
H2020-ICT-2018-2-825377

UNICORE

UNICORE: A Common Code Base and Toolkit for Deployment of

Applications to Secure and Reliable Virtual Execution Environments

Horizon 2020 - Research and Innovation Framework Programme

D3.3 API, Library and Security Primitives

Implementation - Initial

Due date of deliverable: June 30, 2020

Actual submission date: June 30, 2020

Start date of project 1 January 2019

Duration 36 months

Lead contractor for this deliverable University POLITEHNICA of Bucharest (UPB)

Version 1.0

Confidentiality status ”Public”

© UNICORE Consortium 2020 Page 1 of (35)

Abstract

The goal of the EU-funded UNICORE project is to develop a common code-base and toolchain that will

enable software developers to rapidly create secure, portable, scalable, high-performance solutions starting

from existing applications. The key to this is to compile an application into very light-weight virtual

machines – known as unikernels – where there is no traditional operating system, only the specific bits of

operating system functionality that the application needs. The resulting unikernels can then be deployed

and run on standard high-volume servers or cloud computing infrastructure.

In the deliverable we provide the initial implementation of the UNICORE APIs, along with an initial set of

libraries. This set supports multiple applications (nginx, Redis, SQLite) available for the project use cases.

We recall the overall design of UNICORE APIs together with a list of external libraries and applications.

External libraries and applications are linked to required UNICORE APIs to create specialized (small and

fast) unikernel images. We also describe the initial implementation of security and safety primitives.

Target Audience

The target audience for this document is public.

Disclaimer

This document contains material, which is the copyright of certain UNICORE consortium parties, and may

not be reproduced or copied without permission. All UNICORE consortium parties have agreed to the full

publication of this document. The commercial use of any information contained in this document may require

a license from the proprietor of that information.

Neither the UNICORE consortium as a whole, nor a certain party of the UNICORE consortium warrant that

the information contained in this document is capable of use, or that use of the information is free from risk,

and accept no liability for loss or damage suffered by any person using this information.

This document does not represent the opinion of the European Community, and the European Community is

not responsible for any use that might be made of its content.

Impressum

Full project title UNICORE: A Common Code Base and Toolkit for Deployment of Ap-

plications to Secure and Reliable Virtual Execution Environments

Title of the workpackage 3.3 API, Library and Security Primitives Implementation - Initial

Editor University POLITEHNICA of Bucharest (UPB)

Project Co-ordinator Emil Slusanschi, UPB

Technical Manager Felipe Huici, NEC

Copyright notice © 2020 Participants in project UNICORE

Page 2 of (35) © UNICORE Consortium 2020

Executive Summary
UNICORE uses modularity to enable specialization, splitting OS functionality into components that only

communicate across well-defined API boundaries. The goal is to obtain performance via careful API design

and static linking, rather than short-circuiting API boundaries for performance.

In order to create specialized unikernel images, UNICORE consists of micro-librariers, exposing an API.

UNICORE APIs or core APIs provide OS-like functionality (file system, memory management, scheduling,

platform specifics). External libraries are rich libraries providing required support for actual applications to

run.

Micro-libraries (UNCORE APIs and external libraries) are tied together with application code to create spe-

cialized unikernel images to run on different platform.

Current APIs provided functionality enabling well known applications such as Nginx, Redis and SQLite to

work. Moreover, popular interpreters are provided for programming languages such as Python, Lua, Ruby.

Support for these applications and languages rely on common libraries (such as OpenSSL or Musl libc) or

specific runtime libraries that are currently supported in UNICORE. Each addition of a new library extends

the list applications that can be built and run as an UNICORE image.

Supported platforms (linuxu, KVM, Xen) rely on micro-libraries themselves, called platform APIs. The

UNICORE build system provides the necessary options to target a unikernel image for a specific platform

and architecture.

UNICORE components modularity provide specialization of unikernel builds which in turn provides perfor-

mance with respect to image size, boot time and execution time. Measurements show either comparable or

superior results for UNICORE application builds against other unikernels or general-purpose OSes.

With their reduced size, unikernel images are potentially more secure. Nevertheless, security and safety

features are added in UNICORE, such as secure allocators and memory randomization, further increasing the

appeal of UNICORE a security-focused solution.

© UNICORE Consortium 2020 Page 3 of (35)

List of Authors
Authors Răzvan Deaconescu and Costin Raiciu (UPB), Felipe Huici and Simon Kuenzer (NEC), Gaulthier

Gain and Cyril Soldani (ULiège), Cristiano Giuffrida and Herbert Bos (VUA)

Participants UPB, NEC, ULiège, VUA

Work-package WP3 - Core Implementation

Security PUBLIC

Nature R

Version 1.0

Total number of pages 35

Page 4 of (35) © UNICORE Consortium 2020

Contents

Executive Summary 3

List of Authors 4

List of Figures 6

List of Tables 7

1 Introduction 8

2 UNICORE APIs 10

2.1 Core APIs . 10

2.2 Platform APIs . 15

3 Libraries and Applications 17

3.1 Libraries . 17

3.2 Porting Libraries . 17

3.3 Applications . 17

3.4 Measurements . 19

4 Security and Safety Primitives 24

4.1 Security and Isolation Primitives . 24

4.1.1 Use-after-free (UAF) Vulnerabilities . 24

4.1.2 The Default Allocator . 25

4.1.3 The Wilde Allocator . 25

4.1.4 Crash Recovery . 26

4.2 Memory Randomization Support . 26

4.2.1 PIE Support in UNICORE . 27

4.2.2 Performance . 28

4.3 Deterministic Execution Support . 29

5 Conclusion 33

References 34

© UNICORE Consortium 2020 Page 5 of (35)

List of Figures

1.1 UNICORE APIs architecture: all components are micro-libraries 9

3.1 Image sizes for representative applications with UNICORE APIs and other OSes. 19

3.2 Time taken to build a unikernel application. 20

3.3 Image sizes of UNICORE-based applications . 20

3.4 Boot time for UNICORE-based images with different virtual machine monitors 21

4.1 Loading scheme of the code . 28

4.2 Redis throughput . 29

4.3 SQLite time for insert operations . 29

4.4 Deterministic Execution Support . 30

Page 6 of (35) © UNICORE Consortium 2020

List of Tables

2.1 UNICORE APIs . 11

2.2 Interfaces of UNICORE APIs . 15

3.1 External Libraries Ported in UNICORE . 18

3.2 Porting on externally-built archives using musl and newlib. 22

3.3 Applications Ported on UNICORE . 23

4.1 Test cases of non-determinism . 31

© UNICORE Consortium 2020 Page 7 of (35)

1 Introduction
UNICORE uses modularity to enable specialization, splitting OS functionality into components that only

communicate across well-defined API boundaries. The goal is to obtain performance via careful API design

and static linking, rather than short-circuiting API boundaries for performance.

In order to create specialized unikernel images, two important components are provided:

• Micro-libraries and pools: Micro-libraries (micro-libs, for short) are software components which

implement one of the core UNICORE APIs, where all libraries in a pool implement the same API and

are thus interchangeable. In addition, micro-libraries can provide functionality from external library

projects (e.g. OpenSSL, musl, Protobuf [1], etc.), applications (e.g. SQLite, Redis, BIND, Memcached,

etc.), or even platforms (e.g. SoloFive, AmazonFirecracker, Raspberry Pi 3). Micro-libraries can be

arbitrarily small (e.g. a library with basic boot code), or large (e.g. musl/libc support).

