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Cities are built on transportation strategies. The constructed 
urban environment is influenced by the accumulation of 
individual transport choices, and also by the decisions of 
transportation planners who continue to rely on tools 
designed to hasten the expansion of car culture. Past 
experiences incorporating cars, trains, and horses have 
demonstrated that paradigm shifts in mobility technology 
impact activity patterns in cities. Autonomous vehicles will 
certainly revolutionize urban mobility, but the positive and 
negative consequences of driverless personal transport on 
cities and societies remain unknown. The probability of a 
beneficial impact will increase with more and better tools 
available for analyzing existing transportation habits and 
projecting future possibilities. The mobility topography 
model (MTM) introduced in this paper is a multimodal 
route simulator that evaluates probable modal choice for 
hypothetical travelers, derived using actual ridership data, 
transportation infrastructure, and economic conditions. An 
application has been developed for users to adjust input 
parameters and quickly project the potential impacts of 
evolving technologies and changing circumstances. The 
MTM is flexible, general, and well suited for casting 
holistic projections of future scenarios, rather than for 
precise accounting of specific interventions. The model is 
demonstrated in Singapore today and into the future. 

Transportation; mobility; probability model; autonomous 
vehicles, urban planning. 

I.6.1 SIMULATION AND MODELING (Model 
Development). 

The widespread acceptance of the car in the early 20th 
century was a paradigm shift in mobility technology. 
However, cities around the world are experiencing a 
multitude of problems from excessive car use, including 
urban sprawl, global warming, traffic congestion, poor 
health, and social isolation (Litman 2002). Therefore, it is 
reasonable to state that the shift to cars was mishandled by 
past generations of planners, and the same mistakes are 
being repeated in developing counties today. Meanwhile, 
many prominent planners acknowledge that when priority 

was first assigned to the movement of cars over pedestrians, 
car culture built momentum, inaugurating the development 
of a two-tier transportation system that persists today.  

Recent advances in autonomous vehicles (AVs) suggest 
that in a few short years, roads will be populated by self-
driving cars. Experience tells us that the response of 
planners to this emerging technology will define the 
character of our cities and societies for generations. A 
potential problem is that the main computational tool that 
transportation planners rely on to predict future use is still 
the traditional four-step traffic demand model that was 
developed in Detroit during the 1950s. The four-step model 
applied the concepts of supply and demand to transportation 
engineering (concepts that were pioneered in economic 
theory), and has been used to design roads and mass transit 
networks based on the needs of vehicles ever since. Without 
doubt, we will need new, more dynamic tools to develop 
mobility solutions that are appropriate for cultivating 
healthy and sustainable cities. 

This paper presents the mobility topography model (MTM), 
a variation on traditional transportation modeling 
techniques that is designed to give planners insight into the 
broader effects of technological, infrastructural, and 
economic developments. The MTM was constructed around 
the example of Singapore, but the tools and procedures 
demonstrated here can be applied to any urban 
environment. Calculations for the first three steps 
(environment description, trip generation, and route 
assignment) are conducted in the Grasshopper3D plugin for 
Rhinoceros3D using a combination of native components 
and custom Python scripts. The subsequent steps 
(calibration, mode choice, and topographic visualization) 
are implemented in Processing as a standalone application 
with an intuitive, user-friendly interface. This approach is 
designed to substantialize the invisible mobility layer of 
cities, so that planners and politicians can intuitively 
process visual information as opposed to abstract figures. 
Applying this computational tool to the difficult work of 
interpreting the probability landscape that emerges from 
urban transportation systems, the human imagination can 
pursue innovative solutions to complex mobility scenarios. 

