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ABSTRACT We propose an integrated method that combines the model-based and data-driven techniques to deal 
with the leakage detection and location challenge in the L-Town network. The method consists of 
five stages, including (1) model decomposition, (2) partition of SCADA data, (3) nodal demand 
calibration, (4) calibration residual-based leakage detection, and (5) an improved vectorial angle 
method based leakage localization.  
 
In the first stage, the L-Town network was decomposed into subsystems according to the three 
DMAs existing in the system (see Figure 1). For each subsystem, the pressure at its inlet can be 
simulated and controlled through the pressure reduction valve (PRV) installed. As such, the entire 
L-Town network was divided into three smaller, independent systems with known interactions, 
which significantly simplified the leakage detection and localization problem. Below, only the Area 
A is used to demonstrate how the proposed method can solve the BattLeDIM problem. 
 

  (a) before decomposition (b) after decomposition 
 

Figure 1. Model decomposition of the L-Town benchmark network (three DMAs denoted as Areas 
A, B, and C, respectively) 

 
In the second stage, the partition of SCADA data is to alleviate the impact of demand uncertainties 
on leakage detection and localization accuracy. Nodal demands are usually affected by factors such 
as weather, urban functional arrangements, and users’ consumption profiles, showing cyclical 
patterns. Such data play a crucial role in the accuracy of a hydraulic model. Therefore, it is 
necessary to calibrate nodal demands before implementing leakage detection. The base demand at 
each junction has three categories, including residential, commercial, and industrial, and is repeated 
weekly according to the Epanet input file. 
 
For each type of other datasets (e.g., pressure and flow), the time series data collected from the 
utility’s SCADA system in 2018 were reorganized into 52 groups (considering only 364 days), each 
containing a week’s operational recordings (see Equation 1). This is to prepare the data feed for 
nodal demand calibration. Consequently, each original dataset of 104,832 entries was transformed 
to 52 matrices of 2016-by-31. The row number (i.e., 2016) denotes the amount of data collected in a 
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week at a 5-minute time step (i.e., 60÷5×24×7=2016); while the column number (i.e., 31) refers to 
the number of sensors deployed in Area A, including 29 pressure sensors and two flow meters at the 
pipes directly connected to 2 reservoirs. 
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Where Hi is a column vector of pressure at node i with the length of 104,832; qj is a column vector 
of flow at pipe j with the length of 104,832; ,n t

iH  is the pressure of node i at time t in the n-th 
week; ,n t

jq  is the flow of pipe j at time t in the n-th week. 
 
In the third stage, nodal demands were calibrated based on the prior information by the least square 
method iteratively. We considered the base demand used in the Epanet input file as empirical values. 
A single-objective optimization model was established to minimize the ( )f Q . This converted the 
under-determined problem (the number of unknown variables is greater than that of equations) to an 
over-determined one. Specifically, this conversion included two steps. Firstly, we ran the original 
hydraulic model of the L-Town network and retrieved the averaged nodal demands by accumulating 
the actual demands of three categories at each time step (see Equation 2). Secondly, the objective 
function was formulated, as shown in Equation 3.  
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Where Qa is the empirical value used in the objective function; ,
a
i tQ  is the total demand at node i 

and time t; nn is the number of nodes. 
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Where ,n t
iH  and iH  are the monitored and simulated pressures of node i at time t in the n-th 

week, respectively; ,n t
jq  and jq  are the monitored and simulated flows of pipe j at time t in the n-

th week, respectively; ,
o
k tQ  and ,n t

tQ  are the empirical and simulated nodal demands of node k at 
time t in the n-th week, respectively; w is the weight coefficient (w1 and w2 are equal to 1, while w3 is equal to 0.1); nH is the number of pressure sensors; nq is the number of flow meters.  
Equation 3 can also be expressed as the following matrix. The calibrated nodal demands were 
obtained by solving Equations 5-6 iteratively until the 2-norm of lQ  is less than the specified 
threshold (i.e., 0.01). The Jacobian matrices (i.e.,  ,n t

lHJ Q  and  ,n t
lqJ Q ) were solved according 

to [1]. The detail on the least square method can be accessed via [2]. 
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Where  ,n t
lHJ Q  is the Jacobian matrix of nodal pressure to nodal demand;  ,n t

lqJ Q  is the 
Jacobian matrix of pipe flow to nodal demand; I is the identity matrix of size nn. 
 
In the fourth stage, the locations of pipe burst were identified based on the calibration residual 
obtained in the previous stage. The nodal calibration residuals of pressure were recorded at each 
time step. When a pipe burst, the calibration residuals between monitored and simulated pressures 
at some sensitive nodes would increase or decrease accordingly. Such fluctuations in calibration 
residuals were used as signals to judge whether a burst event occurred. During 2018, there were 
eight burst events reported in Area A of the L-Town network. We managed to identify six of these 
events with good approximation according to the Euclidean distances between the repaired and 
identified locations (see Table 1). Some signals that successfully detected the six pipe burst events 
in Area A are presented in Figures 2(a) to 2(f). As shown in Figure 2(a), the calibration residuals at 
node n342 drop dramatically from the middle of Week 5 and recover at the end of Week 6, which 
indicates that a pipe burst was likely to occur during this period. 
 

