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Annotation

In this book we are dealing with circuits DC, supplemented by
Dennis Transformers, invertible elements, etc... It is shown that such
circuits can be used as physical models of certain problems: linear and
non-linear equations systems solution, convex programming problems.
We are discussing fast methods and algorithms for calculating such
electrical circuits and hence solve these problems. Programs for solving
such problems are provided in MATLAB system.
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Preface

Dennis has proposed a theory of direct current electric circuits
including resistors, diodes, current sources, voltage sources and the DC
transformer or transformers instantaneous values [1]. Such transformers
were explored first by Dennis as so we shall call them the Dennis
transformers and denote them as TD. Dennis had showed that such
electric circuits are simulating the quadratic programming problem with
inequality constraints. Dennis proposed TD as an abstract mathematical
model (for mathematical theory interpretation). However no methods of
physical realization of TD have been presented. Due to the technical
complexity of such implementation the circuits with DC transformers
have not been used till today.

For the first time such a property of electrical circuits was noticed by
Maxwell [2], who found that in circuits with resistors the currents are
minimizing the power of heat loss. Then (as indicated above) Dennis had
proved this property for sufficiently complex linear DC circuits.

The book contains two chapters and programs. Chapter 1 discusses
the linear DC circuit, comprising current and voltage sources, resistors
and Dennis transformers. These circuits are models of quadratic
programming problem with linear constraints. In Chapter 2, the
electrical circuits are supplemented by diodes. It is shown that such DC
circuits simulate convex programming problem with nonlinear
constraints

In both chapters we deal with various mathematical problems that are
modeled by the described DC circuits, and give the related programs. These
programs can perform the following calculations:

1. Calculation of direct current electric circuits with tesistors, transformets

of instantaneous values, diodes, voltage and current sources.

2. Solution of the system of linear equations and inequalities.

3. Problem of solving quadratic and linear programming with constraints

in the form of equalities and inequalities.

4. The solution of underdetermined and overdetermined system of linear

equations.

5. The solution of some other problems.

This book is a translation of a part of the book [3].




1.1. Electric circuits with resistors

Chapter 1.
Linear DC Circuits

1.1. Electric circuits with resistors

1.1.1. A Simple Electric Circuit.

Let us consider an electric circuit with current source and select in it three
types of branches:

1. a branch with cutrrent source connected to the node,

2. a series circuit with resistors and voltage sources contained

between two nodes,

3. a branch with a conductivity connected between a node and a

common bus.

The current directed to the node will be considered positive. The
number of branches of the type 2 will be denoted as 7, the number of
branches of type 1 — as # Such electrical circuit is described by the
following equations system:

NT . 9+R-I-U=0, 0
N-I+C—-i=0, @)
where

C - vectors of cutrents in the type 1 branches (dimension 7);

I - vectors of currents in the type 2 branches (dimension );

U — vector of the second type branches (dimension 7);

G — diagonal matrix of conductivities in the branches of third type

(dimension 7 * z);
7 — currents vectors in the branches of third type;
@ - vector of nodes potentials (dimension 7);

N — incidence matrix with the elements 1, 0, -1 (dimension #* m);

R - diagonal matrix of conductivities in the second type branches
(dimension 7*);

@ - vector of voltages on the resistors in the second type branches

(dimension ), and

p=R-1. 3)




Chapter 1. Linear DC Circuits

In this system equation (2) describes the second law of Kirchhoff and
equation (1) — the first law of Kirchhoff. In this system the known

vectors are C u E, and the sought vectors - [ and @

Let us consider the function
F([,i):l.lT~R-1—UT-l+i-i-i. @)
2 2G

Let us find the necessary conditions of this function optimum with
constraints of the form (2). They are of the form of equations (1), where
@ is a vector of undetermined Lagrange multipliers for the constraints

(2), that appear when the optimized function is supplemented by a term
o' -(N-I1+C—i)
Further we have
O°F O°F _ 1
5 =R, 2= 4 5)
o1 cic G
From this follows that the function (4) has a global minimum. Thus,
the minimization of function (4) under the constraints in the form of the
first law of Kirchhoff (2) leads to the equations second law of Kirchhoff
(1). Consequently, the computation of a DC electric circuit is equivalent
to finding a conditional maximum of the function (4).

Let us multiply (2) from the left by (DT and (1) — from the left

by [ T . Then we shall find that from Kirchhoff laws follows the fact that
the summary power of the electric circuit is equal to zero:

ol - C=1T - R-I+1"T - U—-9¢" -i=0, ©)

Now let us consider the function
1 1
O(p,p)=—¢' —¢+C" -p——¢" -G-9p. 7
($.0)=—9" 59 p-59 G-¢ )

Apparently,

i=G-¢ ®)
and the Kirchhoff laws may be rewritten in the form:

N . p+¢p-U=0, )

N-I+C-G-¢=0, (10)

Let us find the necessary conditions of this function’s optimum
under the constraints that are the equations of second Kirchhoff law in
the form (9). These constraints have the form of equations (10) and (3),
where [ is the vector of undetermined Lagrange multipliers for the

7



1.1. Electric circuits with resistors

constraint (8), which appear when the optimized function is

\
supplemented by the term r. QVT @+ ¢ -U y
Further we have
0 -1 2’0 _
o¢ R 09
From this it follows that the function (7) has a global optimum.
Thus, maximization of the function (7) under constraints in the form of
second Kirchhoff law equations (8) leads to the equations of the first
Kirchhoff law (10) and the condition (3). Consequently, the computation
of a DC electric circuit is equivalent to finding a conditional maximum of
the function (7).
The problems of minimization of function (4) with constraint (2) and
of maximization of function (7) with constraint (8) are dual problems
The equations of simple DC always have a unique solution.

-G.

1.1.2. Unconditional electric circuit.

Let us consider an electric DC circuit, which has G =1/ L. We shall
call such circuit unconditional (the meaning of such name will be clear
from further discussion). Apparently, the resistors O can be considered
as additional branches of the electric circuit. We however shall use
another method, allowing to describe such circuits in a more compact
way and, as a result, to reduce substantially the dimension of vectors and
matrices.

The vector I of currents flowing through the resistors L, is

connected with other currents of the circuits by correlation (2). Besides,
p=pi. 22)
Let us consider minimization problem of the function (4) with
constraint (2). In this case (4) takes the following form:

F(1)=%-IT-R-I+§-1'T-1’ ~uT.1. 23)
Substituting (2) in (23), we get

F(1)=%-1T-RN-1—U{,-1, 24)
where

Ry=R+p-N'.N, (25)

Uy=U-p-N.C. 26)




Chapter 1. Linear DC Circuits

Let us find the necessary conditions of the unconditioned minimum of
function (24). They have the form of the following equations:

Ry-1-Uy=0 @7)
or

(R+p-NT-N)-I-U+p-NT.C=0 (28)
or

RI-U+p-N'.(N-1+C)=0 (29)

Taking into account (2) and (22), we get the equation of the second
Kirchhoftf law (1). Thereby, the unconditional minimization of function
(24) formally gives the same result as the conditional minimization of
function (4).

If p—> 0, theni — 0. This follows from the fact than in an

electric circuit C the heat loss capacity is being minimized — see the term
T .. .
P11 in (23). Thus, for p—>00 the result of unconditional

minimization of function (24) from I approach the result of conditional
function (4) of I and ¢ minimization (the condition is the first Kirchhoff

law). So,
1. Calculation of the electric DC circuit is equivalent to the
calculation of the corresponding unconditional circuit at 0 —» 0.

2. Calculation of an unconditional circuit is equivalent to
unconditional optimization of the function (24), when the vector
of currents I in the branches.

3. The problem of unconditional minimization has dimension 7,
while the problem of conditional optimization has the dimension
(m+n).

4. The nodes potentials are determined by the formula

p=p-(N-1+C). (30)

Mind that the first Kirchhoff (1.1.2) law is satisfied with a certain error.

