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Annotation
In this book we are dealing with circuits DC, supplemented by 

Dennis Transformers, invertible elements, etc... It is shown that such 
circuits can be used as physical models of certain problems: linear and 
non-linear equations systems solution, convex programming problems. 
We are discussing fast methods and algorithms for calculating such 
electrical circuits and hence solve these problems. Programs for solving 
such problems are provided in MATLAB system.

2



Contents
Preface \ 5
Chapter 1. Linear DC Circuits \ 6

1.1. Electric circuits with resistors \ 6
1.1.1. A Simple Electric Circuit \ 6
1.1.2. Unconditional electric circuit \ 8
1.1.3. The algorithm of calculation an unconditional electric 

circuit \ 9
1.2. Electric Circuits with Dennis Transformers \ 10

1.2.1. A Simple Electric Circuit with Dennis Transformers \ 10
1.2.2. Unconditional Electric Circuit with Dennis Transformers \ 

19
1.2.3. The Transformer Connection of Lines with Nodes \ 20
1.2.4. Unconditional electric circuit with transformer matrix \ 21

1.3. Special Electric circuits with Dennis Transformers \ 23
1.3.1. Dual DC circuits \ 23
1.3.2. Two-matrix DC Circuits \ 25
1.3.3. Unconditional two-matrix circuits \ 26

1.4. Mathematical Problems in the Linear Electric Circuits \ 27
1.4.1. Linear Equations Systems \ 27
1.4.2. Program for Solution of Linear Equations System \ 32
1.4.3. Quadratic programming with equality constraints \ 33

Chapter 2. Nonlinear DC Circuits \ 35 
2.1. Electric circuit with diodes \ 35

2.1.1. Method of calculation circuits with diodes \ 35
2.1.2. Program for Calculation of electric direct current circuits 

with diodes \ 39
2.1.2.1. Introduction \ 39
2.1.2.2. Description of electric circuit \ 39
2.1.2.3. On the nodal current sources \ 39
2.1.2.4. Calculation electric circuit \ 40
2.1.2.5. Program Description \ 40
2.1.2.6. Example of a "canonical" form \ 41
2.1.2.7. Test \ 42

2.2. Mathematical Problems in Electric Circuits with Diodes \ 43
2.2.1. Introduction \ 43
2.2.2. Program for Solution of Linear Equations and Inequalities 

System \ 43
3



2.2.3. Program for calculation of DC circuits with diodes and 
instantaneous values transformers \ 45

2.2.4. Quadratic Programming \ 48
2.2.4.1. The First Problem of Quadratic Programming \ 48
2.2.4.2. The Second Problem of Quadratic Programming \ 

49
2.2.4.3. Test for the First Problem \ 51
2.2.4.4. Test for the Second Problem \ 52

References \ 53
Programs \ 54-69

4



Preface
Dennis has proposed a theory of direct current electric circuits 

including resistors, diodes, current sources, voltage sources and the DC 
transformer or transformers instantaneous values [1]. Such transformers 
were explored first by Dennis as so we shall call them the Dennis 
transformers and denote them as TD. Dennis had showed that such 
electric circuits are simulating the quadratic programming problem with 
inequality constraints. Dennis proposed TD as an abstract mathematical 
model (for mathematical theory interpretation). However no methods of 
physical realization of TD have been presented.  Due to the technical 
complexity of such implementation the circuits with DC transformers 
have not been used till today. 

For the first time such a property of electrical circuits was noticed by 
Maxwell [2], who found that in circuits with resistors the currents are 
minimizing the power of heat loss. Then (as indicated above) Dennis had 
proved this property for sufficiently complex linear DC circuits.

The book contains two chapters and programs. Chapter 1 discusses 
the linear DC circuit, comprising current and voltage sources, resistors 
and Dennis transformers. These circuits are models of quadratic 
programming problem with linear constraints. In Chapter 2, the 
electrical circuits are supplemented by diodes. It is shown that such DC 
circuits simulate convex programming problem with nonlinear 
constraints

In both chapters we deal with various mathematical problems that are 
modeled by the described DC circuits, and give the related programs. These 
programs can perform the following calculations:  

1. Calculation of direct current electric circuits with resistors, transformers 
of instantaneous values, diodes, voltage and current sources.

2. Solution of the system of linear equations and inequalities.
3. Problem of solving quadratic and linear programming with constraints 

in the form of equalities and inequalities.
4. The solution of underdetermined and overdetermined system of linear 

equations.
5. The solution of some other problems.

This book is a translation of a part of the book [3].
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1.1. Electric circuits with resistors

Chapter 1. 
Linear DC Circuits

1.1. Electric circuits with resistors
1.1.1. A Simple Electric Circuit.
Let us consider an electric circuit with current source and select in it three 

types of branches:  
1. a branch with current source connected to the node,
2. a series circuit with resistors and voltage sources contained 

between two nodes, 
3. a branch with a conductivity connected between a node and a 

common bus. 
The current directed to the node will be considered positive. The 

number of branches of the type 2 will be denoted as m, the number of 
branches of type 1 – as n. Such electrical circuit is described by the 
following equations system:

0 UIRNT  , (1)
0 iCIN , (2)

where
C - vectors of currents in the type 1 branches (dimension n);
I -  vectors of currents in the type 2 branches (dimension m);
U – vector of the second type branches (dimension m);
G – diagonal matrix of conductivities in the branches of third type 

(dimension n * n);
i – currents vectors in the branches of third type;
  - vector of nodes potentials (dimension n);
N – incidence matrix with the elements 1, 0, -1 (dimension n* m);
R - diagonal matrix of conductivities in the second type branches 

(dimension m*m);
  - vector of voltages on the resistors in the second type branches 

(dimension m), and
IR  . (3)
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 Chapter 1. Linear DC Circuits

In this system equation (2) describes the second law of Kirchhoff and 
equation (1) – the first law of Kirchhoff. In this system the known 
vectors are C  и E, and the sought vectors - I and .

Let us consider the function

i
G

iIUIRIiIF TT 
2
1

2
1),( . (4)

Let us find the necessary conditions of this function optimum with 
constraints of the form (2). They are of the form of equations (1), where 
  is a vector of undetermined Lagrange multipliers for the constraints 
(2), that appear when the optimized function is supplemented by a term 

 iCINT 
Further we have

.1, 2

2

2

2

Gi
FR

I
F








(5)

From this follows that the function (4) has a global minimum. Thus, 
the minimization of function (4) under the constraints in the form of the 
first law of Kirchhoff (2) leads to the equations second law of Kirchhoff 
(1). Consequently, the computation of a DC electric circuit is equivalent 
to finding a conditional maximum of the function (4).

Let us multiply (2) from the left by T  and (1) – from the left 

by TI . Then we shall find that from Kirchhoff laws follows the fact that 
the summary power of the electric circuit is equal to zero: 

0 iUIIRIC TTTT  , (6)
Now let us consider the function 

  GC
R

TTT

2
1

2
1),( . (7)

Apparently,
Gi (8)

and the Kirchhoff laws may be rewritten in the form:
0 UNT  , (9)
0 GCIN ,           (10)

Let us find the necessary conditions of this function’s optimum 
under the constraints that are the equations of second Kirchhoff law in 
the form (9). These constraints have the form of equations (10) and (3), 
where I is the vector of undetermined Lagrange multipliers for the 
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1.1. Electric circuits with resistors

constraint (8), which appear when the optimized function is 
supplemented by the term  UNI TT   . 

Further we have

.,1 2

2

2

2
G

R













From this it follows that the function (7) has a global optimum.  
Thus, maximization of the function (7) under constraints in the form of 
second Kirchhoff law equations (8) leads to the equations of the first 
Kirchhoff law (10) and the condition (3). Consequently, the computation 
of a DC electric circuit is equivalent to finding a conditional maximum of 
the function (7).

The problems of minimization of function (4) with constraint (2) and 
of maximization of function (7) with constraint (8) are dual problems

The equations of simple DC always have a unique solution.

1.1.2. Unconditional electric circuit.
Let us consider an electric DC circuit, which has /1G . We shall 

call such circuit unconditional (the meaning of such name will be clear 
from further discussion). Apparently, the resistors   can be considered 
as additional branches of the electric circuit. We however shall use 
another method, allowing to describe such circuits in a more compact 
way and, as a result, to reduce substantially the dimension of vectors and 
matrices.

The vector I of currents flowing through the resistors  , is 
connected with other currents of the circuits by correlation (2). Besides,

i  .          (22)
Let us consider minimization problem of the function (4) with 

constraint (2). In this case (4) takes the following form:

IUiiIRIIF TTT 
22

1)( 
.           (23)

Substituting (2) in (23), we get

IUIRIIF T
NN

T 
2
1)( ,           (24)

where

NNRR T
N   ,           (25)

CNUU T
N   .           (26)
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 Chapter 1. Linear DC Circuits

Let us find the necessary conditions of the unconditioned minimum of 
function (24). They have the form of the following equations: 

0 NN UIR           (27)
or

0)(  CNUINNR TT            (28)
or

  0 CINNUIR T           (29)
Taking into account (2) and (22), we get the equation of the second 
Kirchhoff law (1). Thereby, the unconditional minimization of function 
(24) formally gives the same result as the conditional minimization of 
function (4).

