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An Improved Linear Model for High Frequency
Class-DE Resonant Converter using the Generalized

Averaging Modeling Technique
Nicolai J. Dahl, Student Member, IEEE, Ahmed M. Ammar, Student Member, IEEE, Arnold Knott,

Michael A. E. Andersen, Member, IEEE

Abstract—As the operating frequency of power converters
increases, the passive component values likewise decrease. This
results in the effect of the parasitic components becoming
more prominent, leading to significant modeling errors if not
considered. For resonant converters this especially becomes a
problem at high frequencies. This paper presents a reduced model
for a class-DE series resonant converter based on generalized
averaging that incorporates the relevant parasitics and uses mul-
tiple harmonics to obtain an accurate linear model. Comparison
between the proposed model, prior art, and a prototype converter
running at 1 MHz is conducted, and a PI-controller is designed
based on each model and tested. The results show that the
parasitics have a significant impact on the DC-gain and dynamics
of the converter, and that the proposed model improves on the
prior art by reducing the DC-gain error by more than 7 dB,
and the error in the low frequency pole from 168 % to 16.9
%. Furthermore, the PI-controller designed on the prior art
was found to have more than 40 times larger overshoot in the
control signal when measured compared to the model prediction,
while the controller based on the proposed model showed correct
performance when simulated and measured.

Index Terms—Resonant converters, Modeling, PI control,
State-space methods, DC-DC power converters.

I. INTRODUCTION

TODAY, most electronic devices are powered with a
Switch Mode Power Supply (SMPS) due to their small

form factor and high efficiency. The majority of the SMPS
are different types of hard switching PWM topologies. These
supplies have high switching losses which limit the switching
frequency that the supplies can handle. Nonetheless, higher
switching frequencies allow for smaller passive components,
and hence an overall smaller power supply, as well as higher
bandwidth to better react to various load and line disturbances.
Therefore, to improve on the switching frequencies, soft
switching topologies have been receiving much attention in
recent years [1–7]. One family of soft switching converters
are the resonant converters [8]. Resonant converters work by
having a resonant tank take care of charging and discharging
the switching node before the switching event, and thus
obtain Zero Voltage Switching (ZVS). This vastly reduces the
switching losses, allowing for a higher operation frequency.

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 731466.
The authors are with the Department of Electrical Engineering, Technical
University of Denmark, Kgs. Lyngby (e-mail: nicoje@elektro.dtu.dk; am-
mma@elektro.dtu.dk; akn@elektro.dtu.dk; ma@elektro.dtu.dk)

The typical design and modeling procedures used for
PWM converters do not apply to resonant converters. PWM
converter models are fundamentally built on the small ripple
hypothesis, meaning that the ripple can be averaged and only
the underlying linear dynamics need to be considered [9, 10].
This is not applicable with resonant converters as it would
average out the resonance in the resonance tank to zero. To
resolve this, models that are able to capture the periodic
behavior have been developed. One modeling approach is
to model the converter using multiple subsystems connected
with a reset map [11–13]. This method maintains all the
information of the converter, but is not very pratical for most
analysis and control design. Another modeling approach
which has recieved a lot of attention in the modeling of
active front ends is the Linear Time-Varying Periodic (LTP)
model [14–18]. This method uses a harmonic state space
model to descripe how each of the harmonic components
of the input impact each of the harmonic components of
the output. Lastly, there are the modeling approaches based
on the generalized averaging model [19–22]. This modeling
approach extends the original averaging model method by
describing the periodic behavior of the system using a Fourier
series. Many of these modeling approaches come with a set
of assumptions to simplify the problem. These assumptions
are typical about purely sinusoidal signals or fast decaying
harmonics, resulting in solutions which are only valid in a
limited range if not fulfilled. Furthermore, the prior art, that
uses the modeling techniques presented above, only considers
converters operating at frequencies up to 200 kHz. At these
frequencies, the parasitic components are negligible, and for
that reason not included in the models. However, with the
increase in operating frequency, this is no longer the case and
the models breaks down.

This paper presents a model of a class-DE Series Resonant
Converter (SRC) where the effect of the parasitics is included to
make the model valid for high-frequency operation. The model
is based on the generalized averaging method, and considers
multiple harmonics to obtain a precise representation of the
converter behavior. The resulting model is of a high-order, so
a model reduction approach is applied to simplify the model
to a low order, high precision, and computational robust linear
model which is valid for a wide operation range. The proposed
reduced model is validated against a 1 MHz class-DE SRC
and compared to prior art. Lastly, a PI-controller is designed
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based on both the proposed model and prior art, and tested to
assess the performance improvement. Although the presented
model is for a class-DE SRC, the presented modeling method
with the same parasitics can also be used to model variations
of the class-DE resonant network, like the LLC, LCC, and
parallel resonant converter.