1.1.3. The algotithm of calculation an unconditional electric

circuit

The existence of global minimum permits us to use the gradient
descent method for the electric circuit calculation. We shall outline the
idea of this method for an unconditioned electric circuit. Faero meToaa
PaccMOTPUM AASl OE3YCAOBHOM aAeKTpHdeckoi rmerw. It consists in the
following. For given values of vector [ its new value is calculated by the
formula




1.1. Electric circuits with resistors

I, =1-a-p, (31)

where

p— the gradient of vector I,

a — the step along the gradient.
The gradient is:

When changing the vector from I to [, the function (24) changes by the
value AF' = F'(1,,)) — F(I). Further we have:

JdAF _JF({,) JF(,) 21, _pTﬂ F,)
cda 0 a dl, Ja o1,

The optimal value of the step is determined from the condition

ﬁAonorpTé’F(ln)
c a

= 0. Thus,

n

PT '(RN '(I—a'P)—UN):O-
From this we find

P Ry I-p" Uy

4 (33)
P Ry-p
After the transformation (33) taking into account (32) we find:
T
a= Tl’ip . (34)
P Ry-p

In this way the iteration process of finding the minimum of function
(24) permits to find vector I. On each iteration:
e the gradient p is calculated by formula (32) for the given
vectot I;
e the coefficient « is calculated by (33) for given p;
e the new value of vector [ is calculated by formula (31).
Iterative process continues till the value

T
E=p -p (35)
reaches a given minimum. Virtually we should strive to the value
gzzg-U](;-UN, (36)

where £ <<1 isa given value of relative error.
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Chapter 1. Linear DC Circuits

1.2. Electric Circuits with Dennis
Transformers

1.2.1. A Simple Electric Circuit with Dennis Transformers

The electric circuits described below contain DC transformers or
transformers of instantaneous values. The first who described them was
Dennis [4]. So below they are called Dennis transformers and denoted as
TD. Dennis proposed TD as an abstract mathematical construction (for
interpreting a mathematical theory) and developed the theory of electric
DC circuits with constant voltage, including TD, resistors, diodes,
current and voltage sources. However no methods of physical realization
of TD have been presented. Due to the technical complexity of such
implementation the circuits with DC transformers have not been used till
today.

TD has primary and secondary windings. Instantaneous values of
currents and voltages in these windings are interconnected in the same
way as the effective values of sinusoidal currents and voltages in a
conventional transformer.

On Fig 1 TD is portrayed schematically. It comprises two branches -

a primary branch with current ijand voltagee; and a secondary branch
with current iy and voltagee; . TD described by the equations:
ij+t-ihp =0, (0a)
ep—t-e =0, (OB)
where 7 — transformation coefficient.

i i)
+o—= o +

€ €

Fig. 1. Schematic picture of TD.

Out of these equations, it follows thatejij =—eyip, ie. the power

supplied by the primary and secondary branches of the TD in the
11




1.2. Electric Circuits with Dennis Transformers

electrical circuit, in the sum give zero - so TD is a passive element.
Dennis transformer TD can be seen as a node, where the currents are
summed with weighting coefficients. Thus there is a complete analogy
with the first Kirchhoff's law for the nodes.

In [3] various versions of physical realization of DT are presented.
Thus the electric circuits with DT become physically realizable.

fi-3 fi-2 fi-1

}
}
!

Cl1-3 C1-2 Cl1-1

$+Gl-1|» #{Gl-1l% &G1-14

ad | 2| nlk

N

Ul

— = (=
SRS

Q

H)-
A O ——
Kt 1

Fig. 2. Special TD matrix.

Q

Let us consider now a special TD matrix — see, for instance, Fig. 2.
This matrix satisfies the following assumptions:

Ly =t110] +1203,
Ly =ty191 +12003,
Ly =t310] +13,0).

J1 =1l + 111 + 13113,
Jy =tply +ixpl + 13713,

12



Chapter 1. Linear DC Circuits

In the general case let us denote:
J — string number,
k — column number,
J} - summary current of all windings comprising the £- column of
the matrix,
¢;{ - common voltage on the windings comprising the £- column of
the matrix,

1 j - the current of all windings comprising the ; - string of the

matrix,
€ - summary voltage of all windings comprising the j - string of the
matrix,

t jk - transformation coefficient.

Fig. 3. Schematic picture of electric circuit with a special TD matrix

Schematic image of transformers matrix is given on Fig. 3. In the
general case it is described by the following equations:

J

Let us call £-column of the transformers matrix a transformer node.
As in a simple circuit, an ordinary node can include a current source C
and a conductivity G. But in addition, the current source and the
conductivity can also be included in a transformer node. For example,

13



1.2. Electric Circuits with Dennis Transformers

Fig. 2 shows current sources Cj, C5, C3 and conductivities

Gi, G5, Gj.1In addition to the previous paragraph we shall denote:

T — transformers matrix with marked strings and columns,
! !
Q= {(Dk } - Vector of voltages on the columns,

of of . P

1 = {l A } - vector of currents in the columns conductivities,

G = {G]'( } - vector of columns conductivities,

C'= {C ;( } - vector of columns current sources,

J = {] k } - vector of columns currents,

l .

e= % j § - vector of strings voltages.

Then
' T
e=T-¢', J=T"-1 (1)

Mind thate- = @"-J , i.e. this transformers matrix is a passive element.
The first Kirchhoff law for transformer nodes looks as follows:

T 1+C =1 @)
The second Kirchhoff law for transformer nodes looks as follows:
N 9+R-I-U+T-¢' =0 3)
Let us consider a function
1 1 1
F(Lii=—-1" R-T1-UT - T+i —-i+i'"—i )
2 2G 2G

Let us find the necessary conditions on this function’s optimum with
constraints of the form (1.2) and (2). They are similar to equations (3).
Here ¢ is a vector of undetermined Lagrange multipliers for the

condition (1.2), which appear when the optimized function is

supplemented by the term gDT -(N I+C —i). Also here @' is a vector of
undetermined Lagrange multipliers for the condition (2), which appear
when the optimized function is supplemented by the said term

¢,T_QT-I+C,_I.,
Further we have
2 2 2
é’F_R o°F 1 JF 1 6
or* o G ot G
It follows that the function (4) has a global minimum. Thus, the

minimization of the function (4) subject to the constraints of the form
(1.2) and (2) leads to equations of the second Kirchhoff law (1).

s

14



Chapter 1. Linear DC Circuits

Consequently, the calculation of the DC circuit with Dennis transformers
is also equivalent to finding the conditional minimum of the function (4).
Let us now take the function

_¢T§¢+CT.(/)+C;T_(#

D(p,p) = : ©)
L 6o toT .G
> Q Q > Q Q
Evidently,
i'=G"-¢' (7
and Kirchhoff law can be rewritten in the form
N o+gp-U+T-¢' =0, )
Tl 1+C' =G ¢, ©)

We find necessary conditions for the optimum of this function under
constraints - equations of Kirchhoff's second law in the form (8). These
conditions have the form of equations (1.10) and (9), where [ is a vector
of undetermined Lagrange multipliers for the condition (7) that appear
when the optimized fLinction is complemented by the term

1T~Q\IT-¢+¢—U+T-¢’/.
Further we have:
o’o -1 o N
It follows that the function (6) has a global maximum. Thus, the
maximization of (6) under the constraint in the form of second
Kirchhoff law (8) leads to equations of the first Kirchhoff's laws equation

(1.10), (9) and the condition (1.3). Consequently, the calculation of a DC
circuit is equivalent to finding the conditional maximum of the function

(©6).

-G

-G,

Example 1. Linear programming with equality constraints.
Let us consider a special case of an electric circuit when

N=0, R=0, E =0. While calculating such circuit we in fact are

solving the following problem - see (2), (4):
~1".U=min, T"-1=C".

Thus there we are solving a linear programming problem with
equality constraints.

15



1.2. Electric Circuits with Dennis Transformers

Minimization of the function (4) under the constraint (3) and
maximizing the function (6) subject to (7) are dual.

Equations of DC circuits with transformers Dennis not always have
a solution. This follows from the fact that the equation (2) not always has
a solution.

A circuit with “multi-winding” DT always may be transformed into a
circuit with DT matrix.

Example 2. “Multi-winding” DT. Let us consider a circuit with
“multi-winding” DT, shown on the Fig. A. The circuit shown on the
Fig. B, containing the DT matrix, is equivalent to it. It becomes
especially clear, if we draw it again in the form of Fig. C.
1
TD3
4 R7
D
TD4
R2 RS < D RI
2 [/ q
q RS
R9 . D
D5 TD2
q < }
D
R6 D q >._I
D
TD1
R4
L R3
3
Fig. A.
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Chapter 1. Linear DC Circuits

R2

®
+)
[ RS ]

C

C

® R4
Fig. B.
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1.2. Electric Circuits with Dennis Transformers

D

a

R2

o

R4

(s

R H

CmH

CmH

(o H

Fig. C
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Chapter 1. Linear DC Circuits

1.2.2. Unconditional Electric Circuit with Dennis Transformers

We have already considered unconditional electric circuit. Here we
shall supplement her with Dennis Transformers and conductivity
G'=1/ p, which are included between the base node and each Dennis
transformer. An example of such inclusions is shown in Fig. 3, where the
transformer with transformation ratio t is replaced by two transformers
with transformation ratios ky =t and ky =1correspondingly.

Obviously, ej =—p-(ip +1-i})-t andey =—p-(ip +1-ij). Consequently,

ep=t-e.
p il i2 -
{ e—— — o ‘:
el ‘(: i k1=t < i :," e2
| -til 2
| e—— L

yo -i2-t*il
L

Fig. 3. Transformer Node

The first Kirchhoff law for ordinary nodes has the form (1.2). The
first Kirchhoff law for transformer units has the form (2).