• Build toolchain: This provides a KConfig-based menu for users to select which micro-libraries to use

in an application build, for them to select which platform(s) and CPU architectures to target, and how to

configure each of the individual micro-libs (if desired). The build system then takes care of compiling

all of the micro-libs, linking them, and producing one binary per selected platform.

Micro-libraries (UNICORE APIs and external libraries) are tied together with application code to create

specialized unikernel images to run on different platform. The overall view of software components used is

shown in Figure 1.1.

Micro-libraries are organized into two large groups: core or internal libraries, and external ones. Core li-

braries (UNICORE API) generally provide functionality typically found in operating systems. Such libraries

are grouped into categories such as memory allocators, schedulers, filesystems, network stacks and drivers,

among others. Core libraries are part of the main repository which also contains the build tool and configura-

tion menu.

In contrast, external libraries consist of existing code not specifically meant for the core OS features; this in-

cludes standard libraries such as a libc or OpenSSL, but also run-times like Python. In support of modularity,

external libraries are also separate repositories, allowing for the development of components without having

to modify the main unikernel repository.

Chapter 2 presents UNICORE APIs (i.e. core libraries). Chapter 3 presents external libraries and applications

supported in UNICORE. Chapter 4 shows security and safety primitives. Chapter 5 concludes.

Page 8 of (35) © UNICORE Consortium 2020

kvm-x86_64

binaries

API

xen-x86_64 kvm-arm64

libx86_64arch.o libarm64arch.o libarm32arch.o

libkvmplat.o libxenplat.o libfirecracker.o

architecture	lib	pool

platform	lib	pool

liblwip.o libvfs.o libmusl.o

libnewlibc.olib9pfs.olibdpdk.o

libvirtio.o

libnetfront.o

libbuddy.o

libmimalloc.o

libpython.o

libgolang.o

drivers memory	alloc. runtimes

network	stack filesystems standard	libs
main	lib	pool	(internal)

build

external	lib	pool

application

Figure 1.1: UNICORE APIs architecture: all components are micro-libraries

© UNICORE Consortium 2020 Page 9 of (35)

2 UNICORE APIs
UNICORE APIs provided the essential functionality to create specialized unikernel images. The APIs pro-

vide functionality typically found in operating system kernels that can be selectively tied together with exter-

nal libraries and applications to create a final binary file. The resulting file is run on a UNICORE supported

platform, typically a hypervisor.

UNICORE APIs are implemented as micro-libraries, small pieces of software providing one functionality.

As shown in Figure Fig. Figure 1.1 they fill the main library pool (i.e. core libraries).

An API consists of a header file defining the actual API as well as an implementation of some generic/com-

patibility functions, if any, that are common to all micro-libraries under a specific pool. This functionality

is also a UNICORE micro-library, and is placed under lib/uk[poolname] (e.g. lib/ukalloc for the

memory allocator API, lib/uknetdev for the network driver API). We then use the naming convention

uk[category][name] (e.g. ukschedcoop) to name an actual library implementing an API.

The fact that these APIs are modular, pluggable micro-libraries drives the specialization benefit of unikernel

images. Another consequence of UNICORE API’s modularity is that applications can plug into UNICORE at

different levels in its stack: for instance, for backwards compatibility and ease-of-porting reasons, we could

plug in an application such as Memcached on top of a network stack and socket API or directly over the low-

level network micro-library (i.e., entirely foregoing a network stack) for a UDP-based, performance-oriented

Memcached specialized implementation. This is akin to some of the concepts outlined in [2], and we will

present results from these mechanisms later on in this paper.

2.1 Core APIs

The core APIS fill roles in operating systems. A short description is shown in Table 2.1. We then present a

description of each.

uktime is the time information API, mostly used to get the current time. Sleep-related functionality is pro-

vided in functions such as sleep and nanosleep. uktime relies on platform support to get the wall

clock.

uktimeconv is a simple API to convert and get time duration (such as days in a month, whether there is leap

year).

ukswrand uses software support to provide basic randomization features. It is essentially a pseudo-random

number generator.

uksglist uses a scatter/gather list is a list of vectors with each describing the location and length of one

contiguous physical memory region. Scatter gather lists are helpful for setting up I/O requests with devices,

such as network devices.

ukdebug allows debugging of unikernel code, including other APIs.

ukboot is the bootloader API. It provides a unitary interface to boot a unikernel images, while its implemen-

Page 10 of (35) © UNICORE Consortium 2020

API Role

ukalloc Abstraction for memory allocators

ukargparse Simple argument parser

ukblkdev Block driver interface

ukboot Unikernel bootstrapping

ukbus Abstraction for device buses

ukdebug Debugging and tracing

uklibparam Library arguments

ukmmap mmap system call

uknetdev Network driver interface

uksched Abstraction for schedulers

uksglist Scatter Gather List

ukswrand Software random number generator

uktime Time functions

uktimeconv Time conversion functions

vfscore VFS Core Interface

Table 2.1: UNICORE APIs

tation uses the underlying platform code. It provides features such as printing / logging, memory dumping

and stack trace investigation.

ukargparse is a simple API to parse arguments passed as an array of strings, typically command line argu-

ments for applications ported on top of the UNICORE API.

ukblkdev provides block device (persistent functionality) interface. It uses a queue-based implementation

to manage I/O requests for block devices. As other APIs, it is a wrapper implementation with most of the

implementation being part of the actual block device implementation. The block device implementation uses

the API exposed through the structures uk blkdev, uk blkdev queue, uk blkdev ops and others.

ukmmap is the memory mapping API, allowing for page table management and configuration of the runtime

unikernel memory layout.

ukmmap exposes the typical OS memory mapping API in the functions mmap, unmmap, remap.

vfscore offers the interface for managing filesystems, typically found in the VFS (Virtual Filesystem Switch)

framework in general OSes (Linux, FreeBSD). The actual filesystem implementation (such as 9fs or ramfs) is

located in a different library. VFS configuration allows the selection of the actual filesystem implementation

for the final image.

vfscore exposes functions that map to common file I/O system calls (read, readdir, close,

closedir).

uksched is UNICORE’s scheduling API. It allows for multiple schedulers to be present and active within

one running instance. On creation, each thread is assigned a scheduler, allowing customization of threads

© UNICORE Consortium 2020 Page 11 of (35)

potentially using different schedulers (e.g. a real-time scheduler for the real-time part of an application, a

co-operative scheduler for a performance critical part). On the other extreme, UNICORE builds may run

with no scheduler, essentially running a task to completion from an interrupt handler in order to increase

performance by eliminating scheduling overheads (and ill-effects of having stacked schedulers when running

in a virtualized environment); we will show the effects of such an approach in the evaluation section.

uksched exposes the uk sched and uk thread data types as abstractions for a scheduler implementa-

tion (including scheduling queues and scheduling parameters) and thread implmentation. Common scheduler

functionality is exposed as function pointers in the uk sched structure (for example there is no exposed

uk sched yield function; it’s an internal function calling corresponding uk sched function) or func-

tions for managing threads (uk sched thread create, uk sched thread switch etc.).

uknetdev API: the networking sub-system aims to decouple (1) the device driver side (e.g., virtio-net, tapif,

netfront) from (2) the network stack or low-level networking application (which we will call simply “appli-

cation” in the following for ease of presentation).

Regarding the former, easily swapping network stacks is something that is not common in commodity OSes;

instead, drivers are usually implemented for a particular network stack. The aim of this API is to decouple

these two components in order to allow drivers to be reused across platforms.