II. LARGE SIGNAL MODEL

Using Kirchoff’s current and voltage laws, the discontinuous
differential equations governing the behavior of the class-DE
converter shown in Fig. 1 are established. Equation (1) shows
the derived equations which are similar to the findings in [21],
but also include the equivalent series resistance for the capacitor
and inductor, here lumped together in Resr (not shown in the
circuit).

İr =
Vsw
Lr
− Vr
Lr
− IrResr −

Vhb
Lr

(1a)

V̇r =
Ir
Cr

(1b)

V̇o =
Ihb
Cf
− Vo
CfRf

(1c)

where Ir is the periodic current in the resonance tank, Vr is
the voltage across the resonance tank capacitor Cr, and Vo
is the output voltage of the converter. Vsw, Vhb, and Ihb are
the switching node voltage, the voltage at the rectifier, and
the current through the rectifier to the output, respectively,
and are all piece-wise continuous functions. In reported
work [20, 21] these piece-wise continuous functions are
assumed to be ideal, e.g. the effect of parasitic components is
disregarded. This is a fair assumption for medium frequency
operation (< 500 kHz) where it provides satisfactory results.
However, as the switching frequency is increased, the capacitor
and inductor sizes in the resonance tank decrease and the
parasitic components of the switching devices start to become
significant and interact with the converter. The parasitics,
among other factors, cause a change in the resonance frequency
and delaying of charge transfer in the rectifier. Therefore, to
obtain an accurate model of the converter at high frequency
switching, the relevant parasitics need to be identified and
included in the model.

The dominant parasitics come from the switching devices in
the converter, i.e. the FETs and the diodes, and are capacitive
by nature. Thus the output capacitance of the FETs, Coss, and
the capacitance of the diodes, Cd are added to the model. Both
of these capacitors are nonlinear dependent of the voltage
across the device, and will change in value during charg-
ing/discharging. Hence, the capacitor values are approximated
by the time related capacitors to give an equivalent behavior.
The parasitics in the resonant tank are, in the MHz range,
usually insignificant in size, and thus not considered in the
model. Fig. 1 shows the class-DE series resonant converter
with the relevant parasitics.
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+Vs
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+ −
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Vo(t)

Vhb(t)

Ir(t)
Vsw(t)

Fig. 1: The class-DE series resonant converter with the parasitic
capacitance for the FET’s and diodes. The ESR resistances
of Lr and Cr are not explicitly shown in the circuit, but still
included in the calculations.

Looking at Fig. 1 it is seen that all the parasitic components
are connected to nodes that are discontinuous and hence need
to be described by piece-wise functions. To work out the exact
behavior of these piece-wise functions, a transient simulation
of the converter is performed. Fig. 2 shows the steady state
operation of the discontinuous nodes Vhb, Ihb and Vsw in
normalized time.
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Fig. 2: The discontinuous waveforms of the converter. The
dashed lines indicate the conduction time of the rectifier.

From Fig. 2, the effects of the added parasitics are observed.
Once the resonance current Ir becomes positive (about π/4),
the diode capacitance Cd starts charging hence increasing
the voltage in Vhb. This prevents the charge transfer in the
rectifier to the output since the forward voltage of the diodes
is yet to be reached. Then, when Vhb = Vo the diode can start
conducting and will keep on conducting until the resonance
current becomes negative. At that point, the diode capacitance
will be discharging. In the ideal case, Vhb would ramp up
instantaneously, allowing the current to be passed to the output
for the entire positive half-cycle. However, due to the parasitic
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capacitance in the rectifier diodes, this is no longer the case.

Regarding the switching node, Vsw, it resembles a square
waveform, however, with a small slope on the edges. The
slopes come from the charging and discharging of the Coss
during the dead time of the gate signals when none of the
FETs are conducting. This leads to the system being in its
unforced stage, and the resonance current will charge/discharge
Coss. The length of the dead time is given by π(1 − 2D)
where D is the positive duty cycle of the gate signals to the
FETs. Ideally, it is desired to tune the duty cycle such that
Coss is charged to Vs and zero voltage switching occurs. In
case Coss is over charged, diodes in parallel with Coss will
start conducting, limiting the voltage. However, these diodes
are not included in Fig. 1 and neither in the presented model
since it would lead to Vsw being piece-wise in both time
and voltage. Functions that are piece-wise in more than one
variable are increasingly difficult to model and approximate as
the problem becomes multidimensional. Hence the complete
model is only valid in operation modes where these diodes
are not conducting, i.e. partial and full ZVS. In operation
modes where the diodes are conducting, the model will over
charge the voltage in the switching node, Vsw to maintain the
resonant current. Thus the resonant current and output voltage
remain valid in this operation mode, and only Vsw will differ
from the expected behavior.