Let us consider the optimization problem of the function (4) under
the constraints (1.2) and (2). In our case (4) takes the following form:

F(I,i,i’)z%IT-R-1+§iT-i+§i’T-i'—U-]. (10)
Substituting (1.2) and (2) in (10), we get

F(I):%-IT-RN-I—U]TV-I, (11)
where

Ry=R+p- (W' -N+T-TT) (12)

Uy =U-p-Q7-cot-C" (13)

19



1.2. Electric Circuits with Dennis Transformers

Let us find necessary conditions for the unconditional minimum of
the function (11). These are the equations of the second Kirchhoff law
and have the form of equations

Ry-I-Uy =0 (14
or
RI-U+p-INT-(N-1+C)+T-C7-1+C )0 (15)

The algorithm of calculating the electric circuit with DT is built in
the same way as the algorithm of p.1.3.

On each iteration:

e the gradient p is calculated by formula (142) for the given
vector I;
e the coefficient « is calculated by (1.33) for given p;
e the new value of vector I is calculated by formula (1.31).
Iterative process continues till the value

T
&=p P (16)

reaches a given minimum. Virtually we should strive to the value
52:g-U](;-UN, (17)

where & << is a given value of relative error. Virtually should strive to

value &9 = €.

1.2.3. The Transformer Connection of Lines with Nodes

Let us refer to Fig. 4, where a certain AB line with current [ is
connected to node C through a Dennis transformer with a ratio of t. In
this case, a current #* flows in the node C, and the potentials ¢ and
W of the points A and C are connected by the relation@p =f-y . We
assume that all lines of the circuit have such transformer connection to the
nodes (in the case of a direct connection of the line to the node, we
assume that there is a connection through a transformer with t = 1), and
the current sources H and nodal conductivities G are attached directly
to the node. Then the first Kirchhoff law for ordinary nodes has the

form (1.2), where the incidence matrix consists of elements fj,, --

transformation ratio of the km-transformer connecting the k-line with m-
node. Wherein

v=pN-1+H) (16)
and the potentials of the line ends and nodes are related by formula
T
p=N"-y. (17)

20



Chapter 1. Linear DC Circuits

> Linies
[}

Fig. 4. Transformer connection of line with nodes.

1.2.4. Unconditional electric circuit with transformer matrix
We shall assume that in all ordinary nodes of electric circuits nodal

tesistors O and current sources C are included, and in all the

transformer nodes, nodal transformer, resistors 0 and current sources
’ . . .

C" are included. Currents flowing through the resistors [, as before,

will be denoted as #, i’ for ordinary and transormers nodes accordingly.

Such circuits will be called electric circuits of ordinary tpe.
We shall assume that all the ordinary nodes of electrical circuit
include nodal resistors 0 and current sourcesC, and all transformer

nodes include nodal resistors © and current sources C'. Currents
flowing through the resistors O, as before, will be denoted 7, i’ for

ordinary and transformer nodes, respectively. These circuits will be called
electric circuits of general form.

Fig. 5 shows an example of a circuit of general form where all nodes
include node resistors and current sources. In this figure, the letters a, b,
¢ denote branches of the transformer matrix strings and the breaks in
ordinary branches where the branches of the strings are inserted. In this
case the equations (1.2, 2, 10-15) are valid.

21



1.2. Electric Circuits with Dennis Transformers

Fig. 5. An excample of an electric circuit of a general form.

22



Chapter 1. Linear DC Circuits

1.3. Special Electric circuits with

Dennis Transformers

1.3.1. Dual DC circuits
Consider the particular case of unconditional electric circuit with

nodal conductivities when |ZV =0, C=0, G=0 J In this case in the
electric circuit function of currents is being minimized

- ) 0 0

under the conditions (2.2). At the same time, and the dual problem is also
solved - the potentials function

!’ 1 IT ’ 1 /T ’ ’
()= — ¢+ CT g —=9pT G- 2
(¢p)=—¢" 59 9 =50 @ 2
is maximized under condition
T-¢'+¢-U=0. 3)
In particular, if G' = 0, then the primal problem takes the form:
LT R-1-U -1 =min,
2 )
rT.1+C=0.
If R =0, then the dual problem takes the form:
1 7 T
-—¢" -G +C" - ¢ =max,
5 ®» 4 ®» o)

T-¢'-U=0.
It is easy to see that both problems coincide up to notations. So the
electric circuit t\/z 0, C=0, G=0, G'= 0 and the electric circuit
tV: 0, C=0, G=0, R= 0_ will be called dual. They are shown on Fig.
1 and Fig. 2 correspondingly.

23



1.3. Special Electric circuits with Dennis Transformers

——TF (") —

Fig. 1. Electric circuit 1.

T

Fig. 2. Electric circuit 2.

24



Chapter 1. Linear DC Circuits

1.3.2. Two-matrix DC Circuits

Let us consider now an electric circuit including two matrices with
common branches, which will be denoted as values with one and two
strokes correspondingly — see Fig. 3. In such circuit the currents are
distributed in such way that the currents function

F(Ii,i',i") = %IT ~R~I+%iT (/G)i

1 1 ©)
+5i'T -(1/G’)-i'+5i”T 1/G")i"-U -1

is minimized under the conditions that are equations of the first
Kirchhoff law (1.1.2) and

T r+C =1, (7)
T”T 'I+C”:l.”’ (8)
fi2 fil
Cc2 C1

2
G2 i:rz l:rl

| l

Fig. 3. Two-matrix electric circuit

At the same time with it the dual problem is also being solved — the
potentials function

_¢T2L¢+CT‘¢+C'T.¢,+C"T.¢"
4 p.0)=1 - 0O

T 1 !T ! ! 1 I/T " 14
—*gl) 'G‘Q_*w 'G'¢_*¢ 'G 'Q

is being maximized under the conditions that are equations of the second
Kirchhoff law

N 4T ' +T"- 9" +$-U =0, (10)
25




1.3. Special Electric circuits with Dennis Transformers

Let us now consider a particular case, when

N=0, G=0, G'=0, C=0, C"=0, G"=1.
Then from (8) it follows:

=i (11)
Further, from (6), (11) we find that in this case the following problem is
being solved — the currents function

1 1
F(I):EIT-R-I+EIT-€‘"-T"T)I—U-I (12)
is minimized under conditions
7T .1+C =0, (13)
At the same time with it the dual problem is also being solved — the
potentials function is being maximized

1 1
(I)(¢,¢,¢')=—¢Tﬁ¢+CT'(D+C’T'¢'—E¢”T'¢” (14)

is being maximized under the conditions that are equations of the second
Kirchhoff law
T"¢"+T"-¢"+¢p-U=0. (15)

1.3.3. Unconditional two-matrix circuits
We have considered above an unconditioned electric circuit with

Dennis transformers. For G=1/p, G'=1/p, G"=1/p function (6)
takes the following form:

1
F(Lii,i"=—1"R- 1+ 2T i+ 2T+ PpTi _y .1, ()
2 22 2

For two-matrix circuit the first Kirchhoff law for ordinary nodes is
expressed by the equations (1.2), (7), (8). Substituting these equations
into (16), we get

1

F(l):E-IT-RN-I—U](,-I, (17)
where

RN=R+p-QVT-N+T’-T'T+T”-T”T/, (18)

UN=U—p‘€T'N+C'T'T'T+C"T'T”T), (19)

Necessary conditions of unconditioned minimum of function (17)
have the form of equations

R-1—U+p-va(N-1+C)+T'Q’T-1+C’)T"Q”T-1+C"}o. (20)
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Chapter 1. Linear DC Circuits

1.4. Mathematical Problems in the
Linear Electric Circuits

1.4.1. Linear Equations Systems
Consider a one-matrix unconditional circuit, whete

{ N=0, C=0, G'= 1] The minimization problem (1.2.4, 1.2.2) takes the

P
form:
LT R 2T U = min,
2 2 (1)
T .1-i'+C =0.
The minimization of dual problem (1.2.6, 1.2.8, 1.1.2) takes the form:
1 1 .
¢T7 +—~¢'T—¢'—C'T‘(p'=mln,
2R 2p @
T-¢o'+¢-U=0
Method 1. Consider the problem (1) forU =0, R=1, p—>o0:
1= min,
. ®
T"-1+C'=0.

This problem is equivalent to the solution of linear equations system

T T-[ +C'=0 with respect to the vector of unknowns I and

C . T
minimization of square of the Buclidean norm of the vector of unknowns I -I.
Thus, the calculation of such circuit is equivalent to the solution of an

underdetermined linear equations system.

Method 2. Consider the problem (2) forC'=0, R=0:
¢)¢T .¢)r — min,
T-¢'-U=0.

This problem is equivalent to the solution of linear equations system

)

U=T-¢" with respect to the vector of unknowns @' and minimization

of square of the Euclidean norm of the vector of unknowns (D'T @
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1.4. Mathematical Problems in the Linear Electric Circuits

Thus, the calculation of such circuit is equivalent to the solution of an
underdetermined linear equations system.

Method 3. Consider the problem (1) forU =0, R=0:

ST . .
i i =min,

T —i+C =0,

This problem is equivalent to the solution of linear equations system

®)

T T-I +C'=0. with respect to the vector of unknowns [ and

minimization of square of the Euclidean norm of the vector of unknownsi'~ i’ .
Thus, the calculation of such circuit is equivalent to the solution of an
overdetermined linear equations system.