For the latter, a networking application or network stack should be able to run unmodified on a different

platform with different drivers. Because we are addressing a wide range of use cases, the API should not

restrict any of them nor become a potential performance bottleneck for high performance workloads. We

derived part of the design from Intel DPDK’s rte netdev API. However, because its focus is on high

performance rather than efficient resource usage, we provide modified interfaces and allow applications to

operate drivers in polling, interrupt-driven, or mixed mode.

In addition, uknetdev leaves memory management to the application while supporting high performance

features like multiple queues, zero-copy I/O, and packet batching. We adopt DPDK’s approach of letting the

application fully operate and initialize the driver; drivers do not do run any initialization routine on their own.

Instead, we provide API interfaces for applications to provide necessary information (e.g., supported number

of queues and offloading features) so that the application code can specialize by picking the best set of driver

properties and features. Drivers register their callbacks (e.g, send and receive) to a uk netdev structure

which the application then uses to call the driver routines.

ukalloc API is composed of three layers: (1) a POSIX compliant external API, (2) an internal allocation

interface called ukalloc, and (3) one or more backend allocator implementations. The external interface

is motivated by backward compatibility to facilitate the porting of existing applications to UNICORE. In the

case of the C language, the external API is exposed by a modified standard library which can be nolibc (a

minimal, UNICORE libc implementation), newlib or musl. The external allocation interface acts as a com-

patibility wrapper for the UNICORE-specific internal allocation interface, which in turn redirects allocation

Page 12 of (35) © UNICORE Consortium 2020

requests to the appropriate allocator backend. The internal allocation interface therefore serves as a multi-

plexing facility that enables the presence of multiple memory allocation backends within the same uniker-

nel. UNICORE supports four allocation backends: a buddy system, the Two-Level Segregated Fits (TLSF)

real-time memory allocator, tinyalloc, and Mimalloc; further, there is an ongoing effort to port Oscar [3], a

protection scheme based on page permissions.

UNICORE internal allocation interface exposes uk prefixed versions of the standard POSIX allocation in-

terface: uk malloc(), uk calloc(), etc. In contrast to POSIX, these functions require the caller to

specify which allocation backend should be used to satisfy the request.

A view of the UNICORE APIs and their respective interfaces (functions and data structures) is shown in

Table 2.2.

API Data Structures Functions

devfs struct devinfo, struct devops, struct driver, struct device,

struct partition table entry

device create, device open, device close, device read, de-

vice ioctl, device info

ukalloc struct uk alloc, struct metadata ifpages uk alloc register, uk alloc get default, uk alloc set default,

uk malloc ifpages, uk free ifpages, uk realloc ifpages,

uk posix memalign ifpages, uk calloc compat,

uk memalign compat, uk realloc compat,

uk palloc compat, uk pfree compat

ukargparse uk argnparse

ukblkdev struct uk blkreq, struct uk blkdev conf, struct

uk blkdev info, struct uk blkdev queue info, struct

uk blkdev queue conf, struct uk blkdev ops, struct

uk blkdev cap, struct uk blkdev event handler,

struct uk blkdev data, struct uk blkdev, struct

uk blkdev sync io request

uk blkdev drv register, uk blkdev count,

uk blkdev get, uk blkdev id get,

uk blkdev drv name get, uk blkdev state get,

uk blkdev get info, uk blkdev configure,

uk blkdev queue get info, uk blkdev queue configure,

uk blkdev start, uk blkdev queue submit one,

uk blkdev queue finish reqs, uk blkdev sync io,

uk blkdev stop, uk blkdev queue release,

uk blkdev drv unregister, uk blkdev unconfigure

ukboot struct thread main arg ukplat entry argp, ukplat entry, main, uk version

ukbus struct uk bus uk bus count, uk bus register, uk bus unregister,

uk bus list

ukdebug struct uk tracepoint header, struct vprint console, struct

out dev

uk vprintd, uk printd, uk vprintk,

uk printk, uk hexdumpsn, uk hexdumpf,

uk hexdumpd, uk hexdumpd, uk hexdumpk,

uk asmdumpd, uk asmdumpk, uk trace buffer free,

uk trace buffer writepracepoint header, struct

vprint console, struct out dev

uklibparam struct param args, struct uk param, struct uk lib section uk libparam parse, uk libparam lib add

ukmmap struct mmap addr mmap, munmap, mremap

© UNICORE Consortium 2020 Page 13 of (35)

uknetdev struct uk netbuf, struct uk hwaddr, struct uk netdev info,

struct uk netdev queue info, struct uk netdev conf, struct

uk netdev rxqueue conf, struct uk netdev txqueue conf,

struct uk netdev ops, struct uk netdev event handler, struct

uk netdev data, struct uk netdev

uk netbuf init indir, uk netbuf alloc indir,

uk netbuf alloc buf, uk netbuf prepare buf,

uk netbuf free single, uk netbuf free,

uk netbuf disconnect, uk netbuf connect,

uk netbuf append, uk netdev drv register,

uk netdev count, uk netdev get, uk netdev id get,

uk netdev drv name get, uk netdev state get,

uk netdev info get, uk netdev einfo get,

uk netdev rxq info get, uk netdev txq info get,

uk netdev configure, uk netdev rxq configure,

uk netdev txq configure, uk netdev start,

uk netdev hwaddr set, uk netdev hwaddr get,

uk netdev promiscuous get, uk netdev promiscuous set,

uk netdev mtu get, uk netdev mtu set,

uk netdev rxq intr enable, uk netdev rxq intr disable

uksched struct uk sched, struct uk thread attr, struct uk thread,

struct uk waitq entry

uk sched default init, uk sched register,

uk sched get default, uk sched set default,

uk sched create, uk sched start, uk sched idle init,

uk sched thread create, uk sched thread destroy,

uk sched thread kill, uk sched thread sleep,

uk sched thread exit, uk thread init, uk thread fini,

uk thread exit, uk thread wait, uk thread detach,

uk thread set prio, uk thread get prio,

uk thread set timeslice, uk thread get timeslice,

uk thread block timeout, uk thread block,

uk thread wake, uk thread attr init,

uk thread attr fini, uk thread attr set detachstate,

uk thread attr get detachstate, uk thread attr set prio,

uk thread attr get prio, uk thread attr set timeslice,

uk thread attr get timeslice

uksglist struct uk sglist seg, struct uk sglist, struct sgsave uk sglist count, uk sglist alloc, uk sglist free,

uk sglist append, uk sglist append sglist, uk sglist build,

uk sglist clone, uk sglist length, uk sglist split,

uk sglist join, uk sglist slice, uk sglist append netbuf

ukswrand struct uk swrand, struct uk swrand getrandom, uk swrand def, uk swrand init r,

uk swrand randr r, uk swrandr gen seed32

uktimeconv struct uktimeconv bmkclock uktimeconv days in month, uktimeconv is leap year, uk-

