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ABSTRACT  

Water losses are one of the main consequences of infrastructure failures in water distribution              
networks (WDNs). While background leakages and pipe bursts in well maintained systems            
generally amount to only 3-7% of the total water supplied, they can account for more than 50%                 
for poorly maintained WDNs worldwide (Puust et al., 2010). Methods that support prompt             
detection and accurate localization of leakages are crucial to help water utilities implement             
timely mitigation measures and avoid unnecessary loss of water. Beyond the direct effect on              
reducing water losses, effective leakage management strategies can avoid revenue losses and            
other undesired effects, including contaminant infiltration, property damage, and WDN          
inefficiencies. 
Several works in the literature proposed approaches for leakage detection and localization.            
However, the ongoing digitalization of urban water systems (Makropoulos and Savic, 2019;            
Stewart et al., 2018), along with the development of distributed sensor networks and improved              
real-time communication, are fostering the development of a new generation of on-line,            
data-driven leakage identification methods that process data stored in the supervisory control and             
data acquisition (SCADA) system in real-time. A lack of studies that comparatively analyze and              
benchmark different leak identification and localization methods has culminated in the           
organization of the Battle of the Leakage Detection and Isolation Methods (BattLeDIM 2020;             
Vrachimis et al., 2019). The BattLeDIM is an international competition organized for the             
purpose of comparing the performance of different leakage detection and localization methods            
based on time-to-detection and location accuracy. 
This research develops a high-resolution pressure-driven method for leakage identification and           
localization in WDNs and tests the approach using the benchmark dataset provided as part of the                
BattLeDIM. Our method is composed of two modules that operate sequentially. The first module              
performs leakage event identification. Our leakage identification algorithm processes the          
pressure from SCADA data observed at different sensor nodes in a WDN and identifies time               
history of leakage events by analyzing pressure differences between pairs of nodes. The model is               



trained using pressure data observed for a “normal” time period, i.e., a period without leak events                
occurring in the WDN. Leakages are then detected through the assessment of node pressure              
differences on a time series that potentially includes one or more simultaneous leak events. The               
reconstruction error from the model is analyzed to detect the anomalies, i.e., the leakages, in the                
observed WDN. The model can be recalibrated to include each newly detected leak into the               
“normal” situation, enabling it to detect overlapping leakage states. At the same time,             
conventional mass balance considerations are included where demand information is present to            
support leakage identification and characterization. This enables experts to identify leak           
occurrences on a 5 min resolution and monitor its development over time.  
To demonstrate the functionality of the leakage identification algorithm, two examples are            
chosen to illustrate different scenarios (see Figures 1 and 2). For better visualization, the              
presented signals are denoised by moving average, considering an averaging period of 1 day. The               
first example, further referred to as Burst, represents a scenario where a pipe burst is detected.                
The state change observed in Figure 1 can be identified as a clear rupture in the reconstruction                 
error signal which occurs at the time step indicated by the red dashed line. Considering the signal                 
delay of 1 day due to the moving averaging, an immediate new and stable state is reached at a                   
consistent level of the reconstruction error. Moreover, it can be observed that the leak is fixed at                 
a later time (green dashed line), as the system returns to its previous state. 

 
Figure 1: Model reconstruction error for the identification of a sample Burst (blue line). The shaded red area                  
represents the time of occurrence of the leak. The estimated start and end of the leak are represented with dashed red                     
and green lines, respectively. 

Contrary to the rupture caused in the Burst scenario, holes in pipe walls might grow in size                 
slowly and entail a rather smooth transition to a leakage state. This may be observed for the                 
following scenario, further referred to as Transient leak (Figure 2). 



 
Figure 2: Model reconstruction error for the identification of a sample Transient leak (blue line). The shaded red                  
area represents the time of occurrence of the leak. The estimated start and end of the leak are represented with                    
dashed red and green lines, respectively. 