Transportation planners currently have access to several 
advanced computational techniques for modeling human 
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mobility, including agent-based models (ABMs) and neural 
networks. Chen [2] provides a detailed survey of many 
possible applications for ABMs in architecture, urban, and 
transportation planning. Agent-based transportation models 
usually simulate the actual use patterns of individual 
travelers and vehicles; for example, the model constructed 
by Aschwanden [1] included digitized representations of 
street lanes, buildings, and bus stops. The TRANSIMS 
project is a flexible and comprehensive ABM tool that has 
found many wide applications including modeling vehicular 
traffic, pedestrian flows, and emergency egress [13]. 
However, ABMs are best suited for modeling situations that 
occur over small time scales and in limited spatial areas, 
because they depend on repetitively updating the micro-
scale decisions of individual automata. Trained neural 
networks are another advanced computational tool with 
potential applications in urban planning, such as predicting 
patterns of urban sprawl [6]. However, the traditional four-
step model is the most commonly used tool for planning 
road capacity, validating public transit demand, optimizing 
tolls, and more. In essence, the four-step model interprets a 
city as a network of links and nodes, on which trips are 
distributed according to demand, and then redistributed 
based on link capacity until equilibrium is achieved. 

When implementing a transportation macro-model, it is 
common practice to combine household data with distance 
decay methods or other techniques to generate trips [4]. 
However, Singapore hasn’t published place-of-work data, 
so this example MTM implementation determines trip rates 
using alternative methods. To arrive at reasonably accurate 
trip rates for employed residents, distances are measured 
from point locations for trip generating occupancies 
including employment centers, malls, hospitals, airports, 
etc., and are modified by accessibility indices based on 
distance from the centroid of the starting zone (Figure 1). 
Zhou, Kockelman, and Lemp [25] demonstrate the use of 
an accessibility index to modify trip rates, a feature that is 
becoming progressively more common in four-step model 
applications. To limit the potential for extreme results, each 
trip start point has multiple end points. 

 
Figure 1. Employment activity trip production map for Ang Mo 

Kio, a centrally located, residential planning zone. 

Four-step models frequently include mode choice 
probability calculations using probit, logit, or gravity 
models. The multinomial logit model (MNL) used by the 
MTM was adapted from the methods used by Koppelman 
and Bhat [12] to compare discrete utility values for several 
modes of transportation and determine the most probable 
choice (Figure 2). The utility value equation includes 
average monthly household income for each zone as a 
denominator below calculated trip cost (Figure 3), enabling 
the model to consider the influence of economic forces like 
income inequality on mobility. These formulae are well 
established, and the theoretical basis for the validity of the 
MTM is derived from the use of these models. 

 
Figure 2. Probability equation derived from MNL. 

 

 
Figure 3. Equation to calculate mode utility using terms for travel 

time, travel cost, and income alongside mode coefficients. 

The resulting probability output by the MNL is analogous 
to probable modal choice, and is calculated by comparing 
the utility of different modes. Each mode utility value is 
calibrated to better represent reality using mode bias 
coefficients. While logit models have often relied on 
traditional optimization techniques like Newton-Raphson or 
steepest ascent methods to determine mode bias 
coefficients, the proposed MTM uses a genetic algorithm 
(GA) to determine coefficients. Research confirms the 
viability of calibrating coefficients using GAs to match a 
dataset [24]. In this case, the dataset being matched is the 
actual modal split of residents of Singapore, calculated 
using ridership data from the 2010 Census of Population 
[21]. Using randomly generated coefficients does not 
compromise the validity of the model, because the input 
values for utility equations have arbitrary units of 
measurement (hours, dollars), and as such, they naturally 
require coefficients to become related. Mode bias 
coefficients also account for social values and other 
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generally incalculable factors as discussed at length by 
Koppelman and Bhat [12]. 

