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ABSTRACT  

Hydraulic accidents or abnormal situations, also known as leakages, cause not only water losses, 

but also service interruptions and other negative effects [1]. In order to facilitate the rapid response 

of water utilities and to reduce water losses caused by undiscovered leakages, a timely detection 

method is required. Built on data-driven method and hydraulic modelling, this study proposes a 

multistage approach to solve the leakage detection and localization of the battle problem in L-town. 

The proposed approach is shown in fig.1, which consists of three stages:  

i) estimation of flow and pressure;  

ii) identification of abrupt and incipient leakages; and 

iii) isolation of pipes with leakages.  

 
Figure 1. Flow chart of the multistage approach 

1. Estimation of flow and pressure 

As described in the L-town problem statement, the water utility has set up pressure and flow 

sensors at a few predefined locations in the network. Time series data collected from these sensors 

are provided. The variations in the pressure/flow data are caused by daily, weekly and seasonal water 

usage patterns, leakages and other uncertain factors. To facilitate the identification of leak-induced 

data from the time series, flow and pressure caused by the users, which are called flow and pressures 

under normal condition, are estimated by data-driven time series methods. 
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1.1 Flow 

According to the layout of the L-town water distribution network and the locations of the sensors, 

the network is divided into two relatively independent areas. Area C has sensors for total inflow, and 

most nodes in the area have water meters (AMRs) at the same time, which is regarded as one zone. 

Area A and B are treated as one zone, which are called area AB, because there is no separate sensor 

measuring the inflow to area B. We calculate the flow in area C and area AB separately. 

For area C, the difference between the total inflow and total water consumption can reflect the 

leak information. The total inflow is calculated via the water level in the tank and the flow data of the 

pump that delivers water to the Tank. It should be noted that the level data of the tank has not changed 

before and after some time point, and the pump at this time also stopped running. This seems to 

suggest no water usage in the area, yet it contradicts with the data from the AMRs which show evident 

water consumption in that period. This implies inaccuracy in the level data of the tower. To minimize 

its adverse impact on the detection of leakage events in area C, the total inflow and total demand in 

area C are calculated at intervals of 30 minutes. 

The total inflow to the AB area, is recorded by three flow sensors . The actual water consumption 

of users in the AB area needs to be estimated. Considering the relatively complete monitoring of 

junction consumption behavior in area C, this can be used as a basis for the prediction of total demand 

in area AB. Specifically, the changing trend of users' water usage mode in area C during the year 

should be similar to that in area AB. Therefore, the annual trend in the data in area C can be 

transplanted to the prediction of water demand in area AB. The water consumption of area AB can 

be predicted by combining with the simulation in one week of the hydraulic model. The main problem 

here is to analyze the trend of demand mode in area C. 

We assume that the demand in area C is composed of trend items (changes within the year), 

periodic items (changes within the week), and random items (by stochastic factors), that is 

(t) (t) (t) (t)Y S T R           (1) 

where Y(t) represents the total AMR data in the C area, S(t) represents the trend term, T(t) represents 

the periodic term, and R(t) represents the random term in the data. 

To extract the time series items, empirical mode decomposition (EMD) has been employed in 

this study. EMD can identify the periodic component of time-series data and the trend items of data, 

it can decompose the original signal via subtracting the intrinsic modal function (IMF) successively, 

which is the mean of the upper and lower envelopes of the signal to be decomposed [2]. The trend 

items in demand mode can be represented by one of the IMFs. The trend item in the AMR data is 

stripped through the multiplication model (Equation 1). Hence, the AMR data needs to be transformed. 

The logarithmic transformation is used before EMD in this study. Then the trend item is extracted 

from AMR data of region C. This trend item represents the annual change in water consumption in 

area C (or area AB). In summary, the estimated value of water consumption in the AB area can be 

calculated by the following method 
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where qi(t) represents the demand at node i, which is obtained through the hydraulic model. NAB 

represent the node set of region AB.  