Example 1. Minimization of dispersion. Consider a special case of
problem (3), when the matrix 1 is a vector of unit values, and vector
I is a scalar. The calculation of such circuit consist in the solution of
an overdetermined linear equations system with one variable I, and
such a value of [ is determined, for which the components of the

. ! .. . .
given vector C' have minimal dispersion.

Method 4. Consider the problem (2) forC'=0, R=1, p — :

T.1= min,

T-¢'+1-U=0.
This problem is equivalent to the solution of linear equations system
U=T-¢" with respect to the vector of unknowns @' and minimization

(52)

. T
of square of the Euclidean norm of the vector of unknowns I -1 . Thus,
the calculation of such circuit is equivalent to the solution of an
overdetermined linear equations system.

Method 5. Consider a two-matrix circuit, where

N=0, R=0, C=0, G':%), G =0,

G"=1, C'=0, C"=0, T"=1
Then the dual minimization problem (1.3.25) and (1.3.20) takes the form
¢”T '¢” :min’

! ! n (6)
T ¢'+¢"-U=0.
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Chapter 1. Linear DC Circuits

Problem (6) is equivalent to the solution of linear equations system
U=T"¢" with respect to the vector of unknowns @' and minimization

of square of the Euclidean norm of the residual (D"T -@". Thus, the

calculation of such circuit is equivalent to the solution of an
overdetermined linear equations system.

fi

Fig.1. To the calculation by Method 1.
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fi

l]

H GI

Duz.4. K pacuemy no cnocoby 4.

ﬁ ﬁl
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U I I

B )
| l

Duz.5. K pacueny no cnocoby 5.

So, one-matrix circuit t]z 0, R=1, p= 0_ (Method 1, Fig. 1) and
one-matrix circuit L":O, R=0 (Method 2, Fig. 2) are solving an
underdetermined linear equations system. One-matrix circuit
tJ:O, R=0 (Method 3, Fig. 3), one-matrix circuit k":(), R:IJ

(Method 4, Fig. 4) and special two-matrix circuit (Method 5, Fig. 5) are
solving one and the same overdetermined linear equations system.

For solving the well-determined linear equations system any of
above shown methods can be used.
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1.4. Mathematical Problems in the Linear Electric Circuits

1.4.2. Program for Solution of Linear Equations System
Let us use Method 3 and let’s rewrite (5.1.5) in the form:

TT-x+C—n1:O, 1)

an ‘1) = min. @

The system (1) may be incompatible, underdetermined or
overdetermined. We search for a solution corresponding to minimum (2).
The M-function for solving this problem is:

function [x,epsl,k,nl,mini]=...
anySLAE2 (A,B, r,eps2, kmax)

A—the matrix A=T" —see (1),
B — the vector (— C)— see (1),
r — the value p,

eps2 — the value &7,

kmax — maximal iterations number,
The output values here are:
x — the vector I —see (2.4, 1),

eps1 — the relative residual value &7,

k —iterations number,

nl — the residuals vector in equation (1),
mini —value of the minimum (2).
The M-functions for test problems looks as:

function test_anySLAE2 ()

The test includes the solution for various types of systems. For control
the same system is being solved by MATLAB means. Here the values
similar to the output values of the function anySLAE2 are computed by
traditional methods. Parameter mode defines the test's number. Let us
consider these tests.

1.

2.
3.
4

o

Well determined small dimension system.

Underdetermined small dimension system,

Overdetermined small dimension system,

Overdetermined system for the computation of such vector x,
with respect to which the components of vector B have
minimal dispersion.

Underdetermined large dimension problem.

Overdetermined large dimension problem.

Pootly determined small dimension problem. In this case the
problem cannot be solved by MATLAB means: a message
"Warning: Matrix is singular to working precision" is displayed.
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Chapter 1. Linear DC Circuits

1.4.3. Quadratic programming with equality constraints
Consider a special case of two-matrix circuit; when the two-matrix
scheme has the following form

t\’zO, G=0, G'=0, G"=1, C=0, C"=0, RzOJ
In this case the in the process of calculating the electrical circuit we will

be solving the following problem: the function of currents should be
minimized — see (1.3.28) and (1.3.29):

@:%IT-Q”T.T”)J—U-I )
under the condition
7T 1+C' =0 ®)

Al
If the matrix 4 = 6" -T" | is a square one, then the problem is reduced
to quadratic programming problem in its traditional form:

%IT A-1-U-I =min,

©)
" 1+C'=0.

Note that the solution of this problem exists if the matrix 4 is positive

definite. The appropriate scheme is depicted on Fig. 6.

fil
(—/\ﬁ
Cl
G2=1 fi2
lD JJI
U I I

Fig. 5. To the qmdm;z'f programming problem
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1.4. Mathematical Problems in the Linear Electric Circuits

The solution method is associated with the transformation

T . . .. .
A=T"" -T", resulting in definition of matrix7". In the case when
matrix 4 is symmetrical, for such transformation it is possible to use the
decomposition of LU-matrix on two triangular matrices U=T" n

L=T"" The method of such decomposition is known [38] and will not
be described here. As the result of such decomposition, the quadratic
programming problem (23) is also reduced to two one-matrix circuits’
calculations.
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Chapter 2. Nonlinear DC Circuits

Chapter 2.
Nonlinear DC Circuits

2.1. Electric circuit with diodes

2.1.1. Method of calculation circuits with diodes

For circuits containing resistors, diodes and Dennis transformers in
[2] it is shown that the DC voltages and currents in these circuits are the
solution of a guadratic programming problem with inequality constraints. More
precisely, the minimization of the function (1.2.4) under the constraints
of the form (1.1.2), (1.2.2) and I; 20 leads to the equations of the
second Kirchhoff's law (1.2.1), the equations Uy =0and the
complementary slackness condition I;-U; =0. Here 1;, U, are the

currents and voltages of the diodes. Next, we consider another approach
in which the diode is replaced (approximately) the nonlinear resistance
that allows to replace the specified problem by a convex programming
problem without restrictions.

By analogy with the previous discussion let us consider an
unconditioned electric circuit where the minimized function is

F(1)=%1TR-1—1TE+§(N-I+H)T(N.1+H), (1)

where R is a nonlinear resistor with non-decreasing voltage-current
characteristic (/). Let us denote

1
(I =51TR-1 @)
and rewrite (1) as
_ Tp, P
F(I)y=u(l)-1 E+E(N-I+H)T(N-I+H). 3)
The gradient of currents vector I is
p=dZ—§")—E+pNT(N-I+H). @)

For the given values of vector I its new value is calculated by the formula

I,=I-a-p. 5)
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2.1. Electric circuit with diodes

When the vector changes from I to [,, the function (3) changes by
AF(a)=F(l,))—F(I). Next we have
dAF _dF(I,) dF(l,) dl, _ —pT dF(1,)

da da dl, da dl,
Thus,
AAF e G4 oNT (NE 4 H )~ E
da dl,
The optimal value of the step « is determined from p =0 [3]:
a
A=—pT-(d/;—(I)+RI+pNT(NI+H)—Ej, ©6)
B=-p ( ult )+R+pNTNJp )
dr?
Confining ourselves to first-degree polynomial, we find:
—A
arx—. 8
2 ®)
2
1 1
For linear resistorsd'u—() =RI, M =R. In other cases these

dr*
dependencies become more complicated. Consider for instance the case
when

u(H)=In(1+0H)—-1+IIn(1+1)-1. 9)
Then

du(l)

1+ 1), 10

g =+ (10)

d*u(l)_

pe v (11)

In particular, we have
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Chapter 2. Nonlinear DC Circuits

D) _ i 1,
d[ b b
aulr)_, if 1=-1;
d] b M
-@é9=—lifl=l—r
dl ’ e
wl)_y iy
a

(12)

=e—1.
du(1)
dl

resistor included in the appropriate branch. Fig. 1 shows the linear
resistor R, the diode D, quasi-diode gD, a source of constant power P
and shows their current-voltage characteristics E = E (I) and the
dependence of the resistance on the current R = R (I). Quasi-diode gD
has a voltage-current characteristic (10). It reminds voltage-current
characteristic of the diode — see also (12). With this in mind, consider the
electric circuit with diodes. There we shall by represent quasi-diodes with
diodes with nonlinear resistance. Minimization of the function (3)
corresponds to the calculation.
1
D(I) et (13)

In such a circuit is minimized function (3), which ﬂ(] ) is defined by (2)
for the branches with a linear resistance, and - according to (9) for the
branches with diodes. Minimization of function (3) corresponds to the
calculation circuits with diodes.

The function is the volt-ampere characteristic (10) of the
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2.1. Electric circuit with diodes

E(D

—Ei Resistor
4[>I7 - _ Real Diod
___________________ Qwazi Diod
_®_ ________ Power Source

Fig 1. Volt-ampere characteristics.
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Chapter 2. Nonlinear DC Circuits

2.1.2. Program for Calculation of electric direct current circuits

with diodes

2.1.2.1. Introduction

Below we describe a program of calculating an electric circuit with
diodes in MATLAB system.