From the behavior described above the piece-wise equations
are formalized. Equation (2) to (4) shows the piece-wise
functions. Each equation is periodic, i.e. f(t) = f(t + 2π),
and φ represents the phase shift observed in Fig. 2.

Vhb(t− φ) =



∫
Ir dt

2Cdω
0 ≤ t < ton

Vo ton ≤ t < π∫
Ir dt

2Cdω
+ Vo π ≤ t < π + ton

0 π + ton ≤ t < 2π

(2)

Ihb(t− φ) =


0 0 ≤ t < ton

Ir ton ≤ t < π

0 π ≤ t < 2π

(3)

Vsw(t) =



∫
−Ir dt

2Cossω
0 ≤ t < π(1− 2D)

Vs π(1− 2D) ≤ t < π∫
−Ir dt

2Cossω
+ Vs π ≤ t < 2π(1−D)

0 2π(1−D) ≤ t < 2π

(4)

where ω is the switching frequency fsw in rad/sec, and ton
is the point where Ihb becomes non-zero. If ω is assumed to
be constant, the equations become piece-wise linear. ton is
found as the time it takes to charge both Cd to Vo using a
sinusoidal current with magnitude Im. Thus the calculation of
ton assumes an ideal resonance current. Equation (5) shows
the function for ton.

ton = arccos

(
1− 2ωCdVo

Im

)
(5)

With (1) through (5), we obtain a complete piece-wise
mathematical representation of the converter with the described
parastics.

III. HARMONIC APPROXIMATION

The mathematical model developed in section II can be
expressed as multiple models, all connected through switching
surfaces [12]. This allows for a precise discontinuous descrip-
tion of the system which is suited for simulation. However, the
model is impractical for further analysis and control design
where a single Linear Time Invariant (LTI) model is preferred.
Thus the model needs to be linearized. The resonance converter
exhibits a limit cycle in its steady-state operation, making the
conventional averaging linearization methods inapplicable, and
other more generalized methods are needed. One such method,
and the method used in prior art, is the harmonic balance
method. This method approximates each state with a Fourier
series, where the magnitude for each term becomes the new
state of the system. The approximation will result in a loss
of information as the Fourier series will at some point be
truncated. Equation (6) shows the approximation of the states
by the Fourier series to the arbitrary order N . Equation (7)
shows the same but for the state derivatives.

Ir ≈ IrDC
+

N∑
n=1

Irsn sin(nωt) + Ircn cos(nωt) (6a)

Vr ≈ VrDC
+

N∑
n=1

Vrsn sin(nωt) + Vrcn cos(nωt) (6b)

Vo ≈ VoDC
+

N∑
n=1

Vosn sin(nωt) + Vocn cos(nωt) (6c)

İr ≈ İrDC
+

N∑
n=1

(
İrsn − ωnIrcn

)
sin(nωt)+(

İrcn + ωnIrsn

)
cos(nωt) (7a)

V̇r ≈ V̇rDC
+

N∑
n=1

(
V̇rsn − ωnVrcn

)
sin(nωt)+(

V̇rcn + ωnVrsn

)
cos(nωt) (7b)

V̇o ≈ V̇oDC
+

N∑
n=1

(
V̇osn − ωnVocn

)
sin(nωt)+(

V̇ocn + ωnVosn

)
cos(nωt) (7c)

With the approximation of the states, the state vector goes
from being of order 3 to order 3 + 6N , where N is the order
of the Fourier series. Equation (8) shows the new state vector.
Here Ircn , Irsn , etc. are vectors of length N containing the
states for each harmonic.
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x =

IrVr
Vf

 7→



IrDC

VrDC

VoDC

Ircn
Vrcn
Vocn
Irsn
Vrsn
Vosn


(8)

Besides the states, the piece-wise functions (2)-(4) each
needs to be approximated by a single continuous function.
Since the piece-wise functions are periodic, a Fourier series
can likewise be used. The Fourier series are calculated through
conventional methods, and then rewritten to simplify the
computation. The Appendix presents the used rewritten Fourier
series. Fig. 3 shows the normalized magnitudes of the Fourier
coefficients for each of the constructed series.
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Fig. 3: Normalized magnitudes of the harmonic content for
each Fourier series.