Methods for modeling congestion are a key difference 
between the traditional four-step model and the proposed 
MTM. Traditional models rationalize congestion as an 
imbalance between trip demand and link capacity, and 
usually depend on equilibrating these two forces by 
reassigning trips within a feedback loop (McNally 2007). 
However, empirical evidence indicates that travelers 
continue to use heavily congested roads. Therefore, this 
understanding of congestion can fail to accurately represent 
reality, particularly due to induced demand. Instead, the 
MTM uses a common sense algorithm (Figure 4) based on 
causality, which utilizes the concept of congestion indices. 
A congestion index is a ratio that compares trip duration 
during peak travel times (morning and evening rush hours) 
with free-flowing travel (usually from 2-5am). For this 
MTM application, the base congestion indices were 
calculated using trips entered into TomTom MyDrive [22], 
a time-based route calculator that uses data sourced from 
real GPS devices. In the proposed algorithm, congestion 
indices are primarily modified by vehicle population, which 
is in turn modified by additional parameters such as road 
tolls, ride-sharing ratios, and total population. Congested 
travel is assumed for 50% of trips, with the congestion 
index averaged between values at the start and end of each 
trip [15]. 

 
Figure 4. Causal loop diagram of the algorithm to calculate 

congestion indices for the MTM based on realistic, relevant factors. 

Another key difference between the MTM and the four-step 
model is the speed with which the model can return results. 
Although four-step model practitioners have become 
reasonably accurate at predicting traffic demand and link 
capacity over the past six decades, the process is not 
optimal. Achieving a high degree of accuracy requires 
complex networks with long calculation times, and 
additional steps for advanced methods like time-of-day 
disaggregation and congestion feedback loops [3]. It is 
reasonable to conclude that although the four-step model is 
a powerful tool, it can be cumbersome and even restrictive. 
Comparing the architecture of the traditional four-step 

model with the MTM described in this paper reveals the 
MTM’s clear advantages in terms of calculation time 
(Figure 5). To consider changes to the network, a four-step 
model must loop back to the trip distribution step, while 
changes in activity production must be recalculated from 
the trip generation step [16]. In comparison, once it has 
been initialized, the MTM can skip the costly trip 
generation and route assignment steps, giving the user 
immediate visual response, and a tactile experience. 

Implementing the MTM requires collecting an intensive 
quantity of site-specific data, including geospatial 
information for expressways, metro lines, bus routes, and 
bike paths. A geometric dataset capturing transportation 
infrastructure in Singapore was assembled in 
Rhinoceros3D, including data published by the Singapore 
Land Transport Authority regarding future infrastructure 
projects. Singapore is an ideal study area because within the 
last decade, they have built multiple new metro lines, 
producing several diverse data points for comparison. 
Singaporean institutions frequently publish high-quality 
data and are also conducting ongoing research into AVs, 
which indicates that the city will probably be an early 
adopter of robot car technology to enable further 
comparison [11, 20]. The geometric data for existing and 
future infrastructure was organized chronologically into 
layers, and a Python script to cycle through the possible 
configurations while exporting the route data being 
produced from Grasshopper into JSON format. 

 

 
Figure 5. Flow chart comparing the inefficient architecture of the 

traditional FSM with the innovative architecture of the MTM 
designed to improve calculation speed and flexibility. 
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However, options for reconfiguring infrastructure represent 
only a small percentage of the complete set of adjustable 
parameters available to the user. The quantity of possible 
scenarios that can be considered by modifying MTM 
parameters is endless. For example, vehicle speed can be 
increased to consider scenarios with AVs travelling at high 
speeds on dedicated expressways, or set to zero to simulate 
the complete removal of the expressway network. High-
capacity trip generating occupancies like stadiums can be 
strengthened to anticipate travel patterns for large events. 
There are also parameters available to consider travel time 
reliability to understand the possible implications of service 
disruptions on metro systems, or the effects of severe 
storms from climate change on bicycle use. The design of 
the MTM makes it flexible enough to quickly visualize 
diverse scenarios that traditional models may struggle to 
consider. Although the calculation method is similar to that 
of the four-step model it is not intended for same type of 
precise accounting, but instead for projecting broad trends 
and their consequences on the urban mobility landscape. 

