-lapse incubators
(Embryoscope, Vitrolife) during the past 6 years in four medical
centers dispersed across Israel (Figure S1a and Table S1,
Supporting Information). Our data-providing clinics accept
patients with a heterogeneous ethnic and racial backgrounds
(Eastern and Western European Jews, North African and
Middle Eastern Jews, Arabs, and others)[20] and span different
maternal age groups (Figure S1, Supporting Information), thus
decreasing the effect of confounding variables and increasing
embryo classification generality. Seven-frame z-stacks, 15 μm
apart, were recorded at 18-to-20min intervals for up to 6 days
of incubation, providing a continuous 3D imaging of preimplan-
tation embryo development (Figure 1a). Based on time-lapse
imaging, morphokinetic profiles of 16 000 embryos were anno-
tated, specifying the time series of discrete events (Figure S2b-i,
Supporting Information): pronuclei appearance and fading
(tPNa/f ), cleavage of N cells (tN; N¼ 2 to 9), morula compaction
(tM), and start of blastulation (tSB). Morphokinetic annotations
were determined by qualified and trained embryologists accord-
ing to established protocols (2-to-3 annotators).[2,21] Quality
assurance (QA) of morphokinetic annotations was conducted
in a blindly fashion by an additional expert embryologist
(Figure S2a, Supporting Information). The temporal intervals
between consecutive morphokinetic events were included as
well, showing temporal separation between cleavage cycles
(Figure S2b-ii, Supporting Information).

Labeling of embryo blastulation is based on morphokinetic
histories. Embryos that reached start of blastulation (tSB) inside
the incubator were labeled blastulation-positive (BLAST_p).
BLAST-negative (BLAST_n) embryos that had been arrested at
earlier developmental states and BLAST-unknown (BLAST_u)

embryos were identified by projecting their morphokinetic
profiles onto the time windows that permit transitioning from
one embryo state to the next (Figure S3a, Table S2 and S3,
Supporting Information; see Experimental Section). The SHIFRA
database contains additional metadata, including maternal age,
day-of-transfer, and co-transferred embryo statistics (Figure S1a,b,
Supporting Information). Known Implantation Data (KID) label-
ing was determined based on embryo transfer statistics and the
number of gestational sacs and fetal heart beats as measured on
weeks 5–7 of pregnancy (see Experimental Section). Positive and
negative implantation outcomes (KID_p and KID_n) refer to
embryos that were successfully implanted or failed to implant,
respectively, and embryos whose implantation outcome was
uncertain are labeled KID unknown (KID_u; Figure S1c,
Supporting Information).

2.2. Early Prediction of Blastocyst Formation

The potential of an embryo to undergo blastulation marks its
developmental quality and is linked with its potential to implant
in the uterus.[22] Despite the fact that BLAST_n embryos were
arrested at earlier stages, their temporal overlap with the
morphokinetic profiles of BLAST_p embryos is large (KS< 0.28]
Two-sample Kolmogorov Smirnov test quantifies the distance
between two distributions.]; Figure 1b-i,ii). We divided a total
of >6200 BLAST-labeled embryos into a train-validation set
and a strictly uncontaminated test set of randomly selected
28% of the embryos. A fully automated blastulation classifier
termed as SHIFRAB was designed as consisting of two parts
(see Experimental Section). Packet learning: A DNN was trained
directly on the time-lapse image packets of the embryos output-
ting a scalar value for each frame (temporal features) from the
start of fertilization to time of prediction (tp). Embryo learning:
The potential to blastulate was evaluated based on the packet
scores (temporal features) of each embryo by training a Random
Forest classifier. Random Forest was chosen as it provided the
most accurate predictions compared with other classifiers that
are suited for this task (XG-Boost and Logistic Regression).