Fig. 3 shows that Vhb and Vsw are described purely by the
odd harmonics in the Fourier series. This results in all the
even terms, except zero, in the states Ircn , Irsn , Vrcn , and
Vrsn evaluate to zero and the states can be discarded as they
provide no information. This reduces the size of the system to
3 + 4N for an even N . Furthermore, from Fig. 1 it can also
be concluded that IrDC

will always be zero in steady state
due to the resonance tank capacitor Cr blocking DC current
flow. However, IrDC

is non-zero during transients. Thus it still
provides some information.

A. Harmonic Balancing

With the Fourier approximation of both the states and the
piece-wise functions completed, the approximations are inserted
in (1). This creates a set of partial differential equations (PDEs).
However, by collecting the trigonometric terms, the partial
differential equation can be separated into a set of first order
ordinary differential equations (ODEs), where the trigonometric
term can be canceled out. Equation (9) shows the resulting
three equations for (1c) when the described method is applied.
Here a 1st order Fourier series is used, and IhbDC

, Ihbs , and
Ihbc are the calculated Fourier coefficients.

V̇oDC
=
IhbDC

Cf
− VoDC

CfRf
(9a)

V̇os =
Ihbs
Cf
− Vos
CfRf

+ ωVoc (9b)

V̇oc =
Ihbc
Cf
− Voc
CfRf

− ωVos (9c)

The Fourier coefficients will be nonlinear expressions depen-
dent on one or more of the states, making the system of first-
order ODEs nonlinear. Due to the Fourier series, the resulting
system is a continuous approximation of the discontinuous
system in (1) where the discontinuities have been eliminated
at the expense of an increased number of states. The nonlinear
approximation obtained from the Fourier series (17)-(19) is
not accurate in transient simulations due to simplifications.
However, other realizations of the Fourier series will result in
accurate transient simulations but at the expense of increased
computation time. Nonetheless, the operating point for all the
states of the resonant converter can be determined by inserting
the desired duty cycle and frequency into the system, and solve
for the steady-state using a numerical solver.

IV. LINEAR STATE SPACE MODEL

With the nonlinear approximation model constructed and a
suitable operation point found, linearization of the model is
done to obtain a state space model of the form

ẋ = Ax+Bu (10a)
y = Cx (10b)

where A is the system matrix, B is the input matrix, and
C is the output matrix. The state vector x will contain the
Fourier expanded variables as presented in (8). Since the even
harmonics of the resonant voltage and current turned out to be
redundant, the differential equations describing these can be
removed prior to linearization without any loss of information.
The input vector u consist of the switching frequency, fsw,
the duty cycle, D, and the supply voltage, Vs, where the
latter is used to include potential disturbances from the supply.
Lastly, the output vector y consists of the DC output voltage,
VoDC

. The obtained state space model will only be valid up to
the Nyquist frequency due to the selected modeling approach.
Nonetheless, this still results in an accurate model for controller
design and general analysis. For cases where dynamic content
above the Nyquist frequency is needed, the modeling approach
presented in [23] can be used. This modeling method provides
an extended range of the model but at the expense of beings
computationally more expensive.

A. Model Reduction

The created state space model contain both a large portion
of zero elements and some large values in the system matrix.
This leads to a high condition number of the model, indicating
that the model has poor numerical properties and may produce
numerical errors in further computations. Furthermore, because
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of the large size of the state space model, the model is not
practical for control design. Also, conversion to transfer
functions are discouraged due to the reduction of the numerical
precision inherent in the conversion process. Thus to address
these problems, the state space model needs to be adjusted and
reduced in order to maintain reliability for later computations.
The reduction is also necessary from a control perspective
where a smaller number of states needs to be considered,
making observer designs and complex control strategies
simpler and faster to implement and execute.

One procedure to prepare the system for a model reduction
that also tend to improve the condition number of the state
space model is to balance the system. A balanced system is a
system where the states are selected in such a way that each
state is as controllable as it is observable. Then the relative
impact of each state is given by the Hankel Singular Values
(HSV). The HSV is defined as λ

1
2 (PQ), where P and Q are

the controllability and observability Gramians respectively. For
linear systems P and Q can be determined using the two
Lyapunov equations in (11) [24, 25].

AP + PAT +BBT = 0 (11a)

ATQ+QA+ CTC = 0 (11b)

If P and Q are both diagonal matrices containing the HSVs
sorted from highest to lowest, the states in A are balanced
and, likewise, sorted. Hence the first states are those with the
largest impact on the system dynamics down to the last state
which has the least impact. Moreover, all the elements in the
matrices will be non-zero, and the numerical values will be
closer, thereby improving the condition number.

