
International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

DOI: 10.5121/ijsea.2020.11305 71

ENSEMBLE REGRESSION MODELS FOR SOFTWARE

DEVELOPMENT EFFORT ESTIMATION: A

COMPARATIVE STUDY

Halcyon D. P. Carvalho, Marília N. C. A. Lima, Wylliams B. Santos

and Roberta A. de A.Fagunde

Department of Computer Engineering, University of Pernambuco, Brazil

ABSTRACT

As demand for computer software continually increases, software scope and complexity become higher

than ever. The software industry is in real need of accurate estimates of the project under development.

Software development effort estimation is one of the main processes in software project management.

However, overestimation and underestimation may cause the software industry loses. This study

determines which technique has better effort prediction accuracy and propose combined techniques that

could provide better estimates. Eight different ensemble models to estimate effort with Ensemble Models
were compared with each other base on the predictive accuracy on the Mean Absolute Residual (MAR)

criterion and statistical tests. The results have indicated that the proposed ensemble models, besides

delivering high efficiency in contrast to its counterparts, and produces the best responses for software

project effort estimation. Therefore, the proposed ensemble models in this study will help the project

managers working with development quality software.

KEYWORDS

Ensemble Models, Bagging, Stacking, Prediction, Machine Learning, Effort Estimation, Project

Management

1. INTRODUCTION

Software Engineering is a computing branch focused on the specification, development,
maintenance of software using well-defined principles, methods, procedures, and project

management practices [1].

Software project management has a wider scope than the software engineering process as it
involves stakeholders management, communication, which are performed to achieve a predefined

product, result, or service. A critical issue in the software project management process is the

estimated effort, resources, cost, and time spent in software development lifecycle [2].

Project effort estimation is part of the software development lifecycle. A realistic estimate of the

effort in the initial phase of the project is necessarily better to allocate resources for the
development of the project [3].According to [4], in the development phase, some artifacts are not

yet consistent, allowing changes in the requirements and the effort estimation of the project,

causing a great challenge for the project manager, since from the estimates, the changes can be

accepted or rejected.

http://www.airccse.org/journal/ijsea/vol11.html
https://doi.org/10.5121/ijsea.2020.11305

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

72

Without a realistic estimate, a software development project cannot be effectively managed.
Today, using data mining techniques, in particular, machine learning (ML) algorithm, is used for

effort prediction minimizing uncertainties [5].Several machine learning models have been

proposed to predict software development project effort, such as Artificial Neural Networks,
Decision Trees, Classification and Regression Tree, Bayesian Networks, Support Vector

Machine, Genetic Programming, K-neighbors more nearby, and Extreme Machine Learning[6].

In the context of ML, software effort estimation is a regression problem. The regression

algorithms are an equation that aims to estimate the value of a variable (y) based on one or more
independent variables (x), given a history of correlation between the two variables. The function

seeks to establish a linear function between X and Y that can determine the value of variable X

according to the value of variable Y[7]. For the construction of regression models to estimate
software development project effort, resources obtained before or during software development

are used as input variables for the model[8].

In ML there is still the ensemble technique. The ensemble is a set of models formed by more than

one ML algorithm. This technique has gained considerable popularity due to its good

generalization performances. The ensemble generally results in better accuracy and is more

stable than individual techniques, as they combine the results of its components to provide a
single result. It is expected that with the creation of an ensemble if any of the models perform

poorly, the system can reduce the error using many models [9].

In the area of effort estimation, the ensemble is not widely adopted. For example, in the work of

[10] using Neural Network Ensemble, the models MLPNN Model, Ridge-MLPNN Ensemble

Model, Lasso-MLPNN Ensemble Model, Bagging-MLPNN Ensemble Model, AdaBoost-

MLPNN Ensemble Model are used in[11].

In this context, the major reasons for proposed this work are: (i) the ensemble makes the model

more robust and stable, ensuring excellent carry out and through a set of two or more techniques
[12], it can be performed. (ii) Using ensemble models to estimate the variables related to the

effort estimation brings gain to this context and the various stakeholders in its applicability. They

are tools that can be widely used, generating knowledge, serving as a basis for problem-solving
and developing mechanisms to support the manager project.(iii) to reduce the gap in the

academic literature[9][10] in the use of ML techniques used in the Bagging and Stacking set in

the context of effort estimation. It is worth mentioning, in other regards, to obtain better

performance in prediction[8] because the ensemble models create several linear models in
different parts of the data set and then generalize them to get a more accurate prediction in the

effort estimation for software design.

Therefore, we propose to create an Ensemble Regression model for estimating the effort of

software projects. We use the ensemble bagging and stacking models in combination with the

regression technique. In our experiments, we used the software effort data set available at and

applied Bagging to the following predictors: Bagging with Linear Regression (B-LR), Bagging
with Robust Regression (B-RR), Bagging with Ridge Regression (B-RI), Bagging with Lasso

Regression (B-LA), Stacking with Ridge, Robusta, Lasso and Linear meta-predictor (ST-LR),

Stacking with Linear, Ridge, Lasso and Robusta meta-predictor (ST-RR), Stacking with Linear,
Robusta, Lasso and Ridge meta-predictor (ST-RI), Stacking with Linear, Robusta, Ridge, and

Lasso meta-predictor (ST-LA).

