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Abstract. We consider fair division problems where indivisible items arrive one
by one in an online fashion and are allocated immediately to agents who have
additive utilities over these items. Many existing offline mechanisms do not work
in this online setting. In addition, many existing axiomatic results often do not
transfer from the offline to the online setting. For this reason, we propose here
three new online mechanisms, as well as consider the axiomatic properties of
three previously proposed online mechanisms. In this paper, we use these mecha-
nisms and characterize classes of online mechanisms that are strategy-proof, and
return envy-free and Pareto efficient allocations, as well as combinations of these
properties. Finally, we identify an important impossibility result.
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1 Introduction

Fair division is an important problem facing our society today as increasing economical,
environmental, and other pressures require us to try to do more with limited resources.
An especially challenging form of fair division is when we are allocating available re-
sources in an online fashion with only partial knowledge of the future resources and
agent’s preferences for these resources. There are many applications of online fair divi-
sion for social good. For example, when a kidney is donated, it must be allocated to a
patient within a few hours. As a second example, food items arrive at a food bank and
must be allocated and distributed to charities promptly. As a third example, when allo-
cating charging slots to electric cars, we may not know when or where cars will arrive
for charging. As a fourth example, when managing a river, we might start allocating
irrigation water to farmers today, not knowing how much it will rain the next month. As
a fifth example, when allocating memory to cloud services, we may not know what and
how many services are requested in the next moment.

The online nature of such fair division problems changes the mechanisms avail-
able to allocate items. For example, with the well-known (offline) sequential allocation
mechanism, agents pick their most preferred remaining items in turns. In an online set-
ting, an agent’s most preferred item may not be currently (or even ever) available. To

? Funded by the European Research Council under the Horizon 2020 Programme via AMPLify
670077.



2 M. Aleksandrov, T. Walsh

tackle this, we propose three new - ONLINE SERIAL DICTATOR, ONLINE RANDOM
PRIORITY and PARETO LIKE - as well as study three existing - LIKE, BALANCED LI-
KE and MAXIMUM LIKE- online mechanisms. The online nature also means we may
need to consider new axiomatic properties. For example, in deciding if agents have
any incentive to misreport preferences in an online setting, we may consider the past
fixed but the future unknown. This leads to a new and weaker form of online strategy-
proofness (OSP). Therefore, it might be easier to achieve strategy-proofness in an online
than in an offline setting. Also, we give a new and stronger form of envy-freeness, called
shared envy-freeness (SEF), in which agents might be envious of each other but only
over the items that they like in common. For example, in the paper assignment problem,
reviewers tend to bid for papers in their field of expertise and not for papers outside this
field [22]. Thus, SEF aims at guaranteeing envy-freeness across the different fields.

We provide characterization results for strategy-proofness (SP), envy-freeness (EF)
and Pareto efficiency (PE). For example, we characterize completely the class of online
mechanisms that are SP, and the class of online mechanisms that are PE ex post. We
also characterize the class of SP and EF mechanisms. Thus, a mechanism for online
fair division is SP and EF ex ante iff it returns the same random assignment as LIKE.
The same holds for SEF ex ante mechanisms. Also, we prove that a mechanism is SP,
PE ex post and EF ex ante iff it returns the same probability distribution of allocations
as ONLINE RANDOM PRIORITY. We further give an important impossibility result. In
offline fair division, stochastic Pareto efficiency and envy-freeness are always possible
simultaneously (e.g. the probabilistic serial mechanism [8]). However, we prove that no
online mechanism can be both Pareto efficient ex ante and envy-free ex ante.

2 Related Work

We consider the model of online fair division from [2, 3, 5, 28] in which items are indi-
visible and arrive one-by-one over time. We primarily contrast our characterization re-
sults with similar results in (offline) fair division. For example, we prove that no online
mechanism can be both PE and EF ex ante. By comparison, the (offline) probabilistic
serial mechanism satisfies both stochastic PE and EF [8]. In fact, it follows from our
results that there could be an unbounded number of mechanisms that are just PE ex ante
or EF ex ante. We can show that other (offline) characterizations (e.g. [10, 23]) break
in the online setting as well. By comparison, as online mechanisms can be applied to
offline problems by picking a sequence of the items, our results can be mapped into
such settings. For example, our PARETO LIKE mechanism returns all possible PE ex
post allocations in the offline problem. As a result, this mechanism characterizes the
set of offline such mechanisms. As another example, we prove that ONLINE RANDOM
PRIORITY is SP and PE ex post, but not PE ex ante. With this mechanism, agents with
the same cardinal utilities receive the same expected utilities (i.e. it is symmetric). This
is in-line with the impossibility result that no (offline or online) mechanism for offline
matching is SP, PE ex ante and symmetric [30]. Yet more related results are shown in
many other fair division (e.g. [6, 7, 9, 13, 18, 20, 21, 27]), voting (e.g. [14, 19, 29]) and
kidney exchange (e.g. [15–17]) settings. Our results can also be mapped to such set-
tings.
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3 Online and Additive Fair Division

