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Title:  A Mathematical Formalization of Qualia Space 

 

Abstract 

Our conscious experiences are qualitative and unitary.  The qualitative universals given in 

particular experiences, i.e. qualia, combine into the seamless unity of our conscious experience.  

The problematics of quality and cohesion are not unique to consciousness studies.  In 

mathematics, the study of qualities (e.g. shape) resulting from quantitative variations in cohesive 

spaces led to the axiomatization of cohesion and quality.  Using the mathematical definition of 

quality, herein we model qualia space as a categorical product of qualities.  Thus modeled qualia 

space is a codomain space wherein composite qualities (e.g. shape AND color) of conscious 

experiences can be valued.  As part of characterizing the qualia space, we provide a detailed 

exemplification of the mathematics of quality and cohesion in terms of the categories of 

idempotents and reflexive graphs.  More specifically, with qualities as commutative triangles 

formed of cohesion-preserving functors, first we calculate the product of commutative triangles.  

Next, we explicitly show that the category of idempotents is a quality type.  Lastly, as part of 

showing that the category of reflexive graphs is cohesive, we characterize the adjointness 

between functors relating cohesive graphs to discrete sets.  In conclusion, our category theoretic 

construction of qualia space is a formalization of the binding of qualitative features (colors and 

shapes) into the cohesive objects (colored-shapes) of conscious experiences.  Compared to the 

feature-vector accounts of conscious experiences, our product-of-qualities account of 

consciousness is a substantial theoretical advance. 
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I. Introduction  

Consciousness continues to elude the reach of science (Albright et al., 2000; Menon, Sinha and 

Sreekantan, 2014).  How are we going to account for the qualitative character of qualia?  The 

problem of qualia (such as the qualitative feel of seeing brilliant orange sunset as distinct from, 

say, hearing a soothing lullaby) is a problem of relating descriptions to that which is described.  

Given that conscious experiences are mediated by the brain, the structure of qualia is to be 

related not only to the structure of physical stimulus spaces but also to that of the spaces of 

neural processing.  Though we have a reasonably good understanding of the quantitative aspects 

(cf. increasing / decreasing along a stimulus feature dimension, resultant increases / decreases in 

neural responses, and the attendant changes in conscious experiences), our understanding of the 

qualitative nature of qualia is rather rudimentary.  It is not clear how to formalize the qualitative 

distinction between sights and sounds that is so palpable in our everyday experience (Clark, 

1993; O’Regan, 2011).  This shortcoming, however, is not specific to consciousness studies.  

Scientific study of qualities such as shapes and types encountered in physics and mathematics is 

also challenging (Lawvere and Rosebrugh, 2003, p. 232).  It is only in the past decade, the notion 

of QUALITY has been mathematically defined (Lawvere, 2007). 

   Here we begin with an in-depth study of the mathematics of quality so as to develop a 

mathematical formalism required for the scientific study of consciousness.  Our objective, in the 

present note, is limited to elaborating the mathematics of cohesion and quality in terms of the 

categories of reflexive graphs and idempotents (Lawvere and Schanuel, 2009, pp. 135-146), so 

as to make it accessible to theoretical cognitive neuroscientists. 

   Brain can be thought of as a universal measurement device (Grossberg, 1983), measuring the 

physical world, and with conscious experiences as values of the neural measurements.  Though 
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there is much within a given conscious experience that lends itself to be quantified (e.g. intensity 

of pain), there is also much that remains beyond the reach of quantities (i.e. the quality of pain as 

distinct from, say, pleasure).  These qualitative universals given in particular conscious 

experiences are called qualia (Lewis, 1929, p. 121).  Within this framework, we need a space: 

qualia space (Balduzzi and Tononi, 2009; Stanley, 1999), to serve as codomain in which the 

neural measures can be valued.  In the case of quantitative measurements, for example, the real 

number line serves as a codomain of values.  In the case of brains measuring things in the world, 

we need a space which can serve as a space of values for qualities such as taste and smell.  

Analogous to the case of quantitative measurements, wherein additional dimensions are 

introduced (e.g. plane) to deal with more than one quantity (Lawvere and Rosebrugh, 2003, p. 

59), we need a product space of qualities that can serve as a codomain space of values for 

composite qualities.  Once we have a qualia space of composite qualities, we can characterize its 

geometry (figures and their incidences) and algebra (functions and their determinations).  This 

qualia space can then be related to the physical stimulus spaces and the corresponding spaces of 

neural processing. 