2.1.2.2. Description of electric circuit

Initially, the electric circuit nodes are numbered in random order.
Branches electric circuits are determined by the numbers N1 initial and
N2 end node. A branch may contain a resistance R, a constant voltage
source U and a diode D. The choice of which of the two nodes to
designate initial, has value only if the branch contains a diode. The initial
node is assigned one that is adjacent to the positive pole of the diode.
Current (defined as a result of the calculation) has a positive direction
from the initial to the final node.

Description of the electric circuit is an array of B. Each row of the
array describes one of the branches and has the following form:

B(k,:)=[N1,N2,R,U,D]
In this case, D=1, if the diode is in the branch, and D=0 otherwise.

In addition, the electric circuit may include current sources, are
included among the total points and some node. The positive direction
of current from the source is sending to the node.

Description of current sources is an array following form:

c=[C1,C2,...,CN,...],
where each node N we associate the number of CN - the current value
of the current source, ot zero if in this node is not a current source.

2.1.2.3. On the nodal current sources

In a real electric circuit current source is included in some branch. To
bring this electric circuit to the "canonical" form (described above), do
the following:

o converts the source of the current in a separate branch (not
containing other elements)

o convert a branch in the two current sources, as in the electric

circuit shown in Fig. 1 - see the transformation a--->b.
Obviously, the canonical electric circuit must satisfy the condition
sum (C)=0.
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2.1. Electric circuit with diodes

Fig. 1.

2.1.2.4. Calculation electric circuit

The calculation electric circuit is performed iteratively and the result
of calculation, as a rule, is approximate. In this case, due to appear
residuals - the deviation from zero in the equations of Kirchhoff's laws.
They correspond to the relative error violations of these laws. The
relative error violations the first law of Kirchhoff defined as the ratio of
the mean square residuals of the first Kirchhoff's law to the mean square
of the currents in the branches, and the relative error violations of the
second law of Kirchhoff defined as the ratio of the mean square residuals
for the second Kirchhoff's law to the mean square of the voltage on the
branches (created voltage sources and current sources).

The value of the permissible relative error in violation of the second
Kirchhoff's law is given by the user.

The number of iterations (i.e. duration of the calculation) and the
error performance of the first law Kirchhoff adjust the amount of so-
called "methodical" resistance. It makes sense the resistance included
between each node and a common point. This resistance must be much
greater than all the resistance branches (not counting reverse resistance
diodes). The greater this resistance, the higher the accuracy of
compliance of the first law of Kirchhoff, but the longer the duration of
the calculations.

2.1.2.5. Programm Description

M-function for the calculation is as follows:

function [i,f,erl,er2,k,p,E,N,y,m]=...
rucd (B,C,r,erd,dmin,dmax,n)

Input arguments here are

B —array of branches (described above),
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C — array of current sources (described above),

¥ — "methodical" resistance,

erd - permissible given the magnitude of relative error violations of
the second law of Kirchhoff,

dmin — resistance of the diode for direct current,

dmax - resistance of the diode for reverse current,

n - number of nodes.

kmax — allowable number of iterations..

Output values here are

1 -—an array of current of branches

£ —the array of nodal potentials

erl — relative error violations the first law of Kirchhoff,
er2 — relative error violations of the second law of Kirchhoff,
k — the number of iterations

P —the array of residuals in the branches of the second law of
Kirchhoff,
E — the array of potential difference between the nodes of branches,

N — the array - incidence matrix,

Y — the array of residuals in the nodes of the first law of Kirchhoff,

m — a flag of the result, where

e m=0, if the calculation is made;

e m=1
conditions of sum(C)=0; then get a message
msg=sum (C) ;

e m=2
specified number of nodes; then get a message is
msg='greatest number’'.

if the calculation is not carried out due to violations of

b

if in table nodes met the node number, exceeding a

b

2.1.2.6. Example of a ""canonical" form

Fig. 2 shows a simple electric circuit with diodes. Here ¥ —
methodical resistance, which is absent in the real electric circuit. For this
electric circuit these arrays are as follows:

B=[1,2,R1,U1,D1;...
1,3,R2,U02,D2;...
2,3,R3,U03,D3];

C=[C1l,C2,C3]"';
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] I

C &
R |
D < Ry.U; ST
%. /;3
Ry,U; R3,U3

Dy
Dy
A C2
1ok
Fig. 2
2.1.2.7. Test

Test M-function
function test()
calculates the electric circuit shown in Fig. 3.

@ ©)

@ ®

Fig. 3.

The presence of certain elements of the branches and sources of current
determined in the arrays B, C.
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2.2.  Mathematical Problems in
Electric Circuits with Diodes

2.2.1. Introduction

As well as for the linear electric circuits, methods of calculation of
electric circuits with diodes can be used as methods for solving various
mathematical problems. The following are descriptions of the respective
programs in the MATLAB system. Note again that this the us of this
approach, in which the diode is replaced with (approximately) by
nonlinear resistance, allows us to replace the problem with constraints by
a convex programming problem without constraints

2.2.2. Program for Solution of Linear Equations and
Inequalities System
The system to solve is as follows:
T-x-U=2=0. M
System (1) may be incompatible, underdetermined, overdetermined.
We are searching for such solution, that corresponds to the minimum

x! . x = min. @
The M-function for solving this problem has the form:
function [k,x,er2K,n2eq,n2neq,minf] ...

=anySLAE3 (A,B,D,r,eps2,kmax)

The input arguments here are:
A —is the matrix A =T —see (1),
B — vector (U)— see (1),
D — the equation type indicators vector: if the m-equation is an
equality, then Dm =0, in the opposite case Dm =1,
r — the value O,
eps2 — the value &7,

kmax — maximal iterations number.
The output arguments here are:

k — iterations number,

X — vector potentials ¢ — see (2),

ep2K — the reached value &7,

n2eq — vector of residuals in the equalities of (1),
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2.2. Mathematical Problems in Electric Circuits with Diodes

n2neq — vector of residuals in the inequalities of the (1), which by

the problem's conditions may have any positive value.

minf — the minimum value (2).

The M-function for test problems is:

function testqw3

The test may solve various versions of the system. In some cases for the
sake of control the same system is solved by MATLAB means. The
parameter @q determines the number of such solution method In the
test parameter mode determines the test number. Let us consider these

tests.
1.

2.

10.

Well determined small dimension system. The control is
performed according to formula y=A\B.

Underdetermined small dimension system. The control is
performed according to formula y=A\B.

Overdetermined small dimension system. The control is
performed according to formula y=A\B.

Well determined equalities system (A,B). The control is
performed according to formula y=A\B.

The inequalities system (A,B), coinciding in its left parts with
the equalities of the system from p. 4. This system cannot be
solved by MATLAB means as a quadratic programming problem
A message "No active inequalities" is displayed.
The inequalities system (A,B), coinciding in its left parts with
the equalities of the system from p. 4. The equality and inequality
signs may be determined by the user in the vector D. The control
of this problem by MATLAB means is not performed.
Underdetermined inequalities system. When trying to solve it by
MATLAB means as a quadratic programming problem a message
"A must have 2 column(s)" is displayed.
Overdetermined inequalities system. When trying to solve it by
MATLAB means as a quadratic programming problem a message
"A must have 6 column (s)" is displayed.
Overdetermined system of equalities and inequalities (in its left
part the same as in p. 8). The vector D is such that the obtained
solution has large residuals in the equalities.

Overdetermined system of equalities and inequalities (in its left
part the same as in p. 8). The vector D is such that the obtained
solution has large residuals in the equalities.
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2.2.3. Program for calculation of DC circuits with diodes and
instantaneous values transformers
Below we describe this program in MATLAB system. The
simulating scheme includes:
=  nodes,
=  branches,
" current sources,
= DT transformers,
= Current sources for DT.
The description of arrays B and C, as well as the description of nodal
current sources was given above.
Description of the set DT represents matrix in which the rows and
columns are indicated. Each element of the matrix represents one of the

transformation coefficients ¢ k- Fach line combines DTs whose

"primary windings" are connected in series and included in a certain
branch. Each column of the matrix incorporates DTs, in which the
"secondary windings" are connected in parallel. In series with such
column a current source CEN can be included.

The description of current sources CEN presents a specific array of
the following form:

Ct=[Ctl,Ct2,...,CtN,...].

Each node N is associated with an appropriate CEN — the value of
current in the current source, or zero if in those DT columns where there
is no current source.

The scheme calculation is performed iteratively, as described above.