The contributions of this paper are the ensemble models applied to the software project effort

estimation field, as following: (i) use of the ensemble stacking and bagging methods for effort

estimation, and (ii) comparison of the proposed models with models from the literature that use

this dataset.

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

73

This paper is organized as follows. Section 2 presents related works. Section 3 presents the
Background. Section 4 presents the methodology employed in this research. Section 5 presents

the results of the experiments. Final considerations and future work are in section 6.

2. RELATED WORKS

In this section, we can observe research on the use of ML to estimate software development

project effort.

In[13]the authors aim to improve the estimation of the software effort by incorporating direct

mathematical principles and artificial neural network techniques. The process consists of

transforming the problem of estimating the effort of the software into the problems of
classification and functional approximation using a feed forward neural network. The results

were systematically compared with previous related works, using only a few resources obtained,

but they demonstrate that the proposed model produced satisfactory estimation accuracy based on

the MMRE-Mean Magnitude of the Relative Error and PRED-Percentage Relative Error
Deviation.

In [14]the authors proposed to apply a genetic algorithm to simultaneously select the optimal
input feature subset and the parameters of a machine learning technique used for regression. The

paper investigated three machine learning techniques: (i) Support Vector Regression (SVR), (ii)

MLP Neural Networks, and (iii) Decision Trees (M5P). The genetic algorithm-based method
showed a better performance, compared to the three machine learning techniques for software

development effort estimation problems.

In[15]Gabrani and Saini conducted a comparative study of non-algorithmic techniques used for
software development effort estimation. An empirical evaluation of five learning algorithms was

carried out, namely: Fuzzy Learning based on Genetic Programming Grammar Operators (GFS-

GPG-R), Symbolic Fuzzy-Valued Data Learning based on Genetic Programming Grammar
Operators and Simulated Annealing (GFS-SAP- Sym-R), Symbolic Fuzzy Learning based on

Genetic Programming Grammar Operators and Simulated Annealing (GFS-GSP-R), Ensemble

Neural Network for Regression Problems (Ensemble-R), Fuzzy and Random Sets Based

Modeling (FRSBM). Out of which the first three are variants of hybridization of genetic
programming and fuzzy learning algorithms, the fourth one involves ensembling of neural

networks, and the fifth one involves fuzzy random set based modeling. The proposed results are

compared with other machine learning methods, such as MLP, SRV and ANFIS-Adaptive Neuro
Fuzzy Inference Strategy. Based on the entire study, it is concluded that evolutionary algorithms

give better results for the estimation of software effort compared to other machine learning

methods. Of the five evolutionary learning algorithms that presented, the best result was the
GFS- SAP-Sym-R.

The work conducted by Azzeh[16]presents a new approach to improve the accuracy of the effort

estimate based on the use of the Optimized Tree Model. The bees algorithm was used to search
for the optimal values of the Tree Model parameters to construct the software effort estimation

model. As a reference, the results were compared to those obtained with gradual regression, case-

based reasoning, and multilayer perceptron. The combination of the tree and bees model
algorithm surpassed other well-known estimation methods.

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

74

In their work [17], Tierno and Nunercompared the data-driven Bayesian Networks with the
regression of ordinary least squares with unique logarithmic transformation and with the mean

and median baseline models. According to the author, BN has the potential for data-based

predictions, but still need improvements to keep pace with more accurate data-based models.
In the work of[18], the authors evaluate automated ensembles of learning machines manages to

improve software development effort estimation given by single ML and which of them would be

more useful. In addition, the use of resource selection and regression trees (RTs) was analysed.

Two personalized ways of combining sets and locations were investigated to provide additional
information on how to improve software effort estimates. Bagging ensembles of RTs was among

the best approaches for each data set. However, performance is significantly worse compared to

the best approach for data sets.

In[19], the authors validated an automated genetic structure, carrying out sensitivity analyses in

different genetic configurations to increase the forecast performance and optimize the processing
time. The search space was represented by the combination of eight pre-processors, fifteen

modeling techniques, and five attribute selectors. Through the elitism technique, the genetic

structure selects the best combination of processing, attributes, and learning algorithm with the

best correlation of coefficients. The metrics used for validation were: Spearman's rank
correlation, MMRE - Mean of the Magnitude of Relative Error, MdMRE - Median of the

Magnitude of Relative Error, MMAR - Mean of the Absolute Residuals, SA - Standardized

Accuracy, and Pred25 - number of Predictions within % of the actual ones. They concluded that
the study was able to improve some forecasting models based on the results of the best

performance of the learning schemes, and that, according to the data set used for forecasting, the

selection of an appropriate estimation technique directly impacts its performance.