With the system balanced, model reduction can be achieved
easily. Since the states are already sorted by their dynamical
impact, the state space system can be partitioned into the parts
to keep, denoted (A11, B1, C1), and the parts to discard, as
shown in (12). The exact number of states to keep can usually
be determined by inspecting the HSVs and observing if any
state has a large decrease in its HSV. Lastly, the reduced model
is derived using a residualization based reduction (13). The
residualization technique sets ẋ2 = 0, thereby assuming steady
state, and solves for x2 in terms of x1 and u. The result is back-
substituted into the equation for x1 resulting in the matrices
in (13). This method ensures that the information regarding
the DC-gain in the discarded states is preserved in the reduced
model thus improving the overall precision at low frequencies
which is critical for power converters.

[
ẋ1
ẋ2

]
=

[
A11 A12

A21 A22

] [
x1
x2

]
+

[
B1

B2

]
u (12a)[

y1
y2

]
=
[
C1 C2

] [x1
x2

]
(12b)

Ar = A11 −A12A
−1
22 A21 (13a)

Br = B1 −A12A
−1
22 B2 (13b)

Cr = C1 − C2A
−1
22 A21 (13c)

V. EXPERIMENTAL VALIDATION

To verify the presented theory, we construct a class-DE SRC
with the specifications and bill of material presented in Table I.
These values are also used in the model such that a comparison
with the implemented converter can be made.

TABLE I: Test conditions of the converter and the correspond-
ing bill of materials.

Value Unit Acquired

Test Conditions
Vs 348 V Measured
Vo 210 V Measured
D 47.9 % Known
fsw 1.01 MHz Known
fr 865 kHz Calculated

Bill of Materials
Lr 150 µH Measured
Cr 240 pF Estimated
Coss 53 pF Datasheet [26]
Cd 20 pF Datasheet [27]
Resr 1.5 Ω Measured
RL 1000 Ω Known
CL 30 nF Measured

For the resonance tank capacitor, Cr, a 220 pF capacitor with
a 10% tolerance is used. However, the value is increased slightly
to account for parasitic capacitance in the resonance tank. For
Coss and Cd, the capacitance is found from the datasheets by
calculating the average capacitance for the voltage range each
device experiences.

A. Deriving the Model

Using the specifications in Table I and the theory presented
in section III, an approximative nonlinear dynamical model
using a 5th order Fourier series is constructed. A Fourier series
of order 5 is found to be a good compromise between sufficient
convergence of the Fourier series and needed computation time.
For orders lower than 5, the precision of the model decreases
rapidly, while for higher orders, the numerical issues become
worse without adding much to the precision. To illustrate the
increase in precision with the order of the Fourier series, the
operation point is calculated for every second order going
from order 1 through 9. Table II shows the computed DC
output voltage, VoDC

for each operation point with the step-
wise change in the result, ∆V . The stepwise change illustrates
the convergence of the model for the given order of the Fourier
series, by considering the difference in the output voltage
between the models.
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TABLE II: Computed output voltage for different order Fourier
series. ∆V shows the change in the output voltage in volt and
percent between the associated order model and the model to
the left.

Order 1 3 5 7 9

VoDC 220.57 V 212.55 V 212.44 V 212.42 V 211.92 V
∆V -8.02 V -0.11 V -0.02 V -0.5 V

-3.6 % -0.052 % -0.009 % -0.234 %

The computed operation point is inserted into the state space
model to obtain the linear model. The resulting model is a
25 states model with a condition number of 1.5 · 106. By
balancing the model, the condition number is reduced to 855
thus providing a numerical improvement of roughly 3 decimals.
Finally, the model reduction is performed using the method
described in Section IV-A. The HSVs are extracted to determine
each states impact on the dynamics of the converter. Fig. 4
shows the value of the HSV related to each state in the balanced
high-order state space model.
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Fig. 4: The Hankel Singular Values corresponding to each state
of the balanced high-order state space model of the resonant
converter.

A large drop in the HSV is observed when going from 1 state
to 2 states and when going from 3 states to 4 states. Above
4 states, the HSVs are so small that the dynamical impact is
negligible. This suggest that a 3rd order model is sufficient to
describe the behavior of the converter. Equation (14) shows
the reduced 3rd order state space model of the system.

Ar =

 −4.12 −1.08 −10.2
−1.21 −1.78 104
10.2 −103 −69.3

 104 (14a)

Br =

 0.214 −160
0.171 −26.0
−0.239 157

 (14b)

Cr =
[
−160 −23.7 −157

]
(14c)

To ensure that the reduction removes only non-essential
state information, the frequency and time information between
the high-order model and the reduced model is compared.
Fig. 5 shows the frequency response for the reduced and

high-order model, and Fig. 6 shows the step responses.

