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Abstract

Neural Machine Translation (NMT) models
generally perform translation using a fixed-
size lexical vocabulary, which is an important
bottleneck on their generalization capability
and overall translation quality. The standard
approach to overcome this limitation is to seg-
ment words into subword units, typically using
some external tools with arbitrary heuristics,
resulting in vocabulary units not optimized
for the translation task. Recent studies
have shown that the same approach can be
extended to perform NMT directly at the level
of characters, which can deliver translation
accuracy on-par with subword-based models,
on the other hand, this requires relatively
deeper networks. In this paper, we propose
a more computationally-efficient solution
for character-level NMT which implements
a hierarchical decoding architecture where
translations are subsequently generated at the
level of words and characters. We evaluate
different methods for open-vocabulary NMT
in the machine translation task from English
into five languages with distinct morpholog-
ical typology, and show that the hierarchical
decoding model can reach higher translation
accuracy than the subword-level NMT model
using significantly fewer parameters, while
demonstrating better capacity in learning
longer-distance context and grammatical
dependencies than the standard character-level
NMT model.

1 Introduction

Neural Machine Translation (NMT) models are
typically trained using a fixed-size lexical vocabu-
lary. In addition to controlling the computational
load, this limitation also serves to maintain better
distributed representations for the most frequent
set of words included in the vocabulary. On the
other hand, rare words in the long tail of the lexical

distribution are often discarded during translation
since they are not found in the vocabulary. The
prominent approach to overcome this limitation
is to segment words into subword units (Sennrich
et al., 2016) and perform translation based on a vo-
cabulary composed of these units. However, sub-
word segmentation methods generally rely on sta-
tistical heuristics that lack any linguistic notion.
Moreover, they are typically deployed as a pre-
processing step before training the NMT model,
hence, the predicted set of subword units are es-
sentially not optimized for the translation task.
Recently, Cherry et al. (2018) extended the ap-
proach of NMT based on subword units to imple-
ment the translation model directly at the level of
characters, which could reach comparable perfor-
mance to the subword-based model, although this
would require much larger networks which may be
more difficult to train. The major reason to this re-
quirement may lie behind the fact that treating the
characters as individual tokens at the same level
and processing the input sequences in linear time
increases the difficulty of the learning task, where
translation would then be modeled as a mapping
between the characters in two languages. The in-
creased sequence lengths due to processing sen-
tences as sequences of characters also augments
the computational cost, and a possible limitation,
since sequence models typically have limited ca-
pacity in remembering long-distance context.

In many languages, words are the core atomic
units of semantic and syntactic structure, and their
explicit modeling should be beneficial in learning
distributed representations for translation. There
have been early studies in NMT which proposed
to perform translation at the level of characters
while also regarding the word boundaries in the
translation model through a hierarchical decoding
procedure, although these approaches were gener-
ally deployed through hybrid systems, either as a
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back-off solution to translate unknown words (Lu-
ong and Manning, 2016), or as pre-trained compo-
nents (Ling et al., 2015). In this paper, we explore
the benefit of achieving character-level NMT by
processing sentences at multi-level dynamic time
steps defined by the word boundaries, integrating
a notion of explicit hierarchy into the decoder. In
our model, all word representations are learned
compositionally from character embeddings us-
ing bi-directional recurrent neural networks (bi-
RNNs) (Schuster and Paliwal, 1997), and decod-
ing is performed by generating each word charac-
ter by character based on the predicted word rep-
resentation through a hierarchical beam search al-
gorithm which takes advantage of the hierarchical
architecture while generating translations.

We present the results of an extensive evalua-
tion comparing conventional approaches for open-
vocabulary NMT in the machine translation task
from English into five morphologically-rich lan-
guages, where each language belongs to a dif-
ferent language family and has a distinct mor-
phological typology. Our findings show that us-
ing the hierarchical decoding approach, the NMT
models are able to obtain higher translation ac-
curacy than the subword-based NMT models in
many languages while using significantly fewer
parameters, where the character-based models im-
plemented with the same computational complex-
ity may still struggle to reach comparable perfor-
mance. Our analysis also shows that explicit mod-
eling of word boundaries in character-level NMT
is advantageous for capturing longer-term contex-
tual dependencies and generalizing to morpholog-
ical variations in the target language.