In the work of[20], a study was carried out with four machine learning algorithms to create

models for estimating software development effort. Artificial Neural Network (ANN), Support

Vector Machines (SVM), K-star, and Linear Regression were evaluated using public data from
software projects. The model that had the best performance was the SVM.

In[21], the authors proposed working with three machine learning models to increase the
performance of the software effort estimation process, such as Multi-Layer Perceptron Neural

Network (MLPNN), Probabilistic Neural Network (PNN), and Recurrent Neural Network

(RNN). The result of his study suggests that the MLPNN model performed better compared to

the other models, with 79% of successful estimates.

Therefore, given the presented scenario, this work differs from those previously shown since the

ensemble models used and the respective composition of techniques proposed in this article were
not applied to the dataset for effort estimation problems. The use of ensemble models combines

more than one regression model, so there are specific models for each region, providing a more

efficient estimation. Thus, these models enable better accuracy in estimating the final result of
the effort estimation in software projects.

3. BACKGROUND

In this section, we present the notions related to ensemble techniques, Bagging (Bootstrap
Aggregating), and Stacking, which are the prediction model applied in this research.

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

75

3.1 Bagging (Bootstrap Aggregating)

The Bootstrap Aggregation method, also called bagging, was one of the first predictor

combination methods proposed by Breiman in 1996 [22], which generates a set of data by
bootstrap sampling of the original data.

Bagging generates several training sets with data replacement and then builds a model for each
set using the same machine learning algorithm[8].

In bagging, in a regression problem, the application can be described as a training sample Dt =
(x1, y1), ..., (xn, yn), whose instances are independent from a probability distribution P(x, y).

Hence, bagging combines the prediction of a collection of regressors, in which each regressor is

constructed by applying a fixed learning algorithm to a different bootstrap sample from the

original Dttraining data. In equation 1 is described the representation of bagging, which the
forecast on the set is the average of the individual forecasts of the generated M regressors.

𝑓𝑏𝑎𝑔(𝑥) =
1

𝑀
∑ 𝑓𝑖(𝑥)

𝑀

𝑖=𝑖

 (1)

where,fbag(x) is a combined forecast model for timex, M is the number of components in the

model and𝑓�̂�(𝑥)is an output of the base component.

3.2 Stacking

Stacking is a technique used to combine several models. The idea is to gather the advantages of
different techniques, minimize the error rate of the models, and create a meta-predictor that

combines the outputs of different models [23].

One of the ways to build a stacking is to collect the outputs of each model that makes up a set to

form a new set of data. As [24], there are two learning levels 0 and 1. Level-0 are models trained

and tested in independent cross-validation examples from the original data set. The output of this

model and the original input data are used as input for level-1, called generalized, that is, the
meta predictor. In this way, level-1 is developed using the results of level-0 generalizers.

Through the M set of predictors (linear or non-linear), instead of selecting just a single model
from this set, a more accurate predictor can be obtained by combining the M predictors. The idea

is that the level-1 data (result formed by each M predictor) has more information and can be used

to build good combinations of predictors. Equation 2 shows the formulation of the stacking
function,

𝑓𝑠𝑡𝑎𝑐𝑘(𝑥) = ∑

𝐾

𝑗=1

[𝑓(𝑥𝑗) − ∑ ∝𝑖

𝑀

𝑖=1

∗ 𝑓𝑖(𝑥𝑗)] (2)

where, fstack(x) is the combined model prediction for x, K is the combined training data size, M

is the number of model regressors, α is one coefficient that minimizes the error, and𝑓𝑖(𝑥𝑗) is the

prediction given by the i-th built regressor.

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

76

4. METHODOLOGY USED IN THE IMPLEMENTATION

In this section, we will present the methodology based on[25] that was used in this work. The

methodology(Figure 1) consists of three phases: data preparation, modeling and experimental

evaluation.

Figure 1. Methodology

4.1 Data Preparation

Knowing the type of data is fundamental for choosing the appropriate methods to be used. The
dataset analysed and the summary is available at [26], which has quantitative and qualitative

information about projects.

The independent variables of the models are "N&C" New and Changed as well as "R" (Reused)
and all of them are considered as physical lines of code (LOC). N&C constituted of added and

modified code. The joined code is the LOC written during the current programming process,

while the modified code is the LOC changed in the base program when modifying a previously
developed program.

The correlation or correlation coefficient measures the tendency for two variables to change
depending on their relationship. Pearson's correlation coefficient produces a result between -1

and 1. A result of -1 means that there is a perfect negative correlation between the two values. In

contrast, a result of 1 means that there is a definite positive correlation between the two variables.

Thus, Figure 2 (a) shows a high correlation between N&C and AE (effort) and Figure 2 (b)
exhibitions a low correlation between R-used and AE (effort). Therefore, an increase in the N&C

variable increases the AE-effort, indicating cause and effect relationships.