Predictive strength was quantified using the area under the
curve (AUC) of the receiver operating characteristic (ROC).
Blastulation prediction AUC, which was evaluated for test-set
embryos, increased monotonically with time of prediction,
tp (Figure 1c): 0.65 at 48 h, 0.73 at 72 h, 0.88 at 96 h, and 0.94
at 110 h. To confirm that SHIFRAB can significantly predict
blastulation also of high-quality embryos, we calculated the
AUC for a cohort of embryos that reached at least 8-cell cleavage
state (8C_p). As expected, BLAST-prediction AUC of 8C_p
embryos was lower than for total embryo population, yet it
reached 0.63 at 72 h, 0.84 at 96 h, and 0.91 at 110 h (Figure 1c
inset). Automated blastulation prediction by SHIFRAB was
compared with the manual morphokinetic classifier developed
by Milewski et al. for five-cells positive (5C_p) embryos.[8] AUC
values were comparable with small advantage to SHIFRAB.
Blastulation rate shows a near-perfect monotonic correlation with
SHIFARB prediction but not with Milewski prediction (Figure 1d).
In the clinic, binary classification is obtained by setting the
threshold values of SHIFRAB that define negative prediction
(below threshold) and positive prediction (above threshold).
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Herein, we present retrospective blastocyst prediction statistics
by setting two threshold values that support positive predictive
value 0.91 (Figure S8a-i, Supporting Information) and sensitiv-
ity 0.98 (Figure S8a-ii, Supporting Information). To test gener-
ality, we conducted a fivefold stratified cross-validation yielding
an average AUC ¼ 0.83� 0.02STD (Figure S6a, Supporting
Information). In addition, we compared the blastulation
prediction of test-set embryos from each clinic separately
(AUC ¼ 0.78� 0.07STD; Figure S6b, Supporting Information)
and performed leave-one-clinic-out cross-validation where clas-
sifiers were trained on embryos from three clinics and tested on
the fourth (Figure S6c, Supporting Information). As H3 clinic is
the largest data provider of BLAST-labeled embryos, H3 AUC
was smaller than the other clinics. The above-average AUC of
H4 is likely skewed by the small number of and the uneven ratio
between BLAST_p and BLAST_n test-set embryos. Temporal
comparison between the morphokinetic events and intervals
of embryos that were obtained from young (age< 32) and older
(age> 38) women showed negligible differences (KS< 0.08)

except for time of start blastulation (tSB), which occurred on
average 3 h faster, and tM–tSB interval, which was 1.5 h shorter
in embryos derived from young women (Figure S9, Supporting
Information). To verify that blastulation prediction was not
confounded by maternal age, we divided all test-set embryos
to four age groups and calculated AUC separately for each
(Figure S6d, Supporting Information). Indeed, blastulation pre-
diction AUC was comparable between maternal age groups:
AUC ¼ 0.75� 0.03 STD. Collectively, we establish accuracy,
robustness, and generality of a fully automated day-3 prediction
of embryo blastulation.

2.3. Prediction of Embryo Implantation

Relative to blastulation prediction, KID prediction is required to
overcome two major obstacles. 1) Unlike blastulation, which
depends on the capacity of the embryo to develop in the incubator
under controlled conditions, implantation also depends on endo-
metrial receptivity—a parameter that is not accounted for during

Figure 1. Automated prediction of embryo blastulation (SHIFRAB). a-i) Time-lapse image acquisition of preimplantation embryo development is
performed at 18-to-20min intervals for up to 6 days of culture inside a time-lapse incubator. ii) At each time point, a z-stack of seven focal planes
15 μm apart is recorded. b) High-resolution temporal distributions of the i) morphokinetic events and ii) intervals between consecutive events of positive
and negative blastulation-labeled embryos (BLAST_p and BLAST_n) are evaluated based on thousands of annotated profiles. The temporal overlap
between BLAST_p and BLAST_n distributions is quantified by K–S distances (top rows). c) AUC of automated blastulation prediction by SHIFRAB
of test-set embryos (blue n¼ 1621) and high-quality embryos that reached 8-cells (8C_p; green n¼ 1456) with video length ≥110 h increase monotoni-
cally with time of prediction, tp. Left inset: ROC curves and AUC values calculated at tp ¼ 72h of test-set embryos and 8C_p embryos with sufficiently long
videos. Right inset: A comparison between SHIFRAK and Milewski BLAST classifier at tp ¼ 86h.[8] d-i) Blastulation rate of test-set embryos is plotted
versus i) SHIFRAB prediction at 72 h and ii) Milewski prediction. The monotonic increase in blastulation rate is scored by Spearman’s rank coefficient
of correlation. SHIFRAB: 0.99 (p-value< 0.001); Milewski: 0.80 (p-value¼ 0.01). K–S: Kolmogorov Smirnov. ROC: Receiver operating characteristic.
AUC: Area under the ROC curve.
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training. 2) Training is limited to embryos that had been prese-
lected for transfer according to existing morphological and/or
morphokinetic protocols. As a result, training is restricted to a
dataset of morphokinetically homogenous KID-labeled embryos.
Accordingly, the temporal distributions of morphokinetic events
and intervals of KID_p and KID_n embryos are almost fully
overlapping (Figure 2a-i,ii). We divided the dataset of >5500
KID-labeled embryos into a train-validation set and an uncontam-
inated test set that consisted of randomly selected 21% of the
embryos (Figure S1c, Supporting Information). We designed
an automated two-stage KID classifier that consisted of packet-
learning followed by embryo learning. Similar to SHIFRAB,
we term the KID classier as SHIFRAK. To improve predictive
strength and robustness, packet learning combined three
DNNs, which were trained separately on KID-labeled embryos,
and one DNN that was trained on BLAST-labeled embryos.
In all cases, we used the same preprocessing steps and all
networks had the same architecture (Figure S5, Supporting
Information). The temporal features were obtained by summing
together the four scalar values that were generated by each
network for each frame. Embryo learning was performed
using a logistic regression classifier that was trained on all the

