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ABSTRACT 
 
As demand for computer software continually increases, software scope and complexity become higher 

than ever. The software industry is in real need of accurate estimates of the project under development. 

Software development effort estimation is one of the main processes in software project management. 

However, overestimation and underestimation may cause the software industry loses. This study 

determines which technique has better effort prediction accuracy and propose combined techniques that 

could provide better estimates. Eight different ensemble models to estimate effort with Ensemble Models 
were compared with each other base on the predictive accuracy on the Mean Absolute Residual (MAR) 

criterion and statistical tests. The results have indicated that the proposed ensemble models, besides 

delivering high efficiency in contrast to its counterparts, and produces the best responses for software 

project effort estimation. Therefore, the proposed ensemble models in this study will help the project 

managers working with development quality software. 
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1. INTRODUCTION 
 

Software Engineering is a computing branch focused on the specification, development, 
maintenance of software using well-defined principles, methods, procedures, and project 

management practices [1]. 

 

Software project management has a wider scope than the software engineering process as it 
involves stakeholders management, communication, which are performed to achieve a predefined 

product, result, or service. A critical issue in the software project management process is the 

estimated effort, resources, cost, and time spent in software development lifecycle [2]. 
 

Project effort estimation is part of the software development lifecycle. A realistic estimate of the 

effort in the initial phase of the project is necessarily better to allocate resources for the 
development of the project [3].According to [4], in the development phase, some artifacts are not 

yet consistent, allowing changes in the requirements and the effort estimation of the project, 

causing a great challenge for the project manager, since from the estimates, the changes can be 

accepted or rejected. 
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Without a realistic estimate, a software development project cannot be effectively managed. 
Today, using data mining techniques, in particular, machine learning (ML) algorithm, is used for 

effort prediction minimizing uncertainties [5].Several machine learning models have been 

proposed to predict software development project effort, such as Artificial Neural Networks,  
Decision Trees, Classification and Regression Tree, Bayesian Networks, Support Vector 

Machine, Genetic Programming, K-neighbors more nearby, and Extreme Machine Learning[6]. 

In the context of ML, software effort estimation is a regression problem. The regression 

algorithms are an equation that aims to estimate the value of a variable (y) based on one or more 
independent variables (x), given a history of correlation between the two variables. The function 

seeks to establish a linear function between X and Y that can determine the value of variable X 

according to the value of variable Y[7]. For the construction of regression models to estimate 
software development project effort, resources obtained before or during software development 

are used as input variables for the model[8]. 

 
In ML there is still the ensemble technique. The ensemble is a set of models formed by more than 

one ML algorithm. This technique has gained considerable popularity due to its good 

generalization performances. The ensemble generally results in better accuracy and is more 

stable than individual techniques, as they combine the results of its components to provide a 
single result. It is expected that with the creation of an ensemble if any of the models perform 

poorly, the system can reduce the error using many models [9]. 

 
In the area of effort estimation, the ensemble is not widely adopted. For example, in the work of 

[10] using Neural Network Ensemble, the models MLPNN Model, Ridge-MLPNN Ensemble 

Model, Lasso-MLPNN Ensemble Model, Bagging-MLPNN Ensemble Model, AdaBoost-

MLPNN Ensemble Model are used in[11]. 
 

In this context, the major reasons for proposed this work are: (i) the ensemble makes the model 

more robust and stable, ensuring excellent carry out and through a set of two or more techniques 
[12], it can be performed. (ii) Using ensemble models to estimate the variables related to the 

effort estimation brings gain to this context and the various stakeholders in its applicability. They 

are tools that can be widely used, generating knowledge, serving as a basis for problem-solving 
and developing mechanisms to support the manager project.(iii) to reduce the gap in the 

academic literature[9][10] in the use of ML techniques used in the Bagging and Stacking set in 

the context of effort estimation. It is worth mentioning, in other regards, to obtain better 

performance in prediction[8] because the ensemble models create several linear models in 
different parts of the data set and then generalize them to get a more accurate prediction in the 

effort estimation for software design. 
 