Looking at Fig. 5 we find that the DC and low frequency
content is preserved in the reduced model thanks to the
residualization method used. From 800 kHz and above, the
high-order model contains information regarding the switching
behavior which is not preserved in the reduced model. Since
the converter operates with a switching frequency of 1 MHz,
the reduced model is more than adequate to describe the
low frequency dynamics of the converter. This is also clearly
illustrated in the step responses in Fig. 6 where the reduced
model precisely matches the high-order model. The reduction
of the model further reduces the condition number down to
33.

B. Measurements

Fig. 7 shows the implemented class-DE converter prototype
that has been tested in the laboratory. The switching frequency
of the prototype is controlled by a voltage controlled oscillator
(VCO). To get a good comparison between the models, the
prototype, and existing models, multiple measurements are
conducted. First, the steady state output voltage is obtained
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Fig. 5: Calculated frequency response of the high-order and
the reduced state space models for the switching frequency,
fsw, and the supply voltage, Vs, to the output, Vo.
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reduced state space models. The switching frequency, fsw, is
stepped 1 kHz and the supply voltage, Vs, is stepped 1 V. All
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Fig. 7: The implemented Class-DE SR Converter.

for the prototype, the proposed model, and prior art [20, 21].
Second, measurements of the frequency response from the
switching frequency to the output voltage is taken for the
prototype and calculated for the models. The frequency
response is measured using a frequency response analyser
which superimposes a small sinosoidal signal on the input of
the VCO through an injection transformer. The input voltage of
the VCO and the output voltage of the prototype are measured
from where the frequency response is calculated.Lastly, step
responses from both the supply voltage and the switching
frequency to the output voltage are conducted. For the step
responses, all the steps are offset to 0 V at t = 0 to better
compare the transient behavior and the gain. The prior art
with which the proposed model is compared to is built on the
work reported in [20, 21] where a 5th order state space model
is constructed from a 1st order Fourier series with no parasitic
capacitors included.

Table III shows the measured DC output voltage of the
prototype converter, and the calculated DC output voltage for
the two models with the difference from the voltage measured
on the prototype, ∆V . Inspecting the table, it is found that
the proposed model is closer to the measured results than
what has been accomplished with the prior art. The proposed
model has its steady state output voltage within 1.1 % of
the measured output voltage, while the prior art is within 8.5 %.

Fig. 8 shows the measured and calculated frequency
responses from the switching frequency to the output voltage
of the converter. Observing the figure, we find a strong
correlation between the proposed model and the implemented
prototype up to 600 kHz from which the magnitude of the
measurement increases due to the resonance and switching
frequency. Thus the measurements diverge from the model
that is no longer valid due to the exceeding of the Nyquist
frequency. The measured frequency response has a DC-gain of
-60.6 dB, followed by a first order low pass filter response at
5.9 kHz, followed again by the beat frequency which causes a

TABLE III: DC output voltage of the resonant converter in
steady state for the prototype (measured) and the two models
(calculated).

Prototype Proposed Prior Art

VoDC 210 V 212.4 V 192.2 V
∆V 2.4 V (1.1 %) -17.8 V (-8.5 %)
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Fig. 8: Frequency response for Vo/fsw measured and calculated
for the reduced model.
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Fig. 9: Step response for Vo/fsw measured and calculated for
the reduced model. All signals are offset to zero, and the step
goes from 1.01 MHz to 1.03 MHz.

second order low pass filter response at about 162 kHz. The
DC-gain of the proposed model is off by 0.9 dB, and the
model matches the damping and cutoff frequencies of the
two low pass filter responses. The small observed differences
between the proposed model and the measurements are caused
by minor discrepancies in the expected and actual component
values leading to a slight difference in the response. On the
other hand, the prior art is off by 8.3 dB, and has the cutoff
frequency of the first low pass filter at 15.8 kHz. However,
the location of the beat frequency matches the measurement
but the response is too damped.

Fig. 9 shows the response of the output voltage for the
prototype converter and the two models when stepping
the switching frequency, fsw, up 20 kHz. The increase in
frequency moves the switching frequency further away from
the resonance frequency fr, causing a voltage reduction on
the output. The output voltage of the prototype falls by 18
V and settles to within 2 % of the final voltage after about
100 µs with no overshoot. The proposed model has a smaller
step of -16.9 V and a faster settling time of about 91 µs.
Meanwhile the prior art steps to -7.2 V with a settling time of
41 µs. Hence the gains of the models for the steps correspond
to the gain differences found in the frequency response in Fig. 8.
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Fig. 10: Response for a 20 V step in the supply voltage
measured and calculated for the reduced model. All signals
are offset to zero, and the step steps from 348 V to 328 V.