   To place the theory of qualia we are developing in perspective, currently conscious experiences 

are modeled, after reducing qualities of conscious experiences into numbers (cf. intensity of 

pain), as feature lists and, in turn, as points in a vector space (Stanley, 1999).  For example, 

colored shapes such as ‘red square’ are represented as points (red, square) in a two-dimensional 

space (Color × Shape).  However, color and shape are qualities, which are much more structured 

than mere points (Hardin, 1988).  For example, color is an intensive quality, while shape is an 

extensive quality.  Our approach, building on Lawvere’s definition of qualities (Lawvere, 2007), 

is a direct formalization of the qualities of conscious experiences. 
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   More broadly, category theory has been put forward as the language of consciousness (Struppa 

et al., 2002).  In line with these suggestions, we are working out the mathematics of composite 

qualities defined as categorical product of qualities.  In the present note, with qualities as 

commutative triangles formed of cohesion-preserving functors, first we calculate the product of 

commutative triangles.  Next, we show that the category of idempotents is a quality type and has 

central idempotents required of quality types.  Lastly, we characterize the adjointness between 

functors relating reflexive graphs to discrete sets as part of showing that the category of reflexive 

graphs is cohesive. 

 

II. Composite Qualities 

Quality is that which remains upon identifying all quantitative variations (Lawvere, 1992).  A 

quality is a cohesion-preserving functor q: C –> T on a cohesive category C and valued in a 

quality type T (Lawvere, 2007).  Cohesion of a category C is relative to a base category S of 

discrete sets and is characterized by an adjoint string: 

components (c
!
) –| discrete (c*) –| points (c

*
) –| codiscrete (c!) 

(‘–|’ denotes ‘is left adjoint to’) of four functors: 

components c
!
: C –> S 

discrete c*: S –> C 

points c
*
: C –> S 

codiscrete c!: S –> C 
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(see Fig. 1A).  The components functor maps each cohesive object (in C) to its set of 

components (in S), while the points functor maps each cohesive object to its set of points.  The 

functors discrete and codiscrete map sets (in S) to corresponding discrete and codiscrete objects 

(in C).  The category of reflexive graphs is an example of a cohesive category (serving as domain 

of qualities).  In the section ‘Cohesive Category’, we show that the discrete functor is left adjoint 

to points functor as part of showing that the category of reflexive graphs is cohesive. 

   Quality type T, the codomain category of quality, is also relative to the base category S of sets 

and is characterized by an adjoint string: 

components (t
!
) –| discrete (t*) –| points (t

*
) –| codiscrete (t!) 

of four functors collapsed to two functors (Johnstone, 1996): 

components t
!
 = points t

*
: T –> S 

codiscrete t! = discrete t*: S –> T 

as a result of which there is exactly one point in every component of each object of a quality type 

T.  The category of idempotents is an example of quality type.  In the section ‘Quality Type’, we 

show that the category of idempotents is a quality type and that it has central idempotents 

required of quality types. 

   In an effort to systematically characterize the geometry and algebra of qualities, we define a 

category Q of qualities.  Objects of the category of qualities are cohesion-preserving functors    

q: C –> T satisfying t · q = c, where c: C –> S and t: T –> S are Set-labeled categories and ‘· ’ 

denotes composition.  Qualities, in other words, are commutative triangles with functors as edges 

and categories as vertices (Fig. 1B).  Within this formalism, qualities are broadly classified as 
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extensive and intensive.  An extensive quality e is a components-preserving functor e: C –> T 

satisfying t
!
 · e = c

!
, as a result of which the number of components of an extensive quality of a 

cohesive object is same as the number of components of the cohesive object.  An intensive 

quality, on the other hand, is a points-preserving functor i: C –> T satisfying t
*
 · i = c

*
, as a result 

of which the number of points of an intensive quality of a cohesive object is same as the number 

of points of the cohesive object.  Both extensive and intensive qualities are thus commutative 

triangles of functors on cohesive categories and valued in quality types.  Morphisms of qualities 

are commutativity-preserving transformations of one triangle into another. 

   Composite qualities (cf. colored-shapes) are defined as categorical products of qualities.  With 

color c and shape s as two qualities (two objects in the category Q), composite quality colored-

shape is an object: 

pc: c × s –> c, ps: c × s –> s 

in the category QCS of pairs of maps to the two factors c and s (Lawvere and Schanuel, 2009, pp. 