Figure 2. Correlation between N&C and AE-effort (a) and Correlation between R-reused and AE-effort (b)

Figure 3 illustrates the histogram of the dependent variable (Ae-effort) relative to effort, which is

measured in minutes. The histogram shows a slight tendency to form a normal distribution,
where the highest concentration of data is around the mean and the frequency near to limits.

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

77

Figure 3. Effort Value Distribution

Summary statistics for the numerical variables from the database are given in Table 1. In

addition, there is a significant difference between Mean and Median to numerical variables,

indicate the existence of outliers values.

Table 1. Summary Statistics for numerical variables.

Variable Description Mean Stdev Median

N&C New and Changed code 35.56 26.60 27.00

R Reused code 41.82 30.86 34.00

AE Actual Effort (minutes) 77.07 37.81 67.00

To solve the outlier problem, we normalized the data between 0 and 1. In normalization, the
Max-Min method was utilized to employ the maximum and minimum values of the variable in

question and its standard deviation to normalize the data on a scale uniform.

4.2 Modeling

We used the bagging [22]method in the modeling phase to generate a bootstrap sample set of the

original data. This dataset will generate a set of models using a simple learning algorithm by

combining their means. It’s according to Equation (1) and the ensemble stacking Equation (2)
described in Section 3. Thus, the eight models were proposed:

 ProposedModel1: ensemble Bagging with linear regression (here called B-LR).

 ProposedModel2: ensemble Bagging with robust regression (here called B-RR).

 ProposedModel3: ensemble Bagging with ridge regression (here called B-RI).

 ProposedModel4: ensemble Bagging with lasso regression (here called B-LA).

 ProposedModel5: ensemble Stacking with robust regression, ridge regression, lasso

regression, and meta-predict (linear regression) (here called ST-LR).

 ProposedModel6: ensemble Stacking with linear regression, ridge regression, lasso

regression, and meta-predict (robust regression) (here called ST-RR).

 ProposedModel7:ensemble Stacking with robust regression, linear regression, lasso
regression, and meta-predict (ridge regression) (here called ST-RI).

 ProposedModel8: ensemble Stacking with lasso regression, linear regression, ridge

regression, and meta-predict (lasso regression) (here called ST-LA).

The eight models proposed were compared with the literature models, which used the same

dataset for estimating effort in software development. The models in the literature are:

 Linear Regression[26].

 ELM (Extreme Learning Machine)[27].

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

78

4.3 Experimental Evaluation

This section depicts the carry out the measurements used in this research. There are diverse

metrics used in the literature to evaluate the accuracy of prediction methods in software project
effort estimation[28]. According to[28]an evaluation metric that does not have a good precision

for the prediction of software effort estimation is MMRE.

To qualify the performance of the model, which is compared with each technique, the

performance index used in this work is the Mean Absolute Residual (MAR), as denoted in

Equation 3.

𝑀𝐴𝑅 =
∑ |𝑦𝑖 − �̂�𝑖|𝑛

1

𝑛
 (3)

𝑦𝑖 is the ith value of the variable being predicted, �̂�𝑖 its estimate,𝑦𝑖 − �̂�𝑖 the ith residual and n the

number of cases in the dataset.

The Relative Gain (RG)[9]is another form of measurement is to analyse the proposed models

about related works. The aim of the RG is measuring the gain about minimizing any prediction

error, and this value shown in percentage. The RG presents in Equation 4.

𝑅𝐺 = 100 ∗ (

𝐸𝑟𝑟𝑜𝑎 − 𝐸𝑟𝑟𝑜𝑏

𝐸𝑟𝑟𝑜𝑎
) (4)

With the sample of 1000 iterations, we calculate the standard deviation (SD) of the error.

Besides, we performed statistical tests, such as the Kolmogorov-Smirnov and Wilcoxon tests. We

also use boxplots and relative p-value also to evaluate the performance of the models.

5. RESULTS AND DISCUSSION

In this section, we present the results obtained in the experiments. It was composed by the
ensemble bagging and stacking methods. Besides, the ensemble models were created with

parametric techniques, and performed a Monte Carlo simulation with 1000 iterations on the

literature and proposed models. Algorithm 1 presents the pseudocode for experimental

evaluation.

Algorithm1: Pseudo-code of the experiment execution

1Input:Use the dataset

2
3

Set:Number Simulation (MC) = 1000
For all i = 1 to MC do it:

4

5

6

 Shuffle dataset Training (70%) and Test (30%)

Apply:ensemble models (B-LR,B-RR,B-RI,B-LA,ST-LR,ST-RR,ST-RI,ST-LA)
to training set

Calculate: the (MAR) of the models

7
8

endfor
Calculate mean and standard deviation of the error (MAR), Equation 3

Table 2 shows the error (Equation 3) of the mean and standard deviation of the ensemble

proposed models. We observed in the results that the averages of the models with lasso
regression are smaller (B-LA, ST-LA), indicating that these two models had the best

performance.