Note that areas with industrial users do not follow the same consumption pattern of the others, 

hence the AMR data does not include the records of the industrial junctions, which consume huge 

amounts of water and have high uncertainty. These characteristics will affect the similarity of the two 

regional (area AB and area C) trend items. 

1.2 Pressure 

The time series of pressure sensors are influenced by both normal water usages and water 

leakages. In order to select a suitable forecasting model for normal water consumption, the monitoring 

data is comprehensively analyzed first [3]. The input data, which is a high dimensional time series 

data, exhibits strong spatial and temporal correlation [4]. Vector autoregressive model (VAR) has 

proven to be efficient in many multi-dimensional time series forecasting tasks. VAR model 

regressively uses historical information and white noise to give the prediction of the current value. In 



the meanwhile, the effects of exogenous series are considered as well. As such, we use VAR model 

to predict the normal pattern of the pressure series. In the training phase, we use a machine learning 

model trained only with the normal data. Then in the test phase, the well-trained model is applied on 

the whole dataset and produces the normal pattern of the pressure series. After that, we use the 

residual between the observed value and the true value in the detection of abnormal value. The 

residual between the estimated series and the observed series indicates the abnormal behavior of the 

pressure series. 

2. Identification 

Flow and pressure are estimated though appropriate prediction, the estimated values are 

considered as the aggregated user consumption under normal conditions. When a leakage occurs, the 

abnormal flow and pressure (observed from SCADA) differ from the estimated value, as shown in 

fig.2. For the flow of area C, data observed from the pump sensor and the tank level meter are used 

to calculate the total inflow of area C, and the sum of AMR demands gives the aggregate user 

consumptions. The difference between total inflow and user consumptions is used to identify leakages 

as residuals in area C.  

 
Figure 2. Schematic diagram of leakage identification in Area AB. (a) Estimation of the flow; (b) 

Residual between estimated and observed flow; (c) Residuals between estimated and observed 

pressures. 

In the pipe networks provided, the leakages are divided into two types: abrupt leakage, incipient 

leakage. Corresponding to residual data, the pattern of residual series contains constant (no leak), 

abrupt increase (abrupt leakage), incipient increase (incipient leakage) and abrupt decrease (repaired 

leakage, the end time of leakage) . Different methods are proposed to deal with leakages of different 

types. Statistical Process Control (SPC) methods are proposed to solve this leakage detection mission.  

As shown in fig. 2b, although the residuals series is calculated by the difference between 

observed and estimated series, it is still a time series with irregular fluctuations. In order to reduce 

the nonstationary of residual series, first difference and weekly difference are calculated to make the 

data smooth, as shown in fig. 3. The abrupt increase and decrease are easily identified through 

difference transformation, three-sigma SPC limit is used to identify the sudden rise and incline of the 

flow curve [5]. Therefore, the start time (abrupt increase), the end time of leakages (abrupt decrease), 

and the leak size (the abrupt value of increase or decrease) are obtained. 



 
Figure 3. Weekly difference of flow residuals in area AB. 

There is one more thing to figure out, how does these start time match the end time. The equality 

of the variation of the flow at the start and end of the leakage is used to match the start time and the 

end time of a leakage. A complementing method to address this problem is to sort the pressure nodes 

residuals, as shown in fig. 4. A sudden increase in pressure will lead to an increase in the residual 

between the current value and its moving average. The variation of the pressure at the neighboring 

nodes will be higher than more distant nodes. The birth and fix of a certain leakage will cause similar 

patterns for the neighbor nodes and the distant nodes. By observing the pattern at each start time and 

end time, a matching could be done. 

 
Figure 4. Variation of the pressure for the matching of the start time and end time. 

For incipient leakages, a window-size based SPC slope method is employed to identify the 

incipient increase in flow residuals. If without leakages, the curve of residuals is likely to be smooth 

and constant. The pattern of flow residuals consists of many sub-patterns caused by different leakages. 

