
Advantages of static condensation in implicit

compressible Navier-Stokes DGSEM solvers

Wojciech Laskowskia, Andrés M. Rueda-Ramı́rezac, Gonzalo Rubioab,
Eusebio Valeroab, Esteban Ferrerab

aETSIAE-UPM (School of Aeronautics - Universidad Politécnica de Madrid) - Plaza de
Cardenal Cisneros 3, 28040 Madrid, Spain

bCenter for Computational Simulation - Universidad Politécnica de Madrid, Campus de
Montegancedo, Boadilla del Monte, 28660 Madrid, Spain

cDepartment of Mathematics and Computer Science, University of Cologne, Weyertal
86-90, 50931, Cologne, Germany

Abstract

We consider implicit time-marching schemes for the compressible Navier-

Stokes equations, discretised using the Discontinuous Galerkin Spectral El-

ement Method with Gauss-Lobatto nodal points (GL-DGSEM). We com-

pare classic implicit strategies for the full Jacobian system to our recently

developed static condensation technique for GL-DGSEM Rueda-Ramı́rez et

al. (2019), A Statically Condensed Discontinuous Galerkin Spectral Element

Method on Gauss-Lobatto Nodes for the Compressible Navier-Stokes Equa-

tions [1]. The Navier-Stokes system is linearised using a Newton-Raphson

method and solved using an iterative preconditioned-GMRES solver. Both

the full and statically condensed systems benefit from a Block-Jacobi pre-

conditioner.

We include theoretical estimates for the various costs involved (i.e. calcu-

lation of full and condensed Jacobians, factorising and inverting the precon-

ditioners, GMRES steps and overall costs) to clarify the advantages of using

Preprint submitted to Computers & Fluids June 30, 2020

static condensation in GL-DGSEM, for varying polynomial orders. These

estimates are then examined for a steady three-dimensional manufactured

solution problem and for an two-dimensional unsteady laminar flow over a

NACA0012 airfoil. In all cases, we test the schemes for high polynomial

orders, which range from 2 to 8 for a manufactured solution case and from

2 to 5 for the NACA0012 airfoil. The statically condensed system shows

computational savings, which relate to the smaller system size and cheaper

Block-Jacobi preconditioner with smaller blocks and better polynomial scal-

ing, when compared to the preconditioned full Jacobian system (not con-

densed). The advantage of using static condensation is more noticeable for

higher polynomial orders.

Keywords:

High-order discontinuous Galerkin, DGSEM, Gauss-Lobatto, Implicit

time-marching, preconditioned-GMRES, Compressible Navier-Stokes, Static

condensation, NACA0012 airfoil

Contents

1 Introduction 3

2 Methodology 8

2.1 Time-implicit discretisation and Jacobian computation 9

2.2 Static condensation . 11

2.3 Size of the full and the condensed Jacobians 12

2.4 Preconditioned-GMRES solver 16

2.5 Further implementation details 17

2

3 Theoretical costs of full and statically condensed systems 18

3.1 Cost of static condensation . 20

3.2 Cost of factorising the preconditioner 22

3.3 Cost of the preconditioned-GMRES solver 23

3.4 Summary of computational costs 25

4 Numerical results 27

4.1 Steady simulation: Manufactured Solution 28

4.2 Unsteady simulation: NACA0012 at AOA = 20o 33

5 Conclusion 39

Appendix A Preliminary assessment of preconditioners 42

Appendix B Influence of Mach and Reynolds 45

Appendix C Estimation of non-zero entries in the Jacobian

Matrix 46

Appendix C.1 Advection terms 47

Appendix C.2 Diffusion terms 50

Appendix C.3 Total number of non-zero entries 55

1. Introduction1

The accurate simulation of aerodynamic characteristics over lifting sur-2

faces (airfoils and wings) is of major importance to the aeronautical industry3

and can potentially reduce fuel consumption by allowing lighter aircraft de-4

signs. High order methods, and particularly discontinuous Galerkin (DG)5

3

schemes, are well equipped to provide high accuracy on coarse meshes due6

to their spectral convergence property (i.e. exponential decay of the error).7

In the last decade, these methods have gained popularity for solving fluid8

flows governed by the incompressible, e.g. [2, 3, 4, 5, 6] and compressible9

Navier-Stokes equations, e.g. [7, 8, 9, 10]. DG solutions show improved ac-10

curacy over low order methods, but are often expensive to compute [11]. In11

recent years, acceleration techniques for DG schemes have focused on local12

p-adaption, see e.g. [7, 10] and on improved time-marching techniques, e.g.13

FAS p-multigrid [10], that allow for faster convergence and large time-steps,14

with important savings in computational cost.15

The Discontinuous Galerkin Spectral Element Method (DGSEM) [12],16

is a particular nodal version of DG, which has proved to be very efficient17

on hexahedral elements (e.g. diagonal mass matrices). Additionally, the18

variant of the DGSEM where Gauss-Lobatto nodal points are selected, i.e.19

GL-DGSEM, is well suited for the development of provably stable schemes20

[13], fulfilling the summation-by-parts property [14]. These schemes have21

enhanced stability and are convenient for under-resolved simulations, if split-22

forms of the governing equations are discretised. Examples of provably stable23

formulations can be found for the Euler [14], the Magneto-Hydrodynamics24

[15], multiphase flows [16, 17] and the Navier-Stokes equations [18, 9, 19].25

We have recently shown an additional advantage of GL-DGSEM [1]: it26

is well suited for the static condensation approach, whilst the classic Gauss27

point version is not. In this work we exploit the statically condensed system,28

4

to accelerate implicit time advancement with and iterative GMRES solver,29

and compare the accelerations to the traditional full Jacobian system. Note30

that both approaches rely on Newton-Raphson linearisation to obtain the31

full and condensed systems. In this work, we do not include split-forms32

but propose a static condensation technique, which is perfectly applicable33

to formulations including stabilising split-forms (e.g. two point fluxes), and34

may be combined with the static condensation, in future work.35

Static condensation has been widely applied in the context of high order36

methods, and is a popular strategy in the continuous Galerkin community,37

e.g. [20, 21], where it has proved to be an efficient strategy to solve large38

systems in both structural and fluid mechanics, e.g. [20, 22]. Static conden-39

sation can be combined with modern iterative techniques such as p-multigrid40

with domain decomposition smothers tailored for condensed systems [23].41

Recently, Pardo et al. [24] showed that static condensation proves beneficial42

when combined with iterative solvers, if the number of iterations is suffi-43

ciently large, to compensate for the additional cost associated of computing44

the system’s Schur complement. Similar findings are included in this work45

for DGSEM.46

Static condensation has been applied to discontinuous Galerkin discreti-47

sations by Sherwin et al. [25] and Hybridized Discontinuous Galerkin (HDG),48

e.g. [26, 27, 28]. In the first work, Sherwin et al. reported advantages of stat-49

ically condensed systems when using tailored non-orthogonal basis functions50

(i.e. non-diagonal mass matrices). The remaining references were developed51

5

for HDG formulations, where the method decouples the degrees of freedom52

belonging to the mesh elements from the mesh skeleton, enabling static con-53

densation. However, HDG requires specific numerical fluxes [1, 26, 29], re-54

stricting the use of well known Riemann approximations, such as Roe’s. Our55

static condensation for GL-DGSEM allows any flux.56

In our previous work [1], we showed the detailed implementation of the57

static condensation approach in GL-DGSEM, and applied the method to58

solve steady cases using direct solvers and an implicit GMRES with a point-59

Jacobi preconditioner. In this work, we extend that analysis further by60

comparing the performance of statically condensed and full Jacobian (non-61

condensed) systems for Block-Jacobi preconditioner in steady and unsteady62

problems, and show that the statically condensed system can lead to faster63

iterative GMRES solves. We include theoretical estimates to analyse and64

extrapolate the costs involved with respect to the polynomial order. These65

include the calculation of full and condensed Jacobians, the factorisation and66

invertion of the preconditioner and the preconditioned-GMRES steps. Ad-67

ditionally, we briefly asses the use of ILU(k) preconditioners and include a68

section to verify that the advantages of the statically condensed GL-DGSEM69

are essentially independent of the Mach and Reynolds numbers.70

Both full and condensed systems can benefit from preconditioners to71

accelerate convergence. Efficient preconditioners should be cheap to con-72

struct and to parallelise, whilst enhancing the convergence of the system,73

e.g. reducing the number of iterations to reach convergence. Iterative strate-74

6

gies (including preconditioners) for DG discretisations of both compress-75

ible and incompressible flows have been widely explored in recent years76

[30, 31, 32, 33, 34, 35, 36, 37, 28, 38, 39]. Most authors employ block77

structured preconditioners/p-multigrid smothers, such as Block-Jacobi, Line-78

Jacobi, additive-Schwarz or Block-ILU. Among these, [37, 28, 39] focused on79

coarse grid accelerations and efficient implementation of the state-of-the-art80

solvers for turbulent problems, which is out of the scope of this work. Point81

ILU has also been successfully used for aerodynamic applications in [40, 41].82

Persson and Peraire [32] or Gopalakrishnan and Kanschat [42] showed that83

element-block based preconditioners are essential to eliminate high p depen-84

dent errors. It is also very natural to exploit the element-block structure of85

the Jacobian (specially in the parallel computations due to the block locality86

that enables to perform block inversions locally), as most of these methods87

require the direct factorisation of block matrices. Note that this can become88

troublesome for high polynomial orders, especially in three-dimensional flows.89

In this work, we select Block-Jacobi preconditioner and show that when con-90

densing the system, the preconditioner scales more gently for high polyno-91

mials, than the preconditioner for the full system. This translates into lower92

costs for all the steps where the preconditioner is required (i.e. factorisation93

of the blocks and GMRES step involving the preconditioner), and paves the94

way to using high polynomial orders efficiently.95

Our comparisons are novel in that the static condensation technique, re-96

cently developed for GL-DGSEM by the authors, is directly challenged to97

7

the state of the art implicit preconditioned-GMRES solvers to show com-98

putational savings for steady and unsteady flows and a range of polynomial99

order ranging from 2 to 8. The results are backed-up by the theoretical es-100

timates for the various costs. The beneficial effect of statically condense the101

system is observed for various Mach and Reynolds numbers, suggesting that102

this technique can be exploited for a wide range of flow regimes in steady103

and unsteady flows.104

In what follows, we describe the methodology with emphasis on the time105

marching scheme and implementation details. We continue with the theo-106

retical estimates and the simulations, where we compare the full Jacobian107

and the static condensation for a 3D Manufactured Solution problem and108

the unsteady flow over a 2D NACA0012 airfoil. We finalise with conclusions109

and outlooks.110

2. Methodology111

We use the nodal Discontinuous Galerkin Spectral Element Method (DGSEM)112

introduced by Black [43], where the computational domain is tessellated into113

non-overlapping hexahedral elements. In the DGSEM, numerical fluxes are114

necessary to transfer information between discontinuous element solutions.115

Here, we retain Lax-Friedrichs fluxes for the convective fluxes and the Inte-116

rior Penalty method for viscous fluxes, but other fluxes with compact support117

could also be used (e.g. Roe for convection or BR2 for diffusion). The se-118

lected fluxes yield a compact mesh stencil and are differentiated to obtain119

8

an analytical Jacobian. Further details on how the Jacobian can be ob-120

tained along with the peculiarities and sparsity patterns resulting from using121