2 Neural Machine Translation

In this paper, we use recurrent NMT architectures
based on the model developed by Bahdanau et
al. (2014). The model essentially estimates the
conditional probability of translating a source se-
quence x “ px1, x2, . . . xmq into a target sequence
y “ py1, y2, . . . ynq, using the decomposition

ppy|xq “
n

ź

j“1

ppyj |yăj , xm, .., x1q (1)

where yăj is the target sentence history defined by
the sequence ty1...yj´1u.

The inputs of the network are one-hot vectors
representing the tokens in the source sentence,
which are binary vectors with a single bit set to 1

to identify a specific token in the vocabulary. Each
one-hot vector is then mapped to a dense con-
tinuous representation, i.e. an embedding, of the
source tokens via a look-up table. The represen-
tation of the source sequence is computed using a
multi-layer bi-RNN, also referred as the encoder,
which maps x into m dense vectors corresponding
to the hidden states of the last bi-RNN layer up-
dated in response to the input token embeddings.

The generation of the translation of the source
sentence is called decoding, and it is conven-
tionally implemented in an auto-regressive mode,
where each token in the target sentence is gen-
erated based on an sequential classification pro-
cedure defined over the target token vocabulary.
In this decoding architecture, a unidirectional re-
current neural network (RNN) predicts the most
likely output token yi in the target sequence us-
ing an approximate search algorithm based on the
previous target token yi´1, represented with the
embedding of the previous token in the target se-
quence, the previous decoder hidden state, repre-
senting the sequence history, and the current atten-
tion context in the source sequence, represented by
the context vector ct. The latter is a linear combi-
nation of the encoder hidden states, whose weights
are dynamically computed by a dot product based
similarity metric called the attention model (Lu-
ong et al., 2015).

The probability of generating each target word
yi is estimated via a softmax function

ppyi “ zj |x; θq “
ez

T
j oi

řK
k“1 e

zTk oi
(2)

where zj is the jth one-hot vector of the target
vocabulary of size K, and oi is the decoder out-
put vector for the ith target word yi. The model
is trained by maximizing the log-likelihood of a
parallel training set via stochastic gradient-descent
(Bottou, 2010), where the gradients are computed
with the back propagation through time (Werbos,
1990) algorithm.

Due to the softmax function in Equation 2, the
size of the target vocabulary plays an important
role in defining the computational complexity of
the model. In the standard architecture, the em-
bedding matrices account for the vast majority of
the network parameters, thus, the amount of em-
beddings that could be learned and stored effi-
ciently needs to be limited. Moreover, for many
words corresponding to the long tail of the lexical
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distribution, the model fails in learning accurate
embeddings, as they are rarely observed in vary-
ing context, leading the model vocabulary to typi-
cally include the most frequent set of words in the
target language. This creates an important bottle-
neck over the vocabulary coverage of the model,
which is especially crucial when translating into
low-resource and morphologically-rich languages,
which often have a high level of sparsity in the lex-
ical distribution.

The standard approach to overcome this limi-
tation has now become applying a statistical seg-
mentation algorithm on the training corpus which
splits words into smaller and more frequent sub-
word units, and building the model vocabulary
composed of these units. The translation prob-
lem is then modeled as a mapping between se-
quences of subword units in the source and tar-
get languages (Sennrich et al., 2016; Wu et al.,
2016; Ataman et al., 2017). The most popular sta-
tistical segmentation method is Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016), which finds the
optimal description of a corpus vocabulary by it-
eratively merging the most frequent character se-
quences. One problem related to the subword-
based NMT approach is that segmentation meth-
ods are typically implemented as pre-processing
steps to NMT, thus, they are not optimized si-
multaneously with the translation task in an end-
to-end fashion. This can lead to morphological
errors at different levels, and cause loss of se-
mantic or syntactic information (Ataman et al.,
2017), due to the ambiguity in subword embed-
dings. In fact, recent studies have shown that
the same approach can be extended to implement
the NMT model directly at the level of charac-
ters, which could reach comparable performance
to the subword-based NMT models. However, this
would typically require increasing the computa-
tional cost of the model, defined by the network
parameters (Kreutzer and Sokolov, 2018; Cherry
et al., 2018). Figure 1a illustrates translation by
implementing a 3-layer NMT decoder directly at
the level of characters, where the attention mecha-
nism and the RNNs modeling the target language
process each sentence as a sequence of characters.