An online fair division instance consists of a set of agents N = {1, . . . , n}, and an
ordered set of indivisible items O = {o1, . . . , om}. We suppose that item oj arrives
at round j when each agent i ∈ N becomes aware of their sincere utility uij ∈ R≥0
and places a possibly strategic bid vij ∈ R≥0 for oj . We suppose at least one agent
has positive utility for every item as, otherwise, we can simply discard the item. We
use online mechanisms that allocate oj immediately, supposing the allocation of o1 to
oj−1 is fixed and there is no information of oj+1 to om. We consider only non-wasteful
mechanisms that share the probability of 1 for oj only among agents that bid positively
for it if there is at least one such agent and, otherwise, discard oj .

An allocation πj of o1 to oj gives a bundle of items πji to each agent i ∈ N such
that

⋃
i∈N πji = {o1, . . . , oj} and πji ∩ πjk = ∅ for each i 6= k. We write uik(πj) for

the utility of agent i ∈ N for πjk. We write ui(πj) for uii(πj). A mechanism induces
a probability distribution over the set Πj of all allocations of items o1 to oj . We write
uik(Πj) for the expected utility of agent i ∈ N for the expected allocation of agent
k ∈ N and pik(Πj) for the probability of agent i ∈ N for item ok in this distribution.
We write ui(Πj) for uii(Πj) and pi(Πj) for pij(Πj). We suppose additive utilities and
expected utilities.

uik(πj) =
∑

oh∈πjk

uih uik(Πj) =

j∑
h=1

pkh(Πj) · uih

We consider three common properties of mechanisms: strategy-proofness, envy-
freeness and Pareto efficiency.

Definition 1. (SP) A mechanism is strategy-proof (SP) if, for each instance with m ∈
N items, no agent i ∈ N can strictly increase ui(Πm) by reporting any sequence
vi1, . . . , vim other than ui1, . . . , uim, supposing all other agents bid sincerely for items
o1 to om.

Definition 2. (EF) A mechanism is envy-free ex post (EFP) iff, for each instance with
m ∈ N items and allocation πm ∈ Πm returned by the mechanism with positive prob-
ability, ∀i, k ∈ N : uii(πm) ≥ uik(πm). A mechanism is envy-free ex ante (EFA) iff,
for each instance with m ∈ N items, ∀i, k ∈ N : uii(Πm) ≥ uik(Πm).

Definition 3. (PE) A mechanism is Pareto efficient ex post (PEP) iff, for each instance
with m ∈ N items and allocation πm ∈ Πm returned by the mechanism with positive
probability, no π′m ∈ Πm is such that ∀i ∈ N : ui(π

′
m) ≥ ui(πm) and ∃k ∈ N :

uk(π
′
m) > uk(πm). Also, it is Pareto efficient ex ante (PEA) iff, no mechanism gives at

least ui(Πm) to each i ∈ N and more than uk(Πm) to some k ∈ N .

To characterize SP, EF and PE mechanisms, we will use two equivalence relations
between outcomes of mechanisms. We say that two mechanisms are ex ante equivalent
iff, for each instance ofm ∈ N items, agent i ∈ N and item oj ∈ O, the probabilities of
i for oj under both mechanisms are equal, whilst these mechanisms are ex post equiv-
alent iff, for each instance of m ∈ N items and allocation πm ∈ Πm, the probabilities
of πm under both mechanisms are equal (i.e. each of the two mechanisms returns an
identical distribution of allocations).
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4 Six Cardinal Mechanisms

Many offline mechanisms cannot be used in the online setting because only one item
is available at any time. For this reason, we propose three new as well as study three
existing online mechanisms. For every arriving item oj , each mechanism first computes
a set of agents feasible for oj given an allocation πj−1 ∈ Πj−1. An agent that is feasible
for oj then receives it with conditional probability that is uniform with respect to the
other agents that are feasible for oj . Thus, for the first j items, each mechanism returns a
probability distribution over Πj and an actual allocation with some positive probability
that is obtained as a product of j conditional randomizations.