Gauss-Lobatto nodal points, can be found in our previous works [1, 44].122

2.1. Time-implicit discretisation and Jacobian computation123

Let us briefly describe the implicit methods retained in this work. After124

discretising the compressible Navier-Stokes equations, we obtain the follow-125

ing system of equations126

M
∂Q

∂t
+ F (Q) = MS, (1)

where Q is a vector that stores the conservative variables in all degrees127

of freedom of the domain, F (Q) encompasses both discrete convective and128

diffusive fluxes, M is the mass matrix, which is diagonal in the nodal DGSEM129

approach, and S is a source term.130

We replace the continuous in time derivative in (1) by a discrete implicit

time integration scheme using Backward Differentiation Formulas (BDF) of

order 1 and 2 (BDF1 or BDF2),

∂Q

∂t
← δQ

δt
(Qs+1,Qs, · · ·), (2)

where the operator δQ/δt is a function of the solution on the next time step,

Qs+1 (the unknown), the current time step, Qs, and possibly previous time

steps. When treated implicitly, the nonlinear operator F , in equation (1) is

9

evaluated for the unknown solutions, Qs+1. Considering this, equation (1)

can then be rewritten as

R(Qs+1) =
δQ

δt
(Qs+1,Qs, · · ·) + M−1F (Qs+1)− S = 0. (3)

Note that in the DGSEM approach the mass matrix M is diagonal and can131

be trivially inverted, leading to an efficient discontinuous Galerkin method.132

When computing steady flows, we are not interested in producing an accurate133

solution in time, and therefore we use an implicit BDF of order 1 to advance134

until steady state. However, for unsteady cases we will use an implicit BDF135

of order 2 and shorter time steps to obtain accurate solutions in time.136

The nonlinear system of equations, (3), can be solved using Newton-137

Raphson iterations to obtain the linear system:138

A∆Q = B, (4)

where A = ∂R
∂Q

(Q̃s+1) is the Jacobian matrix evaluated at Q̃s+1, which is139

an approximation to the unknown solution Qs+1. The right-hand-side is140

B = −R(Q̃s+1) . Equation (4) is a linear system that must be solved141

iteratively to approach Qs+1 ← Q̃s+1 + ∆Q. The Jacobian matrix A may142

be computed analytically or numerically, and here we retain the analytical143

approach, for its efficiency. Equation (4) is what we refer as full system with144

A the full Jacobian.145

10

2.2. Static condensation146

In the GL-DGSEM framework, we can statically condense system (4) to147

obtain the following form148

 Abb −AibA
−1
ii Abi 0

Abi Aii


 ∆Qb

∆Qi

 =

 Bb −AibA
−1
ii Bi

Bi

 , (5)

where subindex b and i denote boundary and interior nodes, respectively.149

The main interest of the method is to obtain a block diagonal matrix Aii,150

that can be inverted cheaply and locally (element by element). Additionally,151

the boundary matrix including the degrees of freedom linking boundaries152

between elements, is greatly reduced by the use of Gauss-Lobatto points in153

DGSEM [1]. The resulting system is equivalent to the full system, but can154

be decoupled in two subsystems. The first one for the skeleton of the mesh,155

our condensed system of equations is156

Acond∆Qb = Bcond, (6)

where Acond = Abb − AibA
−1
ii Abi and Bcond = Bb − AibA

−1
ii Bi. Once the157

condensed system (6), based on the Schur complement Acond, is solved, then158

it is trivial to substitute and solve for the second system ∆Qi = A−1
ii (Bi −159

Abi∆Qb), since Aii is block diagonal and has already being factorised to160

compute Acond.161

11

2.3. Size of the full and the condensed Jacobians162

One of the main advantages of the static condensation is the reduced

size of the matrix Acond (with only the mesh skeleton degrees of freedom)

in comparison with the original Jacobian matrix A (with all the degrees of

freedom in the mesh). We can quantify the number of degrees of freedom for

our GL-DGSEM discretisation. The Jacobian matrix A has size

n = Nel · nb. (7)

where Nel is number of elements and nb is the size of each element-block.

Then, assuming mesh elements with isotropic polynomial order P , we can

describe the size of each block nb as a function of P , the dimension d (e.g.

d = 3 for 3D meshes) and the number of conservative variables (or equations)

in the computational domain for the Navier-Stokes equations Neq (e.g. Neq =

5 in 3D):

nb = Neq(P + 1)d. (8)

Equation (7) can also be used to describe the size of the matrices, Aii and

Abb, involved in the Schur complement computation and included in the

statically condensed system (5) with nii = Nel · nbii and nbb = Nel · nbbb,

with the only difference being the block sizes. Here, the block size of the

element-skeleton matrix nbbb directly corresponds to the size of the block of

the final Schur complement Acond. The blocks for the condensed matrix arise

from having decoupled element interior i from the element boundary nodes

12

b, leaving fewer degrees of freedom per block. Thus, the size of the block of

matrix Aii, that corresponds to the interior of the elements is

nbii = Neq(P − 1)d. (9)

Consequently, the size of the block of Abb and Acond can be defined as the

difference between the size of the element-block and the interior element part

nbbb = Neq

[
(P + 1)d − (P − 1)d

]
, (10)

and with these blocks, the final size of the matrices could be easily computed163

from equation (7).164

Additionally, it is possible to obtain estimates for the number of non-zero165

entries nnz in the full and condensed Jacobian. This is not a trivial task, and166

details are included in Appendix C. The final expressions are summarised in167

Table 1, for 3D and 2D.168

13

Table 1: Explicit formulas for the leading terms of block sizes, estimation of number of
non-zeros nnz per block, and matrix non-zero entries, for the full and condensed systems
in 2D and 3D. All provided as functions of the number of elements Nel, polynomial order P
and number of conservative variables in the 3D domain, i.e. Neq = 5 for the compressible
Navier-Stokes equations.

3D

Full system Condensed system

Block size Neq(P + 1)3 Neq(6P 2 + 2)
nnz per block 3N2

eqP (P + 1)4 N2
eq(6P 2 + 2)2

nnz in matrix 3NelN
2
eqP (P + 1)4 25NelN

2
eq(6P 2 + 2)2

2D

Full system Condensed system

Block size Neq(P + 1)2 Neq4P
nnz per block N2

eq(P + 1)4 N2
eq16P 2

nnz in matrix NelN
2
eq(P + 1)4 13NelN

2
eq16P 2

Let us remark that the expressions for the block sizes are exact. How-169

ever, the expressions for the nnz per block are upper bounds derived in the170

appendix. The entry corresponding to the nnz for the full system, only in-171

cludes the diagonal blocks corresponding to the viscous terms, since these are172

asymptotically dominant, as they scale O(P 5) (all other blocks have weaker173

scaling, see appendix for details). The total number of non-zeros might be174

obtained multiplying by the number of elements. Regarding the condensed175

system, here the block stencil of this matrix is estimated to be 25 in 3D and176

13 in 2D (neighbor to neighbor coupling), and therefore to obtain the total177

number of nnz in the matrix, the nnz per block need to be multiplied by178

the number of elements and by the constant (25 or 13) accounting for the179

neighbour coupling.180

Finally, the condensed system presents smaller and denser blocks and181

14

the block stencil of the condensed system is wider than the one of the full182

system. As a result, the nnz of the condensed system is larger than the one183

of the full system. Regarding the total number of non-zero entries in the184

matrix, the scalings show that the full system will asymptotically contain185

more non-zero entries for large polynomial orders. However, due to the denser186

connectivity in the condensed system, the non-zero entries can be higher for187

low polynomial orders.188

In the Continuous Galerkin formulation for simple diffusion or advection-189

diffusion problems [24, 45], the number of non-zero entries in the condensed190

matrix decreases with respect to nnz in the full system. However, in our191

case for the GL-DGSEM of the compressible Navier-Stokes equations, the192

number of non-zeros increases. Increased number of non-zeros for the con-193

densed system have been reported by Habchi [46], for an elastohydrodynamic194

lubrication problem. There, the authors considered several meshes for the195

same contact problem, from extra coarse to extra fine. The results show that196

nnz in the condensed systems is reduced for coarse meshes, whereas for the197

others nnzcond > nnzfull.198

Complementary illustrations of the static condensation sparsity patterns199

for the GL-DGSEM approach may be found in our previous work [1]. In this200

work, we concentrate on comparing the efficiency of solving the linear system201

of equations, i.e. solving full system (4) to solving the two subsystems for the202

condensed system (6) using iterative methods. To account for the iterative203

costs, we will use the matrix sizes and number of non-zeros, included in Table204

15

1.205

2.4. Preconditioned-GMRES solver206

We use preconditioned-GMRES to sove both the full system (4), and the207

statically condensed system (6). Previous works [33, 31, 32, 35, 36] have208

shown that combining GMRES and block preconditioners is effective in solv-209

ing Eq. (4) for DG discretisations of Euler, Navier-Stokes or RANS equations.210

Here, we have considered several preconditioning strategies, namely element211

Block-Jacobi and incomplete LU factorisation with different factorisation lev-212

els, ILU(k). We conduct a preliminary evaluation of these preconditioners213

for the full and condensed systems in Appendix A. For the manufactured214

solution case (to be described later in detail), ILU(k) preconditioners per-215

form better in terms of iteration count and overall cost, but show high cost216

when computing the preconditioner. Block-Jacobi does not perform as well217

as ILU(k) in terms of overall solver cost, but provides a lower factorisa-218

tion cost (specially for the statically condensed system) and provides very219

competitive average iteration count and average solver cost. Additionally, a220

Block-Jacobi preconditioner is more suitable for parallel [28] and matrix-free221

[47, 48] computations, since the blocks can be inverted locally whilst exploit-222

ing the block-structure of the high order DGSEM discretisation, as well as223

requiring less memory [33, 47]. For this reason, in the following sections, we224

present all results with Block-Jacobi preconditioners for both the full (4) and225

the statically condensed (6) systems.226

16

The Block-Jacobi preconditioner ignores all the Jacobian off-diagonal227

blocks and performs a local LU decomposition (factorisation step) in each228

diagonal block. For the full system, these diagonal blocks include all the229

element degrees of freedom for each element, whilst the size for the blocks is230

reduced in the condensed system (only skeleton degrees of freedom): matrix231

Acond in (6). These blocks are smaller as shown in Table 1 and therefore con-232

structing the Block-Jacobi preconditioner for the condensed system is much233

cheaper, than for the full system, and especially for high polynomial orders234

(for a more detailed comparison of the factorisation costs, see next Section235

3).236

Finally, all the operations related to the preconditioned-GMRES solver237

(computing preconditioner and performing GMRES iterations) are performed238

using the well known open-source library PETSc [49, 50, 51]. The computa-239

tion of the condensed system (6), however, is done with our in-house code.240

Note that PETSc has been widely used in aeronautical publications, includ-241

ing DGSEM flow simulations [33, 52, 53]. By selecting this well validated242

implementation, we avoid in-house inefficiencies that could mask the out-243

comes of our comparisons.244

2.5. Further implementation details245

In the result section, we also include explicit time-marching (ESRK3)246

[54] simulations for reference, but comparisons of overall computing time247

are not of interest in this work. Indeed, it is well known, that the explicit248

17

time integrator is easy to parallelise with appropriate domain partitioning249

[55, 56] and could produce very efficient solutions when using large number250

of processors, whilst implicit schemes require a greater effort and increased251

memory requirements for matrix-based solvers [31, 11]. Alternative matrix-252

free approaches have been proposed, e.g. Pazner and Persson [48], but are253

not explored in this text. For the above mentioned reasons, all cases are run254

in serial such that all approaches are fairly compared without taking into255

account parallelisation strategies or communication efficiency.256

3. Theoretical costs of full and statically condensed systems257

In this section, a theoretical analysis of the main computational costs258

of the implicit time marching scheme are included. Algorithm 1 presents259

the essential steps of the time marching scheme to conduct the simulation260

until the finalisation criteria is met. We focus only in three main steps that261

constitute the majority of the computational costs, i.e.:262

• Step 8: cost for obtaining the statically condensed system Acond,263

• Step 9: cost for factorising (constructing and inverting) the precon-264

ditioning matrix P−1. In the context of this work, it is the cost of265

factorising the element-diagonal blocks of the Jacobian system A or266

the condensed system Acond, which are then inverted and stored in the267

preconditioning matrix P−1.268

• Step 13: cost for solving the linear system (4) for the full system or (6)269

18

for the condensed system, using the preconditioned-GMRES solver at270

each time step and as long as ||∆Q||∞ < TOLNewton.271

Algorithm 1 Time-marching scheme including Newton-Raphson linearisa-
tion

1: Q← Initialise()
2: while Steady: ||M−1F (Q)− S||∞ < 10−8 or Unsteady: t < Tend do
3: t← t+ ∆t
4: while ||∆Q||∞ < TOLNewton do
5: if InaccurateJacobian then
6: A← ComputeFullSystJacobian(Q,∆t)
7: if CondensedSystem then
8: A← ComputeCondensedJacobian(A)