timeconv bmkclock to nsec

uktime struct timeval, struct timespec, struct itimerval, struct time-

zone, struct tm, struct itimerspec, struct utimbuf

clock getres, clock gettime, clock settime, gettimeofday,

nanosleep, setitimer, sleep, timegm, times, usleep, utime,

timer create, timer delete, timer settime, timer gettime,

timer getoverrun

Page 14 of (35) © UNICORE Consortium 2020

vfscore struct vfscore file, struct dentry, struct mount, struct vfs-

core fs type, struct vfsops, struct vnode, struct vattr, struct

vnops, struct uio, struct task, struct fdtable, struct pipe buf,

struct pipe file

vfscore alloc fd, vfscore put fd, vfscore install fd, vf-

score get file, vfscore put file, mount, vfscore nullop,

vfscore release mp dentries, vfscore vget, vfs-

core uiomove, vfscore vop nullop, vfscore vop einval,

vfscore vop eperm, vfscore vop erofs, open, creat,

write, uk syscall e write, uk syscall r write, close, read,

uk syscall e read, uk syscall r read, mkdir, fsync, fs-

tat, uk syscall e fstat, uk syscall r fstat, flock, fhold,

fdrop, fget, ftruncate, stat, chmod, fchmod, fchown,

dup, dup2, dup3, sync, vfscore mount dump, umount,

umount2, link, unlink, getcwd, chown, chroot, chdir,

fstatat, statfs, lstat, lchown, openat, opendir, readdir,

readdir r, readdir64, closedir, pread, pwrite, pwritev,

readv, uk syscall e readv, uk syscall r readv, writev,

truncate, mknod, preadv, ioctl, fdatasync, fdopendir, dirfd,

rewinddir, telldir, seekdir, rmdir, fchdir, symlink, statvfs,

fstatvfs, access, faccessat, readlink, uk syscall e readlink,

uk syscall r readlink, fallocate, lseek, uk syscall e writev,

uk syscall r writev, umask, dentry alloc, dentry init,

dentry lookup, dentry move, dentry remove, drele, vrele,

vput, vref, vflush, dref, fcntl, readdir r, readdir64 r,

fstatfs, eaccess, euidaccess, rename, xmknod, xstat,

lxstat, vn access, vn add name, vn del name, vn lock,

vn lookup, vn setmode, vn settimes, vn stat, vn unlock,

vfs busy, pipe, pipe2, mkfifo, futimes, futimesat, utimensat,

futimens, utimes, lutimes, posix fadvise, scandir

Table 2.2: Interfaces of UNICORE APIs

2.2 Platform APIs

Following the principle of everything-as-a-library, support for different platforms is also implemented as indi-

vidual libraries; this means that code for QEMU/KVM, SoloFive/KVM, AmazonFirecracker, Xen containers

and Linux user-space are all micro-libraries in their own right. This is also the case for CPU-specific code

(x86 64, arm32 and arm64) and drivers (e.g. virtio, netfront, etc.).

Platform APIs provide the required support for running UNICORE applications on existing infrastructures.

Built-in support is currently provided for KVM and Xen and external support is provided for AmazonFire-

craker and SoloFive. As a test case or use cases withing a running Linux platform instance, there is the linuxu

API platform. Platform API for the final image is configured via the build system.

KVM support allows unikernel images to run on top of x86 and ARM CPUs on the KVM hypervisor. Simi-

larly, Xen hypervisors on x86 and ARM are able to run UNICORE images. Specific memory layouts, device

address and bootloaders are implemented for each platform in the final unikernel image.

The linuxu UNICORE platform creates a unikernel image as a classical ELF static binary. The ELF binary is

© UNICORE Consortium 2020 Page 15 of (35)

loaded using the operating system (Linux loader) as a normal user process. It interacts via system calls with

the Linux kernel; the Linux kernel takes the role of the hypervisor used by Xen and KVM.

Page 16 of (35) © UNICORE Consortium 2020

3 Libraries and Applications
External libraries are similar to UNICORE APIs, with a modular design. They live outside the main tree and

are adapted (i.e. ported) from existing source code to facilitate the running of existing applications. Below

we present libraries and applications currently supported by UNICORE APIs.

3.1 Libraries

Table 3.1 lists the libraries ported on top of UNICORE APIs. Some of them are standalone general-purpose

libraries, while others are helper libraries for applications. Most applications (shown in Section 3.3) use a

specific library; e.g. nginx uses the lib-nginx library, and redis uses the lib-redis library. Note that some

libraries aren’t fully ported and may require extensive testing to ensure proper functionality of provided

interface.

3.2 Porting Libraries

Porting external libraries and applications relies the target library’s build system, instead of having to write

the project MakefileUK and related files. With this approach, the target build system is used to generate

object or archive files, and the outputs are linked into the final linking step.

Pitfalls with this approach may be that the (external) build system may build against glibc instead of UNI-

CORE’s own standard C library (newlib), or that the target application may rely on dynamic libraries.

To support musl, which depends on the availability of Linux syscalls, we extended the internal UNICORE

syscall shim library to also generate a system call interface at standard C library level. In this way, we

can link to system call implementations directly when compiling application source files natively.

In Table table 3.2, we show results of trying this approach on a number of different applications and libraries

when building against musl and newlib. As can be seen, this approach is not effective with newlib (“std”

column), but it is with musl: most libraries build fully automatically. For those that do not, the reason has

to do with the use of glibc-specific symbols. To address this, we build a glibc compatibility layer based on

a series of musl patches [4] and 20 other stubs we add by hand. With this in place, as shown in the table

(“compat layer” column), this layer allows for almost all libraries and applications to compile and link. For

musl that is good news: as long as the syscalls needed for the applications to work are implemented, then the

image will run successfully (for newlib the stubs would have to be implemented). Note that related work [5, 6]

reports that in the region of 100 syscalls are enough to run a rich set of mainstream application.

In all, this approach is quite effective in porting the library or application itself, as long as their dependencies

can be met by UNICORE APIs.

3.3 Applications

Applications currently working with UNICORE are either simple test applications such as app-hello or app-

httpreply. They are shown in Table 3.3 together with the list of libraries they depend upon.

© UNICORE Consortium 2020 Page 17 of (35)

Library Role

lib-pcre port of the Perl Compatible Regular Expressions library

lib-compiler-rt port of compiler-rt, a runtime library

lib-newlib port of newlib, a C standard library

lib-openssl port of the OpenSSL libraries

lib-intel-intrinsics port of Intel intrinsics

lib-libuv port of the libuv library, for asynchronous I/O

lib-fft2d port of the fft2d library, 2 fast Fourier transform library

lib-eigen port of eigen, C++ template library for linear algebra

lib-pthreadpool port of pthreadpool, pthread-based thread pool for C/C++

lib-nnpack port of nnpack, acceleration package for neural networks

lib-zydis port of the Zydis disassembler library

lib-lwip port of the lwip network stack

lib-libelf port of libelf from the ELF toolchain

lib-gemmlowp port of Google’s gemmlowp library

lib-farmhash port of Google’s FarmHash library

lib-flatbuffers port of Google’s FlatBuffers library

lib-libcxx port of the C++ standard library

lib-nginx port of NGINX

lib-pybind11 port of the pybind11 library

lib-redis port of Redis in-memory data structure store

lib-arm-intrinsics port of ARM intrinsics

lib-micropython port of Micropython, Python for embedded devices

lib-ruby port of Ruby

lib-sqlite port of SQLite

lib-mbedtls port of the Mbed TLS library

lib-python3 port of Python 3

lib-click port of the Click modular router

lib-libgo port of the Go language

lib-libunwind port of libunwind, an unwinder library

lib-libcxxabi port of the C++ ABI (read-only mirror)

lib-lzma port of lzma compression

lib-duktape port of duktape/JavaScript

lib-lua port of the Lua language

lib-dnnl port of Intel Math Kernel Library for deep neural networks

lib-boost port of the boost library

lib-gcc port of the GNU Compiler Collection libraries

lib-wamr port of WAMR, Intel’s WebAssembly Micro Runtime

lib-googletest port of the Google testing and mocking framework

lib-psimd port of psimd, portable SIMD intrinsics

lib-libfxdiv port of fxdiv, a library for division via fixed-point multiplication by inverse

lib-libfp16 port of fp16, half-precision floating point formats conversion

lib-musl port of musl libC

lib-libuuid port of the libuuid library, for generating unique identifiers

lib-bzip2 port of bzip2 compression library

lib-axtls port of the axTLS embedded SSL library

lib-http-parser port of http-parser, a parser for HTTP messages

lib-googlebenchmark port of Google Benchmark, a microbenchmark support library

lib-intx port of intx, an extended precision integer library

lib-protobuf port of Google’s data interchange format

lib-open62541 port of the C implementation of OPC UA

lib-zlib port of the zlib compression library

lib-c-ares port of the c-ares library for asynchronous DNS requests

lib-lvgl port of lvgl, an embedded library for GUIs

Table 3.1: External Libraries Ported in UNICORE

Page 18 of (35) © UNICORE Consortium 2020

Rhea Hermitux Linux OSv Rumprun
0B

8MB

16MB

24MB

32MB

Im
ag

e
si

ze

19
2.