After the identification of abrupt leakages, the pattern caused by abrupt leakages could be removed 

from the curve of residuals. The rest of the curve only contains the sub-pattern caused by the incipient 

leakages. Their slopes could be used to distinguish different unfixed incipient leakages. Each incipient 

leakage has an identical and constant slope. In this way, the start time of each incipient leakage could 

be identified once the slope of the curve changes. We use a slide window of length T to go through 

the curve. As it moves along the time axis, it calculates the slope in the window. A threshold is set 

for the identification of the incipient leakage. As shown in Table 1, all the unfixed incipient leakage 

could be identified with the above mentioned method. However, the peak of each unfixed incipient 

leakages is hard to be determined because of the overlap of different incipient leakage. Therefore, an 

approximate peak time is given for each incipient leakage. 

Table 1. Identified slopes of the incipient leakages in area AB 

Start time Slope(m^3/(h*5min)) Peak time Leak type 

2018/09/10 00:00 0.000508 2018/11/01 21:30 Incipient leakage 

2019/03/28 14:15 0.0014 2019/04/07 14:15 Incipient leakage 

2019/06/14 15:10 0.00072 2019/10/22 15:10 Incipient leakage 

2019/10/25 22:20 0.0015 2019/12/09 22:20 Incipient leakage 

2019/11/09 01:10 0.0017 2019/11/29 01:10 Incipient leakage 

3. Localization 

Due to the fact that the boundaries of the three regions of the L-Town network are obvious, it is 

easy to build hydraulic models of area C as it has a large number of AMRs, so we split the L-Town 



network into two parts, area C network and area AB network, to locate leakages separately. We first 

delete the pump connecting area AB and area C, so that the original L-Town network is divided. For 

area AB network, we add a node at the position of the pump with a demand pattern based on pump 

flow SCADA data, and we replace the tank with a reservoir which is assigned a head pattern using 

the observed tank level data in area C. Finally, we build two separated networks (areas AB and C) 

to locate leakages with the same hydraulic calculation results as the L-Town network. 

The hydraulic model of L-town built on EPANET tool is employed to simulate nodal pressure. 

The pressure sensors' data without leakages in 2018 is used to calibrate two networks by adjusting 

roughness of pipes to minimize the mean squared error (MSE) of observed and simulated pressure 

values. 

For area AB, it is difficult to build an accurate hydraulic model as the network has no AMRs, so 

we use the idea of control variates to localize each leakage in this area. Firstly, we find two weeks 

when the leakage had occurred and the leakage had not occurred based on the start and end time of 

the leakage which is calculated before. Secondly, making a difference between the observed pressure 

data at the corresponding time in the two weeks. We assume that the leakage to be localized is the 

only leakage between the two weeks, so the difference could reflect the effect of this leakage on 

pressure sensors in the network. Thirdly, two new area AB networks are created to indicate the two 

weeks mentioned above by adjusting demands with season trends and adding pump flow based on 

SCADA data, and some known unfixed leakages are added to the network as well. Then grid 

searching is conducted for nodes and emitter coefficient. Nodes are searched one by one in area AB 

network except for reservoir nodes. Emitter coefficients which are used to simulate leakages are 

searched at appropriate intervals (based on the size of the leakage flow, i.e. bigger leakage flow has 

bigger search intervals). A difference between the simulated pressure data is calculated in the same 

way as before for the observed data. Finally, MSE of two differences, the observed values’ difference 

and the simulated values’ difference, is used as evaluation function for this problem, and we could 

find high probability area of leakage with low MSE value. 

MSE =
∑ (∑ (∆𝑃𝑜𝑖,𝑗−∆𝑃𝑠𝑖,𝑗)

2𝑇
𝑗=1 )𝑁𝑠

𝑖=1

𝑁𝑠∙𝑇
      (3) 

Where 𝑁𝑠  is the total number of pressure sensors in area AB, 𝑇  is the total number of 

simulation time steps, ∆𝑃𝑜𝑖,𝑗 is the difference of two weeks’ observed value at pressure sensor 𝑖 at 

time 𝑗 and  ∆𝑃𝑠𝑖,𝑗 is the difference of two weeks’ simulated value at pressure sensor 𝑖 at time 𝑗.  