Implementing the following steps (trip generation and route 
assignment) is very similar to the four-step model. The data 
aggregated in Rhinoceros3D is processed in Grasshopper 
via algorithms written using a combination of native 
Grasshopper components and custom Python scripts (Figure 
6). The shortest walk component developed by Piacentino 
[19] is also used extensively in the route assignment step to 
calculate optimal routes over expressway, metro, and bike 
path networks. In addition, a technique previously 
implemented by Cukier [5] for penalizing transfers between 
metro lines is applied for calculating metro routes. 

 
Figure 6. Screenshot of the Grasshopper3D script used to interpret 
the digitally described environment and to generate route data for 

subsequent mode choice calculations. 

Route data was pre-calculated for every possible 
combination of a discrete number of infrastructural 
configurations, and exported in JSON format for use in the 
subsequent stages of the model. For the following steps of 
the MTM, the development environment was switched from 
Grasshopper3D to Processing, a popular Java development 
environment. 

Route data based on Singapore’s 2009 infrastructure and 
urban conditions was compared with ridership data from the 
2010 census, and used to calibrate the model´s mode utility 
coefficients using a GA adapted from a kernel developed by 
Turner [23]. With each generation of the GA, the time and 
cost impedance for every trip across every mode was 

evaluated and combined with a population of coefficients to 
output a set of mode utility values. Next, these values were 
converted to modal choice probabilities using the 
probability equation from Figure 2, and evaluated for 
fitness. An individual was considered fit if the calculated 
probable modal split aligned with actual modal split 
extracted from ridership statistics in the 2010 census for 
each analysis zone. After finding a solution below the 
threshold of 0.03%, the GA stored the fittest individual and 
moved on to the next zone with a fresh population. Once 
routes were pre-calculated and optimal coefficients 
determined, these datasets were input to the Processing 
application designed to facilitate interaction with the MTM. 
At startup, time and cost values for each route are 
calculated by the application and stored in memory. Next, 
these route impedance values are combined in the calibrated 
MNL, and probability values are output. The most probable 
mode is determined for each trip start point and the color 
corresponding to that mode is assigned to a mesh vertex to 
construct the topographic mobility map visualization. 

The application interface was designed to be simple and 
intuitive, while offering the user complete control over the 
entire range of mobility model parameters (Figure 7). 
Although the application is currently focused on Singapore, 
it can be adapted to model any urban environment. All of 
the graphical and numerical MTM output data presented in 
the following section was sourced from interaction with the 
application. 

This section is intended to demonstrate the process of 
analyzing MTM map and data outputs. It investigates the 
probable impact of AVs on mobility in Singapore with a 
series of three scenarios that could potentially occur over 30 
years of technological and infrastructural evolution.  

 
Figure 7. Screenshot of the interactive MTM interface complete 

with sliders for modifying parameters, a map viewport, and multiple 
sources of numerical data output. 
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Scenario one: a snapshot of Singapore in 2009, based on 
residents’ responses to the 2010 census. 
Scenario two: a projection of Singapore in 2025, with 
several major infrastructure projects completed and AVs 
in place of manually driven vehicles. 

Scenario three: a hypothetical Singapore in 2040, where 
AVs are present and the entire expressway system has 
been removed. 

When examining the MTM output from scenario one at this 
holistic scale, several features of the existing mobility 
topography in Singapore become apparent (Figure 8). 
Notably, there is widespread reliance on bus travel despite 
frequent long wait times. Next, the residents of wealthy 
planning zones such as Mandai, Bukit Timah, and Tanglin 
are car dependent, while most other districts present a 
marbled transportation mix. The patterns of dominance 
apparent around metro lines and car expressways provide 
satisfactory evidence that the model has been properly 
formulated. The frequent dominance of walking over other 
modes visible in the Downtown Core and appearing 
elsewhere sporadically is a notable feature characteristic of 
walkable cities such as Singapore. Walking is dominant in 
Changi, a zone with a small population, low average 
income, and a large airport. Besides displaying the mobility 
topography map for Singapore in 2010, this image also 
introduces the graphic standards that will be used 

throughout this section. The subsequent diagrams 
illustrating MTM output display magnified, side-by-side 
comparisons of the three scenarios under analysis. The 
areas selected for detailed analysis demonstrate dramatic 
changes from modifying input parameters. 