9: P−1 ← FactorisePreconditioner(A)

10: B← ComputeFullSystRHS(−R(Q))
11: if CondensedSystem then
12: B← ComputeCondensedRHS(A,B)

13: ∆Q← GMRES-Solve(A,P−1,B)
14: if CondensedSystem then
15: ∆Q← ComputeInteriorSolution(A,∆Q,B)

16: Q = Q + ∆Q

Step 13 solves the linear system using preconditioned-GMRES (further272

discussed below) and one must account for its cost in every Newton iteration273

and for every time step. Steps 5 to 9 need to be computed when the Jaco-274

bian matrix A(Q,∆t) (or the condensed version), has significantly changed,275

which leads to a quasi-Newton method. Naturally, re-using the Jacobian276

matrix from the previous time steps may inhibit quadratic convergence of277

the Newton-Raphson method [57]. To ensure a sufficiently high convergence278

rate, we follow ideas from Zahr and Persson [58] and define a condition that279

19

secures at least 1/4 of an order of magnitude decay per Newton iteration (see280

step 5 of Algorithm 1). Therefore, if the aforementioned condition is met, the281

Jacobian A and preconditioner P−1 are still useful and are not recomputed.282

In all the simulations, the Newton tolerance is set to TOLNewton = 10−5,283

which yields accurate results. Furthermore, as in Nastase and Mavriplis [59],284

the preconditioned-GMRES solver tolerance is set according to the maximum285

norm of the residual, e, such that TOLGMRES = e ·0.7i, where i is the current286

Newton iteration.287

Sections 3.1, 3.2 and 3.3 present the estimation of the computational costs288

related to the static condensation (Step 8), the preconditioner factorisation289

(Step 9) and the GMRES solver (Step 13). Subsequently, comparisons with290

the simulated costs are included in Section 4, and summarised in table 2.291

3.1. Cost of static condensation292

The necessary operations to obtain the condensed system (6) are detailed293

here:294

• Factorisation and inverting the block diagonal matrix representing inner-295

element A−1
ii ,296

• Computing A−1
ii Aib and assembling the RHS of the equation (6),297

• Computing the Acond = Abb −AbiA
−1
ii Aib, equation (6),298

• Obtaining the solution for the interior nodes: ∆Qi = A−1
ii (Bi−Aib∆Qb).299

20

All of these operations are included in one unique cost, referred to as con-300

densation cost, in the following sections. These operations are performed in301

Step 8 in Algorithm 1. The only exceptions are obtaining the solution for the302

interior nodes, which is performed in step 15, and assembling the RHS of the303

equation (6), which is performed in step 12. The most computationally de-304

manding part of condensation is the factorisation of the inner-element matrix305

A−1
ii . It is known [60] that the standard factorisation (including LU decom-306

position) algorithms have a cost O(n3). Considering that the size of Aii can307

be described with equations (7) and (9), the resulting cost of factorising this308

matrix is NelN
3
eq(P − 1)9 in 3D and NelN

3
eq(P − 1)6 in 2D.309

The second important operation is the Sparse Matrix-Matrix multiplica-310

tions (SpGEMM). In our computations we rely on PETSc libraries to perform311

SpGEMM on compressed sparse row matrices. An upper bound for the cost312

of for matrix-matrix SpGEMM can be easily calculated assuming n matrix-313

vector SpMV. If the sparse matrix has nnz non-zero entries, then the matrix-314

matrix cost scales as O(n×nnz). This estimate is not optimal and improved315

algorithms can be found in the literature [61, 62, 63], but this upper bound is316

accurate enough to analyse our condensed costs. To compute the condensed317

system, we perform two SpGEMM operations to compute AbiA
−1
ii Aib. We318

assume that A−1
ii has dense blocks of size nbii = Neq(P−1)d and that the num-319

ber of non-zeros is larger in A−1
ii than in the very sparse Aib (see Appendix320

C.27 for the estimation of the number of non-zeros in off-diagonal blocks of321

the Jacobian matrix, which scales as N2
eq(P + 1)2(4P + 1)). Taking into ac-322

21

count that the size of the blocks of the Schur complement is nbbb = Neq(6P
2+323

2) in 3D and nbbb = Neq4P in 2D, we approximate the cost of the SpGEMM324

operation as O(NelN
3
eq(6P

2 + 2)(P − 1)6) in 3D and O(NelN
3
eq4P (P − 1)4) in325

2D. These upper bounds for matrix-matrix SpGEMM show that the inversion326

of the matrix A−1
ii , which scales as O((P − 1)9) in 3D and as O((P − 1)6) in327

2D is the dominant cost in calculating the Schur complement and obtaining328

the condensed system.329

Finally, let us note that the estimation for nnz in Appendix C provides an330

upper bound that assumes full coupling between conservative variables. The331

real non-zero entries of Abi and Aib have few non-zeros, therefore in practical332

computations one would always expect a lower computational costs.333

3.2. Cost of factorising the preconditioner334

After computing the condensed system Acond in Algorithm 1 (step 8), we335

compute the preconditioner (step 9). As mentioned in section 2.4, we employ336

an element Block-Jacobi preconditioner to speed-up the convergence. If the337

full system (4) is considered, we factorise the whole element-blocks of matrix338

A of size Nelnb, which has an operation count of NelN
3
eq(P + 1)9 in 3D and339

NelN
3
eq(P + 1)6 in 2D. If the condensed system is considered, we factorise340

the skeleton-element blocks of matrix Acond of size Nelnbbb, which has a cost341

NelN
3
eq

[
(P + 1)d − (P − 1)d

]3
. This can be simplified to NelN

3
eq(6P

2 + 2)3
342

in 3D and NelN
3
eq(4P)3 in 2D. The cost of factorising the preconditioner343

is henceforth referred to as preconditioner cost. At this stage, we can al-344

22

ready foresee that the cost of preconditioning the condensed system is much345

cheaper, since it scale as O(P 6) whilst for the full the cost scales as O(P 9).346

Pardo et al. [24] concluded that their hp-FEM static condensation im-347

plementation for single, linear, second order PDE was computationally more348

efficient than the full system of equations when the number of iterations is349

high enough, since shorter times per iteration compensate the condensation350

cost. For time-dependent problems, like the compressible flow simulations351

considered here, this cost becomes even less important, as we can store the352

condensed matrix (in our matrix-based approach) and re-use it.353

3.3. Cost of the preconditioned-GMRES solver354

Step 13 in Algorithm 1 is detailed in Algorithm 2 where a preconditioned355

version of GMRES developed by Saad and Schultz [64] is presented. This is356

implemented in the PETSc library [49, 50, 51] and has been used in this work.357

In Algorithm 2, R and V represent the residual and its normalised version.358

m is dimension of the Krylov subspace Wm with orthonormal vectors Wj359

and Hm is the reduced Hessenberg matrix. A, ∆Q and B represents either360

the full Jacobian matrix A, approximate solution ∆Q and the right had361

side (RHS) B for the full system. Alternatively, when the condensed system362

is solved, we use the condensed Jacobian Acond, ∆Qb and condensed RHS363

Bcond.364

23

Algorithm 2 Preconditioned GMRES-Solver

1: function GMRES-Solve(∆Q,A,P−1,B)
2: R0 ← B−A∆Q
3: V1 ← R0/||R0||2
4: for j = 1, ...,m do
5: Zj ← P−1Vj

6: W← AZj

7: H i,j ←WTVi, i = 1, ..., j

8: W←W −
∑j

i=1 H i,jVi

9: W←Hj+1,j/||W||2
10: Vj+1 ←W/Hj+1,j

11: ∆Q← ∆Q + ZmYm, where Ym minimizes ||βe1 −HmY||
12: return ∆Q

The main costs within the GMRES iterative solver, arise from Sparse365

Matrix-Vector products (SpMV) (see steps 5 and 6 of Algorithm 2), which366

are governed by the number of non-zero entries nnz [65], in matrices P−1 and367

A [65]. Note that each nnz performs one multiplication and one addition, and368

we omit operation counts related to loading/storing variables. In addition to369

SpMV operations, GMRES also incorporates a large amount of purely vector370

operations (mainly dot products used to update the Hessenberg matrix, step371

in Algorithm 2). Their cost is proportional to the matrix size n, and have372

typically lower cost than sparse matrix-vector products. Therefore we focus373

only on SpMV operations.374

The cost of Jacobian-SpMV (Step 6) is a function of nnzfull for full system375

A and nnzcond for the condensed system Acond. In Appendix C, we have376

detailed the derivation of an upper bound for the number of non-zero entries377

for the Jacobian DGSEM matrix, see table 1 and Appendix C. Similarly, we378

24

also express the number of non-zero entries in the condensed matrix nnzcond,379

see equation (C.30) in Appendix C. This enables the calculation the costs of380

step 6: Precondition-SpMV Z = P−1V and Jacobian-SpMV W = AZ in381

terms of (P,Neq, d), as summarised in Table 2. Since the preconditioner is a382

locally dense matrix (block diagonal part is dense, while the off-diagonal parts383

are empty), we can bound the number of non-zero entries by the number of384

total entries in the diagonal blocks nnz = Nelnb
2. Therefore, the cost of the385

preconditioner-SpMV Z = P−1V, presented in step 5 in Algorithm 2 can be386

expressed as NelN
2
eq(P+1)6 in 3D and NelN

2
eq(P+1)4 in 2D, if the full system387

is considered. For the condensed system, the costs are NelN
2
eq(6P

2 + 2)2 and388

NelN
2
eq16P 2 for 3D and 2D, respectively. The main preconditioned-GMRES389

costs are included in Table 2.390

These estimates show asymptotic advantages for the condensed system,391

as P increases, for the two main steps within the preconditioned GMRES392

solver, further discussion can be found in the next section. In Section 4,393

Figures 2a and 6a report measured computational costs of GMRES in detail394

for the range of polynomial orders P = 2, ..., 8. The cost of GMRES (step395

13 in Algorithm 1) is referred to as solver cost, in the following sections.396

3.4. Summary of computational costs397

Table 2 presents a summary of the estimated costs for the essential oper-398

ations considered in the time stepping algorithm Algorithm 1, including the399

preconditioned-GMRES main steps. The biggest computational effort relates400

25

to the factorisation of element-blocks needed to factorise the preconditioner401

for the full system and inner-element matrix Aii for the Schur complement,402

both scaling as O(P 9). As shown in the Table 2, factorising the blocks for the403

condensed preconditioner has a significant lower cost O(P 6). Similarly, the404

main GMRES steps favor from the use of static condensation. In 3D, both405

steps scale as O(P 4) for the condensed system, whilst they scale as O(P 5)406

and O(P 6) for the full system. These advantages are also expected in 2D407

simulations.408

Table 2: Summary of the estimated leading costs of main operations in Algorithm 1 for
2D and 3D. Full and condensed systems are included.