– ONLINE SERIAL DICTATOR: it has a strict priority order σ of the agents prior to
round one, and the unique feasible agent for oj is the first agent in σ that bids
positively for oj .

– ONLINE RANDOM PRIORITY: it draws uniformly at random a strict priority order
σ of the agents prior to round one, and runs ONLINE SERIAL DICTATOR with it.

– PARETO LIKE: agent i ∈ N is feasible for oj if extending πj−1 by allocating oj to
i is Pareto efficient ex post.

– LIKE: agent i ∈ N is feasible for oj if vij > 0 [2].
– BALANCED LIKE: agent i ∈ N is feasible for oj if vij > 0 and i has the fewest

items in πj−1 among those with positive bids for oj [2].
– MAXIMUM LIKE: agent i ∈ N is feasible for oj if vij = maxk∈N vkj [4].

In Example 1, we demonstrate that these mechanisms may return distributions of
allocations that are different from each other.

Example 1. Let us consider an instance with N = {1, 2} and O = {o1, o2}. The utili-
ties of agents for items are given in the below table.

item o1 item o2
agent 1 1 2
agent 2 2 1

In this instance, supposing sincere bidding, there are 4 possible allocations: π1 =
({o1, o2}, ∅), π2 = (∅, {o1, o2}), π3 = ({o1}, {o2}), and π4 = ({o2}, {o1}). ONLI-
NE SERIAL DICTATOR with fixed σ = (1, 2) returns π1 with probability 1, ONLINE
RANDOM PRIORITY returns π1 and π2 with probabilities 1/2, PARETO LIKE returns
π1 with probability 1/2, π2 and π4 with probabilities 1/4, LIKE returns π1 to π4 with
probabilities 1/4, BALANCED LIKE returns π3 and π4 with probabilities 1/2, and MA-
XIMUM LIKE returns π4 with probability 1. ut

We note that the ONLINE SERIAL DICTATOR mechanism is similar to the (offline)
serial dictatorship mechanism [25, 26]. However, agents have no quota on the number
of items they receive with ONLINE SERIAL DICTATOR, and only take items for which
they declare non-zero utility. The ONLINE RANDOM PRIORITY mechanism is also
similar to the (offline) random priority mechanism [1]. Finally, the LIKE mechanism
can be seen as the online analog of the (offline) probabilistic serial mechanism (see
[8]) with agents “eating” each next item which they like.



Online Fair Division with Additive Utilities 5

5 Strategy-Proofness

We begin by considering strategic behavior of agents. We provide a simple characteri-
zation of mechanisms that are strategy-proof. For i ∈ N , we say that pi(Πj) is a step
function iff it is 0 if vij = 0 and it admits the same value for any bid vij > 0 supposing
the bids of the other agents for o1 to oj , and the bids of agent i for o1 to oj−1 are fixed.
A mechanism is a step mechanism iff, for each instance with m ∈ N items, i ∈ N
and oj ∈ O, pi(Πj) is a step function. For i ∈ N , we say that pi(Πj) is a memoryless
function iff it takes the same value for all possible bids vi1 to vi(j−1) of agent i for items
o1 to oj−1 given fixed bid vij of agent i for item oj and fixed bids of the other agents
for items o1 to oj . A mechanism is a memoryless mechanism iff, for each instance with
m ∈ N items, i ∈ N and oj ∈ O, pi(Πj) is a memoryless function.

With a step mechanism, pi(Πj) does not depend on the size of an agent’s non-
zero bid for item oj but it may depend on the allocation history. By comparison, with
a memoryless mechanism, pi(Πj) may depend on the size of their non-zero bid for
item oj but not on the allocation history. As a consequence, with a memoryless step
mechanism, pi(Πj) depends only on the combination of the non-zero bids for item oj .

Theorem 1. A non-wasteful mechanism for online fair division is strategy-proof iff it is
a memoryless step mechanism.