Therefore, we propose to create an Ensemble Regression model for estimating the effort of 

software projects. We use the ensemble bagging and stacking models in combination with the 

regression technique. In our experiments, we used the software effort data set available at and 

applied Bagging to the following predictors: Bagging with Linear Regression (B-LR), Bagging 
with Robust Regression (B-RR), Bagging with Ridge Regression (B-RI), Bagging with Lasso 

Regression (B-LA), Stacking with Ridge, Robusta, Lasso and Linear meta-predictor (ST-LR), 

Stacking with Linear, Ridge, Lasso and Robusta meta-predictor (ST-RR), Stacking with Linear, 
Robusta, Lasso and Ridge meta-predictor (ST-RI), Stacking with Linear, Robusta, Ridge, and 

Lasso meta-predictor (ST-LA). 

 
The contributions of this paper are the ensemble models applied to the software project effort 

estimation field, as following: (i) use of the ensemble stacking and bagging methods for effort 

estimation, and (ii) comparison of the proposed models with models from the literature that use 

this dataset. 
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This paper is organized as follows. Section 2 presents related works. Section 3 presents the 
Background. Section 4 presents the methodology employed in this research. Section 5 presents 

the results of the experiments. Final considerations and future work are in section 6. 

 

2. RELATED WORKS 
 
In this section, we can observe research on the use of ML to estimate software development 

project effort. 

 
In[13]the authors aim to improve the estimation of the software effort by incorporating direct 

mathematical principles and artificial neural network techniques. The process consists of 

transforming the problem of estimating the effort of the software into the problems of 
classification and functional approximation using a feed forward neural network. The results 

were systematically compared with previous related works, using only a few resources obtained, 

but they demonstrate that the proposed model produced satisfactory estimation accuracy based on 

the MMRE-Mean Magnitude of the Relative Error and PRED-Percentage Relative Error 
Deviation. 

 

In [14]the authors proposed to apply a genetic algorithm to simultaneously select the optimal 
input feature subset and the parameters of a machine learning technique used for regression. The 

paper investigated three machine learning techniques: (i) Support Vector Regression (SVR), (ii) 

MLP Neural Networks, and (iii) Decision Trees (M5P). The genetic algorithm-based method 
showed a better performance, compared to the three machine learning techniques for software 

development effort estimation problems. 

 

In[15]Gabrani and Saini conducted a comparative study of non-algorithmic techniques used for 
software development effort estimation. An empirical evaluation of five learning algorithms was 

carried out, namely: Fuzzy Learning based on Genetic Programming Grammar Operators (GFS-

GPG-R), Symbolic Fuzzy-Valued Data Learning based on Genetic Programming Grammar 
Operators and Simulated Annealing (GFS-SAP- Sym-R), Symbolic Fuzzy Learning based on 

Genetic Programming Grammar Operators and Simulated Annealing (GFS-GSP-R), Ensemble 

Neural Network for Regression Problems (Ensemble-R), Fuzzy and Random Sets Based 

Modeling (FRSBM). Out of which the first three are variants of hybridization of genetic 
programming and fuzzy learning algorithms, the fourth one involves ensembling of neural 

networks, and the fifth one involves fuzzy random set based modeling. The proposed results are 

compared with other machine learning methods, such as MLP, SRV and ANFIS-Adaptive Neuro 
Fuzzy Inference Strategy. Based on the entire study, it is concluded that evolutionary algorithms 

give better results for the estimation of software effort compared to other machine learning 

methods. Of the five evolutionary learning algorithms that presented, the best result was the 
GFS- SAP-Sym-R. 

 

The work conducted by Azzeh[16]presents a new approach to improve the accuracy of the effort 

estimate based on the use of the Optimized Tree Model. The bees algorithm was used to search 
for the optimal values of the Tree Model parameters to construct the software effort estimation 

model. As a reference, the results were compared to those obtained with gradual regression, case-

based reasoning, and multilayer perceptron. The combination of the tree and bees model 
algorithm surpassed other well-known estimation methods. 
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In their work [17], Tierno and Nunercompared the data-driven Bayesian Networks with the 
regression of ordinary least squares with unique logarithmic transformation and with the mean 

and median baseline models. According to the author, BN has the potential for data-based 

predictions, but still need improvements to keep pace with more accurate data-based models. 
In the work of[18], the authors evaluate automated ensembles of learning machines manages to 

improve software development effort estimation given by single ML and which of them would be 

more useful. In addition, the use of resource selection and regression trees (RTs) was analysed. 