7K
B

83
2.

8K
B

1.
1M

B
83

2.
8K

B

1.
7M

B
2.

4M
B

6.
0M

B

79
1.

5K
B 8.

9M
B

8.
0M

B
6.

3M
B

6.
6M

B
4.

6M
B 8.
7M

B
7.

2M
B

16
.9

M
B

30
.7

M
B

20
.2

M
B

21
.3

M
B

helloworld
nginx

redis
sqlite

Figure 3.1: Image sizes for representative applications with UNICORE APIs and other OSes.

app-hello implements a simple “Hello, world!” printing to test basic functionality of UNICORE APIs.

Likewise, app-httpreply tests UNICORE APIs including the lwip (Lightweight IP) library. app-lua, app-

micropython, app-python3, app-ruby implement support for the Lua, Micropython, Python3 and Ruby in-

terpreters. app-nginx implements the Nginx web server. app-redis implements the Redis key-value database.

app-sqlite implements the SQLite in-file database engine. app-wamr implements the WebAssembly Micro

Runtime.

3.4 Measurements

To highlight the advantage of UNICORE for reducing the binary image size when on disk, and boot-time

and memory footprint at runtime, We built binaries for some of above apps using leading unikernels, Linux

and UNICORE APIs. We show image sizes in Figure 3.1. UNICORE-based builds are named Rhea from the

current version name. Image sizes range ranging from 100KB (HelloWorld) to 1.1MB (Redis), one or two

order of magnitude smaller than other unikernels, and one order of magnitude smaller than the associated

Linux binary with statically linked standard C library.

Build times are also small (Figure 3.2): UNICORE-based builds have competitive build times of a few

minutes on first build (which includes dependencies) and under a minute for application-only builds. The

build times are comparable with Rump and Linux, and significantly faster than OSv and HermiTux (where

dependencies’ build time dominates).

The advantage of UNICORE components stems from their modular nature, which differs from the monolithic

approach taken by other unikernels, and from their ability to employ link-time size optimizations that are not

possible when a syscall indirection layer is used. UNICORE image sizes are halved by gcc’s dead-code

elimination and link-time optimization (see Figure 3.3).

Small image sizes are not only useful for minimizing disk storage, but also to enable quick boot times for

VMs based on those images. LightVM [7] has shown that it is possible to boot a no-op VM in around 2ms,

© UNICORE Consortium 2020 Page 19 of (35)

he
llo

wor
ld
re

dis
sq

lite

he
llo

wor
ld
ng

inx
re

dis
sq

lite

he
llo

wor
ld
ng

inx
re

dis
sq

lite

he
llo

wor
ld
ng

inx
re

dis
sq

lite

he
llo

wor
ld
ng

inx
re

dis
sq

lite
0

100

101

102

103

104

105

106

107

A
ve

ra
ge

B
ui

ld
Ti

m
e

(s
ec

on
ds

)
HermiTux

1h
19

m
1h

19
m

1h
20

m

Linux

83
8m

s
14

m
37

s
38

.6
5s

2m
17

s

OSv

14
m

9s
15

m
21

s
14

m
54

s
14

m
53

s

RumpRun

4m
47

s
3m

17
s

6m
31

s
6m

25
s

Rhea

11
.8

4s 4m
57

s
4m

32
s

3m
47

s

application
musl

toolchain
kernel

lomp
zlib

pcre
openssl

pte
newlib

73
m

s
8.

18
s

34
.9

1s 9m
28

s

5.
66

s 1m
8s

35
.6

2s
55

.7
8s

58
.5

7s
12

.0
6s

50
.0

8s

Figure 3.2: Time taken to build a unikernel application.

helloworld nginx redis sqlite
0.0B

1.0MB

2.0MB

Im
ag

e
si

ze

25
6.

7K
B

25
6.

7K
B

19
2.

7K
B

19
2.

7K
B

1.
5M

B

1.
2M

B

83
2.

8K
B

83
2.

8K
B

1.
8M

B

1.
4M

B

1.
1M

B

1.
1M

B

1.
6M

B

1.
3M

B

83
2.

8K
B

83
2.

8K
B

Default configuration
+ Link-Time Optimization (LTO)

+ Dead Code Elimination (DCE)
+ DCE + LTO

Figure 3.3: Image sizes of UNICORE-based applications

Page 20 of (35) © UNICORE Consortium 2020

QEMU QEMU
1NIC

QEMU
MicroVM

Solo5 Fire-
cracker

SQLite NGINX
0

100

101

102

103

To
ta

lB
oo

tT
im

e
(m

s)

64
.7

m
s

84
.7

m
s

18
.6

m
s

3.
4m

s

1.
2m

s

0.
2m

s

1.
4m

s

Rhea Boot
VMM

Figure 3.4: Boot time for UNICORE-based images with different virtual machine monitors

with a heavily optimized Xen tool stack. We use standard virtualization tool stacks instead, and wish to

understand how quickly UNICORE-based VMs can boot. When running experiments, we measure both the

time taken by the VMM (e.g. Firecracker or QEMU) and the boot time of the VM, measured from when the

first guest instruction is run until main is invoked.

The results are shown in Figure 3.4 showing how long a Hello world needs to boot with different VMMs.

Note that UNICORE images boot time ranges from tens to hundreds of microseconds when the VM has no

devices, up to 1ms when the VM has one networking interface; other unikernels boot similarly fast, so we

omit their results. This compares to around 200ms for Alpine Linux running on Firecracker, showing the

clear benefit of having a small VM image.

Overall, the total VM boot time is dominated by the VMM, with Firecracker and Solo5 being the fastest

(1-3ms), QEMU Microvm around 25ms and QEMU the slowest at around 65ms. We further plot UNICORE-

based VM boot times for SQLite and Nginx, which add 1-2 ms to the total boot. These results show that

UNICORE can be readily used in scenarios where just-in-time instantiation of VMs is needed.