Proof. Pick i ∈ N in an instance. Let us view ui(Πj) and pi(Πj) as functions of vi1
to vij . That is, we write ui(Πj) = ui(vi1, . . . , vij) and pi(Πj) = pi(vi1, . . . , vij).
Consider a memoryless step mechanism. Suppose now that all agents bid sincerely.
Then, ui(ui1, . . . , uim) =

∑m
j=1 pi(ui1, . . . , uij) · uij . Suppose next that only i bids

strategically vi1 to vim. Then, ui(vi1, . . . , vim) =
∑m
j=1 pi(vi1, . . . , vij) ·uij . For each

oj with vij = uij , pi(vi1, . . . , vij) · uij = pi(ui1, . . . , uij) · uij as the mechanism
is a memoryless step. For each oj with vij > 0 and uij = 0, pi(vi1, . . . , vij) · uij =
pi(ui1, . . . , uij) ·uij = 0. For each oj with vij = 0 and uij > 0, pi(vi1, . . . , vij) ·uij =
0 and pi(ui1, . . . , uij) · uij ≥ 0 as the mechanism is non-wasteful. Consequently, the
mechanism is strategy-proof.

Consider a strategy-proof mechanism. First, assume that it is not a step and pi(ui1,
. . . , ui(j−1), vij) admits different values for different positive values of vij supposing
that the bids of other agents for items o1 to oj are fixed. WLOG, we can suppose that
item oj is the last item to arrive. We can also suppose uij > 0 as the case uij =
0 is trivial. Agent i has an incentive to report vij > uij (or vij < uij) and, thus,
strictly increase pi(ui1, . . . , ui(j−1), uij) and ui(ui1, . . . , ui(j−1), uij). Second, assume
that the mechanism is a step but not memoryless. Suppose that agent i gets different
probabilities for item oj for alternative bids vik compared to their sincere bids uik
with k < j. WLOG, for each ok with k < j, we suppose that pi(vi1, . . . , vik) =
pi(ui1, . . . , uik). Otherwise, we truncate the problem to the first such round j. WLOG,
we also suppose that pi(vi1, . . . , vi(j−1), uij) > pi(ui1, . . . , ui(j−1), uij). Otherwise,
we swap vik for uik for k < j. We let agent i have utility 1 for all items except oj and
utility j for oj . Thus, the bids vik increase the expected utility of agent i compared to
the bids uik. We reached contradictions under both assumptions. ut
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The LIKE mechanism is a memoryless step and so is strategy-proof. We observe
that the ONLINE SERIAL DICTATOR and ONLINE RANDOM PRIORITY mechanisms
are also memoryless steps and, hence, are also both strategy-proof. On the other hand,
the BALANCED LIKE mechanism is just a step mechanism and is neither memoryless
nor strategy-proof. Furthermore, the MAXIMUM LIKE mechanism is only memoryless
and the PARETO LIKE mechanism is neither a step nor a memoryless mechanism. Con-
sequently, these two mechanisms are not strategy-proof.

Thus far, we have made the strong assumption that an agent has complete knowl-
edge of any future items. In practice, agents may have limited or even no knowledge
about the future. We next capture this formally in terms of a definition of a weaker form
of strategy-proofness.

Definition 4. (OSP) A mechanism is online strategy-proof (OSP) if, for each instance
with m ∈ N items and j ∈ {1, . . . ,m}, no agent i ∈ N can strictly increase ui(Πj)
by reporting any bid vij other than uij , supposing agent i bids sincerely for o1 to oj−1
and all other agents bid sincerely for items o1 to oj .

Indeed, it is harder for an agent to benefit from a strategic bidding with only par-
tial information of the future. For this reason, many mechanisms that are not strategy-
proof are online strategy-proof. For example, the BALANCED LIKE mechanism is on-
line strategy-proof with no knowledge of future items, but stops being strategy-proof
with complete knowledge of these future items even if all utilities are just 0 or 1 [2].
In the other direction, it is easy to show that a mechanism that is strategy-proof is also
online strategy-proof. The reason for this is simple. If an agent cannot increase their
expected utility by misreporting their utilities for any subset of items, then they cannot
do it by misreporting their utility for any individual item, including the last one. We
give a simple characterization of mechanisms that are online strategy-proof.

Theorem 2. A non-wasteful mechanism for online fair division is online strategy-proof
iff it is a step mechanism.