Two personalized ways of combining sets and locations were investigated to provide additional 
information on how to improve software effort estimates. Bagging ensembles of RTs was among 

the best approaches for each data set. However, performance is significantly worse compared to 

the best approach for data sets. 
 

In[19], the authors validated an automated genetic structure, carrying out sensitivity analyses in 

different genetic configurations to increase the forecast performance and optimize the processing 
time. The search space was represented by the combination of eight pre-processors, fifteen 

modeling techniques, and five attribute selectors. Through the elitism technique, the genetic 

structure selects the best combination of processing, attributes, and learning algorithm with the 

best correlation of coefficients. The metrics used for validation were: Spearman's rank 
correlation, MMRE - Mean of the Magnitude of Relative Error, MdMRE - Median of the 

Magnitude of Relative Error, MMAR - Mean of the Absolute Residuals, SA - Standardized 

Accuracy, and Pred25 - number of Predictions within % of the actual ones. They concluded that 
the study was able to improve some forecasting models based on the results of the best 

performance of the learning schemes, and that, according to the data set used for forecasting, the 

selection of an appropriate estimation technique directly impacts its performance. 

 
In the work of[20], a study was carried out with four machine learning algorithms to create 

models for estimating software development effort. Artificial Neural Network (ANN), Support 

Vector Machines (SVM), K-star, and Linear Regression were evaluated using public data from 
software projects. The model that had the best performance was the SVM. 

 

In[21], the authors proposed working with three machine learning models to increase the 
performance of the software effort estimation process, such as Multi-Layer Perceptron Neural 

Network (MLPNN), Probabilistic Neural Network (PNN), and Recurrent Neural Network 

(RNN). The result of his study suggests that the MLPNN model performed better compared to 

the other models, with 79% of successful estimates. 
 

Therefore, given the presented scenario, this work differs from those previously shown since the 

ensemble models used and the respective composition of techniques proposed in this article were 
not applied to the dataset for effort estimation problems. The use of ensemble models combines 

more than one regression model, so there are specific models for each region, providing a more 

efficient estimation. Thus, these models enable better accuracy in estimating the final result of 
the effort estimation in software projects. 

 

3. BACKGROUND 
 

In this section, we present the notions related to ensemble techniques, Bagging (Bootstrap 
Aggregating), and Stacking, which are the prediction model applied in this research. 
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3.1 Bagging (Bootstrap Aggregating) 
 

The Bootstrap Aggregation method, also called bagging, was one of the first predictor 

combination methods proposed by Breiman in 1996 [22], which generates a set of data by 
bootstrap sampling of the original data. 

 

Bagging generates several training sets with data replacement and then builds a model for each 
set using the same machine learning algorithm[8]. 

 

In bagging, in a regression problem, the application can be described as a training sample Dt = 
(x1, y1), ..., (xn, yn), whose instances are independent from a probability distribution P(x, y). 

Hence, bagging combines the prediction of a collection of regressors, in which each regressor is 

constructed by applying a fixed learning algorithm to a different bootstrap sample from the 

original Dttraining data. In equation 1 is described the representation of bagging, which the 
forecast on the set is the average of the individual forecasts of the generated M regressors. 

 

 

𝑓𝑏𝑎𝑔(𝑥) =  
1

𝑀
∑ 𝑓𝑖(𝑥)

𝑀

𝑖=𝑖

    (1) 

 

where,fbag(x) is a combined forecast model for timex, M is the number of components in the 

model and𝑓�̂�(𝑥)is an output of the base component. 

 

3.2 Stacking 
 

Stacking is a technique used to combine several models. The idea is to gather the advantages of 
different techniques, minimize the error rate of the models, and create a meta-predictor that 

combines the outputs of different models [23]. 

 
One of the ways to build a stacking is to collect the outputs of each model that makes up a set to 

form a new set of data. As [24], there are two learning levels 0 and 1. Level-0 are models trained 

and tested in independent cross-validation examples from the original data set. The output of this 

model and the original input data are used as input for level-1, called generalized, that is, the 
meta predictor. In this way, level-1 is developed using the results of level-0 generalizers. 