If  , then 0i . This follows from the fact than in an 
electric circuit C the heat loss capacity is being minimized – see the term 

iiT   in (23). Thus, for   the result of unconditional 
minimization of function (24) from I approach the result of conditional 
function (4) of I and   minimization (the condition is the first Kirchhoff 
law). So,

1. Calculation of the electric DC circuit is equivalent to the 
calculation of the corresponding unconditional circuit at  .

2. Calculation of an unconditional circuit is equivalent to 
unconditional optimization of the function (24), when the vector 
of currents I in the branches.

3. The problem of unconditional minimization has dimension m, 
while the problem of conditional optimization has the dimension 
(m+n).

4. The nodes potentials are determined by the formula 
 CIN   .           (30)

Mind that the first Kirchhoff (1.1.2) law is satisfied with a certain error. 

1.1.3. The algorithm of calculation an unconditional electric 
circuit
The existence of global minimum permits us to use the gradient 

descent method for the electric circuit calculation. We shall outline the 
idea of this method for an unconditioned electric circuit. Идею метода 
рассмотрим для безусловной электрической цепи. It consists in the 
following. For given values of vector I its new value is calculated by the 
formula
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1.1. Electric circuits with resistors

paIIn  ,           (31)
where

p– the gradient of vector I,
a – the step along the gradient.

The gradient is:

NN UIRp           (32)
When changing the vector from I to nI  the function (24) changes by the 
value )()( IFIFF n  . Further we have:

n

nTn

n

nn

I
IFp

a
I

I
IF

a
IF

a
F














 )()()(


 .

The optimal value of the step is determined from the condition 

0
a
F




 or 0)(


n

nT

I
IFp




. Thus,

   0 NN
T UpaIRp .

From this we find

pRp
UpIRpa

N
T

N
T

N
T




          (33)

After the transformation (33) taking into account (32) we find:

pRp
ppa
N

T

T




 .          (34)

In this way the iteration process of finding the minimum of function 
(24) permits to find vector I. On each iteration:

 the gradient p is calculated by formula (32) for the given 
vector I;

 the coefficient a is calculated by (33) for given p;
 the new value of vector I is calculated by formula (31).

Iterative process continues till the value 

ppT 2           (35)
reaches a given minimum. Virtually we should strive to the value

N
T
N UU  2 ,          (36)

where 1  is a given value of relative error.

10



 Chapter 1. Linear DC Circuits

1.2. Electric Circuits with Dennis 
Transformers
1.2.1. A Simple Electric Circuit with Dennis Transformers
The electric circuits described below contain DC transformers or 

transformers of instantaneous values. The first who described them was 
Dennis [4]. So below they are called Dennis transformers and denoted as 
TD. Dennis proposed TD as an abstract mathematical construction (for 
interpreting a mathematical theory) and developed the theory of electric 
DC circuits with constant voltage, including TD, resistors, diodes, 
current and voltage sources. However no methods of physical realization 
of TD have been presented.  Due to the technical complexity of such 
implementation the circuits with DC transformers have not been used till 
today. 

TD has primary and secondary windings. Instantaneous values of 
currents and voltages in these windings are interconnected in the same 
way as the effective values of sinusoidal currents and voltages in a 
conventional transformer.  

On Fig 1 TD is portrayed schematically. It comprises two branches - 
a primary branch with current 1i and voltage 1e  and a secondary branch 
with current 2i   and voltage 2e . TD described by the equations: 

021  iti ,           (0а)
012  ete ,           (0в)

where t – transformation coefficient. 

2i

1e 2e

+ +

- -

1i

Fig. 1. Schematic picture of TD.

Out of these equations, it follows that 2211 ieie  , i.e. the power 
supplied by the primary and secondary branches of the TD in the 
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1.2. Electric Circuits with Dennis Transformers

electrical circuit, in the sum give zero - so TD is a passive element. 
Dennis transformer TD can be seen as a node, where the currents are 
summed with weighting coefficients. Thus there is a complete analogy 
with the first Kirchhoff's law for the nodes.

In [3] various versions of physical realization of DT are presented. 
Thus the electric circuits with DT become physically realizable.  

Fig. 2. Special TD matrix.

Let us consider now a special TD matrix – see, for instance, Fig. 2. 
This matrix satisfies the following assumptions:

,
,

3322221122

3312211111
ItItItJ
ItItItJ




.
,

,

2321313

2221212

2121111











ttL
ttL
ttL

12



 Chapter 1. Linear DC Circuits

In the general case let us denote:
j – string number,
k – column number,

kJ  - summary current of all windings  comprising the k- column of 
the matrix,

k   - common voltage on the windings comprising the k- column of 
the matrix, 

jI  - the current of all windings comprising the  j - string of the 
matrix,

je  - summary voltage of all windings comprising the j - string of the 
matrix,

jkt  - transformation coefficient.

Fig. 3. Schematic picture of electric circuit with a special TD matrix

Schematic image of transformers matrix is given on Fig. 3. In the 
general case it is described by the following equations: 

k
k

jkj te   , 
j

jjkk ItJ .

Let us call k-column of the transformers matrix a transformer node. 
As in a simple circuit, an ordinary node can include a current source C 
and a conductivity G. But in addition, the current source and the 
conductivity can also be included in a transformer node. For example, 
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1.2. Electric Circuits with Dennis Transformers

Fig. 2 shows current sources 321 ,, CCC   and conductivities

321 ,, GGG  . In addition to the previous paragraph we shall denote:
Т – transformers matrix with marked strings and columns, 

 k   - Vector of voltages on the columns,
 kii   - vector of currents in the columns conductivities,
 kGG   - vector of columns conductivities,
 kCC   - vector of columns current sources,
 kJJ   - vector of columns currents,
 jee   - vector of strings voltages.

Then

ITJTe T  , (1)
Mind that JIe   , i.e. this transformers matrix is a passive element. 
The first Kirchhoff law for transformer nodes looks as follows: 

iCITT  (2)
The second Kirchhoff law for transformer nodes looks as follows: 

0  TUIRNT (3)
Let us consider a function

i
G

ii
G

iIUIRIiiIF TT 
2
1

2
1

2
1),,( (4)

Let us find the necessary conditions on this function’s optimum with 
constraints of the form (1.2) and (2). They are similar to equations (3). 
Here   is a vector of undetermined Lagrange multipliers for the 
condition (1.2), which appear when the optimized function is 
supplemented by the term  iCINT  . Also here    is a vector of 
undetermined Lagrange multipliers for the condition (2), which appear 
when the optimized function is supplemented by the said term 

 iCITTT  .
Further we have

.1,1, 2

2

2

2

2

2

Gi
F

Gi
FR

I
F














 (5)

It follows that the function (4) has a global minimum. Thus, the 
minimization of the function (4) subject to the constraints of the form 
(1.2) and (2) leads to equations of the second Kirchhoff' law (1). 
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 Chapter 1. Linear DC Circuits

Consequently, the calculation of the DC circuit with Dennis transformers 
is also equivalent to finding the conditional minimum of the function (4).

Let us now take the function





























GG

CC
R

TT

TTT

2
1

2
1

2
1

),( . (6)

Evidently,
  Gi (7)

and Kirchhoff law can be rewritten in the form 

0  TUNT , (8)

  GCITT , (9)
We find necessary conditions for the optimum of this function under 

constraints - equations of Kirchhoff's second law in the form (8). These 
conditions have the form of equations (1.10) and (9), where I is a vector 
of undetermined Lagrange multipliers for the condition (7) that appear 
when the optimized function is complemented by the term 
   TUNI TT .

Further we have:

.,,1
2

2

2

2

2

2
GG

R





















It follows that the function (6) has a global maximum. Thus, the 
maximization of (6) under the constraint in the form of second 
Kirchhoff law (8) leads to equations of the first Kirchhoff's laws equation 
(1.10), (9) and the condition (1.3). Consequently, the calculation of a DC 
circuit is equivalent to finding the conditional maximum of the function 
(6).

Example 1. Linear programming with equality constraints.
Let us consider a special case of an electric circuit when

01,0,0 
G

RN . While calculating such circuit we in fact are 

solving the following problem - see (2), (4):

.min, CITUI TT 

Thus there we are solving a linear programming problem with 
equality constraints. 
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1.2. Electric Circuits with Dennis Transformers

Minimization of the function (4) under the constraint (3) and 
maximizing the function (6) subject to (7) are dual.

Equations of DC circuits with transformers Dennis not always have 
a solution. This follows from the fact that the equation (2) not always has 
a solution.

A circuit with “multi-winding” DT always may be transformed into a 
circuit with DT matrix.