temporal features that belong to each embryo (see Experimental
Section).

KID predictive strength increased with time of prediction tp,
as evaluated for the same cohort of day-5 transferred test-set
embryos (Figure 2b). AUC increases slowly from 48 to 84 h and
more rapidly from 84 h onward. Compared with the manual-
morphokinetic KIDScore decision support tools (Vitrolife),
embryo implantation prediction by SHIFRAK is as accurate as
KIDScore-D3 on day-3 and more accurate than KIDScore-D5 on
day-5 as evaluated for the same test-set embryos (Figure 2b-inset).
Day-5 predictive strength of SHIFRAK remains high despite
the fact that 98% of the transferred embryos were blastocysts
(very high-quality embryos) and endometrial receptivity was
likely an important factor. Prediction of implantation of day-5
transferred embryos reaches 0.71 (calculated on test-set embryos).
Satisfyingly, implantation rate positively correlates with SHIFRAK,
thus demonstrating its clinical utility (Figure 2c-i). In comparison,
monotonic correlation with implantation rate is not demonstrated
by the manual classifier KIDScore-D5 (Figure 2c-ii). We demon-
strate retrospective implantation prediction statistics by setting
SHIFRAK threshold values that support positive predictive value
0.59 (Figure S8b-i, Supporting Information) and sensitivity 0.89

Figure 2. Automated prediction of embryo implantation (SHIFRAK). a) High-resolution temporal distributions of the i) morphokinetic events and
ii) intervals between consecutive events of positive- and negative-known implantation data-labeled (KID_p and KID_n) embryos are evaluated based
on thousands of annotated profiles. KID_p and KID_n distributions are almost indistinguishable as quantified by K–S distances (top rows). b) AUC of
automated KID prediction by SHIFRAK of day-5 transferred embryos (n¼ 359; 355 transferred blastocysts) increases with prediction time, tp. Inset: ROC
curves of automated KID prediction by SHIFRAK at 68 h (left) and at 110 h (right) are compared with implantation prediction by KIDScore-D3 and
KIDScore-D5 manual-morphokientic algorithms, respectively. c) Implantation rate of test-set embryos increases monotonically with i) day-5
SHIFRAK prediction (Spearman’s rank correlation coefficient: 0.89 [p-value¼ 0.01]) but not with ii) KIDScore-D5 (Spearman’s rank correlation coefficient:
0.66 [p-value¼ 0.07]). K–S: Kolmogorov Smirnov. ROC: Receiver operating characteristic. AUC: Area under the ROC curve. PPV: positive predictive value.
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(Figure S8b-ii, Supporting Information). Generality of SHIFRAK

is verified first via fivefold cross-validation of day-5 transferred
embryos, showing negligible variation of KID prediction: AUC ¼
0.69� 0.02 STD (Figure S7a, Supporting Information). Next
we compared KID prediction of test-set embryos obtained from
different clinics, giving AUC ¼ 0.64� 0.04 STD (Figure S7b,
Supporting Information). AUC values by H1 (above average)
and H2 (below average) clinics were likely skewed due to a highly
uneven ratio between KID_p and KID_n train-set embryos
(Figure S1c, Supporting Information). We also tested generality
via leave-one-clinic-out cross-validation: AUC ¼ 0.64� 0.04STD
(Figure S7c, Supporting Information). The below-average AUC
by H3 is consistent with the smallest available train-set once
H3 embryos were removed. The fraction of implanted embryos
out of all transferred embryos (considering also KID_u transfers)
was 2.7-fold higher for young women (age< 32; 39%) than older
women (age> 38, 14%). To verify that SHIFRAK is not biased by
maternal age, we divided the embryos into four age groups and
tested KID-prediction on each. Satisfyingly, variation in day-5
KID prediction across age groups was small: average AUC ¼
0.75� 0.03 STD (Figure S7d, Supporting Information). We thus
confirm automated prediction of embryo implantation with supe-
rior predictive strength of day-5 transfers and verify generality
across clinics and age groups.