 

Through the M set of predictors (linear or non-linear), instead of selecting just a single model 
from this set, a more accurate predictor can be obtained by combining the M predictors. The idea 

is that the level-1 data (result formed by each M predictor) has more information and can be used 

to build good combinations of predictors. Equation 2 shows the formulation of the stacking 
function, 

 

 

𝑓𝑠𝑡𝑎𝑐𝑘(𝑥) = ∑

𝐾

𝑗=1

[𝑓(𝑥𝑗) − ∑ ∝𝑖

𝑀

𝑖=1

∗ 𝑓𝑖(𝑥𝑗)] (2) 

 
where, fstack(x) is the combined model prediction for x, K is the combined training data size, M 

is the number of model regressors, α is one coefficient that minimizes the error, and𝑓𝑖(𝑥𝑗) is the 

prediction given by the i-th built regressor. 
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4. METHODOLOGY USED IN THE IMPLEMENTATION 
 
In this section, we will present the methodology based on[25] that was used in this work. The 

methodology(Figure 1) consists of three phases: data preparation, modeling and experimental 

evaluation. 

 
 

Figure 1. Methodology 

 

4.1 Data Preparation 
 

Knowing the type of data is fundamental for choosing the appropriate methods to be used. The 
dataset analysed and the summary is available at [26], which has quantitative and qualitative 

information about projects. 

 

The independent variables of the models are "N&C" New and Changed as well as "R" (Reused) 
and all of them are considered as physical lines of code (LOC). N&C constituted of added and 

modified code. The joined code is the LOC written during the current programming process, 

while the modified code is the LOC changed in the base program when modifying a previously 
developed program. 

 

The correlation or correlation coefficient measures the tendency for two variables to change 
depending on their relationship. Pearson's correlation coefficient produces a result between -1 

and 1. A result of -1 means that there is a perfect negative correlation between the two values. In 

contrast, a result of 1 means that there is a definite positive correlation between the two variables. 

Thus, Figure 2 (a) shows a high correlation between N&C and AE (effort) and Figure 2 (b) 
exhibitions a low correlation between R-used and AE (effort). Therefore, an increase in the N&C 

variable increases the AE-effort, indicating cause and effect relationships. 

 

 
 

Figure 2. Correlation between N&C and AE-effort (a) and Correlation between R-reused and AE-effort (b) 
 

Figure 3 illustrates the histogram of the dependent variable (Ae-effort) relative to effort, which is 

measured in minutes. The histogram shows a slight tendency to form a normal distribution, 
where the highest concentration of data is around the mean and the frequency near to limits. 
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Figure 3. Effort Value Distribution 

 
Summary statistics for the numerical variables from the database are given in Table 1. In 

addition, there is a significant difference between Mean and Median to numerical variables, 

indicate the existence of outliers values. 
 

Table 1. Summary Statistics for numerical variables. 
 

Variable Description Mean Stdev Median 

N&C New and Changed code 35.56 26.60 27.00 

R Reused code 41.82 30.86 34.00 

AE Actual Effort (minutes) 77.07 37.81 67.00 

 

To solve the outlier problem, we normalized the data between 0 and 1. In normalization, the 
Max-Min method was utilized to employ the maximum and minimum values of the variable in 

question and its standard deviation to normalize the data on a scale uniform. 

 

4.2 Modeling 
 

We used the bagging [22]method in the modeling phase to generate a bootstrap sample set of the 

original data. This dataset will generate a set of models using a simple learning algorithm by 

combining their means. It’s according to Equation (1) and the ensemble stacking Equation (2) 
described in Section 3. Thus, the eight models were proposed: 
 

 ProposedModel1: ensemble Bagging with linear regression (here called B-LR). 

 ProposedModel2: ensemble Bagging with robust regression (here called B-RR). 

 ProposedModel3: ensemble Bagging with ridge regression (here called B-RI). 

 ProposedModel4: ensemble Bagging with lasso regression (here called B-LA). 

 ProposedModel5: ensemble Stacking with robust regression, ridge regression, lasso 

regression, and meta-predict (linear regression) (here called ST-LR). 

 ProposedModel6: ensemble Stacking with linear regression, ridge regression, lasso 

regression, and meta-predict (robust regression) (here called ST-RR). 

 ProposedModel7:ensemble Stacking with robust regression, linear regression, lasso 
regression, and meta-predict (ridge regression) (here called ST-RI). 

 ProposedModel8: ensemble Stacking with lasso regression, linear regression, ridge 

regression, and meta-predict (lasso regression) (here called ST-LA). 