3D

Full system Condensed system

A−1
ii - NelN

3
eq(P − 1)9

SpGEMM - NelN
3
eqP

8

P−1 NelN
3
eq(P + 1)9 NelN

3
eqP

6

GMRES Az NelN
2
eqP

5 25NelN
2
eqP

4

GMRES P−1v NelN
2
eq(P + 1)6 NelN

2
eq6P 4

2D

Full system Condensed system

A−1
ii - NelN

3
eq(P − 1)6

SpGEMM - NelN
3
eqP

5

P−1 NelN
3
eq(P + 1)6 NelN

3
eq64P 3

GMRES Az NelN
2
eqP

4 13NelN
2
eqP

2

GMRES P−1v NelN
2
eq(P + 1)4 NelN

2
eq16P 2

In Section 4, we study the difference in computational costs for both,409

full and condensed Block-Jacobi preconditioners. There simulated costs are410

compared to the summarised estimated. We present the results in Figures 3a411

and 7a together with the condensation costs. Finally, we note that the use of412

26

block preconditioners, that exploit the structure of DGSEM, has proven to be413

an important part in obtaining faster convergence rates for DG based solvers414

[33, 31, 32, 35, 36]. It has been advocated that Block-Jacobi preconditioner415

do not scale well in DG, which is indeed the case for the full system, since416

the block size scales with (P + 1)3, and associated cost O(P 9). However, the417

static condensed block size scales with 6P 2 + 2 with costs O(P 6) in 3D and418

with 4P and cost O(P 3) in 2D, which renders Block-Jacobi preconditioner an419

interesting scalable preconditioner for the condensed GL-DGSEM approach.420

4. Numerical results421

We consider two test cases: a 3D manufactured solution and a 2D flow422

over NACA0012 airfoil at a high Angle of Attack (AOA) leading to an un-423

steady regime. The manufactured solution case illustrates the use of implicit424

time-marching solvers to reach a steady state solution, whilst the NACA0012425

test case quantifies the improved cost in an unsteady flow simulation, with426

vortex shedding. The Mach number is set to Ma=0.1 for manufactured solu-427

tion problem (other Ma and Re can be found in Appendix A) and Ma=0.3428

for the NACA cases. For all the steady cases, we fix the final residual of the429

simulations to ||M−1F (Q) − S||∞ = 10−8 (see Algorithm 1) such that we430

compare the various schemes for the same accuracy.431

The objective of the test cases is to validate the theoretical findings pre-432

sented in the previous section. Therefore the main costs of the time marching433

scheme (see Algorithm 1) are compared with the theoretical cost estimations434

27

(summarised in Table 2) for the two test cases. Additionally, the total cost435

to perform the simulations is included, to quantify the overall efficiency of436

the implicit statically condensed system compared to the full system.437

4.1. Steady simulation: Manufactured Solution438

The manufactured solution case is obtained by selecting an exact solution439

to the compressible Navier-Stokes equations:440

ρ = p = e−5·(4(x− 1
2

)2+(y− 1
2

)2+(z− 1
2

)2) + 1,

u = v = w = 1,

(11)

to then extract the balancing source terms:441

s =



sρ

sρu

sρv

sρw

sρE


=



40(x− 1
2
) + 10(y − 1

2
) + 10(z − 1

2
))

80(x− 1
2
) + 10(y − 1

2
) + 10(z − 1

2
))

40(x− 1
2
) + 20(y − 1

2
) + 10(z − 1

2
))

40(x− 1
2
) + 10(y − 1

2
) + 20(z − 1

2
))[

40(x− 1
2
) + 10(y − 1

2
) + 10(z − 1

2
)
] [

5
2

+ 1
γ−1

]


·

· e−5(4(x− 1
2

)2+(y− 1
2

)2+(z− 1
2

)2).

(12)

We select the computational domain to be a [0, 1]3 cube with 64 hexa-442

hedral uniform elements. The solutions to the compressible Navier-Stokes443

equations (1) with the source term (12) can be seen in the Figure 1. Neither444

28

Figure 1: 3D Manufactured Solution: Solution of x-momentum ρu for a mesh of 64 hex-
ahedral and polynomial order P=8. Figure a) 3D view, Figure b.1) and b.2) show cross-
sections of yz and xy planes, respectively.

Mach nor Reynolds numbers have an impact on the final solution, however,445

both those parameters have a strong influence on the numerical scheme. We446

set the Reynolds number to Re = 1000 and the Mach to Ma = 0.1, but447

results for other Re and Ma can be found in Appendix B. The time-step448

size in the implicit computations is set ∆t = 0.1 for all the polynomial orders449

and both systems.450

Table 3 presents a summary of the conducted simulations for the full and451

condensed systems. We include the number of Jacobian updates iJac (iden-452

tical for both full and condensed systems), the averaged number of Newton453

iterations per one time step iNewton

i∆t
, the averaged number of GMRES itera-454

tions per one Newton solve iGMRES

iNewton
along with number of non-zero entries in455

full nnzfull and condensed nnzcond systems. We observe that the number of456

29

Newton iterations per one time step iNewton

i∆t
is constant for all polynomials457

and almost identical for the full and condensed system, consequently with us-458

ing the same number of Jacobian updates in the full and condensed systems.459

The averaged number of GMRES iterations per one Newton solve iGMRES

iNewton
,460

increases when using higher polynomial orders, scales similarly for both full461

and condensed systems. We also observe that the number on non-zeros is462

larger for the condensed system. This is not the expected behaviour for high463

polynomials, but due to the tight coupled stencil of the condensed system,464

this can be expected for low polynomial orders.465

Table 3: 3D Manufactured Solution: Number of Jacobian updates iJac (identical for both
full and condensed systems), averaged number of Newton iterations per one time step
iNewton

i∆t
and averaged number of GMRES iterations per one Newton solve iGMRES

iNewton
along

with number of non-zero entries in full nnzfull and condensed nnzcond systems. For all
cases considered in the table number of time steps needed to reach the steady state is
i∆t = 50, for polynomial orders P = 2, .., 8.

Full system Condensed system Nonzero entries

P iJac
iNewton

i∆t

iGMRES

iNewton

iNewton

i∆t

iGMRES

iNewton
nnzfull nnzcond

2 3 6.4 3.5 6.4 3.5 6.5×105 1.2×106

3 3 6.1 4.4 6.1 4.4 2.2×106 6.6×106

4 3 5.9 5.7 6.1 5.5 6.0×106 2.2×107

5 3 6.1 6.7 6.1 6.5 1.3×107 5.6×107

6 4 6.3 7.7 6.4 7.6 2.8×107 1.2×108

7 4 6.5 8.6 6.6 8.5 5.3×107 2.2×108

8 5 6.6 10.0 6.6 9.9 9.4×107 3.9×108

Although the averaged linear solver iteration count is the same for both466

systems, this can be interpreted as an advantage of using static condensation467

with the cheaper skeleton-element Block-Jacobi. The similar iteration count468

has been observed in the past [24, 66] for finite element formulations (and469

30

moderate polynomials P). There, the authors argued that even if the condi-470

tion number of condensed Jacobian scales much better with P , the spectral471

radius of the iteration matrix, with a good preconditioner, is very similar for472

both systems, leading to similar number of iterations. Coherently with the473

findings of the aforementioned publications, we find almost the same number474

of iterations for full and condensed systems, but the latter being cheaper due475

to its smaller size, see Figure 2b.476

The table is completed with Figures 2 and 3, where the total GMRES cost,477

the averaged solver cost per one linear system solve, the timing of factorising478

the preconditioner and the total simulation cost are depicted for the full479

and condensed systems and for polynomial orders P = 2, .., 8. The figures480

include the slopes for the theoretical estimates found in previous sections.481

Figure 2a splits the solver costs into the two main preconditioned-GMRES482

solver steps: preconditioner-SpMV TP−1v and Jacobian-SpMV TAz. Note483

that the rest of the GMRES costs are negligible. As estimated in Section 3,484

TAz is larger for the condensed system due to higher number of non-zeros nnz,485

however the preconditioner-SpMV TP−1v is much cheaper and compensates486

TAz, which results in faster overall iterations. Additionally, the advantage of487

using static condensation in terms of solver costs becomes more noticeable488

for high polynomial orders. In all cases, the theoretical estimates are in good489

agreement with the numerical results.490

Figure 3 presents the factorisation costs of the preconditioner along with491

condensation cost and the total time of the simulation. The factorisation of492

31

the preconditioner matches well the theoretical estimates (see Table 2) for493

high enough polynomial orders. Discrepancies at low orders are attributed494

to the relatively small 3D problem considered and the effect of boundary495

conditions. In any case, it can be seen that despite the cost of condensing the496

system, the solver cost benefits from the condensation (Figure 2b), leading to497

overall faster solves, which illustrates the beneficial effect of using a condensed498

system for the higher polynomial orders.499

2 3 4 5 6 7 8
10

-2

10
0

10
2

10
4

6

1

4

1

(a)

2 3 4 5 6 7 8
10

-3

10
-2

10
-1

10
0

10
1

10
2

6

1

4

1

(b)

Figure 2: 3D Manufactured Solution: a) Total cost of the GMRES split in two major
operations (in seconds) and b) Averaged GMRES solver cost (in seconds) per one linear
system solve, for full and condensed systems for polynomial order P = 2, .., 8. Theoretical
slopes are included depicted with a triangle.

32

2 3 4 5 6 7 8
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

9

1

6

1

(a)

2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

6

1

4

1

(b)

Figure 3: 3D Manufactured Solution: a) Timing of factorising the preconditioner (in
seconds) and b) Total simulation cost (in seconds) to reach a tolerance 1 × 10−8 for the
full and condensed systems for P = 2, .., 8. Theoretical slopes are included depicted with
a triangle.

For completeness, we include a brief study for this problem, in Ap-500

pendix B, for a range of Mach numbers, 0.1≤Ma≤0.8 and Reynolds numbers,501

200≤Re≤1000 and show that the advantages of the static condensation are502

maintained for a wide range of flow conditions, and for a variety of polynomial503

orders.504

4.2. Unsteady simulation: NACA0012 at AOA = 20o
505

In this section, we challenge the static condensation technique for un-506

steady flows with application to aerodynamics. We simulate an unsteady507

NACA0012 case using a 2D computational squared domain of size 20 × 20508

chords, with 1730 quadrilateral elements. Figure 4 depicts the h-mesh (in509

black) and the Gauss-Lobatto mesh (in gray) near the NACA0012 airfoil,510

and also the contours of x-momentum for the wake flow. To trigger vortex511

33

shedding and study the performance of the implicit time-marching method512

for unsteady regimes, we set the Reynolds number to Re=200 and the angle513

of attack to AOA = 20o (see Figure 4).514

In steady problems, one of the main advantages of implicit time-integration515

schemes is that it is possible to increase the time-step size several orders of516

magnitude without losing accuracy or affecting stability [67]. However, in517

unsteady simulations the time-step size is bounded by accuracy constraints.518

This means that the time step in the implicit time-marching schemes has519

to be low enough to capture the physics of the problem, hence the perfor-520

mance of implicit time-marching schemes depends on the underlying physical521

problem at hand. In NACA0012, the characteristic physical time (one vortex522

shedding cycle) is 200 times larger than the time step selected for the implicit523

time-marching scheme. This restriction precludes the use of very large time524

steps in implicit solvers. For this reason, in the unsteady case, the implicit525

time step as been restricted to maintain accuracy (as shown in Figure 5). The526

time-step size in the explicit computations (ERK3), provided as reference for527

accuracy, is limited to ∆t = 2.0× 10−5, which is the maximum permitted by528

stability constraints for P = 5. In contrast, the time-step size in the implicit529

computations is set to ∆t = 1.0 × 10−2, which is sufficiently low to capture530

the flow features accurately.531

In this section, we show that the statically condensed DGSEM is able to532

outperform the standard full system for the same step size and that both533

methods provide accurate results. We provide results using an explicit RK3534

34

Figure 4: Unsteady 2D NACA0012: unsteady flow at Re=200 and AOA = 20o. Zoomed
regions showing h-mesh (in black) and Gauss-Lobatto mesh (in gray) in a) and wake flow
field in b). All figures include x-momentum contours.

scheme as a reference. The comparison shows that the additional operations535

necessary to calculate the Schur complement, in the condensed system, do536

not damage the accuracy of the final solution with round-off errors.537

Before proceeding with the costs, we present comparisons for the schemes538

in terms of accuracy, in Table 4. We simulate the unsteady flow for 10 vortex539

shedding cycles and compute mean lift, mean drag, and the Strouhal number.540

Let us note that once the polynomial order is fixed, the differences in mean541

lift, mean drag and Strouhal are negligible (i.e. below 10−5) when using542

different time-marching schemes.543

For completeness, Figure 5 depicts drag and lift curves for P = 3, com-544

puted with the explicit and implicit methods. We observe that explicit and545

implicit results match remarkably well, illustrating that there is no loss of546

accuracy when using implicit time-marching with moderate time steps.547

35

Table 4: Unsteady 2D NACA0012: Time step, mean drag, mean lift and Strouhal number
St; for explicit (ERK3) and implicit solver (GMRES) and polynomial orders P = 2, 3, 4, 5.

