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1. INTRODUCTION

AC induction machines, especially polyphase induction machines presently are widely used in a
large variety of industrial installations and applications. The design of these ac induction machines has been
revisited and revised over many years since their discovery and the discovery of the magnetic rotating field
phenomena by Nikola Tesla in the 1880’s, and its application to rotating machinery. In the last century,
induction machines have been very well developed and applied to the industrial field by the engineers and
researchers. One well-known kind of induction machine is the so-called squirrel-cage (rotor) induction
machine, and this kind of rotor structure really enhances the reliability and ruggedness of this type of
machine, as well as significantly decreases the cost of its operation and maintenance [1-3]. Thus, these
modern squirrel-cage induction machines possess a ruggedness and relative simplicity of design, which
results in reduced manufacturing and maintenance costs. Accordingly, these squirrel-cage induction
machines are now widely utilized and are now the most common type of induction machines utilized in
industry today.

In addition, due to the development in power semiconductor technology in the last few decades and
the associated technology of electronic power processing (changing ac voltage, current, and frequency at
will), induction machines are being utilized in those adjustable speed drive (ASD) applications, in which one
needs complicated and precise control of speed and torque. Moreover, the continued to breakthroughs in the
digital electronics field provided significant help in the ac motor-drive area. For example, modern digital
processing units with high speed processing capabilities are able to host and execute real-time complex
control algorithms for variable/adjustable speed drives (VSDs/ASDs). Modern induction machines and their
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drive control systems possess relatively high degree of reliability nowadays. However, being practical
devices with parts and components they are still prone to failures. These failures may happen in the machines
themselves, such as bearing faults, stator faults, and rotor faults. These short-circuit faults include inter-turn
short-circuit faults, open-coil faults, phase-to-phase short-circuit faults, or phase-to-ground faults. Rotor
broken-bar and end ring faults have been also reported in the above survey carried out by EPRI, and were
reported to constitute about 9% of motor faults. Broken-bar faults are mainly due to thermal and mechanical
stresses especially due to frequent starting operations, aging effects and/or manufacturing defects. On the
other hand, various types of severe faults may also happen in the power-electronics portion (drive)
components of motor-drive systems [4-6].

The main function of ac motor-drive systems [7-9] is controlling motor terminal currents and
voltages in order to achieve reliable control of torque and speed under stable operating conditions. Such
torque and speed may be manually selected by the user, or by an automated system in case of automated
industrial processes. Such faults in the power electronic portion of motor-drive system may happen in the
rectifier bridge, cables, or in the power fuse connecting the inverter bridge to the rectifier. These faults could
constitute catastrophic failure in such motor-drive systems. Nowadays, the widespread use of ac induction
motor-drive systems in critical applications require industry to develop and manufacture more intelligent
systems with enhanced reliability and survivability, in order to utilize them under severe environmental and
other severe operating conditions, such as for example underground mines, deep oil wells, and deep-sea
exploration. Therefore, it is significant to develop rigorous fault mitigation techniques in such ASDs and
fault tolerant ASD systems for such types of industrial motor-drive applications [10-11] and thus raises the
need for development of reasonably accurate modeling and simulation techniques for such ASD motor-drive
systems under healthy and faulty operating conditions. This paper discusses the short and open fault
mitigation with redundant cell simulated for five-level MLI, seven-level MLI.

2. MULTILEVEL INVERTER FOR ELECTRIC VEHICLE

Cascaded h-Bridge five-level inverter driving induction motor was shown in Figure 1. In electric
vehicle application, batteries are often used to properly manage the power. Usually supply power from DC
sources is fed to induction motor drive through multi-level inverter in normal mode of operation. If
regenerative braking is employed in the circuit, power from load to source transfers in charging
mode of operation.
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Figure 1. Cascaded H-bridge five level inverter based induction motor

Multi-level topology of inverters comprises of static switches with number of DC sources. The
output of multi-level inverter is in form of stepped wave having step levels depending on level of MLI. High
voltage output can be obtained from MLI with different levels in voltage waveform thus obtaining high
power that can be utilized for electric vehicle applications or for hybrid electric vehicle drive system.
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The number of voltage levels decides the output voltage and the increase in levels of output reduces
the total harmonic distortion in the output waveform. High the levels in output low the harmonic distortion in
output waveform. Structure of multi-level inverter is furnished such that voltage sharing issues does not arise.