 
The eight models proposed were compared with the literature models, which used the same 

dataset for estimating effort in software development. The models in the literature are: 

 

 Linear Regression[26]. 

 ELM (Extreme Learning Machine)[27]. 
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4.3 Experimental Evaluation 
 

This section depicts the carry out the measurements used in this research. There are diverse 

metrics used in the literature to evaluate the accuracy of prediction methods in software project 
effort estimation[28]. According to[28]an evaluation metric that does not have a good precision 

for the prediction of software effort estimation is MMRE. 

 
To qualify the performance of the model, which is compared with each technique, the 

performance index used in this work is the Mean Absolute Residual (MAR), as denoted in 

Equation 3. 
 

𝑀𝐴𝑅 =  
∑ |𝑦𝑖 − �̂�𝑖|𝑛

1

𝑛
 (3) 

𝑦𝑖 is the ith value of the variable being predicted, �̂�𝑖 its estimate,𝑦𝑖 − �̂�𝑖 the ith residual and n the 

number of cases in the dataset. 

 
The Relative Gain (RG)[9]is another form of measurement is to analyse the proposed models 

about related works. The aim of the RG is measuring the gain about minimizing any prediction 

error, and this value shown in percentage. The RG presents in Equation 4. 
 

 
𝑅𝐺 = 100 ∗ (

𝐸𝑟𝑟𝑜𝑎 − 𝐸𝑟𝑟𝑜𝑏

𝐸𝑟𝑟𝑜𝑎
) (4) 

 

With the sample of 1000 iterations, we calculate the standard deviation (SD) of the error. 

Besides, we performed statistical tests, such as the Kolmogorov-Smirnov and Wilcoxon tests. We 

also use boxplots and relative p-value also to evaluate the performance of the models. 
 

5. RESULTS AND DISCUSSION 
 

In this section, we present the results obtained in the experiments. It was composed by the 
ensemble bagging and stacking methods. Besides, the ensemble models were created with 

parametric techniques, and performed a Monte Carlo simulation with 1000 iterations on the 

literature and proposed models. Algorithm 1 presents the pseudocode for experimental 

evaluation. 
 

Algorithm1: Pseudo-code of the experiment execution 

1Input:Use the dataset 

2 
3 

Set:Number Simulation (MC) = 1000 
For all i = 1 to MC do it: 

4 

5 
 

6 

 Shuffle dataset Training (70%) and Test (30%) 

Apply:ensemble models (B-LR,B-RR,B-RI,B-LA,ST-LR,ST-RR,ST-RI,ST-LA) 
to training set 

Calculate: the (MAR) of the models 

7 
8 

endfor 
Calculate mean and standard deviation of the error (MAR), Equation 3 

 

Table 2 shows the error (Equation 3) of the mean and standard deviation of the ensemble 

proposed models. We observed in the results that the averages of the models with lasso 
regression are smaller (B-LA, ST-LA), indicating that these two models had the best 

performance. 
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Table 2. Results Means and Standard Deviation. 

 

Techniques Mean (standard deviation) 

B-LR 23.8934 (3.6888*10-1) 

B-RR 23.4201 (3.9832*10-1) 

B-RI 21.8855 (2.4547*10-1) 

B-LA 21.5707 (1.2946*10-1) 

ST-LR 23.5129 (3.3108*10-14) 

ST-RR 23.2779 (1.6313*10-12) 

ST-RI 22.6649 (1.5244*10-13) 

ST-LA 21.5507 (5.0822*10-14) 

 

Figure 4 shows the boxplot graph of the ensemble models. In addition, we demonstrate that there 

is an outlier in all proposed bagging models (B-LR, B-RR, R-RI and B-LA), and the variance is 

little and similar in proposed stacking models (ST-LR,SR-RR,ST-RI and ST-LA). We conclude 
that the proposed stacking models are less sensitive to outliers. 

 

 
 

Figure 4. Boxplot Model 

 
The  Kolmogorov Smirnov normality test [29]was used. All datasets do not carry on a normal 

distribution. Thus, the Wilcoxon hypothesis test[30]with a significance of 5% was quantified. 

The alternative hypothesis is that the B-LA model had smaller errors (H1), and the null 

hypothesis is that the models have the same errors (H0).Equation 5. 
 