Table 1. Information of six pipe bursts identified in Area A of the L-Town network in 2018 
Event 
No. Burst ID Start Time 

(Estimated) End Time 
Burst 

Locations 
by This Study 

Euclidean Distance between 
the Repaired and Identified 

Locations (m) 
① p232 02-02 03:00 02-10 09:20 p138 157.52 
② p461 02-19 00:00 04-02 11:40 p452 84.93 
③ p628 05-08 00:00 05-29 21:20 p630 38.64 
④ p183 08-07 02:30 09-01 17:10 p856 39.79 
⑤ p158 10-06 04:35 10-23 13:35 p702 135.18 
⑥ p369 10-26 02:05 11-08 20:25 p371 100.74 

 

  (a) n342 (b) n114 



  (c) n188 (d) n752 

  (e) n644 (f) n429 
Figure 2. Detection of pipe burst events based on the calibration residuals at different nodes 

 
In the final stage, the locations of pipe burst events were approximated by an improved vectorial 
angle method proposed for the BattLeDIM problem. The original vectorial angle method was 
developed in [3]. It was used to locate the pipe burst places by comparing the vector of calibration 
residuals with the Jacobian matrix of nodal pressures to nodal demands. However, due to the 
assumption that pipe burst occurs at nodes, this method could only identify the location in a broader 
range. If a burst happens in a pipeline, the original vectorial angle method may fail to determine an 
accurate position. Therefore, we modified this method by introducing the Jacobian matrix of nodal 
pressures to pipe flows. This change extended the original vectorial angle method for dealing with 
the burst events that occurred in pipelines. The pressure residuals are shown in Equation 7.  

  
,1 ,

1,1 1, 1,1 1,1 1, 1,
1

,1 ,
,1 , ,1 ,1 , ,

( ) ( )
, ,

( ) ( )

o l o l m
m m m

t
o l o l m

nH nH m nH nH nH m nH m

r r H H H H

r r H H H H

                   

Q Q
R r r

Q Q

 

      

 

 (7) 

Where ,i tr  is the calibration residual of pressure at node i at time t; ,
o
i tH  is the observed pressure 

at node i at time t;  ,
,

l t
i tH Q  is the pressure of node i at time t in the previous week; ,l mQ  is the 

calibrated nodal demand in the previous week when the burst event did not occur; m is the number 
of samples selected for the identification of a pipe burst event (m was equal to 288 in this study). 
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Where  ,j l t
HJ Q  is the sensitivity vector of pressure to the flow of pipe j;  ,up l t

HJ Q  and  ,down l t
HJ Q  are the Jacobian matrices at the upstream and downstream nodes of pipe j, respectively;  ,p l t
HJ Q  is the nH-by-mm Jacobian matrix of nodal pressure to pipe flow; mm is the number of 



pipes (excluding the ones connected to the two reservoirs directly). The detail on how Equations 8 
and 9 were obtained can be accessed via [4]. 
 
For each time step, the angle between the vector of calibration residuals and each column of the 
Jacobian matrix was calculated by Equation 10. 
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Where ,i t  is the angle between the vector of calibration residuals and the vector of pipe j in the 
Jacobian matrix; tr  is the vector of the calibration residual at time t;  ,j l t

HJ Q  is the vector of 
pipe j in the Jacobian matrix at time t. 
 
For each pipe burst event, we calculated the average angle over 288 time steps (i.e., one day) before 
a burst location was localized. This is to mitigate the impact of demand uncertainties on the 
calculation of the vectorial angle (see Equation 11). The pipe with the minimum value of j  was 
identified as the broken one. The six locations detected as pipe bursts mentioned in the third stage 
are shown in Figure 8. 
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where, j is the average angle between the vector of calibration residuals and the vector of pipe j in 
the Jacobian matrix; m is the same as defined previously. 

 
 

(a) Western Part (b) Eastern Part 
Figure 8. Locations of pipe burst identified by the proposed method 
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SUMMARY The combined usage of the hydraulic model calibration residual and an improved vectorial angle 
method is presented for the burst detection and diagnosis in the L-Town network. It consists of five 
stages: (1) model decomposition, (2) partition of SCADA data, (3) nodal demand calibration, (4) 
calibration residual-based leakage detection, and (5) an improved vectorial angle method based 
burst localization. Compared with existing methods, the proposed method has the following 
advantages that make it a robust burst detection and localization approach. First, the bursts are 
detected based on the calibration residuals of nodal demands, by which the hydraulic model and 
SCADA data are taken into account simultaneously. Second, the concept of pipe sensitivity vectors 
is proposed, considering the burst occurs in the middle of pipelines. This sensitivity vector is 
calculated based on the nodes' sensitivity vectors at both ends of a pipe. It is then used to localize 
pipe detect the burst pipes accurately through calculating the angle between the calibration residual 
vector and each pipe sensitivity vector. The burst pipe is the sensitivity vector that presents the 
smallest angle with the residual vector. We first applied the method mentioned above to the pipe 
burst events reported in 2018. Then, our estimations regarding the location and start time of pipe 
bursts in 2019 are yield. 