Scenario two assumes that road vehicles including cars, 
taxis, and even buses have become almost completely 
autonomous by 2025. Such a paradigm shift can be 
represented in the model by modifying parameters 
including parking time, vehicle speed, perceived cost, and 
crash rates. When AVs with piloted parking capabilities 
become prevalent, zero time is spent parking because 
passengers can travel door-to-door and leave the car to park 
itself [17]. Average road speeds will also increase slightly 
for shared streets, since autonomously managed 
intersections can be navigated without stopping, while 
expressway speeds may be faster because AVs can drive in 
platoon formation, reducing both energy consumption and 
congestion [7, 10]. These reductions in trip time for car 
journeys increase the probability of car travel.  

The concept of perceived cost describes the monetary 
equivalent for stress caused by the act of driving, and varies 
according to road conditions and the purpose of the trip 
[14]. As people become more comfortable in AVs, driver 
stress will be reduced and time can be spent performing 
tasks other than driving, changing existing perceptions of 
the value of travel time. The potential downside of 

Figure 8. Probable modal choice visualized as a topographic map using data output by the MTM for scenario one (Singapore c. 2010). This 
mapping technique reveals the mobility layer of cities. Each place is understood as a product of local transportation habits and infrastructure. 
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perceived cost reduction is radically expanded urban 
sprawl, since travellers would be willing to spend more 
time commuting if their cars did the work of driving.  

A benefit of AVs is that they remove the risk of human 
error from the roads, and could reduce the frequency of car 
crashes by 90% [8]. This is represented in the model by 
reducing the crash cost carried by travellers. Crash cost is a 
monetary value assigned per kilometer of travel to cover the 
internal costs of a crash including property damage, 
medical expenses, lost wages, etc., based on the probable 
severity of an accident. 

A fleet of autonomous taxis could also eliminate the danger 
of drunk drivers because they would be readily available 
and cheaper to operate than traditional taxis with drivers. 
The associated increase in taxi modal share would expand 
the taxi population and reduce wait times outside of the city 
center. Research suggests that shared autonomous taxis 
could reduce the population of privately owned vehicles 
within urban environments at a ratio of ten fewer cars for 
each taxi added [9]. The MTM translates this decrease in 
congestion over surface routes as growth in the 
attractiveness of car, taxi, and bus travel. 

The transportation infrastructure in scenario two has also 
been updated to include projects that are likely to be 
completed by 2025, including expanded metro lines, 
expressways, and bike paths. For this scenario, the total 
population of Singapore was increased in line with 
predictions from the Population White Paper, causing an 
increase in congestion experienced across every mode [18]. 

Year 
Calculated Modal Split 

Car Taxi Bus Metro Bike Walk 

2010 24.3% 1.7% 34.2% 30.7% 2.5% 6.6% 

2025 22.9% 18.4% 28.1% 23.7% 2.0% 4.9% 

2040 22.5% 8.1% 25.0% 33.0% 6.9% 4.5% 

Table 1. Modal splits for the three different transportation 
scenarios analyzed in this section. 

Year 
Average 

Trip Time 
(minutes) 

Average 
Trip Cost 

(SGD) 

Annual 
Transport 
Emissions    

(MT CO2e) 

2010 35.2 $7.59 8.1 

2025 28.2 $9.65 7.8 

2040 31.4 $6.16 5.5 

Table 2. Average trip time and cost comparison, along with 
annual emissions to evaluate the impacts of each scenario. 

The third scenario is a more distant projection of Singapore 
as it might exist in 2040, where the main assumption is that 

the entire network of restricted-access expressways has 
been removed. This significant change is simulated by 
reducing vehicle speed on expressways to zero, forcing the 
model to consider only direct routes for cars and taxis. 
Other parameters changed between the second and third 
scenarios include further incremental improvement in wait 
times, and slightly reduced vehicle speed over local roads 
due to higher congestion. Metro and bike infrastructure 
were also updated to include more bike rental points and 
reduce bike park times, assuming that more racks will be 
available. The total population of Singapore is again 
increased. The resulting output data from these three 
scenarios is summarized in Tables 1 and 2 above. 