 {
𝐻0 ∶  𝜇1 =  𝜇2

 𝐻1 ∶  𝜇1 < 𝜇2
 (5) 

 

Table 3shows the result of the p-value for the Wilcoxon tests. According to the analyses, the ST-

LA model does not present statistical evidence of minor errors than the B-LA. Thus, proposed 

stacking ensemble models using parametric techniques have promising results for the problem of 
the effort estimation in software development. 
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Table 3. Results p-value. 

 

Techniques p-value 

ST-LA vs B-LR 2.2*10-16 

ST-LA vs B-RR 2.2*10-16 

ST-LA vs B-RI 2.2*10-16 

ST-LA vs B-LA 0.19144 

ST-LA vs ST-LR 2.2*10-16 

ST-LA vs ST-RR 2.2*10-16 

ST-LA vs ST-RI 2.2*10-16 

 
Table 4shows the comparison with other studies of effort estimation in software development. 

We compare the datasets and types of ensemble used in the articles. 

 
Table 4. Related Work Comparation. 

 

Authors Dataset Evaluation Techniques 

Kultur et 

al.[31] 

NASA, NASA 93, USC, 

SDR, Desharnais 

MMRE ENNA, ENN, NN 

Pai et al.[10] 163 projects from a leading 

CMMI level 5 

MRE Neural Network, Ensemble 

Elish and 

Helmy [32] 

Albrecht, Miyazaki, Maxwell, 

COCOMO, Desharnais 

MMRE SVR, MLP, ANFIS 

Kocaguneli et 

al.[33] 

COCOMO81, NASA93, 

Desharnais, SDR 

MRE, 

MMRE 

CART 

Shukla et 

al.[11] 

81 software projects from a 

Canadian software company 
(PROMISE) 

R2 MLPNN Model, Ridge-

MLPNN Ensemble Model, 
Lasso-MLPNN Ensemble 

Mode, Bagging-MLPNN 

Ensemble Model, AdaBoost-
MLPNN Ensemble Model 

Abnane et 

al.[34] 

Albrecht, COCOMO81, 

Kemerer, Desharnais, ISBSG, 

Miyazaki 

MAE E-KNNI, GS-KNNI, UC-

KNNI 

 

The eight proposed ensemble models are different from the related works show in Table 4. We 

take care to use parametric methods for building the ensemble models. Also, we used another 
dataset for effort estimation in software development. 

 

Some articles use the study dataset. But, the techniques used are linear regression and ELM 

(Extreme Learning Machine) with 2 and 5 n_hidden. We compared the eight proposed models 
with the developed ones.Equation6[26]presents the coefficient of linear regression used during 

the comparation, in which N&C and R (Reused) is previously described in Section 4. 

 
 𝐸𝑓𝑓𝑜𝑟𝑡 = 44.713 + (1.08 ∗ 𝑁&𝐶) − (0.145 ∗ 𝑅) (6) 

 

We observed the error (Equation 3) of the mean and standard deviation of the literature models in 

Table 5, and all errors were higher than those obtained by the proposed model's majority. 
Therefore, there is a big difference in the errors obtained with other techniques in this same 

dataset in comparison with proposed ensemble models. 
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Table 5. Comparison of Literature results (Error). 
 

Techniques (Ref.) Error (SD) 

Linear Regression ([26]) 48.5674 (1.3587*10-13) 

ELM with 2 n_hidden ([27]) 23.8934 (3.9770*100) 

ELM with 5 n_hidden ([27]) 24.228 (2.0757*100) 

 

Figure 5shows the boxplot graph of the ELM models. Analyzing it is noted a significant presence 

of ELM outlier with 2 n_hidden. However, the model with 5 n_hidden still presents an average 

with larger errors, since most of the error values are above the median of the other ELM model. 

 
 

Figure 5. Boxplot Model 
 

Table 6 presents the RG (Equation 4)of proposed models about the related works. We can verify 

that the obtained gain was very significant. We demonstrated that proposed models are more 
efficient than other literature models. We showed that the proposed prediction models fit well 

with ensemble bagging and stacking methods, considering the resultant effect of the increase in 

accuracy, reduced error rate as well as improvement in predictive efficiency. It can ratify the 
mean values obtained in Table 2. 