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

79

Table 2. Results Means and Standard Deviation.

Techniques Mean (standard deviation)

B-LR 23.8934 (3.6888*10-1)

B-RR 23.4201 (3.9832*10-1)

B-RI 21.8855 (2.4547*10-1)

B-LA 21.5707 (1.2946*10-1)

ST-LR 23.5129 (3.3108*10-14)

ST-RR 23.2779 (1.6313*10-12)

ST-RI 22.6649 (1.5244*10-13)

ST-LA 21.5507 (5.0822*10-14)

Figure 4 shows the boxplot graph of the ensemble models. In addition, we demonstrate that there

is an outlier in all proposed bagging models (B-LR, B-RR, R-RI and B-LA), and the variance is

little and similar in proposed stacking models (ST-LR,SR-RR,ST-RI and ST-LA). We conclude
that the proposed stacking models are less sensitive to outliers.

Figure 4. Boxplot Model

The Kolmogorov Smirnov normality test [29]was used. All datasets do not carry on a normal

distribution. Thus, the Wilcoxon hypothesis test[30]with a significance of 5% was quantified.

The alternative hypothesis is that the B-LA model had smaller errors (H1), and the null

hypothesis is that the models have the same errors (H0).Equation 5.

 {
𝐻0 ∶ 𝜇1 = 𝜇2

 𝐻1 ∶ 𝜇1 < 𝜇2
 (5)

Table 3shows the result of the p-value for the Wilcoxon tests. According to the analyses, the ST-

LA model does not present statistical evidence of minor errors than the B-LA. Thus, proposed

stacking ensemble models using parametric techniques have promising results for the problem of
the effort estimation in software development.

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

80

Table 3. Results p-value.

Techniques p-value

ST-LA vs B-LR 2.2*10-16

ST-LA vs B-RR 2.2*10-16

ST-LA vs B-RI 2.2*10-16

ST-LA vs B-LA 0.19144

ST-LA vs ST-LR 2.2*10-16

ST-LA vs ST-RR 2.2*10-16

ST-LA vs ST-RI 2.2*10-16

Table 4shows the comparison with other studies of effort estimation in software development.

We compare the datasets and types of ensemble used in the articles.

Table 4. Related Work Comparation.

Authors Dataset Evaluation Techniques

Kultur et

al.[31]

NASA, NASA 93, USC,

SDR, Desharnais

MMRE ENNA, ENN, NN

Pai et al.[10] 163 projects from a leading

CMMI level 5

MRE Neural Network, Ensemble

Elish and

Helmy [32]

Albrecht, Miyazaki, Maxwell,

COCOMO, Desharnais

MMRE SVR, MLP, ANFIS

Kocaguneli et

al.[33]

COCOMO81, NASA93,

Desharnais, SDR

MRE,

MMRE

CART

Shukla et

al.[11]

81 software projects from a

Canadian software company
(PROMISE)

R2 MLPNN Model, Ridge-

MLPNN Ensemble Model,
Lasso-MLPNN Ensemble

Mode, Bagging-MLPNN

Ensemble Model, AdaBoost-
MLPNN Ensemble Model

Abnane et

al.[34]

Albrecht, COCOMO81,

Kemerer, Desharnais, ISBSG,

Miyazaki

MAE E-KNNI, GS-KNNI, UC-

KNNI

The eight proposed ensemble models are different from the related works show in Table 4. We

take care to use parametric methods for building the ensemble models. Also, we used another
dataset for effort estimation in software development.

Some articles use the study dataset. But, the techniques used are linear regression and ELM

(Extreme Learning Machine) with 2 and 5 n_hidden. We compared the eight proposed models
with the developed ones.Equation6[26]presents the coefficient of linear regression used during

the comparation, in which N&C and R (Reused) is previously described in Section 4.

 𝐸𝑓𝑓𝑜𝑟𝑡 = 44.713 + (1.08 ∗ 𝑁&𝐶) − (0.145 ∗ 𝑅) (6)

We observed the error (Equation 3) of the mean and standard deviation of the literature models in

Table 5, and all errors were higher than those obtained by the proposed model's majority.
Therefore, there is a big difference in the errors obtained with other techniques in this same

dataset in comparison with proposed ensemble models.

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

81

Table 5. Comparison of Literature results (Error).

Techniques (Ref.) Error (SD)

Linear Regression ([26]) 48.5674 (1.3587*10-13)

ELM with 2 n_hidden ([27]) 23.8934 (3.9770*100)

ELM with 5 n_hidden ([27]) 24.228 (2.0757*100)

Figure 5shows the boxplot graph of the ELM models. Analyzing it is noted a significant presence

of ELM outlier with 2 n_hidden. However, the model with 5 n_hidden still presents an average

with larger errors, since most of the error values are above the median of the other ELM model.