LOAD

Redundant Cell of Redundant Cell of Redundant Cell of
Phase - A Phase - B Phase - C

Figure 2. Seven-level MLI with redundant cell

3. FAULT ANALYSIS

Most of the faults that occur in drive system are of failure in semiconductor switches used in
inverter circuits. Commonly used switching device in inverter circuits are IGBT, because of their capability
of handling high voltage and current rating and also can withstand short circuit currents for a short period of
time. But IGBT suffers from drawback of high thermal stress. Failure in switching device can be termed due
to failure due to opening of diode, diode short, and gate open and short fault.
Out of six faults, major faults that occur are
a. IGBT open-circuit fault.
b. IGBT short-circuit fault.

Redundant cell logic was applied for the two type of faults and mitigation process was explained in
the next section.

4. REDUNDANT CELL WITH LOGIC

Redundant cell is an extra bridge circuit added to the inverter circuit. This redundant cell acts and
deactivates during fault and when no fault condition. Figure 2 shows the nine-level MLI with redundant cell
for fault mitigation. During fault condition, the switch Q1 in the upper part of the phase will be ON and vice-
versa. The lower switch Q2 will be ON when no fault and will be OFF during faulty conditions. Fault is
equal to zero when open circuit fault condition and the fault is equal to 1 when short fault occurs in phase of
the inverter.
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5. RESULTS AND ANALYSIS
For the mitigation, the fault was created at 0.4 seconds and made to persists upto 0.6 seconds. At 0.6
sec the fault mitigation was done. The results were shown accordingly along with respective THDs.

5.1. Five-level with open fault mitigation

Figure 3 shows the three phase line voltage feeding induction motor with switch open condition and
mitigation. The three-phase distorted wave due to fault in open switch voltages in 5-level inverter with fault
mitigation with switch open fault is shown in Figure 4. Harmonic distortion content in 5-level inverter phase
voltages with no fault condition is given in Figure 5 while distortion content with fault is given in Figure 6.
Figure 7 shows fault mitigated distortion content in phase voltage.
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Figure 3. Three phase line voltage with switch open fault mitigation
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Figure 4. Three phase voltages with switch open fault mitigation
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Figure 7. THD in phase voltage with switch open mitigation (after fault mitigation)

Figure 8 shows the
distorted and Figure 9 shows

line currents and can be observed that due to fault persistence, line currents are
the stator currents, speed and torque characteristics of induction motor.
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Figure 9. Stator cur

rent, speed and torque of induction motor with switch open mitigation
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THD in stator current before fault was shown in Figure 10 while Figure 11 during the fault THD and
Figure 12 THD after fault mitigation. During fault total harmonic distortion was high and during normal
conditions, harmonic distortion was within limit maintained below 5%.
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Figure 12. THD in phase voltage with switch open mitigation (after fault mitigation)

5.2. Five-level with short fault mitigation
Small distortion is observed in phase voltage and line voltage due to short type of fault in inverter.

Figure 13 indicates the line voltages distorted from 0.4 to 0.6 sec. The three-phase distorted wave due to fault
in open switch voltages in 5-level inverter with fault mitigation with switch open fault is shown in Figure 14.
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Figure 13. Line voltage with switch short fault mitigation
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Figure 14. Phase voltage with switch short fault mitigation

Harmonic distortion content in 5-level inverter phase voltages with no fault condition is given in
Figure 15 while distortion content with short fault is given in Figure 16. Figure 17 shows fault mitigated

distortion content in phase voltage.
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Figure 17. THD in phase voltage with IGBT short mitigation (after fault mitigation)
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Figure 18 indicates the distorted line currents from 0.4 sec to 0.6 sec and Figure 19 shows the stator
currents, speed and torque characteristics of induction motor. Speed and torque are just distorted at 0.4 sec
and 0.6 sec and otherwise normal.
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Figure 19. Stator current, speed and torque of induction motor with switch short mitigation

THD in stator current was observed to be 5.43% before fault was shown in Figure 20 while Gigure
21 during the fault THD is 5.49% and Figure 22 THD after fault mitigation is 4.64%.
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Figure 22. THD in stator current with switch short mitigation (after fault mitigation)

5.3. Seven-level with open fault mitigation
The line voltages distorted due to fault pertaining to 7-level inverter and phase voltages are shown in

Figure 23 and Figure 24 respectively.
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Figure 24. Phase voltage with switch open fault mitigation
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Harmonic distortion content in 7-level inverter phase voltages with no fault condition is given in
Figure 25 while distortion content with fault is given in Figure 26. Figure 27 shows fault mitigated distortion
content in phase voltage.