Lastly, Fig. 10 shows a 20 V step in the power supply for
the prototype and the two models. The step was conducted
by shorting out a 20 V supply hence creating a sudden drop
in the supply voltage. However, the lab induced voltage drop
contains damped oscillations that influence the step behavior.
To obtain the best possible comparison between the models
and the prototype, the actual voltage drop was logged and
used as the step for the models. Observing Fig. 10 we see
that the 20 V step causes the output of the converter to fall
with 11.3 V in a well damped fashion. Both of the models
also fall to approximately the same value with the prior art
falling to -10.8 V and the proposed model -11.8 V. However,
the transient of the proposed model follows the measured
response more precisely than the prior art which falls faster
and has a slight undershoot.

To finalize this section, Table IV summarizes the results from
the conducted measurements. From the table it is found that the
proposed model is closer to the prototype converter for all the
measurement. Especially the signal path from fsw to the output
receives a significant improvement with the proposed model.
The DC-gain error is improved with 7.4 dB and the error in the
low frequency pole, flp is reduced to less than 16.9 % from
168 % when comparing the prior art to the proposed reduced
model.

+
− PI VCO

Class-DE
Power-Stage

A

u(t)e(t) Vo(t)fsw(t)
vset(t)

Fig. 11: Block diagram of the closed loop configuration of the
class-DE converter.

TABLE IV: Summary of the measurement results.

Model Prototype Proposed Prior Art

Steady State
VoDC 210 V 212.4 V 192.2 V

∆V 2.4 V (1.1 %) -17.8 V (-8.5 %)

Frequency Response
DC-Gain -60.6 dB -61.5 dB -68.9 dB

flp 5.9 kHz 6.9 kHz 15.8 kHz
fbeat 162 kHz 166 kHz 169 kHz

Step Response (fsw)
Settling time 100 µs 91 µs 41 µs

Final value -18 V -16.9 V -7.2 V
∆V 1.1 V (6.1 %) 10.8 V (60 %)

Step Response (Vs)
Final value -11.3 V -11.8 V -10.8 V

∆V -0.5 V (-4.4 %) 0.5 V (4.4 %)

VI. CONTROL EXAMPLE

This section presents the design of a PI-controller for the
SRC Class-DE converter based on the proposed model and
prior art. The closed-loop responses of the two controllers are
compared to assess the improvement by the proposed model.

A. Design

The objective of the controllers is to regulate the output
voltage of the converter by adjusting the switching frequency.
Fig. 11 shows the closed loop configuration of the converter
where A is an attenuation factor of 1/70. To obtain comparable
controllers for the two models, numerical optimization is
utilized. The numerical optimization is set to minimize the
Integral Absolute Error (IAE) of the output, and the Integral
Square Error (ISE) of the control signal by changing the integral
and proportional gain of the PI-controller. Equation (15) shows
the cost function.

J =

∫
|Vref − Vo(t)|+R(uref − u(t))2 dt (15)

In (15), Vo(t) is the change in the voltage output of the
converter due to a step in the frequency, and Vref is the
reference output voltage. In this case, the DC-gain of the model.
Likewise, u(t) is the control signal from the PI-controller and
uref is the final value after the step. Lastly, R is a tuning
parameter used to control how aggressive the response should
be. R is selected to be 0.01 which results in a fast response
with a limited overshoot in u(t) (<10 %) for both models.
Running the optimization results in the controller parameters
found in Table V, where J∗ is the final cost.

TABLE V: Controller parameters

Model Kp Ki J∗

Proposed 1.24 61290 0.8443
Prior Art 2.66 274392 0.2384

From Table V, we find that the controller designed on the
prior art model is more aggressive and has a lower final cost
compared to the controller designed on the proposed model.
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Fig. 12: Closed-Loop step response of the implemented
converter with the controller designed with the proposed model
and the prior art. (a) shows the movement in the output voltage,
and (b) the control signal from the PI-controller.

This suggest that the prior art controller should provide a faster
response with less overshoot in the control signal. However,
based on the findings in Section V-B this will not be the case
when tested on the prototype.

B. Closed-Loop Step Response

To verify the performance of the two designed controllers,
the controllers are connected to the prototype resonant
converter. A step of 1 V on the reference, equating to 50 V
on the output, is applied. Fig. 12 shows the resulting steps for
the two controllers. Fig. 12a shows the output voltage and
Fig. 12b shows the control signal from the PI-controller.