The model reconstruction error in Figure 2 shows this transition as a transient growth process.               
Consequently, the start of the growth process is not as evident as for a Burst. In this case, an                   
expert-based analysis of the reconstruction error is needed in our method to estimate the start               
time of the leak. The growth process reaches a final state at which growth stops. This final state                  
indicates that the considered hole in the pipe wall has stopped growing, possibly due to reaching                
the size of the pipe diameter. Finally, a fix is also visible for this example (dashed green line),                  
after which the system returns to its normal state. 
The leakage annotations from the leakage identification module are then used by the second              
module of our proposed method, which performs leakage localization. The          
simulation-optimization framework developed in Berglund et al. (2017) is adapted to locate            
leakages by the application of an iterative mixed-integer linear programming (MILP), which            
minimizes the absolute differences between observed (SCADA) and hydraulic model simulated           
pressure values reported at the sensors. To incorporate seasonal demand variation in the             
hydraulic model, the base demands and demand patterns (for one full year) are updated in the                
input file based on AMR readings present in DMA C. Figure 3 shows the annual consumption                
reported by AMR data and the modeled demand before and after editing the base demands and                
the consumption pattern multipliers. The framework relies on the pressure response of a set of               
candidate pipes when a fixed leak value is inserted at the center of each candidate pipe. The                 
candidate pipes are selected based on the pressure drop reported by the sensors, and candidate               
pipes are included in a search area located around the most affected sensor. In case the selection                 
of candidate pipes does not include the real pipe, the output of the model reports the pipe closest                  
to the true leaking pipe. Figure 4 shows, as an example, the candidate pipes location for the Burst                  
and Transient leak events identified on the first stage of the procedure. The set of candidate pipes                 
does not vary across each simulation-optimization run. A series of linear constraints are applied              
to ensure that a solution is identified that yields the estimated leak magnitudes that minimize the                
pressure error reported from the set of candidate pipes. 



Two challenges were identified for the localization step. The first one is related to the candidate                
pipes selection, which is a key input of the optimization model. To address this issue, we relied                 
on the assumption that the most affected pressure sensor should be located closest to the leak.                
Based on that, we explore several options for the pipes surrounding the most affected pressure               
sensor. Second, as pointed out by Berglund et al. (2017), the iterative MILP method is suitable                
for error-free data, and for this application, we needed to match the output of the hydraulic model                 
with the SCADA data. However, as data at the node-level is available only for one district of the                  
network, we are assuming that the rest of the nodes have a similar consumption pattern to that                 
observed in DMA C. 

 
Figure 3: Daily water demand reported by AMR data aggregated at the district level over a year. (Blue) Original                   
demand from SCADA data. (Orange) Updated demand of the WNTR hydraulic model, with edited base demand and                 
pattern multipliers for a time horizon of one year. (Green) Original demand of the WNTR hydraulic model. 



 
Figure 4: Candidate pipes (cyan) shown for the identified (a) Burst and (b) Transient leak events based on the most                    
affected pressure sensor. 

Our pressure-driven method for leakage identification and localization is tested on the SCADA             
data provided for the benchmark WDN of L-Town (BattLeDIM, 2020). L-Town is a             
medium-sized network featuring two reservoirs that supply water to a network with pipes             
developing for a length of 42.6 km, 782 junctions, 1 water tank, 1 pump, and 3 pressure                 
reduction valves. Thirty-three pressure sensors and 82 Automated Meter Reading (AMR) sensors            
provide demand and pressure information to the SCADA system with a sampling frequency of 5               
minutes. SCADA data for the L-Town WDN are provided for 2018 and 2019, along with               
ground-truth labeled leakage locations and fixes for 2018. Preliminary experiments show that our             
pressure-driven method can promptly detect and localize most of the labeled leakages for 2018.              
The absence of minimum requirements regarding the temporal frequency of pressure and            
demand data sampling makes it suitable for real-time applications. 
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SUMMARY 
Water losses are one of the main consequences of infrastructure failures in water distribution              
networks (WDNs), accounting for more than 50% in some WDNs worldwide. Methods that             
support prompt detection and accurate localization of leakages are crucial to help water utilities              
implement timely mitigation measures and avoid unnecessary losses of water and revenues. This             
research develops a high-resolution pressure-driven method for leakage identification and          
localization in WDNs and tests it using the benchmark dataset provided as part of the               
"BattLeDIM", an international competition on leakage detection and localization. Our method is            
composed of two modules that operate sequentially. The first module performs leakage            
identification by processing pressure data observed at different sensor nodes in a WDN and by               
analyzing pressure differences between pairs of nodes. The model is trained using pressure data              
observed for a “normal” time period, i.e., without leak events occurring in the WDN. The               
reconstruction error from the model is then analyzed to detect the anomalies on a time series that                 
potentially includes one or more simultaneous leak events. The leakage annotations from the             
leakage identification module are then used by the second module, which performs leakage             
localization. A simulation-optimization framework is adapted to locate leakages by iterative           
mixed-integer linear programming. The framework relies on the pressure response of a set of              
candidate pipes when a fixed leak value is inserted there. The candidate pipes are selected based                
on the pressure drop reported by the sensors, and candidate pipes are included in a search area                 
located around the most affected sensor. Our proposed method is tested on the SCADA data               
provided with a 5-minute sampling frequency for the benchmark medium-sized WDN of            
L-Town. Preliminary experiments show that our pressure-driven method can promptly detect and            
localize most of the labeled leakages and it is suitable for real-time applications. 