255-256).   The natural correspondence: 

w –> c, w –> s 

--------------------- 

w –> c × s 

between pairs of w-shaped figures in the two factors and w-shaped figures in the product object 

can be used to calculate composite qualities.  In order to calculate products of qualities using this 

method, we need to know the basic shapes of the category Q of qualities.  Basic shapes of a 

category are those objects of the category in terms of which every object of the category can be 
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completely determined.  In the category of sets, there is one basic shape, which is the terminal set 

1 = {•} consisting of exactly one element.  Put differently, every set is completely determined by 

its elements (Lawvere and Schanuel, 2009, p. 245).  The basic shapes of structured categories, 

unlike that of sets with zero structure, are more structured than mere element, and many 

categories have more than one basic shape.  In the category of graphs, for example, there are two 

basic shapes: dot and arrow (Lawvere and Schanuel, 2009, p. 250).  Since the objects of the 

category of qualities are commutative triangles of specific functors between chosen categories, 

the basic shapes of the category of qualities are going to be rather intricate.  Once we identify the 

basic shapes of the category of qualities, we need to enumerate all pairs of figures (of each one 

of these basic shapes) in the two factors (qualities).  These pairs of figures (of specific basic 

shapes) correspond to figures in the product object.  Once we have all the basic-shaped figures in 

the product object, we need to determine the incidence relations between figures and the 

projection maps to factors to obtain composite qualities.  As a preliminary step towards 

characterizing composite qualities, we calculated the product of commutative triangles.  With 

vertices, edges, and triangles as basic shapes, the product of two generic triangles consists of a 

triangulated surface with nine vertices, twenty seven edges, and thirty seven commutative 

triangles (Fig. 2).  In subsequent work, we plan to interpret the vertices and edges as categories 

and functors, respectively, so as to characterize composite qualities completely. 

 

III. Quality Type 

In this section we show that the functor discrete: S –> F (from the category S of sets to the 

category F of idempotents) has a right adjoint points: F –> S, which is also left adjoint to 
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the discrete functor, and hence makes the category F of idempotents a quality type over the 

category S of sets (Lawvere, 2007).  First, we show that the functor discrete is left adjoint to 

the points functor, and then show that the functor points is [also] left adjoint to the discrete 

functor.  To show that the discrete functor is left adjoint to the points functor, we have to show 

that there is a natural transformation n: discrete · points –> 1F from the composite functor 

discrete · points: F –> S –> F to the identity functor 1F: F –> F (Lawvere and Schanuel, 2009, 

pp. 372-377). 

   The functor points: F –> S assigns to each object in the category F of idempotents i.e. to each 

idempotent e: X –> X, e · e = e its set of fixed-points Y in the category S of sets.  The set Y of 

fixed-points can be obtained by splitting the idempotent e: X –> X into its retract-section pair    

X – r –> Y – s –> X satisfying s · r = e (Lawvere and Schanuel, 2009, p. 102, 117) i.e.       

points (e: X –> Y –> X) = Y.  The functor points assigns to each morphism <f, f>: e –> e’ of 

idempotents, i.e. to each commutative diagram satisfying e’ · f = f · e (Fig. 3A), a function          

g: Y –> Y’ (from the set Y of fixed-points of the idempotent e: X –> Y –> X to the set Y’ of 

fixed-points of the idempotent e’: X’ –> Y’ –> X’) satisfying: g ·  r = r’  ·  f and s’ · g = f · s 

(where X’ – r’  –> Y’ – s’ –> X’ is the splitting of the idempotent e’: X’ –> X’). 

   Next, the functor discrete: S –> F assigns to each set A (in S) its identity function 1A: A –> A 

(an idempotent in F) and to each function v: A –> B a commutative square satisfying               

1B · v = v ·  1A (Fig. 3B), which is a morphism of idempotents in F.   

   In order to have a natural transformation n: discrete · points –> 1F, we need, for each 

idempotent e: X –> X, e · e = e (in F) a map ne: discrete · points (e) –> 1F (e) in F.  Since 

discrete · points (e: X –> Y –> X) = discrete (Y) = 1Y and 1F (e: X –> Y –> X) = e, we need a 
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map h from 1Y: Y –> Y to e: X –> X satisfying e ·  h = h (Fig. 3C).  Since Y is the set of fixed-

points of the idempotent e: X –> X obtained by splitting e, i.e. X – e –> X = X – r –> Y – s –> X, 

we take h = s: Y –> X and find that e · h = s ·  r · s = s · 1Y = s = h since r · s = 1Y (Lawvere and 

Schanuel, 2009, pp. 108-113).  So, we can take sections s: Y –> X of the splitting e = s · r as 

components ne: 1Y –> e of the natural transformation n: discrete · points –> 1F.  Next, for each 

morphism (in the category F of idempotents) <f, f>: e –> e’ (from e: X –> X to e’: X’ –> X’), we 

need a commutative square in F satisfying ne’ · discrete · points (<f, f>) = 1F (<f, f>) · ne (Fig. 