© UNICORE Consortium 2020 Page 21 of (35)

musl newlib
Size
(MB)

std compat.
layer

Size
(MB)

std compat
layer

lib-axtls 0.336 7 3 0.432 7 3

lib-bzip2 0.296 3 3 0.364 7 3

lib-c-ares 0.304 3 3 0.432 7 3

lib-duktape 0.700 3 3 0.772 7 3

lib-farmhash 0.232 3 3 0.276 3 3

lib-fft2d 0.356 3 3 0.396 7 3

lib-helloworld 0.232 3 3 0.256 3 3

lib-libucontext 0.232 3 3 0.276 3 3

lib-libunwind 0.232 3 3 0.276 7 3

lib-lighttpd 0.796 7 3 0.916 7 3

lib-lighttpreply 0.256 3 3 0.296 3 3

lib-memcached 0.524 3 3 - 7 7

lib-micropython 0.527 3 3 0.628 7 3

lib-nginx 1.13 7 3 1.20 7 3

lib-open62541 0.248 7 3 0.804 7 3

lib-openssl 2.98 7 3 3.01 7 3

lib-pcre 0.344 3 3 0.380 7 3

lib-python 4.75 7 3 4.81 7 3

lib-redis-client 0.640 7 3 0.801 7 3

lib-redis-server 1.26 7 3 1.42 7 3

lib-ruby 6.84 7 3 6.93 7 3

lib-sqlite 1.22 3 3 1.31 7 3

lib-zlib 0.348 3 3 0.404 7 3

lib-zydis 0.276 3 3 0.328 7 3

Table 3.2: Porting on externally-built archives using musl and newlib.

Page 22 of (35) © UNICORE Consortium 2020

Application Required Libraries
app-hello
app-httpreply lwip
app-lua newlib, lua
app-micropython newlib, lwip, micropython
app-nginx pthread-embedded, newlib, lwip, nginx
app-python3 pthread-embedded, lwip, zlib, libuuid, newlib, python3
app-redis pthread-embedded, newlib, lwip, redis
app-ruby pthread-embedded, libunwind, compiler-rt, libcxx, libcxxabi, newlib, lwip, ruby
app-sqlite pthread-embedded, newlib, sqlite
app-wamr wamr, pthread-embedded, lwip, newlib

Table 3.3: Applications Ported on UNICORE

© UNICORE Consortium 2020 Page 23 of (35)

4 Security and Safety Primitives
T3.2 and T3.3 focus on adding support for security / safety and deterministic execution in UNICORE. In this

section we highlight features present or in development with respect to security and deterministic execution.

4.1 Security and Isolation Primitives

Memory errors rank highly among the most dangerous vulnerabilities in C/C++ programs. Temporal errors,

such as use-after-free, are particularly insidious, as detecting them efficiently during the execution is chal-

lenging. To efficiently detect all such use-after-free issues, we built Wilde, a secure memory allocator that

detects any attempt to use a pointer to an object that has already been freed. In particular, we ensure upon

allocation time that objects are mapped to their own virtual address page(s), even if they are sharing the

same physical page. When the program frees the object, we invalidate the virtual page so that any attempt to

dereference a pointer to it triggers a segmentation fault. Unfortunately, doing so in a process on a monolithic

operating system such as Linux is expensive, since the page manipulations require the program to trap into

the kernel. Instead, we are using virtualization technology to allow page table manipulation directly, without

requiring expensive mode switches.

4.1.1 Use-after-free (UAF) Vulnerabilities

A use-after-free vulnerability exists whenever a program allows a pointer to a previously deallocated block

of memory (that is, a dangling pointer) to be dereferenced. After deallocation, the allocator eventually reuses

memory for new objects. As a result, the dangling pointer and the new live pointer refer to the same block of

memory. This means that writes to one object will corrupt the other and reads may either leak sensitive data

from the other object or cause data from the other object to be misinterpreted.

Use-after-free errors are both common and very difficult to prevent. They frequently happen easily in more

complex environments. For instance, consider the example in Listing 4.1, where the program tries to log an

error, but in doing so, the erorr handler accesses line which had already been freed.

1 oid read_str() {

2 ...

3 getline(&line, &length, stdin);

4 ...

5 if (error) {

6 free(line);

7 aborted = 1;

8 }

9 ...

10 if (aborted) {

11 log_printf("Line contained error: %s\n", line);

12 }

13 }

Listing 4.1: Use-after-free error

Page 24 of (35) © UNICORE Consortium 2020

Use-after-free errors are particularly common in C++ programs in what is known as VTable hijacking. In

C++, virtual method tables (VTables) help select an implementation of a virtual method at runtime. If a

program creates a dangling object pointer, an attacker can craft an input that causes the program to allocate

blocks of memory and store fake VTable pointers into them, a process known as heap or stack spraying (or

massaging in a more targeted form). Afterwards, calls to virtual methods use the fake VTable pointer supplied

by the attacker, hijacking control flow. This example demonstrates how a simple and hard to find bug can

lead to an attacker taking over control.

4.1.2 The Default Allocator

At the time of writing, the UNICORE memory model provides an identity mapping, i.e., the physical memory

space is mapped one to one to virtual memory. For instance, if we consider the x86-64 KVM implementation,

the basic layout consists of the top two levels of page tables containing a single page table entry each and the

third level containing 512 page table entries for 2 MB pages (known as huge pages). In other words the full

address space is 1 GB in size. The default allocator is essentially a basic buddy allocator for which security

was emphatically not a design goal and provides memory allocations that are not just predictable, but also

universally readable, writable, and executable.

4.1.3 The Wilde Allocator

Our design implements a fully external system level allocator running in an environment provided by UNI-

CORE. All memory allocation and de-allocation requests made by the application are handled by the Wilde

library which provides safe aliases for the memory which it in turn fetches from the default allocator.

A first simple improvement over the original allocator is to mark memory allocated with malloc non ex-

ecutable. A second improvement, targets use-after-free vulnerabilities and guarantees that virtual memory

will not be reused (even if physical memory is) and that all objects will be mapped on separate virtual pages.

Every time the program issues an allocation request, we relay the request to the underlying allocator, and then

create an alias (a virtual page pointing to the same memory) which we return to the program. Upon a free, we

destroy the alias and guarantee that this particular alias is never re-used. This guarantee only works because

of the huge 48-bit address-space of the AMD64 architecture, which provides in 256Tb of virtual RAM space.

We implemented Wilde as a library, which hooks into the allocator API and uses the cr3 register to gather

information about the current memory layout (ensuring that we needed no modifications to the UNICORE

unikernel itself). Note that this is possible in systems such as UNICORE, since the library has ring-0 access

to the page table data structures. To keep the attack surface to a minimum, we opted for storing metadata

separate from the program-requested memory.

We protect memory by registering the appropriate access rights, which given the virtual memory mappings,

amounts to setting some page table bits. In addition we added guard pages around every alias to make sure

every overflow is caught. This means stack overflows cause a segfault rather than corrupt the machine state in

unpredictable ways. Moreover, objects are allocated as close to the guard page above it as possible to increase

© UNICORE Consortium 2020 Page 25 of (35)

the probability of catching buffer overflow errors.

In a preliminary evaluation, we tested the Wilde allocator on a server with the AMD Ryzen 7 2700X pro-

cessor, with 32 gigabyte of RAM, using a set of the performance benchmarks and found that the overhead

compared to baseline UNICORE is always less than 20% in 33 out of 35 benchmarks, and 40 and 60% for

the remaining two, respectively. We emphasize that the results are preliminary and we are still working on

our allocator and its evaluation.

4.1.4 Crash Recovery

The Wilde allocator can detect arbitrary use-after-frees at run time and halt the execution to prevent exploita-

tion. However, this strategy alone would translate every use-after-free exploitation attempt into a crash, ulti-

mately leading to denial of service. To address this problem, we complemented Wilde with a crash recovery

solution, which can also be used to automatically recover from other unrelated crashes.

Our solution is based on efficient checkpoint-restart techniques enabled by modern virtualization extensions.

At a high level, we periodically checkpoint the state of the unikernel (memory and registers) according to a

predetermined policy (e.g., every 1 second, at every vmexit, etc.). Then, when a crash is detected, we restart

execution from the last checkpoint to bring the system back to a consistent state. Optionally, we can execute

dedicated error-handling code to rule out the re-occurrence of the crash upon re-execution (e.g., rejecting

problematic future inputs).