To demonstrate the mobility topography analysis process, 
the first area of focus is the wealthy and car-dependent 
planning zone Bukit Timah, and the adjacent zones Bukit 
Batok, Bukit Panjang, Clementi, and Jurong East (Figure 
9). The magnified map of 2025 suggests that residents of 
Bukit Timah would prefer private AVs over mass public 
transit despite receiving a metro line. Moreover, car 
dominance in Bukit Timah will not be superseded by 
cheaper and more readily available taxis, a conclusion that 
makes sense in the context of Singapore, where car 
ownership is a status symbol. Meanwhile, residents who 
previously relied upon mass transit or walking in the 
suburban, middle income zones Bukit Batok, Clementi, and 
Jurong East may switch to autonomous cars and taxis for 
their speed and convenience. 

 
Figure 9. Magnified MTM output for three scenarios focused on 

luxurious residential district Bukit Timah. 
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Figure 10. Magnified MTM output for three scenarios focused on 

dense, affordable residential zones Bedok and Tampines. 

However, when expressways are removed in 2040 for 
scenario three, the MTM suggests that a significant 
percentage of Bukit Timah’s population would finally 
utilize the local public transit infrastructure. Personal 
vehicle use in the adjacent zones is also projected to 
decrease. Notably, the expanded bike path networks of 
2040 appear to result in pockets within Bukit Panjang 
where bikes are the preferred mode of personal transport. 

The second area for comparison analysis is focused on the 
regional center of Tampines, and the adjacent zones Bedok, 
Hougang, and Pasir Ris (Figure 10). These are densely 
populated, medium income residential zones where present 
day occupants rely on a mixture of car, bus, and metro 
transport for their commutes. When AVs are introduced 
into this environment, the MTM predicts that much of Pasir 
Ris and large swaths of Bedok and Tampines would switch 
to autonomous cars or taxis, despite the 23.8% increase in 
average cost per trip. Reduced dependence on slow bus 
transport probably accounts for much of the 19.9% 
reduction in average travel time predicted by the model. It 
is worth noting that the substantial increase in the quantity 
of vehicles present may increase congestion and degrade 
the quality of life for residents of these areas. 

However, without expressways the calculated probability 
for residents of Tampines, Bedok, and Pasir Ris to travel by 
car drops dramatically by 2040. The model predicts they 
would switch to more environmentally sustainable bus or 
metro transport, while in Hougang, the reduction in vehicle 

population and congestion is projected to cause a slight 
increase in car use. The general shift towards mass transit 
predicted by the MTM comes with an 11.3% increase in 
average travel time, while the average cost per trip drops by 
an astonishing 31.1%. The implication of this analysis is 
that expressways and tolls perpetuate a two-tier 
transportation system. Wealthier travellers can afford fast 
personal mobility, while the inhabitants of low and middle 
income areas are more likely to avoid travelling by car or 
taxi because of the relatively high cost. Without 
expressways dividing the social and urban fabrics, the 
model concludes that mobility would be more democratic 
and substantially cheaper. Some of the potential benefits in 
this scenario would be greater social cohesion and growing 
average personal wealth. 

 
Figure 11. MTM output for three scenarios focused on emerging 

employment clusters in zones Woodlands and Sembawang. 

The emerging regional center at Woodlands and the 
adjacent zones Sembaweng, Mandai, and Yishun form the 
third area of focus for detailed analysis (Figure 11). A 
comparison between the MTM output for 2010 and 2025 
reveals that many residents of Sembaweng and Mandai are 
projected to shift towards car dependence upon completion 
of the North-South expressway in 2020. The model predicts 
that residents of Woodlands would prefer to travel by bus 
rather than by metro in this scenario. This phenomenon is a 
result of the growing use of autonomous taxis seen in 
previous analyses, which will reduce the number of 
vehicles in Singapore. Decreasing congestion on surface 
routes is projected to lead to a corresponding increase of 
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bus use in Woodlands. 