Example 2. “Multi-winding” DT. Let us consider a circuit with 
“multi-winding” DT, shown on the Fig. A. The circuit shown on the 
Fig. B, containing the DT matrix, is equivalent to it. It becomes 
especially clear, if we draw it again in the form of Fig. C.

R7

1

R1

R4

R3

R9

3

2

R2 R8

R5

R6

TD3

TD4

TD5 TD2

TD1

Fig. А.
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 Chapter 1. Linear DC Circuits

5R9 4R8 3R7

2R6 2 2

1 1 1

12 R2

3 R4

R5

R3 R1

Fig. В.
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1.2. Electric Circuits with Dennis Transformers

R1

R2

R3

TD5 TD4 TD3 TD2 TD1

R4

R5

U5

R6

R7

R8

R9

Fig. С.
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 Chapter 1. Linear DC Circuits

1.2.2. Unconditional Electric Circuit with Dennis Transformers
We have already considered unconditional electric circuit. Here we 

shall supplement her with Dennis Transformers and conductivity
/1G , which are included between the base node and each Dennis 

transformer. An example of such inclusions is shown in Fig. 3, where the 
transformer with transformation ratio t is replaced by two transformers 
with transformation ratios  tk 1  and 12 k correspondingly. 
Obviously, titie  )( 121   and )( 122 itie   . Consequently, 

21 ete  .

e2k2=1e1

-i2

i2

k1=t

i1

-t*i1

-i2-t*i1

Fig. 3. Transformer Node

The first Kirchhoff law for ordinary nodes has the form (1.2). The 
first Kirchhoff law for transformer units has the form (2).

Let us consider the optimization problem of the function (4) under 
the constraints (1.2) and (2). In our case (4) takes the following form:

IUiiiiIRIiiIF TTT 
222

1),,(  .          (10)

Substituting (1.2) and (2) in (10), we get

IUIRIIF T
NN

T 
2
1)( ,          (11)

where
 TT

N TTNNRR   ,          (12)

 CTCNUU T
N   .          (13)
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1.2. Electric Circuits with Dennis Transformers

Let us find necessary conditions for the unconditional minimum of 
the function (11). These are the equations of the second Kirchhoff law 
and have the form of equations

0 NN UIR          (14)
or

     0 CITTCINNUIR TT          (15)
The algorithm of calculating the electric circuit with DT is built in 

the same way as the algorithm of p.1.3.
On each iteration:

 the gradient p is calculated by formula (142) for the given 
vector I;

 the coefficient a is calculated by (1.33) for given p;
 the new value of vector I is calculated by formula (1.31).

Iterative process continues till the value 

ppT 2           (16)
reaches a given minimum. Virtually we should strive to the value

N
T
N UU  2 ,          (17)

where 1  is a given value of relative error. Virtually should strive to 
value  2 .

1.2.3. The Transformer Connection of Lines with Nodes
Let us refer to Fig. 4, where a certain AB line with current I is 

connected to node C through a Dennis transformer with a ratio of t. In 
this case, a current t*I flows in the node C, and the potentials   and 
 of the points A and C are connected by the relation   t . We 
assume that all lines of the circuit have such transformer connection to the 
nodes (in the case of a direct connection of the line to the node, we 
assume that there is a connection through a transformer with t = 1), and 
the current sources   H and nodal conductivities G are attached directly 
to the node. Then the first Kirchhoff law for ordinary nodes has the 
form (1.2), where the incidence matrix consists of elements kmt -- 
transformation ratio of the km-transformer connecting the k-line with m-
node. Wherein

 HIN            (16)
and the potentials of the line ends and nodes are related by formula 

  TN .          (17)
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B Linies

H

t*I

t
C

A I

Fig. 4. Transformer connection of line with nodes.

1.2.4. Unconditional electric circuit with transformer matrix
We shall assume that in all ordinary nodes of electric circuits nodal 

resistors   and current sources C  are included, and in all the 
transformer nodes, nodal transformer, resistors   and current sources 
C  are included. Currents flowing through the resistors  , as before, 
will be denoted as ii ,  for ordinary and transormers nodes accordingly. 
Such circuits will be called electric circuits of ordinary type. 

We shall assume that all the ordinary nodes of electrical circuit 
include nodal resistors   and current sourcesC , and all transformer 
nodes include nodal resistors    and current sourcesC . Currents 
flowing through the resistors , as before, will be denoted ii ,  for 
ordinary and transformer nodes, respectively. These circuits will be called 
electric circuits of general form.

Fig. 5 shows an example of a circuit of general form where all nodes 
include node resistors and current sources. In this figure, the letters a, b, 
c denote branches of the transformer matrix strings   and the breaks in 
ordinary branches where the branches of the strings   are inserted. In this 
case the equations (1.2, 2, 10-15) are valid.
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2

1

3

1C 3C

2C

22 ,UR

11,UR 33,UR

t31 t21

t32 t12

t23 t13

J1J2J3

1C

  



 

a

b

c

c

a

b

3I

2I

1I

2  13 

2C3C

1I

2I

3I

Fig. 5. An example of an electric circuit of a general form.
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1.3. Special Electric circuits with 
Dennis Transformers
1.3.1. Dual DC circuits
Consider the particular case of unconditional electric circuit with 

nodal conductivities when  .0,0,0  GCN   In this case in the 
electric circuit function of currents is being minimized

  IUiGiIRIIF TTT  1
2
1

2
1)( . (1)

under the conditions (2.2). At the same time, and the dual problem is also 
solved - the potentials function 

  GC
R

TTT
2
1

2
1),( . (2)

is maximized under condition
0 UT  . (3)

In particular, if 0G , then the primal problem takes the form: 

.0

min,
2
1





CIT

IUIRI

T

T
(4)

If 0R , then the dual problem takes the form:

.0

max,
2
1





UT

CG TT




(5)

It is easy to see that both problems coincide up to notations. So the 
electric circuit  0,0,0,0  GGCN  and the electric circuit 

 0,0,0,0  RGCN  will be called dual. They are shown on Fig. 
1 and Fig. 2 correspondingly.
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T
I

C1

fi

R
U

J=C1

Fig. 1. Electric circuit 1.

T
I

G1 J

C1

fi

U

Fig. 2. Electric circuit 2.
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1.3.2. Two-matrix DC Circuits
Let us consider now an electric circuit including two matrices with 

common branches, which will be denoted as values with one and two 
strokes correspondingly – see Fig. 3. In such circuit the currents are 
distributed in such way that the currents function 

 

    IUiGiiGi

iGiIRIiiiIF

TT

TT





1
2
11

2
1

1
2
1

2
1),,,(

(6)

is minimized under the conditions that are equations of the first 
Kirchhoff law (1.1.2) and

iCIT T  , (7)

iCIT T  , (8)

Fig. 3. Two-matrix electric circuit

At the same time with it the dual problem is also being solved – the 
potentials function 





























GGG

CCC
R

TTT

TTTT

2
1

2
1

2
1
2
1

),,( . (9)

is being maximized under the conditions that are equations of the second 
Kirchhoff law 

0 UTTNT  .           (10)
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1.3. Special Electric circuits with Dennis Transformers

Let us now consider a particular case, when

.1,0,0,0,0,0  GCCGGN
Then from (8) it follows:

iIT T  .            (11)
Further, from (6), (11) we find that in this case the following problem is 
being solved – the currents function 

  IUITTIIRIIF TTT 
2
1

2
1)(            (12)

is minimized under conditions

0 CIT T .            (13)
At the same time with it the dual problem is also being solved – the 
potentials function is being maximized 

  TTTT CC
R 2

1
2
1),,(           (14)

is being maximized under the conditions that are equations of the second 
Kirchhoff law

0 UTT  .           (15)

1.3.3. Unconditional two-matrix circuits
We have considered above an unconditioned electric circuit with 

Dennis transformers. For  1,1,1  GGG  function (6) 
takes the following form:

IUiiiiiiIRIiiiIF TTTT 
2222

1),,,( 
.    (16)

For two-matrix circuit the first Kirchhoff law for ordinary nodes is 
expressed by the equations (1.2), (7), (8). Substituting these equations 
into (16), we get 

IUIRIIF T
NN

T 
2
1)( ,           (17)

where
 TTT

N TTTTNNRR   ,           (18)

 TTTTT
N TCTCNCUU   ,           (19)

Necessary conditions of unconditioned minimum of function (17) 
have the form of equations

       0 CITTCITTCINNUIR TTT .   (20)
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1.4. Mathematical Problems in the 
Linear Electric Circuits
1.4.1. Linear Equations Systems
Consider a one-matrix unconditional circuit, where 











1,0,0 GCN . The minimization problem (1.2.4, 1.2.2) takes the 

form:

.0

min,
22

1





CiIT

IUiiIRI

T

TT 
(1)

The minimization of dual problem (1.2.6, 1.2.8, 1.1.2) takes the form:

0

min,
2
1

2
1





UT

C
R

TTT







(2)

Method 1. Consider the problem (1) for  ,1,0 RU :

.0

min,





CIT

II
T

T
(3)

This problem is equivalent to the solution of linear equations system 

0 CIT T  with respect to the vector of unknowns I  and 

minimization of  square of the Euclidean norm of the vector of unknowns IIT  . 
Thus, the calculation of such circuit is equivalent to the solution of an 
underdetermined linear equations system. 