3 Hierarchical Decoding

In this paper, we propose to perform character-
level decoding in NMT by modeling translation
through a hierarchical architecture (Luong and

Manning, 2016). In this architecture, the input em-
bedding layer of the decoder is augmented with a
character-level bi-RNN, which estimates a compo-
sition function over the embeddings of the charac-
ters in each word to compute distributed represen-
tations of target words in the sentence.

Given a bi-RNN with a forward (f ) and back-
ward (b) layer, the word representation w of a to-
ken of t characters is computed from the hidden
states ht

f and h0
b , i.e. the final outputs of the for-

ward and backward RNNs, as follows:

w “Wfh
t
f `Wbh

0
b ` b (3)

where Wf and Wb are weight matrices associ-
ated to each RNN and b is a bias vector. The em-
beddings of characters and the parameters of the
word composition layer are jointly learned while
training the NMT model. Since all target word
representations are computed compositionally, the
hierarchical decoding approach eliminates the ne-
cessity of storing word embeddings, significantly
reducing the number of parameters.

Each word in the target sentence is predicted
as in the standard architecture using the composi-
tional target word representations, target sentence
history and the context vector computed by the at-
tention mechanism by a word-level RNN. How-
ever, instead of classifying the predicted target
word in the vocabulary, its distributed represen-
tation is fed to a character-level RNN to gener-
ate the surface form of the word one character at
a time by modeling the probability of observing
the kth character of the jth word with length l,
ppyj,k|yăj , yj,ăkq, given the previous words in the
sequence and the previous characters in the word.

The translation probability is then decomposed
as:

ppy|xq “
n

ź

j“1

l
ź

k“1

ppyj,k|yj,ăk, yăj , xămq (4)

Similar to Luong and Manning (2016), the in-
formation necessary to generate the surface form
is encoded into the attentional vector ĥt:

ĥt “ tanhpW rct;htsq (5)

where ht is the hidden state of the word-level RNN
representing the current target context. The at-
tentional vector is used to initialize the character
RNN, and after the generation of the first charac-
ter in the word, character decoding continues in an
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(a)

(b)

Figure 1: (a) Hierarchical NMT decoder: input words are encoded as character sequences and the translation is
predicted at the level of words. The output words are generated as character sequences. (b) Character-level NMT
decoder: the next token in the sentence is predicted by computing the attention weights and the target context
repetitively for each character in the sentence.

auto-regressive mode, where the embedding of the
each character is fed to the RNN to predict the next
character in the word. The decoder consecutively
iterates over the words and characters in the target
sentence, where each RNN is updated at dynamic
time steps based on the word boundaries.

4 Hierarchical Beam Search

In order to achieve efficient decoding with the hi-
erarchical NMT decoder, we implement a hierar-
chical beam search algorithm, described in Al-
gorithm 1. The algorithm starts decoding by pre-
dicting the B most likely characters and storing
them in a character beam along with their prob-
abilities. Different than the standard algorithm,
the beams are reset each time the generation of
a word is complete and the B most likely words
computed after beam search are stored in an inter-
mediate word-level beam. The word beam is used
to compute the B distributed representations cor-
responding to the most likely B next target words,

which are fed to the character RNN to continue the
beam search. When the beam search is complete,
the most likely character sequence is generated as
the best hypothesis.

function HierarchicalBeamSearch(X)
WordBeamÐ {}
for i = 0 ... B do:

CharBeamÐ {}
Ŷi ÐWordRNNFwd(X , WordBeam[i])
for k = 0 ... B do:
ŷk Ð CharRNNFwd(Ŷi)
CharBeam[k]Ð CharBeam[k-1] Y

TopB(softmax(ŷk))
WordBeam[i]ÐWordBeam[i-1] Y

TopB(CharBeam)
return Top(WordBeam)

Algorithm 1: The hierarchical beam search algo-
rithm. Ŷi and ŷk are the current word and char-
acter predictions, and B is the beam size.
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5 Experiments