2.4. SHIFRAK Differentiates between Implanted and
Nonimplanted Blastocysts

Aneuploidy might impair embryo implantation but permit
blastocyst formation.[23] To study the relationship between blas-
tulation and implantation potentials, we analyze the classification

of blastulation and implantation colabeled embryos: 121 BLAST_
p–KID_n (BpKn) embryos and 275 BLAST_p–KID_p (BpKp)
embryos (Figure 3a). Blastulation and implantation prediction
scores are weakly positively correlated (Pearson correlation score
0.3), which is indicative of common visual elements. Consistent
with their BLAST_p labels, blastulation prediction score distribu-
tions of BpKn and BpKp embryos overlap. In contrast, average
implantation scores of the latter embryos were 40% higher than
BpKn embryos (Figure 3b), indicating that SHIFRAK differen-
tiates between blastocysts that have the capacity to implant and
blastocysts that do not.

2.5. The last <10 h Are Sufficient for Prediction of Embryo
Quality

To gain additional insight into the underlying mechanisms
of embryo classification, we analyze the visual information that
is embedded within the time-lapse images that SHIFRAB and
SHIFRAK are sensitive to. To this end, we use the SHapley
Additive exPlantions (SHAP) methodology for quantifying the
impact of the temporal features on embryo prediction.[24] We
identify the frames that contribute the most to accurate embryo
classification by setting the sign of the SHAP values of each
feature according to the BLAST or KID label of the embryos
(negative: �1; positive: þ1) and averaged across embryos (mean
adjusted SHAP). In this manner, positive (negative) SHAP
values of temporal features of positively (negatively) labeled
embryos contribute oppositely to the mean-adjusted SHAP com-
pared with positive (negative) SHAP values of temporal features
of negatively (positively) labeled embryos. We find that the
contribution of the temporal features to blastulation prediction

Figure 3. SHIFRAB and SHIFRAK are optimized for prediction of embryo blastulation and implantation. a) Scores of KID prediction (110 h) and BLAST
prediction (72 h) of BLAST_p-KID_n (BpKn) and BLAST_p-KID_p (BpKp) colabeled embryos (n¼ 396) are weakly positively correlated (Spearman’s
correlation 0.3). Consistent with their blastulation labels, BLAST prediction histograms of BpKn and BpKp embryos overlap (top panel). b) The average
blastulation scores of BpKn and BpKp embryos are comparable (left). However, BpKp embryos are scored 40% higher than BpKn embryos only by SHIFRAK
consistent with their implantation labels (right).
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(Figure 4a-i) and to implantation prediction (Figure 4b-i) changes
greatly between different frames. Temporal features of low mean
adjusted SHAP scores were associated with early time points.
The top ten SHIFRAB features (adjusted SHAP> 0.004) and
top 13 SHIFRAK features (adjusted SHAP> 0.007) were
associated with latest frames. The SHAP values and the feature
values of the top-ranked SHIFRAB and SHIFRAK temporal fea-
tures were correlated across individual embryos (Figure 4a-ii,b-ii).
To study whether the top-ranked temporal features can direct
blastulation and implantation prediction without including
the rest of the temporal features, we trained again the embryo-
learning blastulation and implantation classifiers using only the
top-ranked features. Indeed, we found that the top-ranked
features were sufficient for reaching high predictive power
with comparable AUC values (BLAST: AUC¼ 0.75; KID:
0.7 Figure 4c-i,ii) as SHIFRAB (AUC¼ 0.74, Figure 1c-inset)
and SHIFRAK (AUC¼ 0.71, Figure 2b-inset). This indicates
that the top-ranked temporal features as defined here mark
the developmental potential of the embryos to blastulate and to
implant.

2.6. SHIFRAB & SHIFRAK Are Sensitive to Dynamic Features
Beyond Morphological/Morphokinetic States

The ambiguity in identifying the actual visual elements that
direct neural network prediction is one of the major drawbacks
in deep learning. To obtain a mechanistic insight into how
embryo prediction by SHIFRAB and SHIFRAK work, we present
the top-ten positive SHAP images and top-ten negative SHAP
images for each of the top-ranked SHIFRAB and SHIFRAK

temporal features (Figure 5 and 6). Herein, we mark the
cleavage-stage embryos with four cells or less (blue frames),
embryos with asymmetric blastomeres (green frames), and
highly fragmented embryos (red frames) in the images that con-
tributed the most to positive and negative blastulation prediction
by SHIFRAB (Figure 5). Temporal features 1 (72 h), 2 (70 h) and 4
(71 h) were most sensitive to four-cell cleavage stage embryos and
were identified as SHAP-negative images. Temporal features 1, 3
(71.7 h) and 8 (66.3 h) were most sensitive to uneven blastomere
size and temporal features 2 and 4 were most sensitive to embryo
fragmentation, which also obtained negative-SHAP scores