Method 2. Consider the problem (2) for 0,0  RC :

.0
min,




UT

T


 (4)

This problem is equivalent to the solution of linear equations system 
  TU  with respect to the vector of unknowns    and minimization 

of square of the Euclidean norm of the vector of unknowns  T . 
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Thus, the calculation of such circuit is equivalent to the solution of an 
underdetermined linear equations system. 

Method 3. Consider the problem (1) for 0,0  RU :

.0

min,





CiIT

ii
T

T
(5)

This problem is equivalent to the solution of linear equations system 

.0 CITT  with respect to the vector of   unknowns I  and 

minimization of square of the Euclidean norm of the vector of unknowns ii T  . 
Thus, the calculation of such circuit is equivalent to the solution of an 
overdetermined linear equations system. 

Example 1. Minimization of dispersion. Consider a special case of 
problem (3), when the matrix T  is a vector of unit values, and vector 
I  is a scalar. The calculation of such circuit consist in the solution of 
an overdetermined linear equations system with one variable I , and 
such a value of  I  is determined, for which the components of the 
given vector C  have minimal dispersion.

Method 4. Consider the problem (2) for  ,1,0 RC :

.0
min,




UIT
IIT


          (5a)

This problem is equivalent to the solution of linear equations system 
 TU  with respect to the vector of   unknowns   and minimization 

of square of the Euclidean norm of the vector of unknowns IIT  . Thus, 
the calculation of such circuit is equivalent to the solution of an 
overdetermined linear equations system. 

Method 5. Consider a two-matrix circuit, where



















1,0,0,1

,0,1,0,0,0

TCCG

GGCRN 

Then the dual minimization problem (1.3.25) and (1.3.26) takes the form

.0
min,




UT

T


 (6)
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Problem (6) is equivalent to the solution of linear equations system 
  TU  with respect to the vector of unknowns    and minimization 

of square of the Euclidean norm of the residual  T . Thus, the 
calculation of such circuit is equivalent to the solution of an 
overdetermined linear equations system. 

T
I

G1 J

C1

R

fi

Fig.1. To the calculation by Method 1.
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T
I

G1
J

fi

U

Фиг.2. К расчету по способу 2.

T
I

G1 J

C1

fi

Фиг.3. К расчету по способу 3.
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T
I

G1
J

fi

U
R

Фиг.4. К расчету по способу 4.

T2
I

G2
J2

fi2

U
T1

I

G1
J1

fi1

Фиг.5. К расчету по способу 5.

So, one-matrix circuit  0,1,0  RU  (Method 1, Fig. 1) and 
one-matrix circuit  0,0  RC  (Method 2, Fig. 2) are solving an 
underdetermined linear equations system. One-matrix circuit 
 0,0  RU  (Method 3, Fig. 3), one-matrix circuit  1,0  RC  
(Method 4, Fig. 4) and special two-matrix circuit (Method 5, Fig. 5) are 
solving one and the same overdetermined linear equations system. 

For solving the well-determined linear equations system any of 
above shown methods can be used. 
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1.4.2. Program for Solution of Linear Equations System
Let us use Method 3 and let’s rewrite (5.1.5) in the form:

,01  nCxT T (1)

.min11 nn T (2)

The system (1) may be incompatible, underdetermined or 
overdetermined. We search for a solution corresponding to minimum (2). 
The М-function for solving this problem is:

function [x,eps1,k,n1,mini]=...
anySLAE2(A,B,r,eps2,kmax)

А – the matrix TA   – see (1),
B – the vector  C – see (1),
r – the value  ,
eps2 – the value 2 ,
kmax – maximal iterations number,

The output  values here are:
x – the vector I  – see (2.4, 1),
eps1 – the relative residual value 1 ,
k – iterations number,
n1 – the residuals vector in equation (1),
mini –value of the minimum (2).

The M-functions for test problems looks as:
function test_anySLAE2()

The test includes the solution for various types of systems. For control 
the same system is being solved by MATLAB means. Here the values 
similar to the output values of the function anySLAE2 are computed by 
traditional methods. Parameter mode defines the test's number. Let us 
consider these tests.

1. Well determined small dimension system.  
2. Underdetermined  small dimension system,  
3. Overdetermined  small dimension system,  
4. Overdetermined system for the computation of such vector x, 

with respect to which the components of vector B have 
minimal dispersion.

5. Underdetermined large dimension problem.
6. Overdetermined large dimension problem.
7. Poorly determined small dimension problem. In this case the 

problem cannot be solved by MATLAB means: a message 
"Warning: Matrix is singular to working precision" is displayed.
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1.4.3. Quadratic programming with equality constraints
Consider a special case of two-matrix circuit; when the two-matrix 

scheme has the following form 
 .0,0,0,1,0,0,0  RCCGGGN

In this case the in the process of calculating the electrical circuit we will 
be solving the following problem: the function of currents should be 
minimized – see (1.3.28) and (1.3.29):

  IUITTI TT 
2
1

(7)

under the condition

0 CIT T (8)

If the matrix  TTA T   is a square one, then the problem  is reduced 
to quadratic programming problem in its traditional form: 

.0

min,
2
1





CIT

IUIAI

T

T
(9)

Note that the solution of this problem exists if the matrix А is positive 
definite. The appropriate scheme is depicted on Fig. 6.

Fig. 5. To the quadratic programming problem
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The solution method is associated with the transformation

TTA T  , resulting in definition of matrixT  . In the case when 
matrix А is symmetrical, for such transformation it is possible to use the 
decomposition of LU-matrix on two triangular matrices TU   и 

TTL  . The method of such decomposition is known [38] and will not 
be described here. As the result of such decomposition, the quadratic 
programming problem (23) is also reduced to two one-matrix circuits’ 
calculations.
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Chapter 2. 
Nonlinear DC Circuits

2.1. Electric circuit with diodes
2.1.1. Method of calculation circuits with diodes
For circuits containing resistors, diodes and Dennis transformers in 

[2] it is shown that the DC voltages and currents in these circuits are the 
solution of a quadratic programming problem with inequality constraints. More 
precisely, the minimization of the function (1.2.4) under the constraints 
of the form (1.1.2), (1.2.2) and 0dI  leads to the equations of the 
second Kirchhoff's law (1.2.1), the equations 0dU and the 
complementary slackness condition 0 dd UI . Here dd UI ,  are the 
currents and voltages of the diodes. Next, we consider another approach 
in which the diode is replaced (approximately) the nonlinear resistance 
that allows to replace the specified problem by a convex programming 
problem without restrictions.

By analogy with the previous discussion let us consider an 
unconditioned electric circuit where the minimized function is   

   HINHINEIIRIIF TTT 
22

1)(  ,              (1)

where R is a nonlinear resistor with non-decreasing voltage-current 
characteristic )(I . Let us denote

IRII T 
2
1)(                                                                    (2)

and rewrite (1) as

     HINHINEIIIF TT 
2

)(  .                   (3)

The gradient of currents vector I is
   HINNE
dI
Idp T  

.                                         (4)

For the given values of vector I its new value is calculated by the formula
paIIn  .                                                                        (5)
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When the vector changes from I to nI  the function (3) changes by
)()()( IFIFaF n  . Next we have

n

nTn

n

nn
dI
IdFp

da
dI

dI
IdF

da
IdF

da
Fd )()()(




.
Thus,

  









 EHNIN
dI
Idp

da
Fd T

n

nT 
 )(

.

The optimal value of the step a is determined from 0
da
Fd  [3]: 

    





  EHNINRI
dI
IdpA TT 

,                     (6)

  pNNR
dI
IdpB TT











 

2

2
.                                   (7)

Confining ourselves to first-degree polynomial, we find:

B
Aa 

 .                                                                               (8)

For linear resistors
    R

dI
IdRI

dI
Id

 2

2
, 

. In other cases these 

dependencies become more complicated. Consider for instance the case 
when

IIIII  )1ln(1)1ln()( .                              (9)
Then

   I
dI
Id

 1ln
,                                                          (10)

 
1

1
2

2



IdI

Id  .                                                                 (11)

In particular, we have
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The function 
 
dI
Id

is the volt-ampere characteristic (10) of the 

resistor included in the appropriate branch. Fig. 1 shows the linear 
resistor R, the diode D, quasi-diode qD, a source of constant power P 
and shows their current-voltage characteristics E = E (I) and the 
dependence of the resistance on the current R = R (I). Quasi-diode qD 
has a voltage-current characteristic (10). It reminds voltage-current 
characteristic of the diode – see also (12). With this in mind, consider the 
electric circuit with diodes. There we shall by represent quasi-diodes with 
diodes with nonlinear resistance. Minimization of the function (3) 
corresponds to the calculation.