3D).  Since points (<f, f>: e –> e’) = points (e) –> points (e’) = g: Y –> Y’ (satisfying              

g · r = r’  · f and s’ · g = f · s, where s · r = e and s’ · r’  = e’),                                                                        

discrete · points (<f, f>) = discrete (g: Y –> Y’) = <g, g>: 1Y –> 1Y’ , and                        

1F (<f, f>: e –> e’) = <f, f>: e –> e’, we find that we need a commutative diagram satisfying:      

f · ne = ne’ · g (Fig. 3E).  With sections as components we have the required commutative 

diagram (Fig. 3F) satisfying f · s = s’ · g, and in turn a natural transformation               

n: discrete · points –> 1F, which in turn tells that the functor discrete: S –> F is left adjoint to 

the functor points: F –> S. 

   Next, in order to show that the functor points: F –> S is left adjoint to the functor  

discrete: S –> F, we need a natural transformation u: 1F –> discrete · points with components            

ue: 1F (e: X –> X) –> discrete · points (e: X –> X) satisfying: ue’ · <f, f> = <g, g> · ue (Fig. 4A).  

Taking the retract r: X –> Y of the splitting X – r –> Y – s –> X of an idempotent X – e –> X as 

the component corresponding to the idempotent i.e. with ue = r: X –> Y we find that g · r = r’  ·  f 

(Fig. 4B).  So, we do have a natural transformation from the identity functor 1F: F –> F to the 

composite functor discrete · points: F –> F. 
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   Given both natural transformations discrete ·  points –> 1F and 1F –> discrete · points, we say 

that the functor points: F –> S is both right and left adjoint of the functor discrete: S –> F.  

Thus the discrete functor from the category S of sets to the category F of idempotents, with 

points functor as its right and left adjoint, makes the category F of idempotents a quality type 

over the category S of sets (Lawvere, 2007). 

   Next, we show that the category of idempotents has a central idempotent. A central idempotent 

is a natural endomorphism (of an identity functor) all of whose components are idempotents 

(Lawvere, 2004).  Given a category E, the identity functor 1E: E –> E maps every object, 

morphism in E to the same object, morphism, respectively, in the same E i.e. 1E (A) = A and    

1E (f: A –> B) = f: A –> B.  A central idempotent is a natural transformation θ = 1E –> 1E 

assigning to each object A, a map θA = 1E (A) –> 1E (A) and to each morphism f: A –> B a 

commutative diagram satisfying 1E (f) · θA = θB · 1E (f) (Fig. 5A), and with each component an 

idempotent: θA ·  θA = θA and θB · θB = θB.  Since 1E (A) = A, 1E (B) = B, and                               

1E (f: A –> B) = f: A –> B, we need commutative squares satisfying f · θA = θB · f, θA · θA = θA, 

and θB ·  θB = θB (Fig. 5B). 

   Let E denote the category of idempotents.  A morphism f from one idempotent (A, α: A –> A; 

α · α = α) to another idempotent (B, β: B –> B; β · β = β) is a function f: A –> B satisfying            

f · α = β · f.  The identity functor 1E: E –> E maps each object, morphism to itself i.e.                  

1E (A, α) = (A, α), 1E (B, β) = (B, β), and 1E (f: (A, α) –> (B, β)) = f: (A, α) –> (B, β).  A central 

idempotent is a natural transformation θ = 1E –> 1E assigning to each object (A, α) a map         

θA: (A, α) –> (A, α), and to each morphism f: (A, α) –> (B, β) a commutative diagram satisfying  

f · θA = θB · f, θA · θA = θA, and θB · θB = θB (Fig. 5C).  Since α: (A, α) –> (A, α) is a morphism in 

the category E of idempotents i.e. satisfies α · α = α · α and α · α = α (Lawvere and Schanuel, 
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2009, p. 179), we take θA = α: A –> A and θB = β: B –> B.  With these components, we obtain a 

commutative diagram satisfying the required f · α = β · f (Fig. 5D), since f: (A, α) –> (B, β) is a 

morphism in the category E of idempotents i.e. satisfies f ·  α = β · f.  We also find that the 

components α: (A, α) –> (A, α) and β: (B, β) –> (B, β) of the natural transformation θ = 1E –> 1E 

satisfy α · α = α and β · β = β since α: A –> A and β: B –> B are objects of the category E of 

idempotents.  Thus the natural transformation θ = 1E –> 1E (of the identity functor 1E: E –> E of 

the category E of idempotents), each of whose components θA: (A, α) –> (A, α) is the 

corresponding structural map i.e. θA = α: A –> A satisfying α · α = α, is a central idempotent. 