Checkpointing registers is inexpensive, but checkpointing memory pages can incur non-trivial overhead.

However, on modern Intel processors with virtualization extensions, we can leverage hardware features such

as Page Modification Logging (PML) to efficiently implement memory checkpointing. PML, originally de-

signed for efficient virtual machine (VM) migration, can transparently log all the addresses of the memory

pages dirtied over a predetermined execution interval. The log can then be accessed (and reset) by the hyper-

visor as necessary.

Our solution repurposes PML for incremental memory checkpointing, saving all the unikernel dirtied pages

included in the log and resetting the log at every checkpoint. Starting from an initial full memory checkpoint

of the unikernel, this checkpointing strategy is efficient and guarantees we can always restore the last check-

point by walking the log and fetching the last available copy of each of the contained pages. We implemented

a prototype of our design using the PML interface available in QEMU/KVM, which already handles the case

of log overflows (i.e., triggering a vmexit and storing partial logs in a bitmap data structure). Our pre-

liminary experimental results suggest our PML-based checkpointing implementation introduces negligible

performance overhead when using moderate checkpointing frequencies (e.g., 1 second).

4.2 Memory Randomization Support
For additional protection against memory disclosure attacks, memory randomization support is being inte-

grated in UNICORE, patches undergoing. The memory randomization support is to be connected to the

mmap UNICORE API for full control of the UNICORE runtime memory layout. Memory randomization

Page 26 of (35) © UNICORE Consortium 2020

helps prevent “known address” attacks such as return to libc attacks [8] or shellcode injected on stack at-

tacks [9], in general, all the buffer overflow attacks. Memory randomization consists of adding support for

ASLR (Address Space Layout Randomization) and PIE (Position Independent Executable).

Address space layout randomization (ASLR) [10] is a security technique that randomizes the memory layout

of a program. Every time a program is run, segments of the address space like the stack, heap, or libraries

are placed at a random address in memory. If the program that we run is position-independent, then the

text, data, and bss segments can also be randomized. Randomization of the code in memory is an essential

security feature, and it is what makes ASLR so powerful. The randomization of memory addresses means

that an attacker no longer knows where the code needed by him it is placed.

A position-independent executable (PIE) is an executable that can be placed anywhere in memory and

still run correctly. A position-independent executable contains position-independent code (PIC). Position-

independent code uses relative addressing, data references are usually made through the global offset ta-

ble [11], and function calls are done using the procedure linkage table [11]. In general, to obtain a position-

independent executable, it is only necessary to add the -fPIC compilation flag and the -pie linking flag,

but in some cases, some parts of the code have to be modified.

4.2.1 PIE Support in UNICORE

In the default state, UNICORE code is loaded at a constant address, which is set by a linking script, every

time the unikernel is run. The aim is to randomize the placement of the code from the unikernel image when

loaded in memory. To achieve this, there is a requirement for:

• the unikernel image to be built with PIC support

• a randomization engine that will generate a different address for our code every time the unikernel is

run

• a loader that will load the unikernel at the above random generated address

To obtain a position-independent executable (PIE), it usually requires the passing of the -fPIC and -pie

compilation and linking flags. For UNICORE changes are required in certain assembly source code files,

such as Listing 4.2 and updates the build system.

1 andl $(˜(X86_CR0_EM | X86_CR0_TS)), %esi

2 orl $(X86_CR0_MP | X86_CR0_NE | X86_CR0_WP), %esi

3 movq %rsi, %cr0

4 fninit

5 #if __SSE__

6 orl $(X86_CR4_OSFXSR | X86_CR4_OSXMMEXCPT), %edi

7 movq %rdi, %cr4

8 ldmxcsr (mxcsr_ptr)

9 #endif /* __SSE__ */

Listing 4.2: entry64.S code that is not position-independent

© UNICORE Consortium 2020 Page 27 of (35)

The loader is a small piece of code that needs to be called by the underlying platform and then load the

unikernel image itself. In the default build, UNICORE is directly loaded by the platform. The solution was

to split UNICORE images into a minor image that is non-PIE with basic code to boot and incorporating

the loader; we also call this bootloader. The larger part of the UNICORE image, including most of the

UNICORE APIs, external libraries and application code is built as a PIE executable.

For random address generation to load the unikernel proper to, the loader uses the UNICORE ukswrand

API.

The static randomization process will have three parts, as we can see in Figure 4.1. The first part will be

to load the bootloader into memory. The bootloader will contain the non-PIC boot code, the randomization

engine, and the loader. The second part will be unikernel proper.

Figure 4.1: Loading scheme of the code

PIE is currently support in linuxu (simply by using -fPIC, -pie flags) and KVM (using the bootloader

/ unikernel split above). In KVM the using of the two images split is enabled by the ability to path the

bootloader image as the kernel image and the unikernel proper as the initial randmisk (initrd) image as below:

1 qemu-system-x86_64 -kernel bootloader -initrd unikernel-proper

Listing 4.3: Passing an initrd file to qemu

4.2.2 Performance

Position-independent code can be slightly slower than non-position-independent code due to the relative

addressing that has to be done, use of the global offset table, or the procedure linkage table. To test this on

the PIE unikernel, we used Redis and SQLite.

For Redis we measured the throughput in operations/second. The tests were done using the SET and

GET operations. Results are shown in Figure 4.2. The difference between the default unikernel and the PIE

unikernel builds is negligible.

For SQLite we measured how much time does a certain number of insert operations take. As how in

Figure 4.3, results are similar to Redis, that is the default unikernel and the PIE unikernel builts have similar

performance.

Page 28 of (35) © UNICORE Consortium 2020

Figure 4.2: Redis throughput

Figure 4.3: SQLite time for insert operations

4.3 Deterministic Execution Support

In order to validate the solution for deterministic execution of smart contracts, including running in a

UNICORE-specific constrained environment, we created a set of programs that behave in a non-deterministic

manner.

The non-deterministic test suite is based on previous analysis of sources of non-determinism including unini-

tialized data, data types and data packing, architecture-specific instructions, I/O and random data, time-related

measurements, scheduling.

The current set of samples is classified according to the source of non-determinism: program input, symbol

address, uninitialized data, time, system specifics, scheduling, platform specifics. Samples are created in C,

Python, Go and Java, conforming to our goal of providing deterministic execution across multiple platforms

(languages, architecture, configuration).

Table 4.1 shows the non-determinism use cases together with their classes and where to mitigate them. The

© UNICORE Consortium 2020 Page 29 of (35)

mitigation will be handled in one component of the solution for deterministic execution.

One sample aims to getting non-determinism by using floating operations as software configuration and CPU

specifics is likely to incur rounding and truncation. At this point, we haven’t been able to create a sample with

non-determinism; we use C and go programs and compiled them for x86 64, x86 and ARMv7 and results are

identical. We plan to use a public floating point test bench to trigger non-deterministic behavior.

Consider a given (smart contract) program, we design a solution that integrates UNICORE in maximizing

deterministic execution. The solution is shown in Figure 4.4. It includes four stages of compliance check:

(i) source code static analysis

(ii) local (developer) binary static analysis

(iii) remote (node) minimal binary compliance

(iv) runtime compliance enforcement (in a UNICORE constrained environment)

developer

source code
compliance

checker
smart contract compliance

builder

binary
smart contract

binary
compliance

checker

blockchain storage

blockchain
validation

(consensus)

user
transaction

blockchain
execution

(consensus)

compliance
runtime (on
each node)

compliance
validation (on
each node)

store
contract fetch

contract
+

world state
store
result

Figure 4.4: Deterministic Execution Support

The smart contract developer will have access to a build toolchain with deterministic support that incorporates

the source code static analysis and the binary static analysis. The program will be checked locally for sources

of non-determinism both at code level and executable / binary level, before being submitted to the blockchain.