 
1

1



I

ID .                                                                     (13)

In such a circuit is minimized function (3), which  I
 
is defined by (2) 

for the branches with a linear resistance, and - according to (9) for the 
branches with diodes. Minimization of function (3) corresponds to the 
calculation circuits with diodes.
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Fig 1. Volt-ampere characteristics.
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2.1.2. Program for Calculation of electric direct current circuits 
with diodes
2.1.2.1. Introduction
Below we describe a program of calculating an electric circuit with 

diodes in MATLAB system.

2.1.2.2. Description of electric circuit 
Initially, the electric circuit nodes are numbered in random order. 

Branches electric circuits are determined by the numbers N1 initial and 
N2 end node. A branch may contain a resistance R, a constant voltage 
source U and a diode D. The choice of which of the two nodes to 
designate initial, has value only if the branch contains a diode. The initial 
node is assigned one that is adjacent to the positive pole of the diode. 
Current (defined as a result of the calculation) has a positive direction 
from the initial to the final node.

Description of the electric circuit is an array of B. Each row of the 
array describes one of the branches and has the following form: 

B(k,:)=[N1,N2,R,U,D]
In this case, D=1, if the diode is in the branch, and D=0 otherwise.

In addition, the electric circuit may include current sources, are 
included among the total points and some node. The positive direction 
of current from the source is sending to the node.

Description of current sources is an array following form:
С=[С1,С2,...,СN,...],

where each node N we associate the number of  СN - the current value 
of the current source, or zero if in this node is not a current source.

2.1.2.3. On the nodal current sources
In a real electric circuit current source is included in some branch. To 

bring this electric circuit to the "canonical" form (described above), do 
the following:

o converts the source of the current in a separate branch (not 
containing other elements)

o convert a branch in the two current sources, as in the electric 
circuit shown in Fig. 1 - see the transformation  a--->b.

Obviously, the canonical electric circuit must satisfy the condition
sum(С)=0.
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Fig. 1.

2.1.2.4. Calculation electric circuit
The calculation electric circuit is performed iteratively and the result 

of calculation, as a rule, is approximate. In this case, due to appear 
residuals - the deviation from zero in the equations of Kirchhoff's laws. 
They correspond to the relative error violations of these laws. The 
relative error violations the first law of Kirchhoff defined as the ratio of 
the mean square residuals of the first Kirchhoff's law to the mean square 
of the currents in the branches, and the relative error violations of the 
second law of Kirchhoff defined as the ratio of the mean square residuals 
for the second Kirchhoff's law to the mean square of the voltage on the 
branches (created voltage sources and current sources).

The value of the permissible relative error in violation of the second 
Kirchhoff's law is given by the user.

The number of iterations (i.e. duration of the calculation) and the 
error performance of the first law Kirchhoff adjust the amount of so-
called "methodical" resistance. It makes sense the resistance included 
between each node and a common point. This resistance must be much 
greater than all the resistance branches (not counting reverse resistance 
diodes). The greater this resistance, the higher the accuracy of 
compliance of the first law of Kirchhoff, but the longer the duration of 
the calculations.

2.1.2.5. Programm Description
M-function for the calculation is as follows:
function [i,f,er1,er2,k,p,E,N,y,m]=...

rucd(B,C,r,erd,dmin,dmax,n)
Input arguments here are
B –array of branches (described above),
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C – array of current sources (described above),
r – "methodical" resistance,
erd – permissible given the magnitude of relative error violations of 
the second law of Kirchhoff,
dmin – resistance of the diode for direct current,
dmax  - resistance of the diode for reverse current,
n  - number of nodes.
kmax – allowable number of iterations..

Output values here are
i –an array of current of branches
f –the array of nodal potentials
er1 – relative error violations the first law of Kirchhoff,
er2 – relative error violations of the second law of Kirchhoff,
k – the number of iterations
p –the array of residuals in the branches of the second law of 
Kirchhoff,
E – the array of potential difference between the nodes of branches,
N – the array - incidence matrix,
y – the array of residuals in the nodes of the first law of Kirchhoff,
m – a flag of the result, where
 m=0, if the calculation is made;
 m=1, if the calculation is not carried out due to violations of 

conditions of sum(С)=0; then get a message 
msg=sum(С);

 m=2, if in table nodes met the node number, exceeding a 
specified number of nodes; then get a message is 
msg='greatest number'.

2.1.2.6. Example of a "canonical" form
Fig. 2 shows a simple electric circuit with diodes. Here r – 

methodical resistance, which is absent in the real electric circuit. For this 
electric circuit these arrays are as follows:

B=[1,2,R1,U1,D1;...
   1,3,R2,U2,D2;...   
   2,3,R3,U3,D3];
C=[C1,C2,C3]';
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2.1.2.7. Test
Test M-function

function test()
calculates the electric circuit shown in Fig. 3.

1 2

4 5

Fig. 3.

The presence of certain elements of the branches and sources of current 
determined in the arrays  B,С.
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2.2. Mathematical Problems in 
Electric Circuits with Diodes 
2.2.1. Introduction

As well as for the linear electric circuits, methods of calculation of 
electric circuits with diodes can be used as methods for solving various 
mathematical problems. The following are descriptions of the respective 
programs in the MATLAB system. Note again that this the us of this 
approach, in which the diode is replaced with (approximately) by 
nonlinear resistance, allows us to replace the problem with constraints by 
a convex programming problem without constraints

2.2.2. Program for Solution of Linear Equations and 
Inequalities System
The system to solve is as follows:

0 UxT . (1)
System (1) may be incompatible, underdetermined, overdetermined. 

We are searching for such solution, that corresponds to the minimum 

.min xxT (2)
The M-function for solving this problem has the form:  
function [k,x,er2K,n2eq,n2neq,minf]...

=anySLAE3(A,B,D,r,eps2,kmax)

The input arguments here are:  
А – is the matrix TA   – see (1),
B – vector  U – see (1),
D – the equation type indicators vector: if the m-equation is an 

equality, then 0mD , in the opposite case 1mD ,
r – the value  , 
eps2 – the value 2 ,
kmax – maximal iterations number.

The output arguments here are:  
k – iterations  number,
x – vector potentials  – see (2),
ep2K – the reached value 2 ,
n2eq – vector of residuals in the equalities of (1),
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n2neq – vector of residuals in the inequalities of the (1), which by 
the problem's conditions may have any positive value.  

minf – the minimum value (2).

The M-function for test problems is:
function testqw3

The test may solve various versions of the system.  In some cases for the 
sake of control the same system is solved by MATLAB means. The 
parameter eq  determines the number of such solution method In the 
test parameter  mode determines the test number. Let us consider these 
tests. 

1. Well determined small dimension system. The control is 
performed  according to formula y=A\B.

2. Underdetermined small dimension system. The control is 
performed  according to formula y=A\B.

3. Overdetermined small dimension system. The control is 
performed  according to formula y=A\B.

4. Well determined equalities system(A,B). The control is 
performed  according to formula y=A\B.

5. The inequalities system (A,B), coinciding in its left parts with 
the equalities of the system from p. 4. This system cannot be 
solved by MATLAB means as a quadratic programming problem 
A message "No active inequalities" is displayed.

6. The inequalities system (A,B), coinciding in its left parts with 
the equalities of the system from p. 4. The equality and inequality 
signs may be determined by the user in the vector D. The control 
of this problem by MATLAB means is not performed.

7. Underdetermined inequalities system.  When trying to solve it by 
MATLAB means as a quadratic programming problem a message 
"A must have 2 column(s)" is displayed.

8. Overdetermined inequalities system.  When trying to solve it by 
MATLAB means as a quadratic programming problem a message 
"A must have 6 column(s)" is displayed.

9. Overdetermined system of equalities and inequalities (in its left 
part the same as in p. 8). The vector D is such that the obtained 
solution has large residuals in the equalities.

10. Overdetermined system of equalities and inequalities (in its left 
part the same as in p. 8). The vector D is such that the obtained 
solution has large residuals in the equalities.
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2.2.3. Program for calculation of DC circuits with diodes and 
instantaneous values transformers 
Below we describe this program in MATLAB system. The 

simulating scheme includes:
 nodes,
 branches,
 current sources,
 DT transformers,
 Current sources for DT.

The description of arrays B and C, as well as the description of nodal 
current sources was given above.

Description of the set DT represents matrix in which the rows and 
columns are indicated. Each element of the matrix represents one of the 
transformation coefficients jkt . Each line combines DTs whose 
"primary windings" are connected in series and included in a certain 
branch. Each column of the matrix incorporates DTs, in which the 
"secondary windings" are connected in parallel. In series with such 
column a current source СtN can be included.

The description of current sources СtN presents a specific array of 
the following form: 

Сt=[Сt1,Сt2,...,СtN,...].
Each node N is associated with an appropriate СtN – the value of 
current in the current source, or zero if in those DT columns where there 
is no current source. 