Figure 5. Boxplot Model

Table 6 presents the RG (Equation 4)of proposed models about the related works. We can verify

that the obtained gain was very significant. We demonstrated that proposed models are more
efficient than other literature models. We showed that the proposed prediction models fit well

with ensemble bagging and stacking methods, considering the resultant effect of the increase in

accuracy, reduced error rate as well as improvement in predictive efficiency. It can ratify the
mean values obtained in Table 2.

Table 6. Result of RG.

Techniques Linear Regression ELM with 2 n_hidden ELM with 5 n_hidden

B-LR 50.80% 0% 1.38%

B-RR 51.77% 1.98% 3.33%

B-RI 54.93% 8.40% 9.66%

B-LA 55.58% 9.72% 10.96%

ST-LR 51.58% 1.59% 2.95%

ST-RR 52.07% 2.57% 3.92%

ST-RI 53.33% 5.14% 6.45%

ST-LA 55.62% 9.80% 11.05%

The main contribution of this work is that the eight proposed ensembles models present better

accuracy for this study's research problem. Also, use bagging and stacking with parametric

techniques formation the models. The novel of this research and technical study is the application

of ensembles models in the dataset. Thus, the accuracy of the estimation of software development
enables companies to know the amount of effort required to develop this application on time and

within budget, before implementing an application. Also, to estimate effort, it is generally

necessary to know previous similar projects that have already been developed by the company
and understand the project variables that may affect effort prediction in software development.

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

82

6. THREATS TO VALIDITY

According to[35] describe threats to validity, it is clear that all the limitations presented are

categorized as external validity. External validity can aim when studying is relevant to others

considering the sample quantity.

Ensemble Regression models were used during various stages of the present research.

Considering the random nature of these models, the results obtained from every implementation
might appear a little different from one another. MAR and RG used in the present article are

biased. They have only chosen herein because they were found most frequently employed in

prior research.

Order to estimation training and test set, all of the data were randomly assigned to training and

test sets in 70 % to 30 % ratio, respectively. The random assignment of the data can have a

considerable influence on the model results. However, considering that all the models are run
single datasets, there will be made not much of an effect on the overall work since the objective

has been to compare the performance of various ensemble models on the dataset applied.

We have some limitations regarding the size of the data set, as well as the number of attributes

used to estimate the effort in software projects. The availability of data from software projects is

another limitation, as the availability of data is not frequent, causing difficulties in forecasting

with a reduced amount of data. Therefore, the number of instances in the data set must be more
significant.

According to the results, satisfactory outputs were obtained due to the useful findings (lower
prediction errors). However, it can be seen that the eight ensemble models proposed herein have

had better performance concerning the literature models.

7. CONCLUSIONS AND FURTHER WORK

Accurate estimation of software project effort at an early stage in the development process is an

important challenge for the software engineering community. In this direction, this research

lavished attention on the issues related to software effort estimation using ensemble models.
Therefore, this work presents models for effort estimation of software projects to serve as a

decision support tool for project managers in the process of specification, development,

maintenance, and creation of software, aiming at the productivity and quality of the projects.

According to the related works, many articles used the Mean Magnitude of Relative Error
(MMRE) to assess the accuracy of the forecasting methods in estimating the effort of the

software project. However, this accuracy is not a reliable indicator of forecast evaluation in the

estimation of the software project effort. Therefore, in this article, we use MAR as an error
estimate.

In our simulations, we used a dataset of software projects similar to our reality, 163 small
programs developed by 53 programmers, and validation 68 programs developed by another

group, integrated by 21 programmers.

We also conducted experiments to compare the dataset and techniques to the related works. We
used eight ensemble regression models based on bagging and stacking methods. The main

contributions of this paper are:

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

83

1. Comparison between ensemble regression models in the context of effort estimation. It could
increase efficiency, reduced error rate, and increase in accuracy predictive;

2. We showed through the experiments that the proposed models got better results compared

with literature models;
3. The proposed ensemble regression models (B-LR, B-RR, B-RI, B-LA, ST-LR, ST-RR, ST-

RI, and ST-LA) allow identifying the estimation of the effort the form efficient.

4. The accuracy in estimating effort enables project managers to determine the duration, staffing,

and cost required for software development.

It is concluded that using machine learning techniques to estimate software development efforts
enhances the projects to have more chances of success. Therefore, several investigations of other

regression problems can be defined as future works of this study, including Boosting and

Random Forest. Also, other data sets can be used for the experience and training of the model to

compare the accuracy results.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior - Brasil (CAPES) - Finance Code 001, FACEPE, and CNPq.

REFERENCES

[1] R. S. Pressman, Software Engineering A Practitioner’s Approach 8th Edition. 2016.

[2] B. Peischl, M. Nica, M. Zanker, and W. Schmid, “Recommending effort estimation methods for
software project management,” Proc. - 2009 IEEE/WIC/ACM Int. Conf. Web Intell. Intell. Agent

Technol. - Work. WI-IAT Work. 2009, vol. 3, pp. 77–80, 2009.