M-function for the calculation is as follows:

function [i,f,erl,er2,k,p,E,N,yN, ...
ft,yti,ert,dD,ytf,nuz,m, ki, ro]=...
rucd3(B,C,r,erd,dmin,dmax,n,T,Ct, ...
kmax,eri,kimax,io)

Input arguments here are

B —array of branches (described above),
C — array of current sources (described above),
r — "methodical" resistance,

erd - permissible given the magnitude of relative error violations
of the second law of Kirchhoff,
dmin — resistance of the diode for direct current,
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2.2. Mathematical Problems in Electric Circuits with Diodes

dmax - resistance of the diode for reverse current,
n - number of nodes.

T — DT array,

Ct — array of current sources in DT columns,
kmax — permissible number of iterations,

eri —given value of permissible relative error for violation of the
first Kirchhoff law,

kimax - permissible number of cycles for increasing the
"methodical" resistance,

10 —initial value of currents in branches.

Output values here are

1 -an array of current of branches

£ —the array of nodal potentials

erl — relative error violations the first law of Kirchhoff,

er2 — relative error violations of the second law of Kirchhoff,

k - the number of iterations

P —the array of residuals in the branches of the second law of

Kirchhoff,

E — the array of potential difference between the nodes of branches,

N — the array - incidence matrix,

YN - array of residuals in the nodes according to the first Kirchhoff
law,

£t - array of voltages on the DT columns,

yti — array of residuals on the DT columns according to the first
Kirchhoff law,

ert - array of residuals in the branches according to the second
Kirchhoff's law,

dD - array of diode resistors (equal to the maximum or minimum
value),

yt£ - array of voltages on the DT lines,

nuz - the found number of nodes (see message below M=2),

ki — number of cycles for increasing the "methodical" resistance

rO — the final value of "methodical" resistance

m — a flag of the result, where

e m=0, if the calculation is made;
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m=1, if the calculation is not carried out due to violations of
conditions of sum(C)=0; then get a message
msg=sum (C) ;

m=2, if in table nodes met the node number, exceeding a

b

specified number of nodes; then get a message is
msg='greatest number'.

¢ C
I, = l

_____ ?1 —
n Ry, Uy, D>)y—b

a
I
b t32 t12
I3
C t23 f?%
K0 &P e &P
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Fig. 2 presents a simple electrical circuit. Here r is the methodical
resistance that is absent in the actual circuit. For this circuit, these arrays
are as follows:

B=[1,2,R1,U1,D1;...

1,3,R2,U2,D2;...
2,3,R3,03,D3];
T=[t31,t21,tll;
t32,t22,t12;
t33,t23,t13];
C=[C1l,C2,C3]"';
Ct=[Ctl,Ct2,Ct3]"';

The test M-function function testrucd3 () performs
the calculation of the circuit shown on Fig. 2.

2.2.4. Quadratic Programming

The following describes the program for solving Quadratic
Programming Problems in MATLAB.

2.2.4.1. The First Problem of Quadratic Programming

Consider the following problem.. To find minimum of the function

F(x)=0.5-xT-R-x—UT-x )
under the restraints

T . x+C=0, o)

x>0, ©)

where
T isa superscript - the transposition sign,
x,C,U - k -dimensional vectors,
T - k- mmatrix
R -a k -k square positive definite matrix
The unknown variable here is vector X . The equations set (2) must
not be empty. The constraint (3) may relate only to certain variables, or
not exist at all. Further in this problem we shall use vector D — the
equation type indicator in (3): if an m-equation is an equality, then
Dm =0,inan opposite case Dm =1.
The solution method is based on movement along the gradient of the
minimized function (1). The computation is going in iterations, and the
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result as a rule is approximate. As a result there appear residuals in the
equations (2, 3). The relative residual in the equation (2) is determined as

:
gZQT.chQT.HC)QTx/ @

The permissible value of this residual &4 is given by the user.
The number of iterations (i.e. the computation time) and the value

Emax are regulated by the value o . The larger is the value O, the less is

the value &y qx , but the longer is computation time.

The M-functions for this problem solution is:
function [x,nl,k,ero,Fmin, ...
kk,erok,Fmink, xx]=...
squ2 (R,T,C,U,D,r,erd, kmax)

The input arguments here are:
R,T,C,U, D — matrices and vectors defined in (1, 2),
r — the value p,

erd - thevalue &pax,

kmax — maximal iterations number,
The output arguments here are:
X — the unknown vectot,
nl — the vector of residuals in the equations (2),
k —iterations number,
ero — value of relative residual &,
Fmin — minimum of the function (1).
The following output values are used for creating the graphs:
kk — the vectors of iterations numbers,
erok - the vector of relative residuals & in each iteration,
Fmink — the vector of function (1) minimum value on each
iteration,
XX - the matrix of X vectors on each iteration.

2.2.4.2. The Second Problem of Quadratic Programming
Let us consider now the following problem. We are searching for the
minimum of function (1)
F(x)=05-x{ -R-x;-U{ -x 5)

under the restraints
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TIT'X1+C120. (0)
Here the unknown variable is vector Xj. The set of equations (6)

should not be empty. The sign "2" in (6) may refer only to certain
equations, and in the remaining equations it may be replaced by the sign

of strict equality. Further in this problem we shall use the vector D] —
the equation type indicator in (6): if m-equation is an equality, then

Dl m= 0, and in the opposite case Dl m= 1.

The second problem may be transformed into first problem in the
following way. We shall present the restraint (6) in the form

TlT-xl+C1—X2=0, (7)
x>0 ®)

Let us consider the vector

T
X2

and rewrite the formulas (5, 7, 8) in the form (1, 2, 3) accordingly, where

R

ro| M Q21}’ 10)
O 0

T

T= 1}, (11)
_—E

- Ul} (12)
_VU

C=qy, (13)
[V

E d}, (14)
Dy

E identity matrix,
Qa le, Q21 - Zero vectors,
Vu ) Vd - ZETO Vectors

The M-function for the transformation of the second problem into

the first problem has the form:
function [R,T,U,C,D]=squ2l(R1,T1,Ul1,Cl1l,D1l)
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2.2.4.3. Test for the First Problem

The M-function function testsqu2 ()

solves the first

problem for a two-dimensional vector X. here we are building the graphs
shown on Fig. 1, where

o the window
change depending on iteration number

'Error

(testsqu?2) ' shows the error&

b

o thewindow 'Log of error' shows the error 11’1(6‘)

change depending on iteration number.

o the window 'Minimum' shows the function (1) change
depending on iteration number.

Let us consider the two-dimensional vector x as a point on the plane.
shows the movement of this point with
iteration number growth beginning from the initial point (0, 0) to the final

The window 'Trajectory’

point — the problem's solution.

Error (testsqu2)

60
40
N
x
20
0 .
0 100 200
Log of error
5
0 \
5 —~
0 100 200
Iter
Fig. 1.

40

30

20

10

Trajectory
00 -50 0 50
x1
x 10 Minimum
0 \
\h
0 100 200

Iter
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2.2.4.4. Test for the Second Problem

The M-function function testsquéd () solves the second

problem for a four-dimensional vector x. Here the graphs shown on
Figure 2 are built, where

o the window 'Error (testsqu2)' shows the error&

change depending on iteration number

>

o the window 'Log of error' shows the error ln(g)
change depending on the iteration number,

o the window 'Minimum' shows the function (1) change
depending on iteration number,

o the window 'Trajectory' shows the change of four
components of vector X with iteration number growth beginning

from the initial value (0) to the final point, that is the problem's
solution.

Error (testsqué4) Trajectory
40

30
20 \
10

0 20 40 60 0 20 40 60

x1,x2,x3,x4

Log of error X 106 Minimum
4 0
2 \\ \
0 \ 2 \
-2 \ 4

0 20 40 60 0 20 40 60
Iter Iter

Fig. 2.
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function
[i,erTi,k,nl,mini]=anySLAE2 (A,B,r,erd, kmax)
% A*x-B=0
dmin=0.001;
dmax=10000;

T=A";

Ct=-B;

raz=size (T);
for k=[1:1:raz(1l)]

D (k) =0;

0

end
[k,erlK,er2K,erTi, i, ft,nl, yTf, minf, mini]=eqfi (T
,Ct,U,D, r,erd,dmin, dmax, kmax, R) ;

function [m x, m epsl, m nl, m minx,
tmatlab]=anySLAEZ2m (A, B)

o

tic;

m_ x=A\B

sm_x=size(m Xx);

tmatlab=toc;

m nl= A*m x-B;

sm nl=size(m nl);

m minx=sum(m nl.”"2);

a=sqgrt (sum(m nl.”2)/sm nl(1l));
b=sgrt (sum(m x."2)/sm x(1));
m epsl=a/b;

function
[k,ft,er2K,n2strogo,n2nestrogo,minf]. ..
=anySLAE3 (A,B,D,r,erd, kmax)

% A*x-B=0
dmin=0.001;
dmax=r;
U=B;
T=A;
rt=size(T);
for m=[1l:1;rt(2)] Ct(m)=0; end
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ct=Ct"';

for m=[1:1;rt(1l)]
R(m,m)=0;

end

[k,erlK,er2K,erTi, i, ft,yt,yTf, minf, mini,pl=...

egfi(T,Ct,U,D, r,erd,dmin,dmax, kmax,R) ;
n2=yTf-U;
n2nestrogo=n2.*D';
rD=size (D) ;
for m=[1:1:rD(2)]

i1f D(m)==
DD (m)=1;
else
DD (m) =0;
end

end
n2strogo=n2.*DD';

function

[k,erlK,er2K,erTi,i,ft,yTi,yTEf, minf, mini,p]...