We evaluate decoding architectures using different
levels of granularity in the vocabulary units and
the attention mechanism, including the standard
decoding architecture implemented either with
subword (Sennrich et al., 2016) or fully character-
level (Cherry et al., 2018) units, which constitute
the baseline approaches, and the hierarchical de-
coding architecture, by implementing all in Py-
torch (Paszke et al., 2017) within the OpenNMT-
py framework (Klein et al., 2017). In order to eval-
uate how each generative method performs in lan-
guages with different morphological typology, we
model the machine translation task from English
into five languages from different language fam-
ilies and exhibiting distinct morphological typol-
ogy: Arabic (templatic), Czech (mostly fusional,
partially agglutinative), German (fusional), Italian
(fusional) and Turkish (agglutinative). We use the
TED Talks corpora (Cettolo et al., 2012) for train-
ing the NMT models, which range from 110K to
240K sentences, and the official development and
test sets from IWSLT1 (Cettolo et al., 2017). The
low-resource settings for the training data allows
us to examine the quality of the internal represen-
tations learned by each decoder under high data
sparseness. The details of the statistical character-
istics of training data are given in Table 1. In order
to evaluate how the performance of each method
scales with increasing data size, we evaluate the
models also by training with a multi-domain train-
ing data using the public data sets from WMT2

(Bojar et al., 2016) in the English-to-German di-
rection, followed by an analysis on each model’s
capability in generalizing to morphological varia-
tions in the target language, using the Morpheval
(Burlot et al., 2018) evaluation sets. The details of
the resulting multi-domain training corpus can be
seen in Table 2.

All models are implemented using gated recur-
rent units (GRU) (Cho et al., 2014) with the same
number of parameters. The hierarchical decod-
ing model implements a 3-layer GRU architec-
ture, which is compared with a fully character-
level decoder which also uses a 3-layer stacked
GRU architecture. The subword-level decoder has
a 2-layer stacked GRU architecture, to account

1The International Workshop on Spoken Language Trans-
lation.

2The Conference on Machine Translation, with shared
task organized for news translation.

Lang. # sents # tokens (M) # types (K)
Pair (K) Src Tgt Src Tgt

EN-AR 238 5 4 120 220
EN-CS 118 2 2 50 118
EN-DE 212 4 4 69 144
EN-IT 185 4 3 63 95
EN-TR 136 2 3 53 171

Table 1: Training sets in the TED Talks benchmark.
Development and test sets are on average 50K to 100K
tokens. (M: Million, K: Thousand.)

Lang. # sents # tokens (M) # types (K)
Pair (M) Src Tgt Src Tgt

EN-DE 5 119 114 106 152

Table 2: Multi-domain training set (M: Million, K:
Thousand.)

also for the larger number of embedding param-
eters. The models using the standard architecture
have the attention mechanism after the first GRU
layer, and have residual connections after the sec-
ond layer (Barone et al., 2017). The hierarchical
decoder implements the attention mechanism af-
ter the second layer in order to compute the con-
text vector at the level of words, and has a residual
connection between the first and second layers.

The source sides of the data used for training
all NMT models, and the target sides of the data
used in training the subword-level NMT models
are segmented using BPE with 16,000 merge rules
on the IWSLT data, and 32,000 on WMT. The
models use an embedding and hidden unit size
of 512 under low-resource and 1024 under high-
resource settings, and are trained using the Adam
optimizer with a learning rate of 0.0003 and de-
cay of 0.9, a batch size of 100 and a dropout rate
of 0.2. Decoding in all models is performed with
a beam size of 5. The accuracy of each output
is measured in terms of the BLEU metric (Pap-
ineni et al., 2002) and the significance of the im-
provements are computed using bootstrap hypoth-
esis testing (Wasserman and Bockenholt, 1989).