[3] W. Han, H. Jiang, X. Zhang, and W. Li, “A Neural Network Based Algorithms for Project Duration

Prediction,” Proc. - 7th Int. Conf. Control Autom. CA 2014, pp. 60–63, 2014.

[4] J. Shah, N. Kama, N. A. A Bakar, and Z. Bhutto, “Software Requirement Change Effort Estimation

Model Prototype Tool for Software Development Phase,” Int. J. Softw. Eng. Appl., vol. 10, no. 03,

pp. 09–19, 2019.

[5] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An effective approach for software
project effort and duration estimation with machine learning algorithms,” J. Syst. Softw., vol. 137,

pp. 184–196, 2018.

[6] A. García-Floriano, C. López-Martín, C. Yáñez-Márquez, and A. Abran, “Support Vector Regression

for Predicting Software Enhancement Effort,” Inf. Softw. Technol., vol. 97, pp. 99–109, 2018.

[7] W. O. Bussab and P. A. Morettin, Estatística Básica, 9th ed. Pinheiros: Saraiva, 2017.

[8] P. L. Braga, A. L. I. Oliveira, G. H. T. Ribeiro, and S. R. L. Meira, “Bagging predictors for

estimation of software project effort,” IEEE Int. Conf. Neural Networks - Conf. Proc., no. October

2016, pp. 1595–1600, 2007.

[9] P. M. Da Silva, M. N. C. A. Lima, W. L. Soares, I. R. R. Silva, R. A. De Fagundes, and F. F. De

Souza, “Ensemble regression models applied to dropout in higher education,” Proc. - 2019 Brazilian

Conf. Intell. Syst. BRACIS 2019, pp. 120–125, 2019.

[10] D. R. Pai, K. S. McFall, and G. H. Subramanian, “Software effort estimation using a neural network

ensemble,” J. Comput. Inf. Syst., vol. 53, no. 4, pp. 49–58, 2013.

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

84

[11] S. Shukla, S. Kumar, and P. R. Bal, “Analyzing effect of ensemble models on multi-layer perceptron

network for software effort estimation,” Proc. - 2019 IEEE World Congr. Serv. Serv. 2019, vol.

2642–939X, pp. 386–387, 2019.

[12] N. García-Pedrajas, C. Hervás-Martínez, and D. Ortiz-Boyer, “Cooperative coevolution of artificial

neural network ensembles for pattern classification,” IEEE Trans. Evol. Comput., vol. 9, no. 3, pp.

271–302, 2005.

[13] P. Jodpimai, P. Sophatsathit, and C. Lursinsap, “Estimating software effort with minimum features

using neural functional approximation,” Proc. - 2010 10th Int. Conf. Comput. Sci. Its Appl. ICCSA

2010, pp. 266–273, 2010.

[14] A. L. I. Oliveira, P. L. Braga, R. M. F. L. Lima, and M. L. Cornélio, “GA-based method for feature

selection and parameters optimization for machine learning regression applied to software effort

estimation,” Inf. Softw. Technol., vol. 52, pp. 1155–1166, 2010.

[15] G. Gabrani and N. Saini, “Effort estimation models using evolutionary learning algorithms for
software development,” 2016 Symp. Colossal Data Anal. Networking, CDAN 2016, 2016.

[16] M. Azzeh, “Software Effort Estimation Based on Optimized Model Tree Mohammad,” Proc. 7th Int.

Conf. Predict. Model. Softw. Eng. PROMISE 2011, pp. 20–21, 2011.

[17] I. A. P. Tierno and D. J. Nunes, “An extended assessment of data-driven Bayesian Networks in

software effort prediction,” Proc. - 2013 27th Brazilian Symp. Softw. Eng. SBES 2013, pp. 157–166,

2013.

[18] L. L. Minku and X. Yao, “Ensembles and locality: Insight on improving software effort estimation,”

Inf. Softw. Technol., vol. 55, no. 8, pp. 1512–1528, 2013.

[19] J. Murillo-Morera, C. Quesada-López, C. Castro-Herrera, and M. Jenkins, A genetic algorithm based

framework for software effort prediction, vol. 5, no. 1. Journal of Software Engineering Research and

Development, 2017.

[20] M. Hammad and A. Alqaddoumi, “Features-level software effort estimation using machine learning

algorithms,” 2018 Int. Conf. Innov. Intell. Informatics, Comput. Technol. 3ICT 2018, pp. 1–3, 2018.

[21] S. Shukla and S. Kumar, “Applicability of Neural Network Based Models for Software Effort

Estimation,” Proc. - 2019 IEEE World Congr. Serv. Serv. 2019, vol. 2642–939X, pp. 339–342, 2019.

[22] L. Breiman, “Bagging Predictors,” Mach. Learn., vol. 24, no. 421, pp. 123–140, 1996.