Sgnm 16 swy e
Sy e Cied BNa W Ry P RS T
Dupkry semere sagvel @ Digmay 77T wostew
FTT vandses 2 of 37 & cysius of askecind sigeal

- 200 — l'::v—cﬁ-n TelITS -.'f' . uf ljl' I:d !v"-l- ~
200 200 . ' i l ]
200 ... L
v C— PR " d- 0 R N
&8

CF - TR E L nnv. 037 0336 0933 02 & 0ted G&1 Ok 063 DLas 063
Toow (2)

I Funtanunn A0 = 400 % THD= 1 2% Fundemenis S0z} « 380.6 . THO< 24 97™

02 1 0 |
o2 -I !
0% 1 g - 1
o J e 1
{ ) IJ‘ |

oos lJ
I.l ol s -u-l-l-l.l_l_l-n-n-n.-_l._

oloa «2ilasllin. xAERs aloaliflals ) 200 400 6oL (13 1000
G 200 400 00 200 1000

Frampmy (M2}

Mag (% # Fnbarerad
- " »

Vi (% o Findemeensl

Frapmncy o)

Figure 25. THD in phase voltage with switch open Figure 26. THD in phase voltage with switch open
mitigation (before fault) mitigation (during fault)

Sinnal to wnalyee

2 Dinpiny ssiscted signsl  ®0 Cispiny FFT window
Ao FET window: 2 of 37 8 cyclen of aslscted nignsl
T '
zoo [ | | [ |
a l. .. l.
=00 ] | [
og
7 0. 7oL .71 0716 07z 0726 a.7a [FEF T4
Tima (a)

FFT .nnnl\rAIA

Fundsmentsl (S0Hx) = 3804  THD= 10 31%

|
"‘"I‘lll‘"l‘lll‘lll‘-lll-ll I|III|I|I

I'rIquIn:y (H:)

Vag (% of Fandamental]
o
1]

Figure 27. THD in phase voltage with switch open mitigation (after fault mitigation)

Figure 28 shows the line currents and Figure 29 shows the stator currents, speed and torque
characteristics of induction motor of 7-level open fault mitigation.
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Figure 28. Line current with switch open mitigation
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Figure 29. Stator current, speed and torque of induction motor with switch open mitigation

THD in stator current before fault was shown in Figure 30 while Figure 31 during the fault THD and
Figure 32 THD after fault mitigation.
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5.4. Seven-level short fault mitigation
The three-phase distorted wave due to fault in short switch voltages in 7-level inverter with fault

mitigation with switch short fault is shown in Figure 33 along with line voltages in Figure 34.
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Figure 34. Phase voltage with switch short fault mitigation

Harmonic distortion content in 7-level inverter phase voltages with no fault condition is given in
Figure 35 while distortion content with short fault is given in Figure 36. Figure 37 shows fault mitigated

distortion content in phase voltage.
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Figure 36. THD in phase voltage with switch short

Figure 35. THD in phase voltage with switch short
mitigation (after fault)

mitigation (before fault)
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Figure 37. THD in phase voltage with switch short mitigation (after fault mitigation)

Figure 38 shows the line currents and Figure 39 shows the stator currents, speed and torque
characteristics of induction motor for 7-level short fault mitigation.
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Figure 38. Line current with switch short mitigation
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Figure 39. Stator current, speed and torque of induction motor with switch short mitigation

THD in stator current before fault was shown in Figure 40 while Figure 41 during the fault THD and
Figure 42 THD after fault mitigation.
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Figure 42. THD in stator current with switch short mitigation (after fault mitigation)

Table 1. THD in Phase Voltages
Level Switch Condition ~ Before Fault ~ During Fault  After fault mitigation

5-Level Open 26.04 % 36.49 % 255 %
Short 26.04 % 28.77 % 255 %
7-Level Open 18.12 % 24.97 % 18.31 %
Short 18.12 % 20.24 % 18.31 %

Table 2. THD in Stator Currents
Level Switch Condition ~ Before Fault ~ During Fault  After fault mitigation

5-Level Open 5.43 % 19.69 % 4.65%
Short 5.43 % 5.49 % 4.65 %
7-Level Open 0.63 % 12.03 % 0.78 %
Short 0.63 % 1.76 % 0.78 %

6. CONCLUSION

In this paper redundant cell was used to mitigate the faults that occur in inverter which feed
induction motors for electrical vehicles. Fault identification is essential to mitigate the faults. Redundant cell
comes handy and operate when fault is present in the inverter circuit. This paper discusses the fault
mitigation with redundant cell for seven level. The seven-level results were compared with five-level. THD
in phase voltages and THD in stator current of induction motor are reduced as the level of output is increased.
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This was verified from the tabular column. The use of multilevel inverter and redundant cell can effectively
reduce the fault and mitigates with reduction in THD in stator currents and phase voltages.
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