   In the next section, as part of characterizing reflexive graphs as a cohesive category (which is 

the domain of qualities), we show that the functor discrete: S –> R (from the category S of sets 

to the category R of reflexive graphs) is left adjoint to the functor points: R –> S. 

 

IV. Cohesive Category 

The qualities in our product-of-qualities formalization of qualia space are morphisms on 

cohesive categories (Lawvere, 2007; Lawvere and Menni, 2015).  Since calculation of products 

requires knowledge of basic shapes of the category, we need to be explicit about cohesive 

categories.  Cohesive categories are characterized in terms of adjoint functors to and from the 

category of discrete sets, relative to which cohesion is measured.  In this section, as part of 

showing that the category of reflexive graphs is a cohesive category, we verify that the functor 

discrete: S –> R from the category S of sets to the category R of reflexive graphs is left adjoint 

to the functor points: R –> S (Lawvere and Schanuel, 2009, pp. 372-377). 
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   A reflexive graph X consists of two component sets: a set XA of arrows and a set XD of dots, 

and three structural maps sx: XA –> XD, tx: XA –> XD, and ix: XD –> XA (assigning to each arrow 

in XA its source, target dot in XD and to each dot in XD its preferred loop in XA) satisfying                

sx ·  ix = 1XD and tx · ix = 1XD (Lawvere and Schanuel, 2009, pp. 145-146).  A graph morphism        

f: X –> Y (from a graph X to a graph Y) is a pair of set maps fA: XA –> YA, fD: XD –> YD 

satisfying: sy · fA = fD · sx, ty ·  fA = fD · tx, and iy · fD = fA · ix (where sy: YA –> YD, ty: YA –> YD, 

and iy: YD –> YA satisfying sy · iy = 1YD and ty · iy = 1YD are the structural maps corresponding to 

the codomain graph Y). 

   The functor points: R –> S maps each graph X = (sx: XA –> XD, tx: XA –> XD, ix: XD –> XA) in 

the domain category R to its set of dots XD in the codomain category S i.e. points (X) = XD, and 

maps each graph morphism f: X –> Y = <fA: XA –> YA, fD: XD –> YD> in R to its dot component 

fD: XD –> YD in S i.e. points (f: X –> Y) = fD: XD –> YD. 

   The functor discrete: S –> R maps each set P in S to a graph (also denoted) P in R with the set 

P as both of its component sets (set PA of arrows and set PD of dots) i.e. PA = PD = P, and with 

the identity function on P i.e. 1P: P –> P as all three structural maps i.e. sp = tp = ip = 1P: P –> P 

satisfying sp ·  ip = 1P and tp · ip = 1P.  Thus discrete (P) = (1P: P –> P, 1P: P –> P, 1P: P –> P).  A 

function z: P –> Q in S is mapped by the discrete functor to a graph morphism in R (also 

denoted) z: P –> Q, which has the function z as both (arrow and dot) component functions i.e.     

z = <zA, zD> = <z, z> satisfying the three required commutative conditions:                                 

1Q · z = z · 1P, 1Q · z = z · 1P, and 1Q · z = z · 1P preserving the source, target, and identity 

structure of reflexive graphs.  Thus discrete (z: P –> Q) = <z: P –> Q, z: P –> Q>. 
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   The composite functor discrete · points = R –> S –> R maps each graph                                  

X = (sx: XA –> XD, tx: XA –> XD, ix: XD –> XA) to a discrete graph                                              

XD = (1XD: XD –> XD, 1XD: XD –> XD, 1XD: XD –> XD) consisting of preferred loops only on dots, 

and maps each graph morphism f: X –> Y i.e. each f = <fA: XA –> YA, fD: XD –> YD> (satisfying:            

sy ·  fA = fD · sx, ty · fA = fD · tx, and iy · fD = fA · ix) to the graph morphism                                        

fD = <fD: XD –> YD, fD: XD –> YD> satisfying: 1YD · fD = fD · 1XD (Fig. 6). 