Table 6. Result of RG. 
 

Techniques Linear Regression ELM with 2 n_hidden ELM with 5 n_hidden 

B-LR 50.80% 0% 1.38% 

B-RR 51.77% 1.98% 3.33% 

B-RI 54.93% 8.40% 9.66% 

B-LA 55.58% 9.72% 10.96% 

ST-LR 51.58% 1.59% 2.95% 

ST-RR 52.07% 2.57% 3.92% 

ST-RI 53.33% 5.14% 6.45% 

ST-LA 55.62% 9.80% 11.05% 
 

The main contribution of this work is that the eight proposed ensembles models present better 

accuracy for this study's research problem. Also, use bagging and stacking with parametric 

techniques formation the models. The novel of this research and technical study is the application 

of ensembles models in the dataset. Thus, the accuracy of the estimation of software development 
enables companies to know the amount of effort required to develop this application on time and 

within budget, before implementing an application. Also, to estimate effort, it is generally 

necessary to know previous similar projects that have already been developed by the company 
and understand the project variables that may affect effort prediction in software development. 
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6. THREATS TO VALIDITY 
 

According to[35] describe threats to validity, it is clear that all the limitations presented are 

categorized as external validity. External validity can aim when studying is relevant to others 

considering the sample quantity. 
 

Ensemble Regression models were used during various stages of the present research. 

Considering the random nature of these models, the results obtained from every implementation 
might appear a little different from one another. MAR and RG used in the present article are 

biased. They have only chosen herein because they were found most frequently employed in 

prior research.  

 
Order to estimation training and test set, all of the data were randomly assigned to training and 

test sets in 70 % to 30 % ratio, respectively. The random assignment of the data can have a 

considerable influence on the model results. However, considering that all the models are run 
single datasets, there will be made not much of an effect on the overall work since the objective 

has been to compare the performance of various ensemble models on the dataset applied. 

 
We have some limitations regarding the size of the data set, as well as the number of attributes 

used to estimate the effort in software projects. The availability of data from software projects is 

another limitation, as the availability of data is not frequent, causing difficulties in forecasting 

with a reduced amount of data. Therefore, the number of instances in the data set must be more 
significant. 

 

According to the results, satisfactory outputs were obtained due to the useful findings (lower 
prediction errors). However, it can be seen that the eight ensemble models proposed herein have 

had better performance concerning the literature models. 

 

7. CONCLUSIONS AND FURTHER WORK 
 
Accurate estimation of software project effort at an early stage in the development process is an 

important challenge for the software engineering community. In this direction, this research 

lavished attention on the issues related to software effort estimation using ensemble models. 
Therefore, this work presents models for effort estimation of software projects to serve as a 

decision support tool for project managers in the process of specification, development, 

maintenance, and creation of software, aiming at the productivity and quality of the projects. 

According to the related works, many articles used the Mean Magnitude of Relative Error 
(MMRE) to assess the accuracy of the forecasting methods in estimating the effort of the 

software project. However, this accuracy is not a reliable indicator of forecast evaluation in the 

estimation of the software project effort. Therefore, in this article, we use MAR as an error 
estimate. 

 

In our simulations, we used a dataset of software projects similar to our reality, 163 small 
programs developed by 53 programmers, and validation 68 programs developed by another 

group, integrated by 21 programmers. 

 

We also conducted experiments to compare the dataset and techniques to the related works. We 
used eight ensemble regression models based on bagging and stacking methods. The main 

contributions of this paper are: 
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1. Comparison between ensemble regression models in the context of effort estimation. It could 
increase efficiency, reduced error rate, and increase in accuracy predictive; 

2. We showed through the experiments that the proposed models got better results compared 

with literature models;  
3. The proposed ensemble regression models (B-LR, B-RR, B-RI, B-LA, ST-LR, ST-RR, ST-

RI, and ST-LA) allow identifying the estimation of the effort the form efficient. 

4. The accuracy in estimating effort enables project managers to determine the duration, staffing, 

and cost required for software development. 
     
It is concluded that using machine learning techniques to estimate software development efforts 
enhances the projects to have more chances of success. Therefore, several investigations of other 

regression problems can be defined as future works of this study, including Boosting and 

Random Forest. Also, other data sets can be used for the experience and training of the model to 

compare the accuracy results. 
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