P = 2 P = 3

ERK3 BDF2 full BDF2 cond. ERK3 BDF2 full BDF2 cond.

∆t 2.7×10−5 1.0×10−2 1.0×10−2 2.7×10−5 1.0×10−2 1.0×10−2

Mean Drag 0.4383 0.4383 0.4383 0.4342 0.4342 0.4342
Mean Lift 0.6753 0.6753 0.6753 0.6677 0.6677 0.6677

St 0.3535 0.3530 0.3530 0.3565 0.3565 0.3565

P = 4 P = 5

ERK3 BDF2 full BDF2 cond. ERK3 BDF2 full BDF2 cond.

∆t 2.7×10−5 1.0×10−2 1.0×10−2 2.7×10−5 1.0×10−2 1.0×10−2

Mean Drag 0.4345 0.4345 0.4345 0.4342 0.4342 0.4342
Mean Lift 0.6664 0.6664 0.6664 0.6651 0.6651 0.6651

St 0.3577 0.3576 0.3576 0.3558 0.3558 0.3558

865 866 867 868 869

Physical Time [s]

0.4338

0.434

0.4342

0.4344

0.4346

D
ra

g

GMRES

ERK3

(a)

865 866 867 868

Physical Time [s]

0.664

0.666

0.668

0.67

0.672

L
if

t

GMRES

ERK3

(b)

Figure 5: Unsteady 2D NACA0012: Close-up comparison of explicit and implicit results
for drag and lift for a single shedding cycle.

36

We now explore the different costs. Table 5 shows detailed information548

about number of Jacobian updates iJac, the averaged number of Newton549

iterations per one time step iNewton

i∆t
and averaged number of GMRES itera-550

tions per one Newton solve iGMRES

iNewton
. As in the previous Manufactured Solu-551

tion problem, conducting the simulation based on a smaller (but with more552

non-zeros) Jacobian matrix has almost no impact in the number of Newton553

iterations. Also like in the previous steady-state case, the averaged num-554

ber of GMRES iterations is similar for both systems, but the iterations are,555

again, more efficient for the condensed system (Figure 6b). Unlike in the556

previous problem, the solver set-up costs (factorisation and condensation)557

do not constitute a big portion of the total simulation time, see Figure 7a,558

thus the advantage for the condensed system is clearly seen in Figure 7b.559

This is due to the fact that the Jacobian matrix is updated less frequently in560

this problem, and therefore the relative cost of the solver set-up in the total561

simulation cost is smaller. For this particular test case and range of poly-562

nomial orders, the solver set-up cost for the full system is cheaper than the563

theoretical prediction. However, it is still more costly than the condensation564

cost.565

It can be seen that the static-condensation method provides the same566

accuracy up to given tolerance as the full system, but it is up to 40 % faster567

for the highest polynomial orders (P = 4, 5). As in the previous section,568

we also present the detailed results of the solver cost, Figures 6a and 6b.569

Again, the condensed system has more non-zeros nnz (Table 5), but the faster570

37

preconditioner-SpMV compensates this cost and leads to faster simulations.571

Theoretical and measured preconditioner-SpMV operations for both systems572

agree well.573

Finally, we can conclude that our static condensation time-marching574

method is more efficient for large polynomials, than the full system tech-575

nique, even for unsteady problems, whilst providing accurate results.576

Table 5: Unsteady 2D NACA0012: Number of Jacobian updates iJac (computed only once
and identical for both full and condensed systems), averaged number of Newton iterations
per one time step iNewton

i∆t
and averaged number of GMRES iterations per one Newton

solve iGMRES

iNewton
along with number of non-zero entries in full nnzfull and condensed nnzcond

systems. For all cases considered in the table number of time steps needed to compute
one cycle is i∆t = 280, for polynomial orders P = 2, .., 5.

Full system Condensed system Nonzero entries

P iJac
iNewton

i∆t

iGMRES

iNewton

iNewton

i∆t

iGMRES

iNewton
nnzfull nnzcond

2

1

5.5 5.0 5.5 5.0 1.9×107 4.9×107

3 11.2 10.0 11.1 9.8 4.5×107 1.2×108

4 11.7 11.7 11.7 11.5 9.0×107 2.4×108

5 11.6 13.5 11.6 13.2 1.5×108 3.9×108

38

2 3 4 5
10

2

10
3

10
4

10
5

10
6

4

1

2

1

(a)

2 3 4 5

10
0

10
1

4

1

2

1

(b)

Figure 6: Unsteady 2D NACA0012: a) Total cost of the GMRES split in two major
operations (in seconds) and b) Averaged GMRES solver cost (in seconds) per one linear
system solve, for the full and condensed systems for P = 2, .., 5. Theoretical slopes are
included depicted with a triangle.

2 3 4 5
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

6

1

2

1

(a)

2 3 4 5
10

3

10
4

10
5

4

1

2

1

(b)

Figure 7: Unsteady 2D NACA0012: a) Timing of factorising the preconditioner and b)
Total simulation cost (in seconds) to complete one shedding period for full and condensed
systems for P = 2, .., 5. Theoretical slopes are included depicted with a triangle.

5. Conclusion577

We have analysed the advantages of performing static condensation on the578

compressible Navier-Stokes equations discretised with DGSEM and Gauss-579

39

Lobatto points. The work focuses on the implicit preconditioned-GMRES580

time discretisations, and we have compared computational costs of solving581

the standard full Jacobian system to the static condensation technique for582

GL-DGSEM, detailed in Rueda-Ramı́rez et al. [1], both preconditioned us-583

ing Block-Jacobi. To allow for fair comparisons, we split the costs into three584

categories: computation of the preconditioner, condensation costs for the585

statically condensed system and the solver GMRES cost to solve the full and586

condensed systems. We compare our numerical results with theoretical com-587

putational costs (Table 2), which include unpublished estimates for DGSEM.588

The theoretical estimates agree well with our simulations and provide solid589

bases for understanding the different costs involved.590

For all cases included (steady-state 3D Manufactured Solution and un-591

steady 2D NACA0012), the static condensation shows accelerations (for large592

polynomial orders) due to the significantly faster solver time per single linear593

system solve. The accelerations are up to 30% for the Manufactured Solution594

and up to 40% for NACA0012 case, for the highest polynomial considered.595

Block-Jacobi preconditioner do not scale well with the polynomial order,596

which is indeed the case for the full system, since the element block Jacobian597

scales with (P + 1)3. However, we have shown that the statically condensed598

block size scales with 6P 2 + 2 in 3D and with 4P in 2D, which renders599

Block-Jacobi preconditioner an interesting preconditioner for the condensed600

GL-DGSEM approach. Let us note that recent sum-factorisation techniques601

have been developed for high polynomials in discontinuous [48] and continu-602

40

ous Galerkin [68] approaches hat decrease cost of factorising the blocks and603

show improved scalings for Block-Jacobi preconditioners. In the future, this604

approach may be applied to decrease the computational cost of condensed605

systems to further enhance the presented methodology. One drawback as-606

sociated to the statically condensed system is the additional cost related to607

assembling the Schur complement (see Section 2.2 for more details). How-608

ever, this cost is not high enough to mask the advantages of using static609

condensation, for high polynomial orders.610

This manuscript compares iterative time-marching methods in serial, to611

avoid discrepancies due to parallelisation when comparing implicit tech-612

niques. Taking into account that Block-Jacobi preconditioners can be eas-613

ily parallelised, we expect that future parallel implementation will lead to614

cheaper parallelised costs and less communication that when using the full615

system, as well as lower memory requirements. Future work, will assess616

the improvements in performance of implicit schemes (and especially of the617

static condensation methods) in many-core parallel environments and with618

more sophisticated preconditioners, including multilevel p-multigrid, specifi-619

cally tailored for statically condensed systems.620

Acknowledgements621

Wojciech Laskowski and Esteban Ferrer would like to thank the European622

Union’s Horizon 2020 Research and Innovation Program under the Marie623

Sk lodowska-Curie grant agreement No 813605 for the ASIMIA ITN-EID624

41

project. Additionally, Andrés Rueda-Ramı́rez acknowledges the funding re-625

ceived by the project SSeMID under the Marie Sk lodowska-Curie grant agree-626

ment No 675008, and also the funding from the European Research Coun-627

cil through the ERC Starting Grant “An Exascale aware and Un-crashable628

Space-Time-Adaptive Discontinuous Spectral Element Solver for Non-Linear629

Conservation Laws” (Extreme), ERC grant agreement no. 714487. Gonzalo630

Rubio acknowledges the funding received by the grant Ayudas dirigidas al631

PDI para el fomento de la participación en solicitudes de proyectos H2020632

from Universidad Politécnica de Madrid. Finally, the authors gratefully ac-633

knowledge the Universidad Politécnica de Madrid (www.upm.es) for provid-634

ing computing resources on Magerit Supercomputer. Finally, the authors635

thank the reviewers for suggesting a deeper analysis by means of theoretical636

estimates, which have clearly improved the manuscript.637

Appendix A. Preliminary assessment of preconditioners638

In this section, we perform a preliminary study to assess the efficiency639

of several preconditioners: Block Jacobi and Incomplete LU (i.e. ILU(0),640

ILU(1) and ILU(2)). We compare the effect of the preconditioning and re-641

ordering in both the full and statically condensed systems.642

For this preliminary selection, a manufactured with 8 hexahedral elements643

is selected. This case is smaller that the one considered in Section 4.1. We644

also increased the tolerance for the linear solver to TOLGMRES = e · 0.3i645

along with decreasing time step to dt = 1e−2 for more accurate results. The646

42

source term and rest of the parameters are maintained and can be found in647

Section 4.1.648

Figure A.8.a, Figure A.8.b and Figure A.8.c show the average number of649

iterations per Newton-Raphson step, the average solver cost and the cost of650

factorising the preconditioner. As can be seen in Figure A.8.a, even the sim-651

plest preconditioners considered (Block-Jacobi and ILU(0)) keep the average652

number of iterations low, even for high polynomial orders. The number of653

iterations remains unaltered by the use of static condensation. Figures A.8.b654

and A.8.c show the averaged solver cost and factorisation cost. Both of them655

present shorter times for the condensed system than for the full system. The656

difference between full and condensed systems, in the cost of factorisation for657

ILU(k), increases when increasing the filling k, as expected for more evolved658

preconditioners, but we note that the cost is lower for the condensed system,659

since the system size is smaller. Also the difference between the full and the660

condensed system in the average solver cost increases for ILU(k) for higher661

fillings k. Again, the condensed system cost is smaller.662

From this preliminary analysis, we have chosen the Block-Jacobi for the663

rest of the paper. The reason is that, although non being optimal in terms664

of average iteration count, it presents a low memory cost, takes advantage665

of the element structure in DGSEM and can be easily parallelised, therefore,666

the results with element Block-Jacobi may provide better bases for further667

research.668

43

2 3 4 5

0

5

10

15

2 3 4 5

10
-2

10
0

2 3 4 5

10
-2

10
0

Figure A.8: a) Averaged iteration count (per linear system solve), b) averaged solver cost
(per linear system solve) and c) factorisation cost of various types of preconditioners:
Block-Jacobi, ILU(0), ILU(1), ILU(2).