Figure 4. SHIFRAB and SHIFRAK are optimized for prediction of embryo blastulation and implantation. a,b) The temporal features of a-i) SHIFRAB (72 h)
and b-i) SHIFRAK (110 h) are ranked according to their mean adjusted SHAP, which scores feature contribution to accurate BLAST and KID prediction.
a-ii) The ten top-ranked BLAST features (>0.004) and b-ii) the 13 top-ranked KID features (>0.007) were derived from the latest time-lapse images
(BLAST> 66 h and KID> 100 h; color coded). SHAP values and feature values of the top-ranked temporal features were calculated for a-ii) BLAST-labeled
and (b-ii) KID-labeled train set embryos. c) ROC curves and AUC obtained by i) BLAST and ii) KID classifiers that were trained only on the top ten BLAST
features and the top 13 KID features, respectively.
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Figure 5. Top positive versus negative SHAP-scored embryo frames directing BLAST prediction. Top ten SHAP-positive versus top ten SHAP-negative
embryo frames are shown for the selected temporal features by mean adjusted SHAP for SHIFRAB BLAST prediction at 72 h. Cleavage stage embryos with
≤4 cells (blue frames), blastomere asymmetry (green frames), and high fragmentation embryos (red frames) are marked.
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Figure 6. Top positive versus negative SHAP-scored embryo frames directing KID prediction. Top ten SHAP-positive versus top ten SHAP-negative
embryo frames are shown for the selected temporal features by mean adjusted SHAP for SHIFRAK KID prediction at 110 h. Cleavage stage or morula
stage embryos exposing noncompacted blastomeres (blue frames) and morula stage embryos (green frames) are marked.
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(Figure 5). Similarly, we marked the cleavage and morula stage
embryos with noncompacted blastomeres (blue frames) and
compacted morulae (green frames) in the images that contributed
the most to positive and negative KID prediction by SHIFRAK

(Figure 6). We found that temporal features 10 (106.7 h) and
13 (107.3 h) were most sensitive to the appearance of noncom-
pacted blastomeres and temporal features 3 (109.7 h), 9 (100.3 h),
and 11 (103.7 h) were most sensitive to morula. In both cases,
these morphological characteristics directed negative-SHAP KID
prediction (Figure 6). The morphokientic and morphological
characteristics that we discuss herein are depicted only by a small
fraction of the images of the temporal features, indicating that the
determinant visual elements that direct blastulation and implan-
tation prediction are not distinguished by human-level perception.

3. Discussion

The advantage of using retrospective over prospective embryo
transfer datasets for DNN training is their ethical feasibility
and far greater size. However, prediction accuracy is limited
due to lacking critical information about endometrial receptivity
and using a homogenous dataset of embryos that were retro-
spectively preselected for transfer according to established
morphological and/or morphokientic criteria. To overcome these
limitations, we first trained a DNN on blastulation outcome
using a heterogeneous set of labeled embryos and integrated
it with three additional DNNs that were trained separately on
implantation outcome. Indeed, accuracy of day-3 implantation
prediction was equally low by SHIFRAK and KIDSCore-D3,
but it was significantly higher on day-5 by SHIFRAK, proving to
be more accurate than implantation prediction by KIDScore-D5
(Figure 2b).

Unlike the current state-of-the-art embryo classification
algorithms,[8,10] deep learning provides full automation and stan-
dardization of embryo classification, which are both important
for clinical adoption.[25,26] The SHIFRA classifiers, which provide
early evaluation of blastulation and implantation potential, are
the first step toward the development of a decision-making
tool that will provide a personalized, multistep, embryo transfer
strategy.[27,28] Namely, given a finite number of embryos
obtained from a patient and their assessed quality, this tool will
specify the multistep order and timing of embryo transfers
(including transfers of multiple embryos), as well as which
embryos are to be cryopreserved for subsequent transfers. The
general framework presented herein, together with larger data-
sets of embryo data, open the door for the implementation of
such personalized clinical tools that will optimize conception
rates while shortening time to pregnancy in IVF treatments.