=eqfi(T,Ct,U,D,r,erd,dmin,dmax, kmax, R)

Q

o

[¢]

raz=size (T);

for k=[1:1:raz(l)]
B(k,:) =[ 0,0, R(k,k), U(k), D(k)I;
end
C=0;
n=0;

[i,f,erlK,er2K,k,p,Un,N,yN,m, ft,yTi,erTi,dD, ...

yTf]=rucd2 (B,C, r,erd,dmin,dmax,n, T, Ct, kmax) ;
minf=ft'*ft;
mini=yTi'*yTi;

function figi (kk,erok,Fmink,ii,tit,m)

o)

o

s=size(ii);

subplot(2,2,1); pl=plot(kk,erok,'r'");
set (pl, 'LineWidth', 3)

title(tit);

grid on;

if m==
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$subplot (2,2,2);
$plot (ii(1,:),ii(2,:),'b",141(1,:),ii(3,:),"'k",
1i(1,:),11(4,:),'r");
subplot(2,2,2);
p2=plot (kk,ii(1,:),'b',kk,ii(2,:),"'k", ...
kk,ii(3,:),'r',kk,1i(4,:),"'c");

ylabel ('x1,x2,x3,x4");

elseif m==
subplot (2,2,2

p2=plot(ii(l,:),1i
ylabel ('x2'
xlabel ('x1

end

set (p2, 'LineWidth', 3)

title('Trajectory');

grid on;

subplot(2,2,3); p3=plot(kk,log(erok),'r'");

set (p3, 'LineWidth', 3)

title('Log of error');

xlabel ('Iter'");

grid on;

subplot(2,2,4); pd4=plot (kk,Fmink, 'k'");

set (p4, 'LineWidth', 3)

title('Minimum') ;

xXlabel ('Iter');

grid on;

function [N,nuz] = makingN (branch)
% the creation of the incidence matrix
% b = begN, endN
raz=size (branch) ;
nb=raz (1) ;
uz = 0;
k =1;
while k <= nb
a = branch(k,1);
if a > uz

uz = a;
end
b = branch (k,2);
if b > uz
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end
if a>>»0
N(a , k) = -1;
end
if b >0
N(b , k)
end
k =k + 1;
end
nuz=uz;
n=size (N);
nuz2=n(l);
if nuz==nuz?2
else
nuz
nuz?2
msg="'Numbers of Nodes?'
end

Il
H
~.

function [R,U,D] = makingRU (branch)
% R,U,D from branches
% b = begN,endN,R,U,D

raz=size (branch) ;

nb=raz (1) ;

uz = 0;

k =1;

while k <= nb

R(k, k) = branch(k, 3);
U(k) = branch(k,4);
D(k) = branch(k,5);
k=k+1;

end

Uu=u"';

function [i,k,er2K,p,dD]=...

min2 4 3(Rn,Un,erd,D,dmin,dmax, kmax)
% min function (1.1.24)
i=0*Un;
nUn=sum( (Un) ."2);

if nUn==
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nUn=erd;

end

er2K=999;

raz=size (i) ;

k=0;

while er2K>erd && k<kmax
k=k+1;
[muil, mui2]=Rdiod (i, D,dmin, dmax) ;
p=muil'+Rn*i-Un;
np=sum( (p) ."2);
er2K=sqgrt (np/nUn) ;
if er2K==

break;

end
m2=diag (mui2) ;
a=p'*p/ (p'* (m2+Rn) *p) ;
ap=a*p;
i=i-ap;

end

dD=muil;

function
[i,k,p,dD,kk,erok,ero,ogr,Fmin,Fmink,ii] ...
= min2 4 300(Rn,Un,erd,D,dmin,dmax,kmax,T,C)
% min function (1.1.24)
i=0*Un;
nUn=sum(Un."2);
if nUn==

nUn=erd;
end
ero=999;
raz=size (i) ;
k=0;
while ero>erd && k<kmax

k=k+1;

if k==

ii=i;
else
ii=[44i,4i];
end
kk (k) =k;
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[muil, mui2]=Rdiod (i, D,dmin, dmax) ;
p=muil'+Rn*i-Un;

m2=diag (muiz2) ;

a=p'*p/ (p'* (m2+Rn) *p) ;

ap=a*p;
i=i-ap;
for j=[1l:1:raz]
if D(3)= 1 && 1(3)<0
i(3)=
end
end

ogr=T'*i+C;
ogr2=ogr'*ogr;
ei=i'*i;
ero=sqgrt (ogr2/ei) ;
erok (k)=ero;
Fmin=0.5*1"*Rn*i-Un"'*1i;
Fmink (k) =Fmin;

end

dD=muil;

function [f,i,k,er,erk,p,Un]=...
nocondel (R, ro,N,U,C,erd,D,dmin,dmax, kmax)
% basic calculations
Rn=R+ro*N'*N;
Un=U-ro*N'*C;

[i,k,er,pl=

min2 4 3(Rn,Un,erd,D,dmin, dmax, kmax) ;

f=ro* (N*i+C) ;
raz=size (N);
nf=sum(f.”2) /raz (1) ;
ni=sum(i.”"2)/raz(2);:
erk=sqgrt (nf/ (ro*ro*ni));

function [f,i,k,er2K,erlK,p,Un,ft,erTi,muil]...

=nocondel2 (R,ro,N,U,C,erd,D,dmin,dmax, ...
T,Ct,kmax)

% basic calculations
Rn=R+ro* (N'*N+T*T"'") ;
Un=U-ro* (N'*C+T*Ct) ;
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[i,k,er2K,p,muil]=min2 4 3
(Rn,Un,erd, D,dmin, dmax, kmax) ;
f=ro* (N*1i+C) ;
ft=ro* (T'*i+Ct) ;
razi=size (1) ;
razf=size (f);
nf=sum(f.”"2)/razf (1) ;
ni=sum(i.”2)/razi(1l);
if ni==0

erlK=0;
erTi=0;
else
erlK=sqgrt (nf/ (ro*ro*ni));
razft=size (ft) ;
nft=sum(ft.”"2)/razft (1) ;
erTi=sqgrt(nft/ (ro*ro*ni));
end

function [muil , mui2]=Rdiod(i,D,dmin,dmax)
% resistance of diodes
$if D==
Fmuil=0; mui2=0;
Sreturn;

send
n=size (1) ;
n=n(1);
k=1;
while k<=n
if D(k)==
if i(k) >0
muil (k)=dmin*i (k) ;
mui2 (k)=dmin;
else % 1(k) =<0
muil (k)=dmax*i (k) ;
mui?2 (k)=dmax;
end
else
muil (k)=dmin*i (k)
mui?2 (k)=dmin;
end
k=k+1;
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end

function [i,f,erl,er2,k,p,E,N,y,m]
=rucd(b,C,ro,erd,dmin,dmax,n, kmax)
% main function
if sum(C)==
m=0;
else
m=1;
msg=sum (C)
i=0;£f=0;er1=0;er2=0;k=0;p=0;E=0;N=0;y=0;
return
end
[N,nuz] = makingN(b) ;
if nuz>n
m=2;
msg=nuz
i=0;f=0;er1=0;er2=0;k=0;p=0;E=0,;N=0;y=0;
return
end
[R,U,D] = makingRU (b) ;
[f,1,k,er2,erl,p,E]l=nocondel (R, ro,N,U,C,erd,D,d
min, dmax, kmax) ;
y=f/ro;

function
[1,f,erlK,er2K,k,p,Un,N,yN,m, ft,yTi,erTi,dD,yTEf
]=rucd2 (b,C,ro0,erd,dmin,dmax,n,T,Ct,b kmax)
% main function
if sum(C)==
m=0;
else
m=1;
msg=sum (C)
i=0;£f=0;er1K=0;er2K=0;k=0;p=0; ...
E=0;N=0;y=0;m=0; ft=0;yt=0;erTi=0;muil=0;
return
end
N=0;
[R,U,D] = makingRU (b) ;
[f,1,k,er2K,erlK,p,Un, ft,exrTi,dD]=...