6 Results

The results of the experiments given in Table 3
show that the hierarchical decoder can reach per-
formance comparable to or better than the NMT
model based on subword units in all languages
while using almost three times less number of pa-
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Model BLEU Avg. Num.
AR CS DE IT TR Params

Subwords 14.67 16.60 24.29 26.23 8.85 22M
Characters 12.72 16.94 22.23 24.33 10.65 7.3M

Hierarchical 15.55 16.79 23.91 26.64 9.74 7.3M

Table 3: Results of the evaluation of models in translating languages with different morphological typology using
the IWSLT data sets. The average number of parameters are calculated only for the decoders of the NMT models
at a resolution of millions (M). The best scores for each translation direction are in bold font. All improvements
over the baselines are statistically significant (p-value ă 0.01).

rameters. The improvements are especially evi-
dent in Arabic and Turkish, languages with the
most complex morphology, where the accuracy
with the hierarchical decoder is 0.88 and 0.89
BLEU points higher, respectively, and compara-
ble in Czech, Italian and German, which represent
the fusional languages. In Czech, the hierarchical
model outperforms the subword-based model by
0.19 BLEU and in Italian by 0.41 BLEU points.
The subword-based NMT model achieves the best
performance in German, a language that is rich in
compounding, where explicit subword segmenta-
tion might allow learning better representations for
translation units.

The fully character-level NMT model, on the
other hand, obtains higher translation accuracy
than the hierarchical model in Turkish, with an
improvement of 0.91 BLEU, and in Czech with
0.15 BLEU points. As can be seen in the sta-
tistical characteristics of the training sets in Ta-
ble 1, or a better illustration of it by plotting the
token-to-type ratios in each language (Figure 2),
these two directions constitute the most sparse set-
tings, where Turkish has the highest amount of
sparsity in the benchmark, followed by Czech, and
the improvements seem to be proportional to the
amount of sparsity in the language. This sug-

gests that in case of high lexical sparsity, learn-
ing to translate based on representations of charac-
ters might aid in reducing contextual sparsity, al-
lowing to learn better distributed representations.
As the training data size increases, one would
expect the likelihood of observing rare words to
decrease, especially in languages with low mor-
phological complexity, along with the significance
of representing rare and unseen words (Cherry
et al., 2018). Our results support this hypoth-
esis, where decreasing lexical sparsity, either in
the form of the training data size, or the morpho-
logical complexity of the target language, elimi-
nates the advantage of character-level translation.
In Arabic and Italian, where the training data is
almost twice as large as the other languages, us-
ing the hierarchical model provides improvements
of 2.83 and 2.31 BLEU points over the character-
level NMT model. In German, the fully character-
level NMT model still achieves the lowest accu-
racy, with 2.06 BLEU points below the subword-
based model. This might be due to the increased
level of contextual ambiguity leading to difficulty
in learning reliable character embeddings when
the model is trained over larger corpora. Another
factor which might affect the lower performance
of character-level models is the average sentence

Figure 2: Lexical sparsity and average sentence lengths in different languages.
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Variation Chars Subwords Hier.
Paradigm contrast features

Positive vs. comparative adjective 71.4 68.4 70.1
Present vs. future tense 85.7 92.0 90.6

Negation 97.8 97.0 94.8
Singular vs. plural noun 88.2 88.8 88.6

Present vs. past tense 92.0 93.3 95.4
Compound generation 60.2 65.4 57.8

Indicative vs. conditional mode 86.4 88.2 92.3
Average 83.1 84.7 84.2

Agreement features
Pronoun vs. Nouns (gender) 96.5 97.4 98.8
Pronoun vs. Nouns (number) 95.4 96.0 93.4

Pronoun (plural) 88.6 94.3 92.2
Pronoun (relative-gender) 74.2 76.4 78.9
Pronoun (relative-number) 84.2 90.2 87.0

Positive vs. superlative adjective 76.2 68.2 80.4
Simple vs. coordinated verbs (number) 96.4 93.4 97.2
Simple vs. coordinated verbs (person) 92.3 92.8 93.5
Simple vs. coordinated verbs (tense) 82.4 86.0 90.2

Average 87.4 88.3 90.17

Table 4: Results of the evaluation of models in capturing morphological variations in the output using the Morphe-
val English-German test set. The accuracy is measured with the percentage of correctly captured morphological
contrasts. The best scores for each translation direction are in bold font.

lengths, which are much longer compared to the
sentence lengths resulting from with subword seg-
mentation (Figure 2).