44

Appendix B. Influence of Mach and Reynolds669

2 3 4 5 6 7 8

2

4

6

8

10

12

14

(a)

2 3 4 5 6 7 8

0

5

10

15

20

(b)

Figure B.9: Influence of a) Mach number (Ma) and b) Reynolds number (Re) on averaged
number of iterations. All the different cases for Mach number were simulated with Re =
1000. The Reynolds study was conducted using Ma = 0.1.

In this section, we compare full and statically condensed systems for a670

range of Mach numbers, 0.1≤Ma≤0.8 and Reynolds numbers, 200≤Re≤1000.671

We use Block-Jacobi preconditioning for all cases.672

Figure B.9 depicts iteration count for three different Mach numbers B.9a673

and three different Reynolds numbers B.9b. As expected, an increase in674

the Mach number (in the subsonic range) or in the Reynolds number, has675

a positive impact on the averaged iteration count for both condensed and676

full systems. We have not observed significant differences in computational677

efficiencies. In most cases, the static condensation provided very similar678

speed-up as depicted in the Figures 2 and 3. Overall, the static condensation679

system shows small improvements, over the full system, for this test case.680

45

Appendix C. Estimation of non-zero entries in the Jacobian Ma-681

trix682

The number of non-zero entries in the Jacobian matrix of a DGSEM683

discretisation depends on the nodes chosen (Gauss or Gauss-Lobatto), on the684

specifics of the flux (whether it has advection and/or diffusion terms), and685

on the surface numerical fluxes used. In this section, we derive the analytical686

expressions for the number of non-zero entries in the Gauss-Lobatto DGSEM687

Jacobian matrix for systems of nonlinear conservation laws with advection688

and diffusion terms, and surface numerical fluxes with compact support, as689

these are the subjects of the present study.690

To facilitate the analysis, we will note the number of non-zero entries in a691

single diagonal block of the Jacobian matrix as nnzd, and the number of non-692

zero entries in a single off-diagonal block as nnzo. These expressions should693

be considered as an upper bound, since the number of non-zeros might be694

smaller due to the nonlinearities of the problem or the specific properties of695

the curvilinear mapping, as will be evident in next sections.696

A system of nonlinear conservation laws reads

∂tq + ~∇ ·
(↔
fa −

↔
fν
)

= 0, (C.1)

where q is the state vector of conserved quantities,
↔
fa is the advective flux,697

and
↔
fν is the diffusive flux. Let us analyse the advection and diffusion terms698

separately.699

46

Appendix C.1. Advection terms700

Given a DGSEM discretisation of the advection terms in (C.1), an entry

in the diagonal block that connects degrees freedom h and w of a specific

element reads [44, 1]

DTa
hw = −

∫
Ω

(Jaφ)w·~∇φhdΩ+

∮
∂Ω

f̂aq+φwφhdS+

∮
∂Ω∩Γ

f̂aq−q−q+φwφhdS, (C.2)

where Ω is the domain of the element where the degrees of freedom h and w701

are located, ∂Ω is the boundary of that domain, ∂Ω ∩ Γ is the part of that702

boundary that belongs to a physical boundary, Ja = ∂
↔
fa/∂q is the Jacobian703

of the advective flux, φw and φh are the basis functions that correspond to704

the degrees of freedom w and h, q+ and q− are the inner and outer solutions705

on an element boundary, respectively, f̂a is the so-called (advective) surface706

numerical flux, f̂aq± is its Jacobian with respect to the solution on the element707

boundary, and q−q+ is the Jacobian of the boundary condition.708

The first term of (C.2) generates the densest sparsity. This term can be

rewritten using the contravariant fluxes [69] as

(Jaφ)w · ~∇φh = (J̃
a
φ)w · ~∇ξφh︸ ︷︷ ︸

Contravariant form

= (J̃
a

1φ)w
∂φh
∂ξ

+ (J̃
a

2φ)w
∂φh
∂η

+ (J̃
a

3φ)w
∂φh
∂ζ

,

(C.3)

where ~ξ = (ξ, η, ζ) are the coordinates on a reference element Ωξ = [−1, 1]3

47

that is mapped to physical space with high order polynomials

Ωξ
~x(~ξ)−−→ Ω. (C.4)

The degrees of freedom indexes h and w can be replaced by the tensor

product coordinate indexes h ← (i, j, k) and w ← (r, s, t). This allows us

to rewrite the basis functions as a tensor product combination of Lagrange

interpolating polynomials,

φh(~x(~ξ)) = `ξi (ξ)`
η
j (η)`ζk(ζ) (C.5)

φw(~x(~ξ)) = `ξr(ξ)`
η
s(η)`ζt (ζ). (C.6)

As a result, (C.3) can be rewritten as

(J̃
a
φ)w · ~∇ξφh =(J̃

a

1)rst
∂`ξi
∂ξ

`ξr `
η
s`
η
j︸︷︷︸

δsj

`ζt `
ζ
k︸︷︷︸

δtk

+(J̃
a

2)rst
∂`ηj
∂η

`ηs `
ξ
r`
ξ
i︸︷︷︸

δri

`ζt `
ζ
k︸︷︷︸

δtk

+(J̃
a

3)rst
∂`ζk
∂ζ

`ζt `
ξ
r`
ξ
i︸︷︷︸

δri

`ηs`
η
j︸︷︷︸

δsj

, (C.7)

where δ is Dirac’s delta function. Equation (C.7) only takes non-zero values

if

(s = j and t = k) or (t = k and t = k) or (s = j and r = i). (C.8)

48

In consequence, there are connectivities between each degree of freedom

h ← (i, j, k) and all degrees of freedom w ← (r, s, t) that lie along lines

of the reference element coordinates. These connectivities appear as non-

zero values in the Jacobian matrix, which leads to the following number of

non-zeros for the diagonal blocks:

nnzad

∣∣∣∣
2D

= N2
eq(P + 1)2[2(P + 1)− 1]. (C.9)

nnzad

∣∣∣∣
3D

= N2
eq(P + 1)3[3(P + 1)− 2]. (C.10)

An entry in the off-diagonal block that connects the degrees of freedom

h and w reads [44, 1]

ODTa
hw =

∮
∂Ω\Γ

f̂aq−φ
−
wφhdS, (C.11)

where φ−w is the basis function that corresponds to the degree of freedom709

w, which belongs to an element that is a neighbor of Ω across the interface710

∂Ω \ Γ.711

It is evident that ODTa
hw only takes non-zero values if h and w are both

degrees of freedom on the boundary ∂Ω \ Γ. As a result, the number of

49

non-zero entries for each off-diagonal block reads

nnzao

∣∣∣∣
2D

= Neq(P + 1) (C.12)

nnzao

∣∣∣∣
3D

= Neq(P + 1)2 (C.13)

Appendix C.2. Diffusion terms712

Neglecting the advective and time-dependent terms in (C.1), an entry

in the diagonal block that connects degrees freedom h and w of a specific

element reads [44, 1]

DTν
hw =

∫
Ω

(Jνφ)w · ~∇φhdΩ

+

(P+1)3∑
m=1

[
1

Jmωm

(∫
Ω

Gmφm · ~∇φhdΩ

)
·
(
−
∫

Ω

φw ~∇φmdΩ

+

∮
∂Ω

q̂q+φwφm~ndS +

∮
∂Ω∩Γ

q̂q−q−q+φwφm~ndS

)]
−
∮
∂Ω\Γ

(̂
fνq+φw + f̂ν~∇q+ · ~∇φw

)
φhdS

−
∮
∂Ω∩Γ

(
∂ f̂νΓ
∂q+

φw +
∂ f̂νΓ

∂~∇q+
· ~∇φw

)
φhdS, (C.14)

where Jν = ∂
↔
fν/∂q is the Jacobian of the diffusive flux with respect to

q, Jm is the Jacobian of the mapping (C.4) at the node m, ωm are the

quadrature weights for the volume integral, G = ∂
↔
fν/∂(~∇q) is the Jacobian

of the diffusive flux with respect to ~∇q, q̂ is the numerical trace of the

solution on the element boundary, q̂q± is the derivative of this numerical

50

trace with respect to the solutions on the element boundary, ~n is the outward-

pointing normal vector on the boundary, f̂νq+ and f̂ν~∇q+
are the Jacobians of the

viscous surface numerical flux with respect to the solution and its gradient,

respectively, and ∂ f̂νΓ/∂q+ and ∂ f̂νΓ/∂(~∇q+) are the Jacobians of the viscous

surface numerical flux on the physical boundaries. Note that the terms with

the subscript Γ contain all the information of the boundary condition on the

viscous surface numerical flux:

∂ f̂νΓ
∂q+

= f̂νq+ + f̂νq−q−q+ + f̂ν~∇q−(~∇q−)q+ , and (C.15)

∂ f̂νΓ

∂~∇q+
= f̂ν~∇q+ + f̂ν~∇q−(~∇q−)~∇q+ , (C.16)

The term first term of the summation in (C.14) is the one that generates

the densest sparsity, as it is the multiplication of two volume integrals. This

term can be expanded as

(
densest

term

)
=

(P+1)3∑
m=1

[
1

Jmωm

(∫
Ω

Gmφm · ~∇φhdΩ

)
·
(
−
∫

Ω

φw ~∇φmdΩ

)]

= −
(P+1)3∑
m=1

1

Jmωm

[(∫
Ω

(G1φ)m · ~∇φhdΩ

)(∫
Ω

φw
∂φm
∂x

dΩ

)
+

(∫
Ω

(G2φ)m · ~∇φhdΩ

)(∫
Ω

φw
∂φm
∂y

dΩ

)
+

(∫
Ω

(G3φ)m · ~∇φhdΩ

)(∫
Ω

φw
∂φm
∂z

dΩ

)]
.