4. Experimental Section

The SHIFRA Database, Embryo Annotation, and QA: We developed a
PostgreSQL database with a front-end website that supported display,
query, and data annotation (Hebrew University IT). Maintenance of the
SHIFRA database was outsourced (CHELEM LTD), and data curation
was conducted by a full-time trained embryologist. Anonymized time-lapse
video files and the corresponding metadata were imported from five hos-
pitals (Table S1, Supporting Information). Data were imported
under the approval of the Helsinki ethical committee in each hospital.

Only embryos that were fertilized via intracytoplasmic sperm injection
(ICSI) and showed two-pronuclei appearance (2PNa) inside the incubator
were included. In this manner, we accurately defined time of fertilization,
discarded nonfertilized embryos, and obtained a full morphokinetic
profile starting from tPNa. Preimplantation genetic screening/diagnosis
(PGS/PGD) tested embryos were discarded as well. Morphokientic anno-
tations were performed by qualified and experienced embryologists in each
IVF clinic adhering to established protocols.[2,21] QA was carried out by
comparing the morphokinetic annotations of 253 randomly selected
embryos with the annotations of an expert embryologist in a blinded man-
ner (Dr. IHV, SorokaMedical Center, Figure S2a, Supporting Information).

Labeling of Embryo Blastulation: Identification of arrested embryos that
cannot advance toward blastulation was based on their morphokinetic
profiles (Figure S2b-i,ii, Supporting Information) and the time windows
for advancing from one morphokinetic event to the next (Table S2 and
S3, Supporting Information).

Morphokinetic Events: Each embryo was represented by its total time of
incubation measured from fertilization, tinc, and its latest developmental
state reached inside the incubator, Sn (Figure S3a-i, Supporting
Information). Embryos, which have the capacity to advance to the next
developmental state if incubation was extended, are located within the
orange regions, which were bound between the 1st percentile of the tem-
poral distribution of the morphokinetic event Sn and the 99th percentile of
the temporal distribution of the consecutive morphokinetic event Snþ1
(Table S2, Supporting Information). Embryos that were located in the
red regions, which were bottom bounded by the 99th percentile of the
consecutive morphokinetic event Snþ1, missed the permitted time window
for advancing toward the next developmental state. For example, an
embryo that was incubated for 96 h and reached four-cell state, was
arrested and was labeled 4-cells positive 5-cells negative (4Cp5Cn).

Morphokinetic Intervals: A similar statistical analysis was performed to
identify developmentally arrested embryos based on the temporal distri-
butions of the morphokinetic intervals. Each embryo was represented by
the time that lapsed between time of last morphokientic event and time
of incubation, tinc � tn, which was plotted versus the latest develop-
mental state reached inside the incubator, Sn (Figure S3a-ii, Supporting
Information). The orange regions were bound between the 1st percentile
and the 99th percentile (Table S3, Supporting Information). Embryos that
were located in these regions reached developmental state Sn and still hold
the potential to advance to morphikinetic stage Snþ1 if incubation was
extended. In contrast, embryos that were located in the red regions missed
their interval time window and were thus arrested in developmental
state Sn. For example, an embryo that had completed four-cell cleavage
and that 36 h had lapsed as without advancing to the next cleavage event
was arrested.

BLAST-Labeling: Adhering to a constringent methodology, embryos that
were found to be developmentally arrested either based on their morpho-
kinetic profiles or based on their interval profiles are classified BLAST_n
(Figure S3c-ii, Supporting Information). Embryos that reached start-of-
blastulation (SB) inside the incubator were labeled BLAST_p and were
located in the green regions (Figure S3c-i, Supporting Information).
Obtaining BLAST_p embryos required lengthy incubations, which was
facilitated by clinics that transfer embryos on day-5 (H3; Figure S3d
and S1b, Supporting Information). The remaining embryos that were
located within the orange regions were classified BLAST-unknown
(BLAST_u, Figure S3c-i, Supporting Information).

Labeling of Embryo Implantation and Clinical Pregnancy: Implantation of
transferred embryos in the uterus was labeled by KID. KID status was
determined based on established protocols by comparing the number
of transferred embryos with the number of implanted embryos as
determined by the measured number of gestational sacks on week five
of pregnancy. In the case that the number of transferred and implanted
embryos was equal, the embryos were labeled KID-positive (KID_p).
KID-negative (KID_n) corresponds to the case of no implanted embryos.
KID-unknown (KID_u) marks embryos whose implantation outcome can-
not be determined, for example, when three embryos were transferred and
only one or two were implanted. Clinical pregnancy (CP) accounts for the
implantation of a viable embryo as determined by fetal heart beat
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ultrasound measurement on week 7 of pregnancy. Positive CP (CP_p)
accounts for the case that the number of transferred embryos, gestational
sacs, and fetal heart beats were the same. Negative CP (CP_n) includes
transferred embryos that failed to implant (KID_n) and KID_p embryos
with no fetal heartbeat.