For the third scenario, the previous increase in car use 
would be completely negated by the elimination of high-
speed expressways. In fact, the MTM concludes that the 
expanded bike path network will lead to a significant 
percentage of residents in Sembaweng and Woodlands 
commuting by bike. This implies that residents might work 
nearby and not travel to the Downtown Core, thereby 
changing the wasteful commuting pattern prevalent in cities 
around the world. The MTM analysis concludes that by 
combining employment growth in the Woodlands regional 
center with expressway-free transportation, Singapore could 
transform into an example of a sustainable mobility city. 

Although this sample implementation in Singapore includes 
a substantial amount of data collected from site-specific 
sources such as Singapore’s Land Transport Authority, the 
MTM could also function with readily available data from 
Google. Acquiring a reasonable amount of data over 
Google’s API and compiling mobility topography maps 
would be fast and relatively straightforward for many cities. 
Differences and similarities in the algorithms and 
coefficients across diverse socio-cultural regions may 
become apparent to a trained neural network, and broader 
theories of urban transportation could eventually be 
developed. A faster model could also be applied to the task 
of charting transportation lines to optimize a particular 
parameter, such as metro ridership or travel time. 

An issue with the MTM is its simplistic understanding of 
multimodal travel. The model does not consider the 
breakdown of individual trips, instead concentrating on the 
more general concept of ridership. By definition, a 
multimodal trip counts towards two or more rides, implying 
that by focusing on ridership the proposed model considers 
intensity of use and not actual travel patterns. Future 
iterations of the model could implement more complete 
understandings of multimodality by introducing combined 
modes to the logit model, such as “car and metro” or “bus 
and bike.” Unfortunately, adding additional dimensions 
increases calculation time exponentially. This could also 
compromise the accuracy of the coefficients, since GA 
performance degrades with higher dimensional problems. 
The model may also benefit from expanding the quantity of 
routes available for each trip to dynamically redistribute 
trips away from congested routes. 

In the seven years that have elapsed since the collection of 
Singapore’s 2010 census data, the city has added 7 km of 
expressways, 46.8 km of metro lines, and 124.5 km of bike 
paths. This rapid pace of transportation infrastructure 
development presents an opportunity to evaluate the 
accuracy of the MTM. Singapore’s evolving infrastructure 
will have impacted transportation patterns over the last 
seven years. If a survey of the present day transportation 
profile for a significant percentage of Singaporeans agreed 

with the predictions of the MTM, it would confirm the 
usefulness of the model as a projection tool. At minimum a 
survey would offer more data for comparison. The 
interactive MTM application is hosted online, presently 
generating a database of feedback for further analysis.  

The intent of this project was to construct a predictive 
model that would complement the transportation planners 
existing toolkit. Although the accuracy of this model is 
unproven, it may still offer valuable perspective to urban 
planners. The linear structure of the MTM enables faster, 
more tactile visualization than can be achieved with 
traditional modeling techniques. The simplified congestion 
model implemented by the MTM also allows it to simulate 
a broad range of scenarios without experiencing capacity 
overloads and “breaking,” as a traditional four-step model 
would. In theory, with further advancement this model 
could be used to generate optimal solutions to problems that 
escape the threshold for understanding complexity of the 
average human urban planner. 

At present this project is best described as a mathematical 
probability model that visualizes the effects of changing 
variables over several layered geometric networks. It is still 
a speculative project without empirical evidence to validate 
its predictions. However, even if it remains merely an 
intermediary between the deductive abilities of the human 
imagination and the unimaginable complexity of an urban 
transportation system, it is still a potentially valuable tool 
for planners to consult during the decision-making process. 
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