In the experiments conducted in the English-to-
German translation direction, the results of which
are given in Table 5, accuracy obtained with the
hierarchical and subword-based NMT decoders
significantly increase with the extension of the
training data, where the subword-based model
obtains the best accuracy, followed by the hi-
erarchical model, and the character-level NMT
model obtains significantly lower accuracy com-
pared to both approaches. Studies have shown
that character-level NMT models could potentially
reach the same performance with the subword-
based NMT models (Cherry et al., 2018), although
this might require increasing the capacity of the
network. On the other hand, the consistency in the
accuracy obtained using the hierarchical decoding
model from low to mid resource settings suggests
that explicit modeling of word boundaries aids in
achieving a more computationally efficient solu-
tion to character-level translation.

Since solely relying on BLEU scores may not
be sufficient in understanding the generative prop-

Model newstest15
Subwords 22.71
Characters 20.34

Hierarchical 22.19

Table 5: Experiment results in the English-to-German
direction with WMT data sets. Translation accuracy is
measured with BLEU. Best scores are in bold font.

erties of different NMT models, we perform an
additional evaluation in order to assess the capac-
ity of models in learning syntactic or morpholog-
ical dependencies using the Morpheval test suites,
which consist of sentence pairs that differ by one
morphological contrast, and each output accuracy
is measured in terms of the percentage of trans-
lations that could convey the morphological con-
trast in the target language. Table 4 lists the per-
formance of different NMT models implement-
ing decoding at the level of subwords, charac-
ters, or hierarchical word-character units in cap-
turing variances in each individual morphological
paradigm and preserving the agreement between
inflected words and their dependent lexical items.
The results of our analysis support the benefit of
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Input when a friend of mine told me that I needed to
see this great video about a guy protesting bicycle fines

in New York City, I admit I wasn’t very interested.
Output bir arkadaşım New York’ta bisiklet protestosunu

Subword-based protesto etmek için bu filmi izlemeye
Decoder ihtiyacım olduğunu söylemişti.
Output bana bir arkadaşım bana New York’ta bir adam ile ilgili

Character-based bir adam hakkında görmem gereken bir adam hakkında
Decoder görmem gerektiğini söyledi.
Output bir arkadaşım New York’ta bisiklet yapmaya

Hierarchical ihtiyacım olduğunu söylediği zaman,
Decoder kabul ettim.

Reference bir arkadaşım New York şehrindeki bisiklet cezalarını protesto
eden bir adamın bu harika videosunu izlemem gerektiğini
söylediğinde, kabul etmeliyim ki çok da ilgilenmemiştim.

Table 6: Example translations with different approaches in Turkish

using BPE in German as a subword segmentation
algorithm, which obtains the highest accuracy in
most of the morphological paradigm generation
tasks, although the character-level model shows
to be promising in capturing some morphological
features better than the former, such as negation
or comparative adjectives. In capturing syntac-
tic agreement features, the hierarchical decoding
model performs much better than the subword and
character-level models, which is likely due to pro-
cessing the sentence context at the word level, in-
ducing a better notion of syntactic ordering during
generation.

In order to better illustrate the differences in
the outputs of each NMT model, we also present
some sample translations in Table 6, obtained by
translating English into Turkish using the NMT
models trained on the TED Talks corpus. The in-
put sentences are selected such that they are suf-
ficiently long so that one can see the ability of
each model in capturing long-distance dependen-
cies in context. The input sentence is from a typ-
ical conversation, which requires remembering a
long context with many references. We highlight
the words in each output that is generated for the
first time. Most of the models fail to generate
a complete translation, starting to forget the sen-
tence history after the generation of a few words,
indicated by the start of generation of repetitions
of the previously generated words. The character-
level decoder seems to have the shortest mem-
ory span, followed by the subword-based decoder,

which completely omits the second half of the sen-
tence. Despite omitting the translations of the last
four words in the input and some lexical errors,
the hierarchical decoder is the only model which
can generate a meaningful and grammatically-
correct sentence, suggesting that modeling trans-
lation based on a context defined at the lexical
level might help to learn better grammatical and
contextual dependencies, and remembering longer
history.

7 Conclusion

In this paper, we explored the idea of perform-
ing the decoding procedure in NMT in a multi-
dimensional search space defined by word and
character level units via a hierarchical decod-
ing structure and beam search algorithm. Our
model obtained comparable to better performance
than the conventional open-vocabulary NMT so-
lutions, such as character and subword-level mod-
els, in many languages while using a significantly
smaller number of parameters, showing promising
application under high-resource settings. Our soft-
ware will be available for public usage after publi-
cation.
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