(C.17)

51

The volume integrals on the left, that depend on the third-order tensors

Gm, imply two-point connectivities (as in (C.8)) for the degrees of freedom

m and h. The volume integrals on the right imply two-point connectivities

for the degrees of freedom w and m. In consequence, each degree of freedom

h ← (i, j, k) is connected with non-zeros with all degrees of freedom w ←

(r, s, t) that lie on the same ξ−η, η− ζ and ξ− ζ planes of reference element

coordinates. Hence, the number of non-zero entries for in the Jacobian matrix

in each diagonal block is

nnzνd

∣∣∣∣
2D

= N2
eq(P + 1)4 (C.18)

nnzνd

∣∣∣∣
3D

= 3N2
eqP (P + 1)4. (C.19)

It is important to point out that the sparsity pattern generated by (C.17)713

contains all the non-zero entries needed for the other diffusive terms and714

for the advective terms. As can be seen, the diffusive terms generate dense715

diagonal blocks in 2D.716

An entry in the off-diagonal block that connects the degrees of freedom

h and w reads [1]

ODTν
hw =

(P+1)3∑
m=1

[
1

Jmωm

(∫
Ω

Gmφm · ~∇φhdΩ

)
·
(∮

∂Ω\Γ
φ−wφm~ndS

)]
−
∮
∂Ω\Γ

(̂
fνq−φ

−
w + f̂ν~∇q−

~∇φ−w
)
φhdS. (C.20)

52

In this case, both the summation term and the single surface integral of717

(C.20) play an important role in the sparsity of the off-diagonal blocks.718

Let us analyse the summation term first. The volume integral implies

two-point connectivities for the degrees of freedom m and h, and the surface

integral only takes non-zero values if the degrees of freedom w and m lie on

an element boundary. As a result, each degree of freedom h ← (i, j, k) is

connected with non-zeros with the degree of freedom (of a neighbor element)

w ← (r, s, t) that lies on the element boundary and on the same iso-ξi line

as h. Therefore, the number of non-zeros due to the summation term is

nnzνo

∣∣∣∣
1,2D

= N2
eq(P + 1)2. (C.21)

nnzνo

∣∣∣∣
1,3D

= N2
eq(P + 1)3. (C.22)

The single surface integral in (C.20) is important for the sparsity pattern

since it contains the gradient of the basis functions on the neighbor element,

~∇φ−w . This term can be written explicitly as

~∇φ−w =


∂φ−w
∂x

∂φ−w
∂y

∂φ−w
∂z

 =


∑d

p=1
∂φ−w
∂ξp

∂ξp
∂x∑d

p=1
∂φ−w
∂ξp

∂ξp
∂y∑d

p=1
∂φ−w
∂ξp

∂ξp
∂z

 . (C.23)

Note that the sparsity pattern that this term generates depends on the

geometry mapping (∂~ξ/∂~x) and on the position of the degrees of freedom w

and h. For a general curvilinear mapping, the second term of (C.20) is zero

53

when h is not a degree of freedom on the element boundary or when

∂φ−w
∂ξ

=
∂φ−w
∂η

=
∂φ−w
∂ζ

= 0. (C.24)

Therefore, for each h on the element boundary, there are non-zeros for the

degrees of freedom w of a neighbor element that are arranged along lines of

the reference coordinates. In summary, the number of non-zero entries for

each off-diagonal block due to the second term of (C.20) is

nnzνo

∣∣∣∣
2,2D

= N2
eq(P + 1)[2(P + 1)− 1]. (C.25)

nnzνo

∣∣∣∣
2,3D

= N2
eq(P + 1)2[3(P + 1)− 2]. (C.26)

Remark that the term that leads to the non-zero pattern (C.21) shares

some non-zeros with the term that leads to (C.25). Combining (C.21) and

(C.25), and accounting for the repeated non-zero entries, the total number

of non-zeros in an off-diagonal block is

nnzνo

∣∣∣∣
2D

= N2
eq [P (P + 1) + (P + 1)[2(P + 1)− 1]]

= N2
eq(P + 1)(3P + 1). (C.27)

nnzνo

∣∣∣∣
3D

= N2
eq

[
P (P + 1)2 + (P + 1)2[3(P + 1)− 2]

]
= N2

eq(P + 1)2(4P + 1). (C.28)

54

Appendix C.3. Total number of non-zero entries719

The number of non-zero entries in the diagonal and off-diagonal blocks720

depends on the position of the element, i.e. both blocks are more dense721

for interior elements connected purely to other interior elements. In our722

calculations, we disregard the boundary elements and estimate the upper723

bound for the total number of non-zero entries in the Jacobian Matrix:724

nnzfull = Nelnnzd + (CNeighNel −NOut)nnzo, (C.29)

where CNeigh is an upper bound of neighbouring elements (CNeigh2D = 4725

and CNeigh3D = 6) and NOut is total number of element faces (3D) or edges726

(2D) on the boundary of computational domain. For the cubic mesh used727

for Manufactured Solution problem NOutMS3D = 6(N
1
3
el)

2

= 96 and for the728

NACA0012 case NOutNACA0012 = 880. The accuracy of theses estimations729

can be found in Figure C.10. The theoretical curve overestimate the number730

of non-zero entries due to the assumptions that were undertaken to estimate731

non-zeros in each block and the fact that all the estimated blocks disregard732

physical boundary conditions (boundary blocks have significantly less non-733

zero entries). The slopes however, follow the same trend within considered734

range of polynomials. The reason for the undershoot is twofold. First, the735

Jacobian matrices for the Navier-Stokes equations (G, Ja and Jν) are far736

from dense (see [44, 1]). Second, the mesh for this case is Cartesian and737

55

therefore ∂ξi/∂xj = 0 for i 6= j.738

739

Now we estimate the number of non-zeros in the condensed system. Due

to the two matrix-matrix products (see Section 3.1) needed to compute the

Schur complement, the number of non-zero entries in the condensed system

significantly increases. The non-zero entries in each block are constrained

by the block size, which has complexity (10) (nbbb = Neq4P in 2D and

nbbb = Neq(6P
2 + 2) in 3D). However, the SpGEMM operations introduce

new non-zero entries into the matrix Acond. Additionally, the stencil of the

block structure in the Schur complement is wider (non-compact) than in the

Jacobian matrix. Therefore, the upper bound for the non-zero entries in the

condensed system is

3D: nnzcond = CNeighNeighNelN
2
eq(6P

2 + 2)2, (C.30)

2D: nnzcond = CNeighNeighNelN
2
eq(4P)2, (C.31)

where the constants CNeighNeigh3D = 25 and CNeighNeigh2D = 13 place an740

upper bound on the total number of blocks per row in the condensed sys-741

tem. Note that these constants have been obtained based on the connectives742

of structured meshes and can be slightly bigger for particular unstructured743

meshes.744

Finally, Figure C.10 compares the theoretical estimated number of non-745

zero entries nnz, for the full and the condensed systems, to the values ex-746

56

tracted from the simulations, using the 3D manufactured solution, see section747

4.1, and the 2D NACA0012 airfoil, see section 4.2. The slopes agree well and748

it can be seen that the estimates over-predict the simulations in all cases,749

which follows for having derived upper bounds. Small slope discrepancies for750

the 2D cases can be explained as follows. Our 2D simulations are not truly751

2D, but instead we have performed a 3D simulation with only one element in752

the third direction (and polynomial Pz = 2). An approximated upper bound753

for the nnz (and associated cost) for this particular situation has been ob-754

tained by assuming three two-dimensional simulations. For this reason when755

depicting the estimated value in Figure C.10, the estimate has been multi-756

plied by a constant factor of three. This estimate does not properly account757

for boundary conditions, which explains small differences.758

57

2 3 4 5 6 7 8

10
6

10
7

10
8

10
9

Computed

Estimated

(a) Manufactured Solution Full System

2 3 4 5 6 7 8
10

6

10
7

10
8

10
9

10
10

Computed

Estimated

(b) Manufactured Solution Condensed Sys-
tem

2 3 4 5

10
8

Computed

Estimated

(c) NACA0012 Full System

2 3 4 5

10
8

10
9

Computed

Estimated

(d) NACA0012 Condensed System

Figure C.10: Comparison of computed non-zero entries against estimations derived in
(C.29), (C.31) and (C.30) for full and condensed systems of two cases considered in this
work (Manufactured Solution and NACA0012).