   To show that the functor discrete: S –> R is left adjoint to the functor points: R –> S we have 

to show that there is a natural transformation n: discrete · points –> 1R from the composite 

functor discrete · points to the identity functor 1R on the category R of reflexive graphs.  In 

other words, we have to show that for each graph X = (sx: XA –> XD, tx: XA –> XD, ix: XD –> XA) 

there is a graph morphism nX: discrete · points (X) –> 1R (X) i.e. a graph morphism                          

nX: discrete · points (sx: XA–>XD, tx: XA–>XD, ix: XD–>XA) –> 1R (sx: XA–>XD, tx: XA–>XD, ix: XD–>XA) 

which is                                                                                                                                           

nX: (1XD: XD –> XD, 1XD: XD –> XD, 1XD: XD –> XD) –> (sx: XA –> XD, tx: XA –> XD, ix: XD –> XA), 

which, in turn, is a pair of maps nX = <nXA: XD –> XA, nXD: XD –> XD> preserving the source, 

target, and identity (preferred loop) structure of reflexive graphs.  With nXA = iX: XD –> XA as 

the arrow component and with nXD = 1XD: XD –> XD as the dot component, we have a graph 

morphism preserving the source, target, and identity structure of reflexive graphs i.e. satisfying 

the three required commutativity conditions: sX · iX = 1XD · 1XD (since sX · iX = 1XD),                   

tX · iX = 1XD · 1XD (since tX · iX = 1XD), and iX · 1XD = iX · 1XD.  Finally, we have to show that for 

each graph morphism f: X –> Y (in R) the commutativity condition:                                            

1R (f: X –> Y) · nX = nY ·  discrete · points (f: X –> Y) is satisfied.  In other words, we have to 

show that                                                                                                                                         
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1R (<fA: XA –> YA, fD: XD –> YD>) · nX = nY · discrete · points (<fA: XA –> YA, fD: XD –> YD>).  

Since 1R (<fA: XA –> YA, fD: XD –> YD>) = <fA: XA –> YA, fD: XD –> YD> and                  

discrete · points (<fA: XA –> YA, fD: XD –> YD>) = <fD: XD –> YD, fD: XD –> YD>, and with      

nX = <nXA: XD –> XA, nXD: XD –> XD> = <iX: XD –> XA, 1XD: XD –> XD> and                            

nY = <nYA: YD –> YA, nYD: YD –> YD> = <iY: YD –> YA, 1YD: YD –> YD>, we have to show that 

fA · iX = iY · fD, which is already given in the identity preserving graph morphism f from X to Y.  

Hence, we have a natural transformation n: discrete · points –> 1R (Fig. 7), and, in turn, the 

discrete functor from sets S to reflexive graphs R is left adjoint to the points functor from 

reflexive graphs to sets. 

   There are two additional axioms that a category has to satisfy in order to be cohesive.  They are 

product-preserving components functor and connected truth value object (see axioms 1 and 2 in 

Lawvere, 2005).  The components functor (from the category of reflexive graphs to the category 

of sets, and assigning to each reflexive graph its set of components) preserves products 

(components (A × B) = components (A) × components (B), where A, B are reflexive graphs).  

Also, the truth value object Ω of the category of reflexive graphs is connected i.e. one 

component (components (Ω) = 1).  Thus the category of reflexive graphs is a cohesive category. 

 

V. Conclusion 

The problem of conscious experience is particularly challenging in view of the seeming 

incongruity of the qualities of qualia on one hand, and the seamless cohesion of conscious 

experience on the other hand.  We need a mathematical framework that can capture not only 

qualitative qualia, but also the combination of these qualities into the unity of our perceptual 
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experiences (Roskies, 1999).  There is, within mathematics, an analogous research program 

directed towards objectification of the unity of mathematics.  These foundational investigations 

seeking to reunite analysis, algebra, combinatorics, geometry, and logic, all arising from the 

study of qualities resulting from the variation of quantities within cohesive spaces (Lawvere, 

2014), led to axiomatization of the hitherto vague notions of cohesion and quality (Lawvere, 

2007; Lawvere and Menni, 2015).  It is this category theoretic study of cohesion and quality that 

we are applying to the problem of combining qualities into cohesive consciousness. 

   We defined composite qualities of our conscious experience as categorical products of 

qualities.  The product-of-qualities account of consciousness serves as an abstract theoretical 

framework to conceptualize how qualities such as color and shape are combined into the colored-

shapes of our visual experience.  Our product-of-qualities formalization can be thought of as a 

refinement of the basic idea of feature conjunctions, wherein the percept of ‘red square’ is 

associated with the activation of ‘red’ neuron and ‘square’ neuron.  The theoretical refinement is 

essentially in taking into account the structure of qualities (intensive colors vs. extensive shapes) 

and of their composition into the cohesiveness of consciousness.  More specifically, with the 

objective of conceptualizing the binding of extensive shapes and intensive colors into the colored 

shapes of our visual experience, we focused on the particular case of the product of extensive 

and intensive qualities.  Extensive and intensive qualities are functors, from the domain category 

(reflexive graphs) of one functor (defining cohesion) to the domain category (idempotents) of 

another functor (defining quality type).  Cohesion and quality type are defined relatively i.e. 