In area C, almost every node has an AMR, which facilitates accurate building of an hydraulic 

model in EPANET. We select one week when the bust had been occurred and compare the observed 

and the simulated values to determine the location of the leakage. Secondly, we assign the AMR 

demand data to nodes and calculate the reservoir head pattern according to the SCADA data of tank 

level. Thirdly, search for nodes and emitter coefficient and find the difference between the observed 

pressure value and the simulated value. Finally, we use the same way to calculate MSE of the 

difference and find high probable area of leakage. 

Fig.5 shows the result of the leakage occurred at 20th April 2019, 12:00. The shade in grey in 

the figure represents the size of the MSE. The node with darker color has smaller MSE. Among 

them, red, orange, yellow, green and blue indicate the five nodes with the smallest MSE, that is, the 

area with the highest probability of leakage. 



  
Figure 5. Schematic diagram of leakage isolation. 

4. Conclusion 

This study presents a method for leakage detection and isolation for the battle of L-town DMA. 

Firstly, data-driven estimations of flow and pressure are proposed to extract leak-induced data from 

sensor data. Empirical mode decomposition is performed to obtain the time series trend item and 

estimate flow under normal conditions. Vector auto regressive is employed to extract the spatial 

correlation of pressure sensors and estimate the time series data of pressure. Secondly, first difference 

and weekly difference are calculated to reduce the nonstationary of residual series. For abrupt 

leakages, the duration and size of leakages are identified by 3-sigma SPC method, and the start time 

and the end time are matched by analysing the leak size and pressure pattern. For the detection of 

incipient leakages, which usually yield gentle slope and small quantity of water loss, the window-size 

slope variation method is used in this study. Thirdly, the emitter coefficient of node in EPANET is 

set to simulate pipe leakage. The idea of control variates is used to find the two weeks when leakage 

had occurred and not occurred respectively. The difference between the pressure data of two weeks 

is calculated to represent the impact of the leakage on the pressure of the network. By the above 

method, 16 leakages are detected and localized in the battle DMA networks in 2019. 
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SUMMARY 
Hydraulic accidents or abnormal situations, also known as leakages, cause not only water losses, 

but also service interruptions and other negative effects. In order to facilitate the rapid response of 

water utilities and reduce water losses caused by undiscovered leakages, a timely detection and 

isolation method is required. To solve the battle problem in L-town, this study investigates the 

potential of the combination use of data-driven method and hydraulic modelling and proposes a 

multistage approach, which comprises three stages: estimation, identification and localization. Firstly, 

empirical mode decomposition and vector auto regressive are performed to identify the trend in flow 

time series and the spatial correlation of pressure values at different sensors. The two data-driven 

estimations of flow and pressure are used to extract leak-induced values from the monitoring data. 

Secondly, first difference and weekly difference are calculated to reduce the nonstationary of residual 

series. The duration and size of leakages are identified by analysing residuals though three-sigma 

SPC method. Meanwhile, the window-size slope variation method is proposed to detect the start time 

and leak size of incipient leakages. Thirdly, emitters are used to represent and simulate pipe leakages 

in EPANET2. Localization algorithm, which uses the idea of control variates to find two weeks when 

the leakage had occurred and not occurred, is employed to represent the impact of the leakage on the 

pressure of the network by calculating the difference between the pressure data of two weeks. By 

identifying the gaps between the differences of the observed values and of the simulated values, areas 

with a high probability of leakage occurring are found. The proposed method is applied to L-town 

network. Results show that 16 leakages are detected and localized in 2019, which demonstrates the 

effectiveness of the solution for leak detection and localization in water distribution systems. 
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