Proof. We show the “if” direction. Suppose the mechanism is a step. Consider an in-
stance, an agent i ∈ N and an item oj . The allocation of this item does not have an
impact on the allocation of earlier items as this is now fixed. If uij > 0, then agent i
has no incentive to report 0 for it as their expected utility can only decrease, and also
has no incentive to report any positive value vij 6= uij as their probability for item oj
is a step function. If uij = 0, then agent i has no incentive to report vij > 0 as their
expected utility cannot increase. Hence, i cannot increase ui(Πj). The mechanism is
online strategy-proof. We next sketch the “only if” direction. Suppose the mechanism
is not a step. The result follows by the second part of the proof of Theorem 1. ut

It follows immediately that the ONLINE SERIAL DICTATOR, ONLINE RANDOM
PRIORITY, LIKE and BALANCED LIKE mechanisms are all online strategy-proof. In
contrast, the MAXIMUM LIKE and PARETO LIKE mechanisms are not as they are not
steps and agents have an incentive to report a larger bid for an item.

To sum up, we might use the ONLINE SERIAL DICTATOR, ONLINE RANDOM PR-
IORITY, or LIKE mechanism for strategy-proofness with complete information. How-
ever, for online strategy-proofness with no information about future items, we can also
use the BALANCED LIKE mechanism.
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6 Envy-Freeness

We continue with envy-freeness. We suppose agents bid sincerely. This might be be-
cause we use a mechanism that is strategy-proof or online strategy-proof. There is no
envy-free ex post mechanism [2]. We, therefore, mainly focus on fairness in expecta-
tion. Uncertainty about the future means that envy-freeness ex ante is now harder to
achieve than in the offline setting. Nevertheless, it is always possible as the LIKE mech-
anism is envy-free ex ante.

By Example 1, the ONLINE RANDOM PRIORITY and LIKE mechanisms can return
different ex post allocations. Nevertheless, they are ex ante equivalent and, therefore,
envy-free ex ante. Unfortunately, ex ante equivalence to the LIKE mechanism only pro-
vides a partial characterization as there is an unbounded number of envy-free ex ante
mechanisms that are not ex ante equivalent to it. We show this in Example 2.

Example 2. Let us consider the fair division of items o1 and o2 to agents 1 and 2 with
utilities as follows: u11 = 1, u12 = 1, u21 = 0 and u22 = 1. Further, consider the
mechanism that works as LIKE on each instance except on this one in which it gives
item o2 to agent 2 with some probability in (1/2, 1]. This mechanism is envy-free ex
ante but it is not ex ante equivalent to LIKE. ut

In Example 2, the mechanism is neither memoryless, nor a step. Therefore, by The-
orem 1, it is not strategy-proof. However, we can give a complete characterization of
all strategy-proof and envy-free ex ante mechanisms.

Theorem 3. A non-wasteful mechanism for online fair division is strategy-proof and
envy-free ex ante iff it is ex ante equivalent to the LIKE mechanism.

Proof. If a mechanism is ex ante equivalent to LIKE, then it is envy-free ex ante and a
memoryless step by the definition of LIKE. By Theorem 2, the mechanism is strategy-
proof. If a mechanism is envy-free ex ante and strategy-proof, then it is a memoryless
step. We show that it is ex ante equivalent to LIKE by induction on the round number
j. In the base case, the mechanism is clearly ex ante equivalent to LIKE. In the step
case, suppose that the mechanism is ex ante equivalent to LIKE for items o1 to oj−1
(i.e. hypothesis) but not for item oj . That is, there are two agents i, k ∈ N that like item
oj with pi(Πj) < pk(Πj). As the mechanism is envy-free ex ante up to round (j − 1),
we have that uii(Πj−1) ≥ uik(Πj−1). As the mechanism is memoryless step, we can
suppose that uij = 1− (uik(Πj−1)−uii(Πj−1))/(pk(Πj)−pi(Πj)) > 0. We, hence,
obtain that uik(Πj−1)− uii(Πj−1) + (pk(Πj)− pi(Πj)) · uij > 0, or i envies ex ante
k for o1 to oj . This contradicts the fact that the mechanism is envy-free ex ante up to
round j. Consequently, pi(Πj) = pk(Πj). The result follows. ut

We can give similar results if we weaken strategy-proof mechanisms to memoryless
or step mechanisms. We omit these proofs for reasons of space.

Proposition 1. A step mechanism for online fair division is envy-free ex ante iff it is ex
ante equivalent to the LIKE mechanism.