KID Classification by KIDScore-D3 and KIDScore-D5 Decision Support
Tools: Prediction of embryo implantation was performed by KIDSCore-D3
on day-3 (66 h prediction time) and by KIDScore-D5 on day-5 (110 h
prediction time) according to the manufacturer’s protocols (Vitrolife).
Specificity and sensitivity were evaluated as a function of KIDScore values.

Statistical Analysis and Software: Statistical analyses were performed
using NumPy, Sikit-Learn, and SciPy Python packages (Python Software
Foundation) and R (The R Foundation). Graphs were generated using
Matplotlib and Seaborn Python packages (Python Software Foundation).

Preprocessing of Embryo Video Files: The convergence of supervised
neural networks depended on the balance between the number of labeled
objects and their total size. We performed preprocessing of the input video
(�100MB) and decreased their size 16-fold while capturing the dynamic
nature of preimplantation embryo development. Preprocessing included
4�-resizing of the embryo images (2� biaxially) and segmentation of
the embryo region of interest. Later, we described the steps for performing
automated image preprocessing using a U-Net classifier.[29]

Semiautomated Interactive Labeling of Embryo Segmentation: The first
goal was to generate a large set of validated embryo images labeled
and by binary masks of the embryo region of interest that will be used
for training a fully automated classifier. Using the semiautomated interac-
tive GrabCut algorithm,[30] the embryos were framed manually by a bound-
ing box, allowing for an initial segmentation of the embryo (Figure S4a,
Supporting Information). Next, embryo segmentation was adjusted inter-
actively by scribbling the regions to include within the embryo region of
interest (ROI) and regions to exclude from the embryo ROI, allowing fine
tuning of embryo segmentation. Multiple segmentation—scribbling—
fine-tuning iterations were allowed. Once embryo segmentation was
approved, morphological operations were executed (filling holes, contour
smoothing, and dilation), and a binary mask was defined. In total, we gen-
erated binary masks for 2700 images spanning all relevant developmental
states of the embryos.

Automated Embryo Segmentation Using An Automated U-Net Pixel
Classifier: A U-Net classifier was trained using the images that were labeled
interactively via GrabCut. Segmented images were resized to 256�
256 pixels and divided into train set (2350 images), validation set
(200 images), and uncontaminated test set (150 images). Training was
performed using randomly selected 100 images batch size at 1500 steps
per Epoch. Each batch of images underwent random augmentation that
included 0�–180� rotations, horizontal flips, 0–0.1 shearing, and 0–0.1
zooming. In this manner, training on exactly the same images on different
steps was prevented. Network convergence was reached within 20 epochs.
The U-Net classifier obtained embryo images as an input and generated a
binary mask output of the embryo ROI resized to 500� 500 pixels
(Figure 2b-i). Accuracy of embryo segmentation was evaluated on test-
set embryos using the Dice Coefficient, which measures the overlap
between the segmented pixels and the binary mask labels. Dice coefficient
ranged between 0.91 and 0.94 across all developmental states (Figure S4b-ii,
Supporting Information). Embryo ROIs were evaluated for all images in the
database. Empty well images were identified based on small mask area and
discarded.

Grouping of Five-Frame Packets: All segmented embryo frames were
resized 2� along each axis into a 128� 128 pixel images. Five consecutive
resized and segmented frames of the same focal plane and the same
embryo were grouped together into packets, Pm

n , of embryo m and first
frame time index n (Figure S5a, Supporting Information). Each packet
was associated with a blastulation and/or implantation label ym. These
packets served as the input objects of the packet learning neural networks
(see in the following sections).

Packet Learning—Neural Network Design and Training Parameters: The
network was implemented using the PyTorch framework,[31] and trained
using Stochastic Gradient Descent with Nesterov of 0.9. The input
objects of the network were packets of five preprocessed frames Pm

n

(Figure S5a, Supporting Information). Training batches included k ¼ 4
packets obtained from K ¼ 8 embryos within 12 h windows. Training sets
were balanced by selecting positive- and negative-labeled embryos (both
blastulation and implantation) opposite of their respective frequencies.
Packets of the three central focal planes (�15, 0, and þ15 μm) were used
for training, whereas validation and test-set embryos contributed packets
only of the middle focal plane. We used a residual network architecture[32]

consisting of 13 layers that included seven residual blocks and two fully
connected layers (Figure S5b, Supporting Information). The last layer
consists of w input neurons (see below) that were associated with nonover-
lapping time windows as defined for blastulation and implantation predic-
tion networks (see in the following paragraphs). Packet score output was
determined by selection of one of the input neurons according to the time
index n of the first frame of the packet (Figure S5b, Supporting Information).