relative to the category of sets, which is the common codomain of these two functors.  Hence 

qualities (both extensive and intensive) are commutative triangles.  With extensive and intensive 

qualities as commutative triangles, composite qualities are products of commutative triangles.  In 
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the present note, as part of characterizing composite qualities, we calculated the product of 

commutative triangles.  We also showed that the category of idempotents is a quality type.  As 

part of showing that the category of reflexive graphs is cohesive, we characterized the 

adjointness between functors relating reflexive graphs to sets.  In our subsequent work, we plan 

to interpret the vertices and edges of commutative triangles, whose products we calculated, as 

categories and functors, respectively, so as to calculate products of qualities.  Furthermore, we 

plan to thoroughly characterize the geometry and algebra of composite qualities, which can serve 

as a basis for precise reasoning and definitive calculations about qualia and consciousness.  We 

also plan to provide, in our subsequent work, an in-depth comparison of Ehresmann’s 

formalization of the binding problem in terms of colimits (Ehresmann and Vanbremeersch, 

2007) with our product-of-qualities model of qualia space. 

   In closing, the main problem with cognitive neuroscience is a lack of good theories to guide 

neuroscientific investigations (Stevens, 2000).  Moreover, the need for an explicit mathematical 

framework, analogous to the calculus of physics, which can facilitate the advancement of the 

science of consciousness has long been recognized (Lawvere, 1994, 1999).  Our mathematical 

characterization of qualia space as a categorical product of qualities provides rudiments of the 

mathematical framework needed for the development of the science of consciousness. 
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Figure Legends 

 

Figure 1: Qualities as commutative triangles.  (A) Quality is defined as a functor q on a 

cohesive category C and valued in a quality type T.  Cohesion of a category C is relative to a 

base category S of sets and is characterized by four functors: components c
!
: C –> S,       

discrete c*: S –> C, points c
*
: C –> S, and codiscrete c!: S –> C; with components (c

!
) left 

adjoint to discrete (c*) left adjoint to points (c
*
) left adjoint to codiscrete (c!).  Quality type T, 

the codomain category of quality, is also relative to the base category S of sets and is 

characterized by four functors satisfying: components t
!
 = points t

*
: T –> S and           

codiscrete t! = discrete t* : S –> T.  (B) Quality q: C –> T is a cohesion-preserving functor 

satisfying t · q = c, where ‘·’ denotes composition.  With the functors c and t as points functors 

c
*
: C –> S and t

*
: T –> S, respectively, a points-preserving functor i: C –> T satisfying t

*
 · i = c

*
 

is an intensive quality.  With c and t as components functors c
!
: C –> S and t

!
: T –> S, 

respectively, a components-preserving functor e: C –> T satisfying t
!
 · e = c

!
 is an extensive 

quality. 

 

Figure 2: Product of commutative triangles.  Consider a commutative triangle G with three 

objects A, B, and C, three maps f, g, and h, and the commutativity equation gf = h.  The 

commutative triangle can be modeled as a set V = {A, B, C} of vertices, a set                              

E = {1A, f, 1B, g, 1C, h} of edges, and a set                                                                                      

T = {1A1A=1A, f1A=f, 1Bf=f, 1B1B=1B, g1B=g, 1Cg=g, 1C1C=1C, h1A=h, 1Ch=h, gf = h} of 
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triangles.  The set E of edges includes vertices as identities (e.g. 1A), while the set T of triangles 

includes one identity commutative triangle (e.g. 1A1A=1A) for each vertex and two identity 

commutative triangles (e.g. f1A=f, 1Bf=f) for each edge.  The product G × G of two commutative 

triangles consists of nine vertices (V × V = {AA, AB, AC, BA, BB, BC, CA, CB, CC}), thirty 

six edges (E × E), and hundred triangles (T × T).  Of the thirty six edges of the product, nine are 

identities (corresponding to the nine vertices in V × V), and the remaining twenty seven non-

identity edges are displayed above.  These twenty seven edges form thirty seven non-identity 

commutative triangles.  Of the hundred commutative triangles in T × T, nine are identities 

corresponding to the nine vertices and fifty four are identities corresponding to twenty seven 

edges (two identity commutative triangles for each non-identity edge), with thirty seven non-

identity triangles remaining. 