Before adding the smart contract to the blockchain, the internal distributed decision will run a minimal binary

compliance phase on each blockchain node involved for quick vetting of the program. Once the vetting is

passed the smart contract is stored on the blockchain.

Once a transaction triggers the use of the smart contract, a UNICORE-enabled runtime will execute the

smart contract in a constrained compliant environment (such as disabling memory randomization, initializing

Page 30 of (35) © UNICORE Consortium 2020

Test case Test case class Where to mitigate

random number program input runtime enforcement with seed

standard input program input runtime enforcement of closed stream or
similar

environment variable program input runtime enforcement

program argument program input runtime enforcement (proper arguments
provided by the validator)

address of environment variable symbol address source code checker + binary checker if we
can

address of program argument symbol address source code checker + binary checker if we
can

address of local variable symbol address source code checker + binary checker if we
can

address of allocated variable symbol address source code checker + binary checker if we
can

address of library function symbol address source code checker + binary checker if we
can

address of global variable symbol address source code checker + binary checker if we
can

address of program function symbol address source code checker + binary checker if we
can

uninitialized local variable uninitialized data runtime enforcement

uninitialized global variable uninitialized data runtime enforcement

current time time runtime enforcement with some consensus
on the current time (then provided like the
seed)

duration time source code checker (blacklist)

process ID system specifics runtime enforcement

thread ID system specifics runtime enforcement

thread ordering scheduling runtime enforcement if possible, otherwise
source code checker + binary checker

threaded arithmetic operations scheduling runtime enforcement if possible, otherwise
source code checker + static checker

time of check to time of use (TOCC-
TOU)

scheduling runtime enforcement if possible, otherwise
source code checker + static checker

threaded list operations scheduling runtime enforcement if possible, otherwise
source code checker + static checker

Table 4.1: Test cases of non-determinism

© UNICORE Consortium 2020 Page 31 of (35)

all memory with zeroes, disabling scheduling, strict control of I/O, etc.). If results from a transaction are

accepted by the distributed consensus reaching mechanism in the blockchain, the transaction is validated.

While the solution is being developed, the current set of non-deterministic cases will be used to validate it.

Page 32 of (35) © UNICORE Consortium 2020

5 Conclusion
This document summarizes the current state of the UNICORE APIs, libraries and applications. It also high-

lights current security and safety primitives and deterministic execution support in UNICORE.

Existing APIs, libraries and applications are enough for proof of concept builds and runs. We are able to

measure unikernel images sizes, boot times and performance metrics using Redis, SQLite and nginx. In the

current state, UNICORE components can be integrated in a variety of test cases.

Further work is including additional libraries and applications and stabilizing the UNICORE APIs with re-

spect to performance and security.

© UNICORE Consortium 2020 Page 33 of (35)

References
[1] Google, “Protocol buffers - google’s data interchange format.” [Online]. Available: https:

//github.com/protocolbuffers/protobuf

[2] J. Litton, D. Garg, P. Druschel, and B. Bhattacharjee, “Composing abstractions using the null-kernel,”

in Proceedings of the Workshop on Hot Topics in Operating Systems, ser. HotOS'19. New York, NY,

USA: ACM, 2019, pp. 1–6. [Online]. Available: http://doi.acm.org/10.1145/3317550.3321450

[3] T. H. Dang, P. Maniatis, and D. Wagner, “Oscar: A practical page-permissions-based scheme

for thwarting dangling pointers,” in Proceedings of the 26th USENIX Security Symposium, ser.

USENIX Security'17. Vancouver, BC: USENIX Association, 2017, pp. 815–832. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang

[4] Openwall, “Implement glibc chk interfaces for ABI compatibility.”

https://www.openwall.com/lists/musl/2015/06/17/1.

[5] P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravindran, “A binary-compatible unikernel,” in

Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments, ser. VEE 2019. New York, NY, USA: ACM, 2019, pp. 59–73. [Online]. Available:

http://doi.acm.org/10.1145/3313808.3313817

[6] A. Quach, R. Erinfolami, D. Demicco, and A. Prakash, “A multi-os cross-layer study of bloating

in user programs, kernel and managed execution environments,” in Proceedings of the 2017

Workshop on Forming an Ecosystem Around Software Transformation, ser. FEAST ’17. New

York, NY, USA: Association for Computing Machinery, 2017, p. 65–70. [Online]. Available:

https://doi.org/10.1145/3141235.3141242

[7] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata, C. Raiciu, and F. Huici,

“My vm is lighter (and safer) than your container,” in Proceedings of the 26th Symposium on Operating

Systems Principles, ser. SOSP ’17. New York, NY, USA: ACM, 2017, pp. 218–233. [Online].

Available: http://doi.acm.org/10.1145/3132747.3132763

[8] S. El-Sherei, “Return-to-libc,” https://www.exploit-db.com/docs/english/

28553-linux-classic-return-to-libc-&-return-to-libc-chaining-tutorial.pdf, last accessed: 20 June

2020.

[9] D. Kapil, “Shellcode injection,” https://dhavalkapil.com/blogs/Shellcode-Injection/, last accessed: 20

June 2020.

Page 34 of (35) © UNICORE Consortium 2020

https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
http://doi.acm.org/10.1145/3317550.3321450
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
http://doi.acm.org/10.1145/3313808.3313817
https://doi.org/10.1145/3141235.3141242
http://doi.acm.org/10.1145/3132747.3132763
https://www.exploit-db.com/docs/english/28553-linux-classic-return-to-libc-&-return-to-libc-chaining-tutorial.pdf
https://www.exploit-db.com/docs/english/28553-linux-classic-return-to-libc-&-return-to-libc-chaining-tutorial.pdf
https://dhavalkapil.com/blogs/Shellcode-Injection/

[10] U. D. Sandra Henry-Stocker and N. World, “How aslr protects linux systems from buffer over-

flow attacks,” https://www.networkworld.com/article/3331199/what-does-aslr-do-for-linux.html, last

accessed: 28 February 2018.

[11] G. Curell, “What is the symbol table and what is the global offset table?” https://www.codeproject.com/

articles/1032231/what-is-the-symbol-table-and-what-is-the-global-of, last accessed: 9 June 2020.

© UNICORE Consortium 2020 Page 35 of (35)

https://www.networkworld.com/article/3331199/what-does-aslr-do-for-linux.html
https://www.codeproject.com/articles/1032231/what-is-the-symbol-table-and-what-is-the-global-of
https://www.codeproject.com/articles/1032231/what-is-the-symbol-table-and-what-is-the-global-of

	Executive Summary
	List of Authors
	List of Figures
	List of Tables
	Introduction
	UNICORE APIs
	Core APIs
	Platform APIs

	Libraries and Applications
	Libraries
	Porting Libraries
	Applications
	Measurements

	Security and Safety Primitives
	Security and Isolation Primitives
	Use-after-free (UAF) Vulnerabilities
	The Default Allocator
	The Wilde Allocator
	Crash Recovery

	Memory Randomization Support
	PIE Support in UNICORE
	Performance

	Deterministic Execution Support

	Conclusion
	References