Packet Learning—Weighted Logistic Loss: We postulate that embryo
developmental potential was marked by scarce dynamic events that last
30–60min and were thus captured by individual packets. Hence, a high-
quality embryo will have only a few packets that were scored high, whereas
all packets of a low-quality embryo will be scored low. This principle was
implemented by weighing logistic loss as follows.[33] The weighted loss of
embryo m is calculated based on all k packets

lm ¼
Xk

n¼1

wm
n logð1þ e�ym ·smn Þ (1)

where smn are the packet scores that are further used for calculating the
softmax weights wm

n

wm
n ¼ eγ·s

m
n

Pk
n¼1 e

γ·smn
(2)

Note that the sum of weights wm
n across k packets of embryom is 1. γ is

the softness parameter. At the limit γ ! 0, the weight becomes 1
k indepen-

dent of the scores of the packets. At the opposite limit of large γ, wm
n

approaches 1 only for the packet of maximal score. The problem of
approaching this limit was that it will be increasingly difficult for the
network to converge. The batch loss L is

L ¼ 1
K

XK

m¼1

lm (3)

The DNN weights were thus optimized to minimize L over all K
embryos in the batch. Performances were optimized by setting γ ¼ 3.
For a negative-labeled embryo (yi ¼ �1), even if a single packet will obtain
a positive score, its weight wm

n will be highest and the loss of the embryo lm

will be large. As a result, convergence will be approached only if all packets
of a negative embryo will obtain negative scores. In contrast, one packet
with a high-positive score was sufficient for obtaining a small loss for a
positive embryo (yi ¼ þ1). For these embryos, the packets with low scores
will have small weights and the packet with the highest score will have the
highest weight and a small loss will be obtained.

Packet Learning of Blastulation- and Implantation-Labeled Packets: Packet
learning for blastulation prediction and for implantation prediction was
performed using the same DNNs as described earlier (Figure S5b,
Supporting Information). Network training for blastulation prediction
was performed using w ¼ 25 nonoverlapping time windows (0–4; 4–8;
8–12; 12–16; 16–20; 20–24; 24–27; 27–30; 30–33; 33–36; 36–42; 42–46;
46–48; 48–51; 51–56; 56–64; 64–72; 72–76; 76–80; 80–85; 85–90;
90–95; 95–105; 105–115; >115). Network training for KID prediction
was performed using w ¼ 16 nonoverlapping time windows (0–12; 12–24;
24–30; 30–36; 36–42; 42–48; 48–56; 56–64; 64–72; 72–76; 76–80; 80–85;
85–95; 95–115; 115–120; >120). DNN training using BLAST-labeled and
KID-labeled embryos typically converged within 20-to-60 epochs.

Unlike blastulation, implantation outcome of transferred embryos
depended not only on their developmental competence, but also on endo-
metrial receptivity, which was not considered in the learning
process. Therefore, packet-learning for KID-prediction was performed
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using an ensemble of three DNNs that were trained on KID-labeled packets
and one DNN that was trained on BLAST-labeled packets (four networks
in total). The three KID-networks were trained using different hyperpara-
meters (initial weights and learning rates). In this manner, blastulation
prediction packet learning generates one frame score, whereas KID predic-
tion packet learning generates four scores for the first image of each packet
that are summed into one final frame score.

Embryo Learning: Scoring the developmental potential of embryos
was performed by training a second classifier. Each embryo was
represented by a vector of frame scores obtained by packet learning as
described earlier. Next, temporal features were generated by interpolation
of the vectors of frame scores, thus obtaining a synchronized representa-
tion of all embryos. To allow embryo prediction at different time points
(time of prediction, tp), different classifiers were trained independently.
Given tp, a classifier was trained on all train-set labeled embryos of video
length greater than tp using the temporal features earlier than tp. BLAST
prediction was performed using a Random Forest classifier, whereas KID
prediction was performed using logistic regression. This choice was made
based on the performance of multiple classifiers that were tested for
BLAST and KID prediction. In both cases, training parameters were opti-
mized via grid-search fivefold cross validation.

Data and Materials Availability
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