The responses in Fig. 12 clearly shows that the overshoot
for the controller based on the prior art is significantly larger
than the expected (<10 %), indicating that the model is not
representative for the actual converter. The controller based
on the prior art has a faster rise time on the output than the
controller based on the proposed model. However, the faster
rise time results in an overshoot, and the settling time for
both controllers ends up being about 90 µs. The response of
the system with the controller based on the proposed model
behaves similar to what is expected from the control design,
indicating that the proposed model is a good representation

of the actual converter. The initial overshoot observed in the
control signal in Fig. 12b at t = 0 is caused by a large ground
loop creating high-frequency oscillations.

Finally, Fig. 13 shows the measured and expected overshoots
in the output voltage and the control signal for both of the
controllers. From the figure, more than 40 times difference in
the overshoot in the control signal of the prior art is evident,
while almost no change is observed between the expected
overshoot and the measured overshoot for the system based
on the proposed model.
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Fig. 13: Comparison of expected and measured overshoot for
both models. The expected value for y(t) prior art is zero and
the overshoot for both the expected and measured y(t) for the
proposed model is less than 1 %.

VII. CONCLUSION

This paper presents an improved model for class-DE series
resonant converters operating at high frequencies. It is identified
that the parasitic capacitances of the switching devices in the
converter have a significant impact on the converter behavior
and output voltage, and should be included in models once
high frequency operation is considered. Using the generalized
averaging modeling technique, a model incorporating parasitics
is derived. The model is a high order model since multiple
harmonics need to be considered to capture the influence of the
parasitic components adequately. To mitigate the difficulties
of working with high order models, a reduction method that
retains all the relevant dynamics is presented. The reduced
model is compared against a prototype class-DE SRC as well
as prior art, and it is found that the reduced model is able to
model the prototype accurately. The gain error is improved
with more than 7 dB, and the error in the low frequency pole is
reduced to less than 16.9 % from 168 % when comparing the
proposed reduced model with the prior art. A PI-controller is
designed for the prior art and the proposed model, and tested on
the prototype. It is found that the desired control behavior and
the measured behavior matched for the proposed model while
the prior art resulted in more than 40 times larger overshoot
in the measurements compared to what was expected from the
prior art model, showing the discrepancy that exists between
the prior art model and the measurement.



DAHL ET. AL, SEPTEMBER 2019 10

APPENDIX

The Appendix presents the equations used to calculate the
coefficients for the Fourier series used in this work. To shorten
the equations, the following substitution is applied:

Cb(t) =

∫
Ir(t) dt (16)

A. Fourier series for the voltage node Vhb

aVhb
=

1

πCdω

(∫ ton−φ

−φ
Cb(t) sin(nt) dt (17a)

− Cb(−φ)

∫ ton−φ

−φ
sin(nt) dt

)

+
1

π

∫ ton+π−φ

ton−φ
Vo(t) sin(nt) dt

bVhb
=

1

πCdω

(∫ ton−φ

−φ
Cb(t) cos(nt) dt (17b)

− Cb(−φ)

∫ ton−φ

−φ
cos(nt) dt

)

+
1

π

∫ ton+π−φ

ton−φ
Vo(t) cos(nt) dt

b0 =
VoDC

2
(17c)

Valid for: n = 1, 3, . . . N .

B. Fourier series for the current Ihb

aIhb
=

1

π

∫ π−φ

ton−φ
Ir(t) sin(nt) dt (18a)

bIhb
=

1

π

∫ π−φ

ton−φ
Ir(t) cos(nt) dt (18b)

b0 =
1

2π

∫ π−φ

ton−φ
Ir(t) dt (18c)

Valid for: n = 1, 2, . . . N .

C. Fourier series for the voltage node Vsw

aVsw
=

1

π

(
−1

Cossω

∫ π(1−2D)

0

Cb(t) sin(nt) dt (19a)

+

(
Cb(0)

Cossω
− Vs

)∫ π(1−2D)

0

sin(nt) dt

+ Vs

∫ π

π(1−2D)

sin(nt) dt

)

bVsw =
1

π

(
−1

Cossω

∫ π(1−2D)

0

Cb(t) cos(nt) dt (19b)

+

(
Cb(0)

Cossω
− Vs

)∫ π(1−2D)

0

cos(nt) dt

+ Vs

∫ π

π(1−2D)

cos(nt) dt

)
b0 = 0 (19c)

Valid for: n = 1, 3, . . . N .
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