Proposition 2. A memoryless mechanism for online fair division is envy-free ex ante iff
it is ex ante equivalent to the LIKE mechanism.
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On a restricted preference domain, the LIKE mechanism characterizes all envy-free
ex ante mechanisms, even without the assumption of strategy-proofness. The following
result applies to common domains of positive cardinal, identical cardinal, identical ordi-
nal, Borda (e.g. 1, 2, . . . ,m) or lexicographic (e.g. 20, 21, . . . , 2m) utilities. This result
holds for wasteful (i.e. not non-wasteful) mechanisms as well.

Theorem 4. With non-zero cardinal utilities, a mechanism for online fair division is
envy-free ex ante iff it is ex ante equivalent to the LIKE mechanism.

Proof. We first show the “if” direction. If a mechanism is ex ante equivalent to LIKE,
then it is envy-free ex ante as LIKE. We next show the “only if” direction. The proof
is by induction as in Theorem 3. In the step case, we consider i, k ∈ N that like oj .
We have that uii(Πj−1) = uik(Πj−1) and ukk(Πj−1) = uki(Πj−1) as the cardinal
utilities are non-zero and the mechanism is ex ante equivalent to LIKE for o1 to oj−1
by the hypothesis. Hence, pi(Πj) = pk(Πj) as the mechanism is envy-free ex ante up
to round j. ut

We can also completely characterize a stronger notion of envy-freeness even with
general utilities. Shared envy-freeness requires that each pair of agents are envy-free of
each other only over the items that both agents in the pair like in common. We write
uik(πj) for the utility of agent i ∈ N over the items in πji that both agents i and k ∈ N
like. We write uSEFA

ik (Πj) for the expected utility of agent i ∈ N over the items o1 to oj
that both agents i and k ∈ N like.

uSEFP
ik (πj) =

∑
oh∈πji

ukh>0

uih uSEFA
ik (Πj) =

j∑
h=1
ukh>0

pih(Πj) · uih

We note uSEFP
ik (πj) ≤ uii(πj) and uSEFA

ik (Πj) ≤ uii(Πj). A mechanism is shared
envy-free ex post (SEFP) iff, for each instance with m ∈ N items and allocation πm ∈
Πm returned by the mechanism with positive probability, ∀i, k ∈ N : uSEFP

ik (πm) ≥
uik(πm). A mechanism is shared envy-free ex ante (SEFA) iff, for each instance of m ∈
N items, ∀i, k ∈ N : uSEFA

ik (Πm) ≥ uik(Πm). Shared envy-freeness coincides with
envy-freeness with non-zero cardinal utilities. For this reason, shared envy-freeness is
only possible in expectation.

Theorem 5. A non-wasteful mechanism for online fair division is shared envy-free ex
ante iff it is ex ante equivalent to the LIKE mechanism.

Proof. If a mechanism is ex ante equivalent to LIKE, then it is envy-free ex ante. Every
pair of agents receive each of their commonly liked item with the same probability. The
mechanism is, therefore, shared envy-free ex ante. If a mechanism is shared envy-free
ex ante, then the proof resembles the one of Theorem 3. In the step case, we consider
round j and agents i, k that like item oj . WLOG, assume that the mechanism is not
ex ante equivalent to LIKE for item oj and pi(Πj) < pk(Πj). By the hypothesis, the
mechanism is ex ante equivalent to LIKE up to round (j − 1). Hence, uik(Πj−1) =
uSEFA
ik (Πj−1) and uki(Πj−1) = uSEFA

ki (Πj−1). As the mechanism is shared envy-free
ex ante up to round j, pi(Πj) = pk(Πj). This contradicts our assumption. ut
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If we limit ourselves to 0/1 utilities, we say that a mechanism is bounded envy-free
ex post with 1 (BEFP) iff, for each instance of m ∈ N items and πm ∈ Πm returned
by the mechanism with positive probability, ∀i, k ∈ N : uii(πm) + 1 ≥ uik(πm). For
example, the BALANCED LIKE mechanism is bounded envy-free ex post with 1 [2]. In
fact, we can immediately conclude the following partial characterization.

Corollary 1. With 0/1 cardinal utilities, a non-wasteful mechanism for online fair divi-
sion is bounded envy-free ex post with 1 if it returns a subset of the allocations returned
by the BALANCED LIKE mechanism.

Benade et al. [6] showed that the random assignment of each next item (i.e. LIKE) is
asymptotically optimal in the ex post sense, with a bound of the (maximum) envy that
increases as the number of rounds increases. Unfortunately, this means that we cannot
put any trivial bound on the envy ex post in general.