62



Programs

nocondel?2 (R, ro,N,U,C,erd,D,dmin, ...
dmax, T, Ct, kmax) ;

yN=f/ro;

yTi=ft/ro;

yTf=T*ft;

function [i,o0gr,k,ero,Fmin,kk,erok,Fmink,ii]...
=squ2 (R,T,C,U,D,r,erd, kmax)

$F=0.5*x"*R*x-U'*x —--->min, T'*x+C=0, x.*D>=0
dmin=0.001;
dmax=10000;
Rn=R+r*T*T"' ;

Un=U-r*T*C;

[i,k,p,dD, kk,erok,ero,ogr,Fmin, Fmink,ii]=
min2 4 300 (Rn,Un,erd,D,dmin,dmax, kmax,T,C);

function [R,T,U,C,D]=squ2l1(R1,T1,Ul1,C1l,D1)

o

Q=0*diag(Cl) ;
Q021=0*T1;
Ql2=0*T1"';
=[R1, 021;
012, Ql;
=[Ul;0*C1];
E=diag (0*C1l+1);
T=[T1l', -E]'
D=[0*Ul1;D1];
C=C1;

function test()
% B: begN, endN, R, U, D

B(l1,:) =[ 2,1, 10, 0, 01;
B(2, ) =[ 2,3, 20, 0, 0]
B(3,:) =[ 3,4, 30, -230, 0];
B(4,:) =[ 4,1, 40, 22, 01;
B(5/ ) =1 1131 50 OI 11,
B(o,:) =[ 2,4, 60, 0, 1];
C=1*[0,3,-2,-11"

dmin=0.001;

dmax=10000;

r=100000;
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erd=0.0001;
n=4;
[i,f,erl,er2,k,p,E,N,y,m]=...
rucd (B,C, r,erd,dmin, dmax, n) ;
erl
er?2
k
m

function test anySLAE2 ()

% A*x-B=0

mode=3;

kmax=10000;
r=100000;
erd=0.001;

if mode==1 % l=ravno
A=[1,1,9; 2,4,7; 1,0,5]1;
B=[1.5,1,31";

elseif mode==2 $ 2=under
A=[1,1,0,0,1,-1;

1,0,1,2,0,31;

B=[1.5,11";

elseif mode==3 % over
A=[1,1,0,0,1,-1;

1,0,1,2,0,31";

B=[1.5,1,7,8,9,2]1";

elseif mode==4 % 4=over=dispersion
A=[1,1,1,1,1,11"
B=[1,2,3,-4,5,60]";

elseif mode==5 % 5=under=mnogo
erd=0.0000001;
m=229;

Tl=[1:1:1+m]"';
T2=[100:1:1004m]"';
A=[T1,T2]";
B=[1.5,11";

elseif mode==6 % 6=o0ver=mnogo
m=125;
Tl=[{1:1:14+m];
T2=[100:1:1004m];
A=[T1;T2]"';
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B=[1:1:1+m]"';
elseif mode==7 % 7ravno, Matrix is singular to
working precision
A=[1,1,%9;, 2,2,18; 1,0,5];
B=[1.5,1,31";
end
tic
[x,epsl, k,nl,minx]=anySLAE2 (A,B, r,erd, kmax)
tmy=toc;
[m x, m epsl, m nl, m minx,
tmatlab]l=anySLAE2m (A, B)

function testqw3()

% B: beg, end, R, U, Diod

kmax=10000;

dmin=0.001;

dmax=1000000;

r=100000;

erd=0.0001;

mode=10;

if mode==1 % l=ravno
eg=0;
A=[1,1,9; 2,4,7; 1,0,5];
B=[1.5,1,3]"';

D:[OI OI O];
elseif mode==2 % 2=under
eg=0;

A=[1,1,0,0,1,-1;
1,0,1,2,0,3];
B=[1.5,11";
D=[0,01;
elseif mode==3 % over
eg=0;
A=[1,1,0,0,1,-1;
1,0,1,2,0,3]1";
B=[1.5,1,7,8,9,2]"';
p=10,0,0,0,0,01;
elseif mode==4 % l=ravno
eg=1;
A=[1,1,9; 2,4,7; 1,0,5];
B=1000*[1,1,1]"';
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=ro0,0,01; % 0,0,0; 0,1,0; 1,1,0; 1,0,0;
elseif mode==5 % "No active inequalities"
eqg=2;
=[1,1,9; 2 4,
B=1000*[1,1,1]1"';
b=(1,1,11; % 1,1,1; 0,0,1; O,1,1; 1,0,1;
elseif mode==6 % Bez proverki

7; 1,0,51;

eg=99;
=[1,1,9; 2,4,7; 1,0,5]1;
B=1000*[1,1,11"';
=[0,0,11; % 1,1,1; 0,0,1; 0,1,1; 1,0,1;
elseif mode==7 % 7=2=under "A must have 2
column(s)" MATLAB trebuet kwadratnuu matrizu
eqg=3;

A=[1,1,0,0,1,
1,0,1,2,0,3];

=[1.5,1]"
=[1,01;
elseif mode==8 %$8=3 % over "A must have 6
column(s)" MATLAB trebuet kwadratnuu matrizu
eq=4;
A=[1,1,0,0,1,-1;
1,0,1,2,0,3]1"
-[1.5,1,7,8 21"

9,
17

4
[1 1,1,1,1,1

elself mode==9 %8=3 % over ploho

eg=99;
=[1,1,0,0,1,
1,0,1,2,0,31"';
=[1.5,1,7,8,9,21";
[OIlIOIlIOIl]I
elseif mode==10 %8=3 % over horosho
eg=99;
=[1,1,0,0,1,
1,0,1,2,0,31";
B=[1.5,1,7,8,9,2]"';
D:[llllollloll]l

end
[k, ft,er2K,n2strogo,n2nestrogo,minf]=anySLAE3 (A
,B,D,r,erd, kmax)

66



Programs

if eqg==
y=A\B
elseif eg==1 % D=0
Beg=B;
Aeg=A;
A=[];
B=[1];
x0=[0;0;0];
[x, fval] =
fmincon (@myfun2, x0, A, B, Aeq, Beq)
elseif egq==2 % D=1
x0=[0;0;0];
%$x0=[80;-90,;180];
[x, fval] =
fmincon (@myfun2, x0, A, B)
elseif eg==3 % D=1
x0=[0;07;
[x, fval] =
fmincon (@myfun2, x0, A, B)
elseif eg==4 % D=1
x0=[0;0;0;0;0;0];
[x, fval] =
fmincon (@myfun2, x0, A, B)
end
return
% X = FMINCON (FUN, X0,A,B,Aeq,Beq) minimizes
FUN subject to the linear

% equalities Aeg*X = Beg as well as A*X <=
B. (Set A=[] and B=[] 1f no
% inequalities exist.)

function testrucd3()
R1=11;

R2=12;

R3=13;

Ul=100;

U2=0;

U3=0;

D1=0;

D2=1;
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D3=0;

Cl=-2;

C2=0;

C3=2;

Ctl=-0.1;

Ct2=0;

Ct3=0;

T=[ 1,0,0;
2,0,0;
0,0,01;

B=[1,2,R1,U01,D1;...
1,3,R2,U2,D2; ...
2,3,R3,U03,D3];

c=[C1,Cc2,C3]"';

Ct=[Ctl,Ct2,Ct3]"';

nodes=3;

dmin=0.01;

dmax=1000;

ro=1350;

erd=0.01;

eri=0.01;

kmax=9900;

kimax=8;

i0=0;

[i,f,erl,er2,k,p,Un,N,yN, ft,yTi,erTi,dD,yTf, nuz

,m,ki,rol=...

rucd3 (B,C,ro,erd,dmin, dmax, nodes,

T,Ct, kmax,eri, kimax, i0);

nuz;

m;

i

f

ft

erl er2=[erl,er2]

k ki ro=[k, ki, ro]

function testsqu2()

o\

o\°

x=[1,21"
F=0.5*x"*R*x-U"'*x —--->min, T'*x+C=0,
. *D>=0

o\°

b
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Programs

dmin=0.001;
dmax=10000;
r=100000;
erd=0.01;
kmax=515;
L=[1,2;

0,11;
R=L*L"';
T=[3,5;

-2,-31";

C=-[7,81";

U=[1,31";

D:[Oll] '
[i,09r,k,ero, Fmin, kk,erok, Fmink, ii]=squ2 (R, T, C,
U,D, r,erd, kmax) ;

ii

ogr

ero

k

Fmin

figi(kk,erok, Fmink,ii, '"Error (testsqu2)',2);

function testsqui4 ()

[e)

o\

o\°

x1=[1,2,3,4]"

x2=1[1,21"
F=0.5*x1"'"*R1*x1-Ul1'*x1 --->min,
(T1"*x+C1l) .*D1>=0

dmin=0.001;

dmax=10000;

r=100000;

erd=0.01;

kmax=60000;

I=[1,0,2,0;

o° o\°

o\°

~

~e

0
0
0,
R1l=
T1
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Programs

Ul=[1,0,3,-11";

D1=[1,01";
[R,T,U,C,D]=squ2l1 (R1,T1,U1,C1,D1);
F=0.5*x"*R*x-U'*x —-—->min,

T'*x+C=0, x.*D>=0
i,ogr,k,ero,Fmin, kk,erok,Fmink,ii]...
squ2 (R,T,C,U,D, r,erd, kmax) ;

I — oo oe

[

ogr
ero

Fmin
figi(kk,erok, Fmink,ii, '"Error (testsqu4d)',4);
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