The scheme calculation is performed iteratively, as described above.
M-function for the calculation is as follows:

  function [i,f,er1,er2,k,p,E,N,yN,...
ft,yti,ert,dD,ytf,nuz,m,ki,ro]=...
rucd3(B,C,r,erd,dmin,dmax,n,T,Ct,...
kmax,eri,kimax,io)

Input arguments here are
B –array of branches (described above),
C – array of current sources (described above),
r – "methodical" resistance,
erd – permissible given the magnitude of relative error violations 

of the second law of Kirchhoff,
dmin – resistance of the diode for direct current,
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dmax  - resistance of the diode for reverse current,
n  - number of nodes.
T – DT array,
Ct – array of current sources in DT columns, 
kmax – permissible number of iterations, 
eri –given value of permissible relative error for violation of the 

first Kirchhoff law, 
kimax - permissible number of cycles for increasing the 

"methodical" resistance,
io – initial value of   currents in branches.

Output values here are
i –an array of current of branches
f –the array of nodal potentials
er1 – relative error violations the first law of Kirchhoff,
er2 – relative error violations of the second law of Kirchhoff,
k – the number of iterations
p –the array of residuals in the branches of the second law of 
Kirchhoff,
E – the array of potential difference between the nodes of branches,
N – the array - incidence matrix,
yN - array of residuals in the nodes according to the first Kirchhoff 

law,
ft – array of voltages on the DT columns,  
yti – array of residuals on the DT columns according to the first 

Kirchhoff law,
ert – array of residuals in the branches according to the second 

Kirchhoff's law,
dD – array of diode resistors (equal to the maximum or minimum 

value),
ytf - array of voltages on the DT lines, 
nuz – the found number of nodes (see message below  m=2),
ki – number of cycles for increasing the "methodical" resistance
ro – the final value of  "methodical" resistance 
m – a flag of the result, where
 m=0, if the calculation is made;
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 m=1, if the calculation is not carried out due to violations of 
conditions of sum(С)=0; then get a message 
msg=sum(С);

 m=2, if in table nodes met the node number, exceeding a 
specified number of nodes; then get a message is 
msg='greatest number'.
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Fig. 2 presents a simple electrical circuit. Here r is the methodical 
resistance that is absent in the actual circuit. For this circuit, these arrays 
are as follows:

B=[1,2,R1,U1,D1;...
   1,3,R2,U2,D2;...   
   2,3,R3,U3,D3];

  T=[t31,t21,t11;
     t32,t22,t12;
     t33,t23,t13];

C=[C1,C2,C3]';
Ct=[Ct1,Ct2,Ct3]';

The test М-function function testrucd3()performs 
the calculation  of the circuit shown on Fig. 2.

2.2.4. Quadratic Programming 
The following describes the program for solving Quadratic 

Programming Problems  in MATLAB.
2.2.4.1. The First Problem of Quadratic Programming 
Consider the following problem.. To find minimum of the function

xUxRxxF TT  5.0)( (1)
under the restraints

0 CxTT , (2)
0x , (3)

where
T  is a superscript - the transposition sign,

UCx ,,  - k -dimensional vectors,
T  - mk  matrix
R  - a kk   square positive definite matrix    

The unknown variable here is vector   x .  The equations set (2) must 
not be empty. The constraint (3) may relate only to certain variables, or 
not exist at all. Further in this problem we shall use vector D – the 
equation type indicator in (3): if an m-equation is an equality, then 

0mD , in an opposite case 1mD .
The solution method is based on movement along the gradient of the 

minimized function (1). The computation is going in iterations, and the 
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result as a rule is approximate. As a result there appear residuals in the 
equations (2, 3). The relative residual in the equation (2) is determined as

    xxCxTCxT TTTT  . (4)

The permissible value of this residual max  is given by the user. 
The number of iterations (i.e. the computation time) and the value 

max  are regulated by the value  . The larger is the value  , the less is 
the value max , but the longer is computation time. 

The M-functions for this problem solution is:   
function [x,n1,k,ero,Fmin,...

kk,erok,Fmink,xx]=...
squ2 (R,T,C,U,D,r,erd,kmax)

The input  arguments here are:
R,T,C,U, D – matrices and vectors defined in    (1, 2),
r – the value  , 
erd - the value max ,
kmax – maximal iterations number,

The output  arguments here are:
x – the unknown vector,
n1 – the vector of residuals in the equations (2),
k – iterations number,
ero – value of relative residual  ,
Fmin – minimum of the function (1).

The following output values are used for creating the graphs: 
kk – the vectors of iterations numbers,
erok  - the vector of relative residuals      in each iteration,
Fmink – the vector of function (1)  minimum value on each 

iteration,   
xx  - the matrix of  x vectors on each iteration.

2.2.4.2. The Second Problem of Quadratic Programming  
Let us consider now the following problem. We are searching for the 

minimum of function (1) 

11111 5.0)( xUxRxxF TT  (5)
under the restraints

49



2.2. Mathematical Problems in Electric Circuits with Diodes

0111  CxTT . (6)
Here the unknown variable is vector 1x .  The set of equations (6) 

should not be empty. The sign " " in (6) may refer only to certain 
equations, and in the remaining equations it may be replaced by the sign 
of strict equality.  Further in this problem we shall use the vector   1D  – 
the equation type indicator in (6): if m-equation is an equality, then 

01 mD , and in the opposite case 11 mD .

The second problem may be transformed into first problem in the 
following way. We shall present the restraint (6) in the form

02111  xCxTT , (7)
02 x . (8)

Let us consider the  vector











2

1
x
x

x (9)

and rewrite the formulas (5, 7, 8) in the form (1, 2, 3) accordingly, where











QQ
QR

R
12

211 , (10)












E
T

T 1 , (11)











uV
U

U 1 , (12)

1CC  , (13)











1D
V

D d , (14)

E  identity matrix, 

2112 ,, QQQ  - zero vectors,

du VV ,  - zero vectors
The M-function for the transformation of the second problem into 

the first problem has the form: 
function [R,T,U,C,D]=squ21(R1,T1,U1,C1,D1)
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2.2.4.3. Test for the First Problem
The M-function function testsqu2() solves the first 

problem for a two-dimensional vector x.  here we are building the graphs 
shown on Fig. 1, where

o the window  'Error (testsqu2)' shows the error  
change depending on iteration number   ,

o   the window  'Log of error' shows the error  ln  
change depending on iteration number.

o the window  'Minimum' shows the function (1) change 
depending on iteration number.

Let us consider the two-dimensional vector x as a point on the plane. 
The window 'Trajectory' shows the movement of this point with 
iteration number growth beginning from the initial point (0, 0) to the final 
point – the problem's solution.
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2.2.4.4. Test for the Second Problem
The M-function function testsqu4() solves the second 

problem for a four-dimensional vector x. Here the graphs shown on 
Figure 2 are built, where

o the window  'Error (testsqu2)' shows the error   
change depending on iteration number   ,

o the window  'Log of error' shows the error  ln  
change  depending on the iteration number,

o the window  'Minimum' shows the function (1) change 
depending on iteration number,

o the window 'Trajectory' shows the change of four 
components of vector x with iteration number growth beginning 
from the initial value   (0) to the final point, that is the problem's 
solution.
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function 
[i,erTi,k,n1,mini]=anySLAE2(A,B,r,erd,kmax)
% A*x-B=0
dmin=0.001;
dmax=10000;
    T=A';
    Ct=-B;
    raz=size(T);
for k=[1:1:raz(1)]
    D(k) =0;
    U(k) =0;
    R(k,k) =0;
end
[k,er1K,er2K,erTi,i,ft,n1,yTf,minf,mini]=eqfi(T
,Ct,U,D,r,erd,dmin,dmax,kmax,R);

function  [m_x, m_eps1, m_n1, m_minx, 
tmatlab]=anySLAE2m(A,B)
%
tic;
m_x=A\B
sm_x=size(m_x);
tmatlab=toc;
m_n1= A*m_x-B;
sm_n1=size(m_n1);
m_minx=sum(m_n1.^2);
a=sqrt(sum(m_n1.^2)/sm_n1(1));
b=sqrt(sum(m_x.^2)/sm_x(1));
m_eps1=a/b;

function 
[k,ft,er2K,n2strogo,n2nestrogo,minf]...
=anySLAE3(A,B,D,r,erd,kmax)
% A*x-B=0
dmin=0.001;
dmax=r;
            U=B;
            T=A;
            rt=size(T);
                for m=[1:1;rt(2)] Ct(m)=0; end
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                Ct=Ct';
            for m=[1:1;rt(1)]
                R(m,m)=0;
            end
 [k,er1K,er2K,erTi,i,ft,yt,yTf,minf,mini,p]=...
eqfi(T,Ct,U,D,r,erd,dmin,dmax,kmax,R);
n2=yTf-U;
n2nestrogo=n2.*D';
rD=size(D);
                for m=[1:1:rD(2)]  
                    if D(m)==0
                        DD(m)=1; 
                    else
                        DD(m)=0; 
                    end
                end
n2strogo=n2.*DD';