[23] A. A. Ghorbani and K. Owrangh, “Stacked generalization in neural networks: Generalization on

statistically neutral problems,” Proc. Int. Jt. Conf. Neural Networks, vol. 3, pp. 1715–1720, 2001.

[24] P. Kraipeerapun and S. Amornsamankul, “Using stacked generalization and complementary neural

networks to predict Parkinson’s disease,” Proc. - Int. Conf. Nat. Comput., vol. 2016-Janua, pp. 1290–

1294, 2016.

[25] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to Knowledge Discovery in

Databases,” Am. Assoc. Artif. Intell., vol. 17, pp. 37–54, 1996.

[26] C. Lopez-Martin, “A fuzzy logic model for predicting the development effort of short scale programs
based upon two independent variables,” Appl. Soft Comput. J., vol. 11, no. 1, pp. 724–732, 2011.

[27] S. K. Pillai and M. K. Jeyakumar, “Extreme Learning Machine for Software Development Effort

Estimation of Small Programs,” Int. Conf. Circuit, Power Comput. Technol., pp. 1698–1703, 2014.

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

85

[28] M. Shepperd and S. MacDonell, “Evaluating prediction systems in software project estimation,” Inf.

Softw. Technol., vol. 54, no. 8, pp. 820–827, 2012.

[29] H. W. Lilliefors, “On the Kolmogorov-Smirnov test for normality with mean and variance
unknown,” J. Am. Stat. Assoc., vol. 62, no. 318, pp. 399–402, 1967.

[30] F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biometrics Bull., vol. 1, no. 6, pp. 80–

83, 1945.

[31] Y. Kultur, B. Turhan, and A. Bener, “Ensemble of neural networks with associative memory (ENNA)

for estimating software development costs,” Knowledge-Based Syst., vol. 22, no. 6, pp. 395–402,

2009.

[32] M. O. Elish, T. Helmy, and M. I. Hussain, “Empirical study of homogeneous and heterogeneous

ensemble models for software development effort estimation,” Hindawi Math. Probl. Eng., vol. 2013,

2013.
[33] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of ensemble effort estimation,” IEEE

Trans. Softw. Eng., vol. 38, no. 6, pp. 1403–1416, 2012.

[34] I. Abnane, M. Hosni, A. Idri, and A. Abran, “Analogy Software Effort Estimation Using Ensemble

KNN Imputation,” Proc. - 45th Euromicro Conf. Softw. Eng. Adv. Appl. SEAA 2019, no. 1, pp.

228–235, 2019.

[35] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in software

engineering,” Empir. Softw. Eng., vol. 14, no. 2, pp. 131–164, 2009.

http://www.airccse.org/journal/ijsea/vol11.html

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.3, May 2020

86

AUTHORS

Halcyon Carvalho is a Project Manager, currently a Master's Degree student in

Computer Engineering from the University of Pernambuco, postgraduate in Project

Management, and Graduated in Information Systems. Experience in project

management for 8 years in the IT area. Experience in IT project management covering

activities related to software development (Factory). I am currently a member of the

PMO team of the TRF5-Tribunal Regional Federal da 5ª Região, responsible for

implementing the PMO.

Marília Lima, has a degree in Information System from the University of Pernambuco

(2017) and a master's degree in Computer Engineering from the University of

Pernambuco (2019). Currently a Ph.D. student in Computer Engineering. Marília has

experience in Computer Science, with emphasis on Computational Intelligence.

Wylliams Santos is an adjunct professor at the University of Pernambuco (UPE), where

he leads the REACT Research Labs. Ph.D. in Computer Science (2018), Informatics
Center (CIn) at Federal University of Pernambuco (UFPE), Brazil. MSc in Computer

Science (2011), Informatics Center at Federal University of Pernambuco, Brazil. He

undertook his sandwich PhD (2015-2016) research at the Department of Computer

Science and Information Systems (CSIS) of the University of Limerick, Ireland and in

collaboration with Lero - the Irish Software Research Centre. His research areas of

interest includes management of software projects, agile software development and empirical software

engineering.

Roberta Fagundes, has a Post-Doctorate in Statistics (2015) from the Federal

University of Pernambuco (UFPE). He also holds a doctorate (2013) and a master's

degree (2006) in Computer Science from UFPE. Graduated in Telematics Technology
(2002) from the Federal Center for Technological Education of Paraíba (CEFET-PB).

He is currently an Adjunct Professor at the University of Pernambuco (2007) in the

course of Information Systems and Computer Engineering at the University of

Pernambuco (UPE). He is also vice-coordinator and professor of the Graduate Program

in Computer Engineering (PPGEC), where there are Master's and Doctorate courses. Has interest in

research in the area of Computer Science, with emphasis on Computational Intelligence.

http://www.airccse.org/journal/ijsea/vol11.html

	Abstract
	Keywords
	Ensemble Models, Bagging, Stacking, Prediction, Machine Learning, Effort Estimation, Project Management