 

Figure 3: The functor discrete: S –> F is left adjoint to the functor points: F –> S.  (A) The 

functor points: F –> S assigns to each morphism i.e. to each commutative square (depicted) 

satisfying e’ · f = f · e (in the category F of idempotents) a function g: Y –> Y’ (from the set Y of 

fixed-points of the idempotent e: X – r –> Y – s –> X to the set Y’ of fixed-points of the 

idempotent e’: X’ – r’  –> Y’ – s’ –> X’) satisfying: g · r = r’  · f and s’ ·  g = f · s.  (B) The functor 

discrete: S –> F assigns to each function v: A –> B a commutative square satisfying               

1B · v = v ·  1A, which is a morphism of idempotents in F.  (C) A map h: Y –> X making the 

(depicted) diagram commute i.e. satisfying e · h = h is required as component ne: 1Y –> e of the 

natural transformation n: discrete · points –> 1F.  Taking the section s: Y –> X of the splitting 

e = s · r as h: Y –> X, we find that it satisfies the required e · h = h.  (D) For each morphism (in 

the category F of idempotents) <f, f>: e –> e’ (from e: X –> X to e’: X’ –> X’) we need the 
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displayed square to commute (in F) i.e. satisfy: ne’ · discrete ·  points (<f, f>) = 1F (<f, f>) · ne.  

(E) With points (<f, f>) = g and discrete · points (<f, f>) = discrete (g) = <g, g>, and   

1F (<f, f>) = <f, f>, we need the square displayed to commute i.e. satisfy: f ·  ne = ne’ ·  g.  (F) With 

sections s: Y –> X as components ne: 1Y –> e of the natural transformation                  

n: discrete · points –> 1F, we have the required commutative diagram satisfying f · s = s’ · g. 

 

Figure 4: The functor points: F –> S is left adjoint to the functor discrete: S –> F.  (A) A 

natural transformation u: 1F –> discrete · points with components                                              

ue: 1F (e: X –> X) –> discrete · points (e: X –> X) satisfying: ue’ · <f, f> = <g, g> · ue, i.e. 

making the displayed square commutative, makes the functor points: F –> S left adjoint to the 

functor discrete: S –> F.  (B) With retracts r: X –> Y as components ue: e –> 1Y, i.e. with   

ue = r: X –> Y, we obtain the required commutative square satisfying g ·  r = r’  ·  f. 

 

Figure 5: Central idempotent.  (A) A central idempotent is a natural transformation θ assigning 

to each morphism f: A –> B a commutative diagram satisfying 1E (f) · θA = θB · 1E (f).  (B)  Since 

the natural transformation is an endomorphism of identity functors with 1E (f) = f, we need a 

commutative diagram satisfying f · θA = θB · f.  (C) Central idempotent θ assigns to each object 

(A, α) in the category E of idempotents a map θA: (A, α) –> (A, α), and to each morphism           

f: (A, α) –> (B, β) a commutative diagram satisfying f · θA = θB · f.  (D) With idempotent 

endomaps as components of the natural transformation, i.e. θA = α: A –> A, θB = β: B –> B, we 

obtain a commutative diagram satisfying f ·  α = β ·  f. 
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Figure 6: Composite endofunctor discrete · points on the category of reflexive graphs.  Each 

graph X = (sx: XA –> XD, tx: XA –> XD, ix: XD –> XA) in the category R of reflexive graphs is 

mapped to a discrete graph XD = (1XD: XD –> XD, 1XD: XD –> XD, 1XD: XD –> XD) in R, and each 

graph morphism f: X –> Y i.e. each f = <fA: XA –> YA, fD: XD –> YD> in R is mapped to the 

graph morphism fD = <fD: XD –> YD, fD: XD –> YD> in R by the composite endofunctor    

discrete · points: R –> S –> R. 

 

Figure 7: Natural transformation from the composite endofunctor discrete · points to the 

identity functor on reflexive graphs.  Since fA ·  iX = iY · fD (from the definition of graph 

morphism), we take the inclusion iX: XD –> XA of dots in XD into XA as preferred loops as 

components of the natural transformation n: discrete · points –> 1R.  With                                                                            

1R (<fA: XA –> YA, fD: XD –> YD>) = <fA: XA –> YA, fD: XD –> YD> and                            

discrete · points (<fA: XA –> YA, fD: XD –> YD>) = <fD: XD –> YD, fD: XD –> YD>, and taking   

nX = <nXA: XD –> XA, nXD: XD –> XD> = <iX: XD –> XA, 1XD: XD –> XD> and                            

nY = <nYA: YD –> YA, nYD: YD –> YD> = <iY: YD –> YA, 1YD: YD –> YD>, we have all the 

commutativity conditions satisfied and hence a natural transformation from the composite 

endofunctor discrete · points to the identity functor 1R on the category of reflexive graphs. 
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Figure 5 
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Figure 6 
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Figure 7 
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