function 
[k,er1K,er2K,erTi,i,ft,yTi,yTf,minf,mini,p]...
=eqfi(T,Ct,U,D,r,erd,dmin,dmax,kmax,R)
%
raz=size(T);
for k=[1:1:raz(1)]
    B(k,:) =[ 0,0, R(k,k),  U(k),  D(k)];
end
C=0;
n=0;
[i,f,er1K,er2K,k,p,Un,N,yN,m,ft,yTi,erTi,dD,...
yTf]=rucd2(B,C,r,erd,dmin,dmax,n,T,Ct,kmax);
minf=ft'*ft;
mini=yTi'*yTi;

function figi(kk,erok,Fmink,ii,tit,m)
% 
s=size(ii);
subplot(2,2,1); p1=plot(kk,erok,'r');
set(p1,'LineWidth',3)
title(tit);
grid on;
if m==4
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%subplot(2,2,2);   
%plot(ii(1,:),ii(2,:),'b',ii(1,:),ii(3,:),'k',   
     %ii(1,:),ii(4,:),'r');
    subplot(2,2,2);
    p2=plot(kk,ii(1,:),'b',kk,ii(2,:),'k',...
            kk,ii(3,:),'r',kk,ii(4,:),'c');
    ylabel('x1,x2,x3,x4');
elseif m==2
    subplot(2,2,2); 
p2=plot(ii(1,:),ii(2,:),'b');
    ylabel('x2');
    xlabel('x1');
end
set(p2,'LineWidth',3)
title('Trajectory');
grid on;
subplot(2,2,3); p3=plot(kk,log(erok),'r');
set(p3,'LineWidth',3)
title('Log of error');
xlabel('Iter');
grid on;
subplot(2,2,4); p4=plot(kk,Fmink,'k');
set(p4,'LineWidth',3)
title('Minimum');
xlabel('Iter');
grid on;

function [N,nuz] = makingN(branch)
% the creation of the incidence matrix
% b = begN, endN
    raz=size(branch);
    nb=raz(1);
    uz = 0;
    k = 1;
    while k <= nb
        a = branch(k,1);
        if a > uz  
            uz = a;
        end
        b = branch(k,2);
        if b > uz  
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            uz = b;
        end
        if a > 0 
            N(a , k) = -1;
        end
        if b > 0 
            N(b , k) = 1;
        end
        k = k + 1;
    end
    nuz=uz;
    n=size(N);
    nuz2=n(1);
    if nuz==nuz2
    else
        nuz
        nuz2
        msg='Numbers of Nodes?'
    end

function [R,U,D] = makingRU(branch)
%  R,U,D from branches
%  b = begN,endN,R,U,D
    raz=size(branch);
    nb=raz(1);
    uz = 0;
    k = 1;
    while k <= nb
        R(k,k) = branch(k,3);
        U(k) = branch(k,4);
        D(k) = branch(k,5);
        k=k+1;
    end
    U=U';

function [i,k,er2K,p,dD]=...
min2_4_3(Rn,Un,erd,D,dmin,dmax,kmax)
%  min function (1.1.24)
i=0*Un;
nUn=sum((Un).^2);
if nUn==0
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    nUn=erd;
end
er2K=999;
raz=size(i);
k=0;
while er2K>erd && k<kmax
    k=k+1;
    [mui1,mui2]=Rdiod(i,D,dmin,dmax);
    p=mui1'+Rn*i-Un;
    np=sum((p).^2);
    er2K=sqrt(np/nUn);
    if er2K==0
        break;
    end
    m2=diag(mui2);
    a=p'*p/(p'*(m2+Rn)*p);
    ap=a*p;
    i=i-ap;
end
dD=mui1;

function 
[i,k,p,dD,kk,erok,ero,ogr,Fmin,Fmink,ii]...
= min2_4_300(Rn,Un,erd,D,dmin,dmax,kmax,T,C)
%  min function (1.1.24)
i=0*Un;
nUn=sum(Un.^2);
if nUn==0
    nUn=erd;
end
ero=999;
raz=size(i);
k=0;
while ero>erd && k<kmax
    k=k+1;
    if k==1
        ii=i;
    else
        ii=[ii,i];
    end
    kk(k)=k;
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    [mui1,mui2]=Rdiod(i,D,dmin,dmax);
    p=mui1'+Rn*i-Un;
    m2=diag(mui2);
    a=p'*p/(p'*(m2+Rn)*p);
    ap=a*p;
    i=i-ap;
    for j=[1:1:raz]
        if D(j)==1 && i(j)<0
            i(j)=0;
        end
    end
    ogr=T'*i+C;
    ogr2=ogr'*ogr;
    ei=i'*i;
    ero=sqrt(ogr2/ei);
    erok(k)=ero;
    Fmin=0.5*i'*Rn*i-Un'*i;
    Fmink(k)=Fmin;
end
dD=mui1;

function [f,i,k,er,erk,p,Un]=...
nocondel(R,ro,N,U,C,erd,D,dmin,dmax,kmax)
% basic calculations
Rn=R+ro*N'*N;
Un=U-ro*N'*C;
 [i,k,er,p]=...
    min2_4_3(Rn,Un,erd,D,dmin,dmax,kmax);
f=ro*(N*i+C);
raz=size(N); 
nf=sum(f.^2)/raz(1);
ni=sum(i.^2)/raz(2);
erk=sqrt(nf/(ro*ro*ni));

function [f,i,k,er2K,er1K,p,Un,ft,erTi,mui1]...
=nocondel2(R,ro,N,U,C,erd,D,dmin,dmax,...
T,Ct,kmax)
% basic calculations
Rn=R+ro*(N'*N+T*T');
Un=U-ro*(N'*C+T*Ct);
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 [i,k,er2K,p,mui1]=min2_4_3  
(Rn,Un,erd,D,dmin,dmax,kmax);
f=ro*(N*i+C);
ft=ro*(T'*i+Ct);
razi=size(i);
razf=size(f);
nf=sum(f.^2)/razf(1);
ni=sum(i.^2)/razi(1);
if ni==0
    er1K=0;
    erTi=0;
else
    er1K=sqrt(nf/(ro*ro*ni));
    razft=size(ft) ;
    nft=sum(ft.^2)/razft(1);
    erTi=sqrt(nft/(ro*ro*ni));
end

function [mui1,mui2]=Rdiod(i,D,dmin,dmax)
% resistance of diodes
    %if D==0
        %mui1=0;mui2=0;
        %return;
    %end
n=size(i);
n=n(1);
k=1;
while k<=n
    if D(k)==1
        if i(k) >0
            mui1(k)=dmin*i(k);
            mui2(k)=dmin;
        else % i(k) =<0
            mui1(k)=dmax*i(k);
            mui2(k)=dmax;
        end
    else
        mui1(k)=dmin*i(k);
        mui2(k)=dmin;
    end
    k=k+1;
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end

function [i,f,er1,er2,k,p,E,N,y,m] 
=rucd(b,C,ro,erd,dmin,dmax,n,kmax)
% main function
if sum(C)==0
    m=0;
else
    m=1;
    msg=sum(C)
    i=0;f=0;er1=0;er2=0;k=0;p=0;E=0;N=0;y=0;
    return
end
[N,nuz] = makingN(b);
if nuz>n
    m=2;
    msg=nuz 
    i=0;f=0;er1=0;er2=0;k=0;p=0;E=0;N=0;y=0;
    return
end
[R,U,D] = makingRU(b);
[f,i,k,er2,er1,p,E]=nocondel(R,ro,N,U,C,erd,D,d
min,dmax,kmax);
y=f/ro;

function 
[i,f,er1K,er2K,k,p,Un,N,yN,m,ft,yTi,erTi,dD,yTf
]=rucd2(b,C,ro,erd,dmin,dmax,n,T,Ct,kmax)
%  main function
if sum(C)==0
    m=0;
else
    m=1;
    msg=sum(C)
    i=0;f=0;er1K=0;er2K=0;k=0;p=0;...
    E=0;N=0;y=0;m=0;ft=0;yt=0;erTi=0;mui1=0;
    return
end
N=0;
[R,U,D] = makingRU(b);
[f,i,k,er2K,er1K,p,Un,ft,erTi,dD]=...
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nocondel2(R,ro,N,U,C,erd,D,dmin,...
dmax,T,Ct,kmax);
yN=f/ro;
yTi=ft/ro;
yTf=T*ft;

function [i,ogr,k,ero,Fmin,kk,erok,Fmink,ii]...
         =squ2(R,T,C,U,D,r,erd,kmax)
%F=0.5*x'*R*x-U'*x --->min, T'*x+C=0, x.*D>=0
dmin=0.001;
dmax=10000;
Rn=R+r*T*T' ;
 Un=U-r*T*C;
 [i,k,p,dD,kk,erok,ero,ogr,Fmin,Fmink,ii]=...
 min2_4_300 (Rn,Un,erd,D,dmin,dmax,kmax,T,C);

function [R,T,U,C,D]=squ21(R1,T1,U1,C1,D1)
% 
  Q=0*diag(C1);
  Q21=0*T1;
  Q12=0*T1';
  R=[R1,   Q21;
  Q12, Q];
  U=[U1;0*C1];
  E=diag(0*C1+1);
  T=[T1', -E]';
  D=[0*U1;D1];
  C=C1;