58

References759

[1] A. Rueda-Ramı́rez, E. Ferrer, D. Kopriva, G. Rubio, E. Valero, A760

statically condensed discontinuous Galerkin spectral element method761

on Gauss-Lobatto nodes for the compressible Navier-Stokes equations,762

2019. arXiv:1911.02366.763

[2] B. Cockburn, C.-W. Shu, The local discontinuous Galerkin method for764

time-dependent convection-diffusion systems, SIAM Journal on Numer-765

ical Analysis 35 (1998) 2440–2463.766

[3] E. Ferrer and R.H.J. Willden, A high order discontinuous Galerkin finite767

element solver for the incompressible Navier–Stokes equations, Comput-768

ers & Fluids 46 (2011) 224–230.769

[4] E. Ferrer, R. H. Willden, A high order discontinuous Galerkin - Fourier770

incompressible 3D Navier-Stokes solver with rotating sliding meshes,771

Journal of Computational Physics 231 (2012) 7037–7056.772

[5] E. Ferrer, An interior penalty stabilised incompressible discontinuous773

Galerkin–Fourier solver for implicit large eddy simulations, Journal of774

Computational Physics 348 (2017) 754–775.775

[6] N. Fehn, M. Kronbichler, C. Lehrenfeld, G. Lube, P. W. Schroeder,776

High-order DG solvers for underresolved turbulent incompressible flows:777

A comparison of L2 and H(div) methods, International Journal for778

Numerical Methods in Fluids 91 (2019) 533–556.779

59

[7] M. Kompenhans, G. Rubio, E. Ferrer, E. Valero, Adaptation strategies780

for high order discontinuous Galerkin methods based on Tau-estimation,781

Journal of Computational Physics 306 (2016) 216–236.782

[8] M. Kompenhans, G. Rubio, E. Ferrer, E. Valero, Comparisons of p–783

adaptation strategies based on truncation– and discretisation–errors for784

high order discontinuous Galerkin methods, Computers & Fluids 139785

(2016) 36 – 46. 13th {USNCCM} International Symposium of High-786

Order Methods for Computational Fluid Dynamics - A special issue787

dedicated to the 60th birthday of Professor David Kopriva.788

[9] J. Manzanero, E. Ferrer, G. Rubio, E. Valero, Design of a Smagorin-789

sky spectral Vanishing Viscosity turbulence model for discontinuous790

Galerkin methods, Computers & Fluids (2020) 104440.791

[10] A. M. Rueda-Ramı́rez, J. Manzanero, E. Ferrer, G. Rubio, E. Valero,792

A p-multigrid strategy with anisotropic p-adaptation based on trunca-793

tion errors for high-order discontinuous Galerkin methods, Journal of794

Computational Physics 378 (2019) 209–233.795

[11] Z. J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary,796

H. Deconinck, R. Hartmann, K. Hillewaert, H. T. Huynh, et al., High-797

order CFD methods: current status and perspective, International Jour-798

nal for Numerical Methods in Fluids 72 (2013) 811–845.799

60

[12] K. Black, A conservative spectral element method for the approximation800

of compressible fluid flow, Kybernetika 35 (1999) 133–146.801

[13] J. Manzanero, G. Rubio, E. Ferrer, E. Valero, D. A. Kopriva, Insights802

on aliasing driven instabilities for advection equations with application803

to Gauss–Lobatto discontinuous Galerkin methods, Journal of Scientific804

Computing 75 (2018) 1262–1281.805

[14] G. J. Gassner, A. R. Winters, D. A. Kopriva, Split form nodal dis-806

continuous Galerkin schemes with summation-by-parts property for the807

compressible Euler equations, Journal of Computational Physics 327808

(2016) 39–66.809

[15] A.R. Winters and G.J. Gassner, Affordable, entropy conserving and810

entropy stable flux functions for the ideal MHD equations, Journal of811

Computational Physics 304 (2016) 72 – 108.812

[16] J. Manzanero, G. Rubio, D. A. Kopriva, E. Ferrer, E. Valero, A813

free–energy stable nodal discontinuous Galerkin approximation with814

summation–by–parts property for the Cahn–Hilliard equation, Journal815

of Computational Physics 403 (2020) 109072.816

[17] J. Manzanero, G. Rubio, D. A. Kopriva, E. Ferrer, E. Valero, Entropy–817

stable discontinuous Galerkin approximation with summation–by–parts818

property for the incompressible Navier–Stokes/Cahn–Hilliard system,819

Journal of Computational Physics (2020) 109363.820

61

[18] G. J. Gassner, A. R. Winters, F. J. Hindenlang, D. A. Kopriva, The BR1821

scheme is stable for the compressible Navier–Stokes equations, Journal822

of Scientific Computing 77 (2018) 154–200.823

[19] J. Manzanero, G. Rubio, D. A. Kopriva, E. Ferrer, E. Valero, An824

entropy–stable discontinuous Galerkin approximation for the incom-825

pressible Navier–Stokes equations with variable density and artificial826

compressibility, Journal of Computational Physics 408 (2020) 109241.827

[20] G. Karniadakis and S.J. Sherwin, Spectral/hp Element Methods for828

Computational Fluid Dynamics, Oxford Scholarship, 2005.829

[21] L. Haupt, J. Stiller, W. Nagel, A fast spectral element solver combining830

static condensation and multigrid techniques, Journal of Computational831

Physics 255 (2013) 384 – 395.832

[22] E. Wilson, The static condensation algorithm, International Journal for833

Numerical Methods in Engineering 8 (1974) 198–203.834

[23] I. Huismann, J. Stiller, J. Fröhlich, Scaling to the stars – a linearly835

scaling elliptic solver for p-multigrid, Journal of Computational Physics836

398 (2019) 108868.837

[24] D. Pardo, J. Álvarez Aramberri, M. Paszynski, L. Dalcin, V. Calo, Im-838

pact of element-level static condensation on iterative solver performance,839

Computers and Mathematics with Applications 70 (2015) 2331–2341.840

62

[25] S. J. Sherwin, R. M. Kirby, J. Peiró, R. L. Taylor, O. C. Zienkiewicz,841

On 2D elliptic discontinuous Galerkin methods, International Journal842

for Numerical Methods in Engineering 65 (2006) 752–784.843

[26] B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of844

discontinuous Galerkin, mixed, and continuous Galerkin methods for845

second order elliptic problems, SIAM J. Numer. Anal 47 (2009) 1319–846

1365. doi:10.1137/070706616.847

[27] J. Carrero, B. Cockburn, D. Schoetzau, Hybridized globally divergence-848

free LDG methods. part I: The Stokes problem, Math. Comput. 75849

(2006) 533–563. doi:10.1090/S0025-5718-05-01804-1.850

[28] M. Franciolini, K. Fidkowski, A. Crivellini, Efficient discon-851

tinuous Galerkin implementations and preconditioners for implicit852

unsteady compressible flow simulations, arXiv preprint (2018).853

arXiv:physics.comp-ph/1812.04789.854

[29] J. Peraire, N. C. Nguyen, B. Cockburn, An embedded discontinuous855

Galerkin method for the compressible Euler and Navier-Stokes equa-856

tions, 20th AIAA Computational Fluid Dynamics Conference 2011857

(2011). doi:10.2514/6.2011-3228.858

[30] K. J. Fidkowski, T. A. Oliver, J. Lu, D. L. Darmofal, p-Multigrid so-859

lution of high-order discontinuous Galerkin discretizations of the com-860

63

pressible Navier-Stokes equations, Journal of Computational Physics861

207 (2005) 92–113. doi:10.1016/j.jcp.2005.01.005.862

[31] P. O. Persson, An efficient low memory implicit DG algorithm for863

time dependent problems, Collection of Technical Papers - 44th AIAA864

Aerospace Sciences Meeting 2 (2006) 1421–1431. doi:10.2514/6.2006-865

113.866

[32] P. O. Persson, J. Peraire, Newton-GMRES preconditioning for867

discontinuous Galerkin discretizations of the Navier–Stokes equa-868

tions, SIAM Journal on Scientific Computing 30 (2008) 2709–2733.869

doi:10.1137/070692108.870

[33] L. T. Diosady, D. L. Darmofal, Preconditioning methods for discontinu-871

ous Galerkin solutions of the Navier-Stokes equations, Journal of Com-872

putational Physics 228 (2009) 3917–3935. doi:10.1016/j.jcp.2009.02.035.873

[34] K. Shahbazi, D. J. Mavriplis, N. K. Burgess, Multigrid algorithms for874

high-order discontinuous Galerkin discretizations of the compressible875

Navier-Stokes equations, Journal of Computational Physics 228 (2009)876

7917–7940. doi:10.1016/j.jcp.2009.07.013.877

[35] P. O. Persson, A sparse and high-order accurate line-based discon-878

tinuous Galerkin method for unstructured meshes, Journal of Com-879

putational Physics 233 (2013) 414–429. doi:10.1016/j.jcp.2012.09.008.880

arXiv:1204.1533.881

64

[36] W. Pazner, P. O. Persson, Stage-parallel fully implicit Runge–Kutta882

solvers for discontinuous Galerkin fluid simulations, Journal of Com-883

putational Physics 335 (2017) 700–717. doi:10.1016/j.jcp.2017.01.050.884

arXiv:1701.07181.885

[37] M. Franciolini, L. Botti, A. Colombo, A. Crivellini, p-Multigrid matrix-886

free discontinuous Galerkin solution strategies for the under-resolved887

simulation of incompressible turbulent flows, 2018. arXiv:1809.00866.888

[38] P. Bastian, E. H. Müller, S. Muthing, M. Piatkowski, Matrix-free multi-889

grid block-preconditioners for higher order discontinuous Galerkin dis-890

cretisations, Journal of Computational Physics 394 (2019) 417 – 439.891

doi:https://doi.org/10.1016/j.jcp.2019.06.001.892

[39] M. Franciolini, S. M. Murman, Multigrid preconditioning for a space-893

time spectral-element discontinuous-galerkin solver, AIAA Scitech 2020894

Forum (2020). doi:10.2514/6.2020-1314.895

[40] A. Pueyo, D. Zingg, An efficient Newton-GMRES solver for aerodynamic896

computations, 13th Computational Fluid Dynamics Conference (1997)897

712–721. doi:10.2514/6.1997-1955.898

[41] W. Anderson, R. D. Rausch, D. L. Bonhaus, Implicit/multigrid899

algorithms for incompressible turbulent flows on unstructured900

grids, Journal of Computational Physics 128 (1996) 391 – 408.901

doi:https://doi.org/10.1006/jcph.1996.0219.902

65

[42] J. Gopalakrishnan, G. Kanschat, A multilevel discontinuous Galerkin903

method, Numer. Math. 95 (2003) 527–550. doi:10.1007/s002110200392.904

[43] K. Black, A conservative spectral element method for the approximation905

of compressible fluid flow, Kybernetika 35 (1999) 133–146.906

[44] A. M. Rueda-Ramı́rez, Efficient Space and Time Solution Techniques for907

High-Order Discontinuous Galerkin Discretizations of the 3D Compress-908

ible Navier-Stokes Equations, Ph.D. thesis, Universidad Politécnica de909

Madrid, 2019.910

[45] A. Huerta, A. Angeloski, X. Roca, J. Peraire, Efficiency of high-order ele-911

ments for continuous and discontinuous galerkin methods, International912

Journal for Numerical Methods in Engineering 96 (2013) 529–560. URL:913

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4547.914

doi:10.1002/nme.4547. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4547.915

[46] W. Habchi, Model Order Reduction (MOR) Techniques, 2018, pp. 297–916

338. doi:10.1002/9781119225133.ch8.917

[47] P. Bastian, E. H. Müller, S. Müthing, M. Piatkowski, Matrix-free multi-918

grid block-preconditioners for higher order discontinuous Galerkin dis-919

cretisations, Journal of Computational Physics 394 (2019) 417 – 439.920

[48] W. Pazner, P. O. Persson, Approximate tensor-product preconditioners921

for very high order discontinuous Galerkin methods, Journal of Com-922

66

putational Physics 354 (2018) 344–369. doi:10.1016/j.jcp.2017.10.030.923

arXiv:1704.04549.924

[49] S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient man-925

agement of parallelism in object oriented numerical software libraries,926

in: E. Arge, A. M. Bruaset, H. P. Langtangen (Eds.), Modern Software927

Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–202.928

[50] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-929

man, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev,930

D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T.931

Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini,932

H. Zhang, H. Zhang, PETSc Users Manual, Technical Report ANL-933

95/11 - Revision 3.12, Argonne National Laboratory, 2019. URL:934

https://www.mcs.anl.gov/petsc.935

[51] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-936

man, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev,937

D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills,938

T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang,939

H. Zhang, PETSc Web page, https://www.mcs.anl.gov/petsc, 2019.940

URL: https://www.mcs.anl.gov/petsc.941

[52] F. Bassi, A. Crivellini, D. A. Di Pietro, S. Rebay, An implicit942

high-order discontinuous Galerkin method for steady and unsteady943

67

incompressible flows, Computers and Fluids 36 (2007) 1529–1546.944

doi:10.1016/j.compfluid.2007.03.012.945

[53] B. R. Ahrabi, D. J. Mavriplis, An implicit block ILU smoother for pre-946

conditioning of Newton–Krylov solvers with application in high-order947

stabilized finite-element methods, Computer Methods in Applied Me-948

chanics and Engineering 358 (2020) 112637.949

[54] J. Williamson, Low-storage Runge-Kutta schemes, Journal of Com-950

putational Physics 35 (1980) 48 – 56. doi:https://doi.org/10.1016/0021-951

9991(80)90033-9.952

[55] R. Biswas, K. Devine, J. Flaherty, Parallel, adaptive finite element meth-953

ods for conservation laws, Applied Numerical Mathematics 14 (1994)954

255–283.955

[56] N. Chalmers, G. Agbaglah, M. Chrust, C. Mavriplis, A parallel hp-956

adaptive high order discontinuous Galerkin method for the incompress-957

ible Navier-Stokes equations, Journal of Computational Physics: X 2958

(2019) 100023. doi:https://doi.org/10.1016/j.jcpx.2019.100023.959

[57] P. Birken, G. Gassner, M. Haas, C. D. Munz, Efficient time integra-960

tion for discontinuous Galerkin method for the unsteady 3D Navier-961

Stokes equations, ECCOMAS 2012 - European Congress on Computa-962

tional Methods in Applied Sciences and Engineering, e-Book Full Papers963

(2012) 4334–4353.964

68

[58] M. J. Zahr, P.-O. Persson, Performance tuning of newton-gmres methods965

for discontinuous galerkin discretizations of the navier-stokes equations,966

in: 21st AIAA Computational Fluid Dynamics Conference, 2013, p.967

2685.968

[59] C. R. Nastase, D. J. Mavriplis, High-order discontinuous Galerkin meth-969

ods using an hp-multigrid approach, Journal of Computational Physics970

213 (2006) 330–357. doi:10.1016/j.jcp.2005.08.022.971

[60] G. H. Golub, C. F. Van Loan, Matrix Computations, third ed., The972

Johns Hopkins University Press, 1996.973

[61] F. G. Gustavson, Two fast algorithms for sparse matrices: Multiplica-974

tion and permuted transposition, ACM Trans. Math. Softw. 4 (1978)975

250–269.976

[62] M. Deveci, C. Trott, S. Rajamanickam, Multi-threaded sparse matrix-977

matrix multiplication for many-core and gpu architectures, Parallel978

Computing 78 (2018).979

[63] A. Buluc, J. Gilbert, Parallel sparse matrix-matrix multiplication and980

indexing: Implementation and experiments, SIAM Journal on Scientific981

Computing 34 (2011).982

[64] Y. Saad, M. H. Schultz, GMRES: A Generalized Minimal Residual983

Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on984

Scientific and Statistical Computing 7 (1986).985

69

[65] W. Yang, K. Li, Z. Mo, K. Li, Performance optimization using parti-986

tioned spmv on gpus and multicore cpus, IEEE Transactions on Com-987

puters 64 (2015) 2623–2636.988

[66] T. Vejchodský, P. Šoĺın, Static condensation, partial orthogonaliza-989

tion of basis functions, and ILU preconditioning in the hp-FEM, Jour-990

nal of Computational and Applied Mathematics 218 (2008) 192–200.991

doi:10.1016/j.cam.2007.04.044.992

[67] D. A. Kopriva, E. Jimenez, An assessment of the efficiency of nodal993

discontinuous Galerkin spectral element methods, in: Recent Devel-994

opments in the Numerics of Nonlinear Hyperbolic Conservation Laws,995

Springer, 2013, pp. 223–235.996

[68] I. Huismann, L. Haupt, J. Stiller, J. Fröhlich, Sum factorization of997

the static condensed Helmholtz equation in a three-dimensional spectral998

element discretization, PAMM 14 (2014). doi:10.1002/pamm.201410465.999

[69] D. A. Kopriva, Implementing spectral methods for partial differential1000

equations: Algorithms for scientists and engineers, Springer Science &1001

Business Media, 2009.1002

70