function test()
% B: begN, endN, R, U, D
B(1,:) =[ 2,1, 10,    0,      0];
B(2,:) =[ 2,3, 20,    0 ,     0];
B(3,:) =[ 3,4, 30,    -230,   0];
B(4,:) =[ 4,1, 40,    22 ,    0];
B(5,:) =[ 1,3, 50,    0,      1];
B(6,:) =[ 2,4, 60,    0,      1];
C=1*[0,3,-2,-1]';
dmin=0.001;
dmax=10000;
r=100000;
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erd=0.0001;
n=4;
[i,f,er1,er2,k,p,E,N,y,m]=...
        rucd(B,C,r,erd,dmin,dmax,n);
er1
er2
k
m

function test_anySLAE2()
% A*x-B=0
mode=3;
kmax=10000;
    r=100000;
    erd=0.001;
if mode==1 % 1=ravno
    A=[1,1,9;  2,4,7; 1,0,5];
    B=[1.5,1,3]';
elseif mode==2 % 2=under
    A=[1,1,0,0,1,-1;
          1,0,1,2,0,3];
    B=[1.5,1]';
elseif mode==3 % over
    A=[1,1,0,0,1,-1;
        1,0,1,2,0,3]';
    B=[1.5,1,7,8,9,2]';
elseif mode==4 % 4=over=dispersion
    A=[1,1,1,1,1,1]'
    B=[1,2,3,-4,5,6]';
elseif mode==5 % 5=under=mnogo
    erd=0.0000001;
    m=229;
    T1=[1:1:1+m]';
    T2=[100:1:100+m]';
    A=[T1,T2]';
    B=[1.5,1]';
elseif mode==6 % 6=over=mnogo
    m=125;
    T1=[1:1:1+m];
    T2=[100:1:100+m];
    A=[T1;T2]';

64



Programs

    B=[1:1:1+m]';
elseif mode==7 % 7ravno, Matrix is singular to 
working precision
    A=[1,1,9;  2,2,18; 1,0,5];
    B=[1.5,1,3]';
end
tic
[x,eps1,k,n1,minx]=anySLAE2(A,B,r,erd,kmax)
tmy=toc;
[m_x, m_eps1, m_n1, m_minx, 
tmatlab]=anySLAE2m(A,B)

function testqw3()
% B: beg, end, R, U, Diod
kmax=10000;
dmin=0.001;
dmax=1000000;
r=100000;
erd=0.0001;
mode=10;
if mode==1 % 1=ravno
    eq=0;
    A=[1,1,9;  2,4,7; 1,0,5];
    B=[1.5,1,3]';
    D=[0,0,0];
elseif mode==2 % 2=under
    eq=0;
    A=[1,1,0,0,1,-1;
          1,0,1,2,0,3];
    B=[1.5,1]';
    D=[0,0];
elseif mode==3 % over
    eq=0;
    A=[1,1,0,0,1,-1;
          1,0,1,2,0,3]';
    B=[1.5,1,7,8,9,2]';
    D=[0,0,0,0,0,0];
elseif mode==4 % 1=ravno
    eq=1;
    A=[1,1,9;  2,4,7; 1,0,5];
    B=1000*[1,1,1]';
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    D=[0,0,0]; % 0,0,0; 0,1,0; 1,1,0; 1,0,0;
elseif mode==5 % "No active inequalities"
   eq=2;
   A=[1,1,9;  2,4,7; 1,0,5];
   B=1000*[1,1,1]';
   D=[1,1,1]; % 1,1,1; 0,0,1; 0,1,1; 1,0,1;
elseif mode==6 % Bez proverki
   eq=99;
   A=[1,1,9;  2,4,7; 1,0,5];
   B=1000*[1,1,1]';
   D=[0,0,1]; % 1,1,1; 0,0,1; 0,1,1; 1,0,1;
elseif mode==7 % 7=2=under "A must have 2 
column(s)" MATLAB trebuet kwadratnuu matrizu
    eq=3;
    A=[1,1,0,0,1,-1;
          1,0,1,2,0,3];
    B=[1.5,1]';
    D=[1,0];
elseif mode==8 %8=3 % over "A must have 6 
column(s)" MATLAB trebuet kwadratnuu matrizu
    eq=4;
    A=[1,1,0,0,1,-1;
          1,0,1,2,0,3]';
    B=-[1.5,1,7,8,9,2]';
    D=[1,1,1,1,1,1];
elseif mode==9 %8=3 % over ploho
    eq=99;
    A=[1,1,0,0,1,-1;
          1,0,1,2,0,3]';
    B=[1.5,1,7,8,9,2]';
    D=[0,1,0,1,0,1];
elseif mode==10 %8=3 % over horosho
    eq=99;
    A=[1,1,0,0,1,-1;
          1,0,1,2,0,3]';
    B=[1.5,1,7,8,9,2]';
    D=[1,1,0,1,0,1];
end
[k,ft,er2K,n2strogo,n2nestrogo,minf]=anySLAE3(A
,B,D,r,erd,kmax)
 

66



Programs

             if eq==0   
                 y=A\B   
             elseif eq==1 % D=0
                Beq=B;
                Aeq=A;
                A=[];
                B=[];
                x0=[0;0;0];
                [x,fval] = 
fmincon(@myfun2,x0,A,B,Aeq,Beq)
            elseif eq==2 % D=1
                x0=[0;0;0];
                %x0=[80;-90;180];
                [x,fval] = 
fmincon(@myfun2,x0,A,B)
           elseif eq==3 % D=1
                x0=[0;0];
                [x,fval] = 
fmincon(@myfun2,x0,A,B)
           elseif eq==4 % D=1
                x0=[0;0;0;0;0;0];
                [x,fval] = 
fmincon(@myfun2,x0,A,B)
             end
return
%  X = FMINCON(FUN,X0,A,B,Aeq,Beq) minimizes 
FUN subject to the linear 
%    equalities Aeq*X = Beq as well as A*X <= 
B. (Set A=[] and B=[] if no 
%    inequalities exist.)

function testrucd3()
%
R1=11;
R2=12;
R3=13;
U1=100;
U2=0;
U3=0;
D1=0;
D2=1;
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D3=0;
C1=-2;
C2=0;
C3=2;
Ct1=-0.1;
Ct2=0;
Ct3=0;
T=[ 1,0,0;
       2,0,0;
       0,0,0];
B=[1,2,R1,U1,D1;...
   1,3,R2,U2,D2;...   
   2,3,R3,U3,D3];
C=[C1,C2,C3]';
Ct=[Ct1,Ct2,Ct3]';
nodes=3;
dmin=0.01;
dmax=1000;
ro=1350;
erd=0.01;
eri=0.01;
kmax=9900;
kimax=8;
io=0;
[i,f,er1,er2,k,p,Un,N,yN,ft,yTi,erTi,dD,yTf,nuz
,m,ki,ro]=...
    rucd3 (B,C,ro,erd,dmin,dmax,nodes, 
T,Ct,kmax,eri,kimax,io);
nuz;
m;
i
f
ft
er1_er2=[er1,er2]
k_ki_ro=[k,ki,ro]

function testsqu2()
% 
% x=[1,2]'
%  F=0.5*x'*R*x-U'*x --->min,  T'*x+C=0, 
x.*D>=0
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dmin=0.001;
dmax=10000;
r=100000;
erd=0.01;
kmax=515;
L=[1,2;
      0,1];
  R=L*L';
  T=[3,5;
     -2,-3]';
  C=-[7,8]';
  U=[1,3]';
  D=[0,1]';
[i,ogr,k,ero,Fmin,kk,erok,Fmink,ii]=squ2(R,T,C,
U,D,r,erd,kmax);
ii
ogr
ero
k
Fmin
figi(kk,erok,Fmink,ii,'Error (testsqu2)',2);

function testsqu4()
% 
% x1=[1,2,3,4]'
% x2=[1,2]'
% F=0.5*x1'*R1*x1-U1'*x1 --->min, 
% (T1'*x+C1).*D1>=0
dmin=0.001;
dmax=10000;
r=100000;
erd=0.01;
kmax=60000;
L=[1,0,2,0;
   0,5,0,1;
   0,4,0,2;
   0,0,1,1];
  R1=L*L';
  T1=[3,4,5,6;
     -1,-2,-3,-4]';
  C1=-[7,8]';
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  U1=[1,0,3,-1]';
  D1=[1,0]';
  [R,T,U,C,D]=squ21(R1,T1,U1,C1,D1);
%  F=0.5*x'*R*x-U'*x --->min, 
%  T'*x+C=0, x.*D>=0
[i,ogr,k,ero,Fmin,kk,erok,Fmink,ii]...
=squ2(R,T,C,U,D,r,erd,kmax);
i
ogr
ero
k
Fmin
figi(kk,erok,Fmink,ii,'Error (testsqu4)',4);
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