To sum up, we can use the LIKE or ONLINE RANDOM PRIORITY mechanism if we
want envy-freeness ex ante. With 0/1 utilities, we can bound the ex post envy between
agents to at most one unit of utility with the BALANCED LIKE mechanism which also
happens to be envy-free ex ante in this domain [2].

7 Pareto Efficiency

We consider lastly Pareto efficiency supposing agents act sincerely. With 0/1 utilities,
each mechanism is Pareto efficient as the sum of agents’ utilities in each returned allo-
cation ism. This is not true in general. We start with Pareto efficiency ex post. The ON-
LINE SERIAL DICTATOR, ONLINE RANDOM PRIORITY and MAXIMUM LIKE mecha-
nisms are all Pareto efficient ex post. We might hope that a given Pareto efficient ex post
mechanism returns some of the allocations returned by these three mechanisms. How-
ever, this does not hold as they may return only some of the Pareto efficient allocations.
We illustrate this in Example 3.

Example 3. Let us consider the fair division of items o1 and o2 to agents 1 and 2 with
utilities as in the below table.

item o1 item o2
agent 1 1 4
agent 2 2 3

The allocation that gives o1 to 1 and o2 to 2 is Pareto efficient ex post. None of ON-
LINE SERIAL DICTATOR, ONLINE RANDOM PRIORITY or MAXIMUM LIKE returns
this allocation. Note that PARETO LIKE does return it. ut

By Example 3, we conclude that we cannot characterize all Pareto efficient ex post
mechanisms in terms of allocations returned by the ONLINE SERIAL DICTATOR, ON-
LINE RANDOM PRIORITY and MAXIMUM LIKE mechanisms. However, we can use
the PARETO LIKE mechanism for this purpose.

Theorem 6. The PARETO LIKE mechanism returns only and all Pareto efficient ex post
allocations.
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Proof. By definition, the mechanism returns only PE ex post allocations. For this rea-
son, we next only show that it returns all such allocations. Consider such an allocation
πm. Assume πm is not returned by it. Run the mechanism and follow πm until the first
round j ∈ (1,m] when some agent i ∈ N gets oj in πm but i is not feasible for oj given
the sub-allocation πj−1 of πm of o1 to oj−1. Such a round exists as πm is not returned
by the mechanism. Further, πj−1 is Pareto efficient ex post for o1 to oj−1. Otherwise,
the mechanism would not get to round j by following πm. Also, the allocation extend-
ing πj−1 by allocating oj to i is Pareto efficient ex post. Otherwise, this allocation can
be Pareto improved for o1 to oj and together with the allocations of oj+1 to om in πm
can Pareto improve πm. This contradicts the Pareto efficiency of πm. Hence, the allo-
cation extending πj−1 is Pareto efficient ex post. By the definition of the mechanism,
it then follows that i is feasible for oj which contradicts our assumption. Hence, πm is
returned by the mechanism with positive probability. ut

By Theorem 6, we conclude that a non-wasteful mechanism for online fair division
is Pareto efficient ex post iff it returns a subset of the allocations of the PARETO LIKE
mechanism. Such a mechanism may not be strategy-proof. However, we can character-
ize all mechanisms that are strategy-proof and Pareto efficient ex post.

Theorem 7. A non-wasteful mechanism for online fair division is strategy-proof and
Pareto efficient ex post iff it is ex post equivalent to a probability distribution of the
ONLINE SERIAL DICTATOR mechanisms.

Proof. We start with the “if” direction. If a mechanism is ex post equivalent to a proba-
bility distribution of ONLINE SERIAL DICTATORS, then it is strategy-proof and Pareto
efficient ex post as each ONLINE SERIAL DICTATOR. We next prove the “only if” direc-
tion. Consider a strategy-proof and Pareto efficient ex post mechanism and assume that
it is not ex post equivalent to any probability distribution of ONLINE SERIAL DICTA-
TORS. Hence, there is an instance, an allocation and j ∈ [1,m] such that the mechanism
and ONLINE SERIAL DICTATOR with some priority ordering σ agree on o1 to oj−1 but
the mechanism and any such ONLINE SERIAL DICTATOR disagree on oj . WLOG, let
the mechanism give oj to 1 and ONLINE SERIAL DICTATOR with σ give oj to 2 such
that 2 is immediately before 1 in σ. Both agents like item oj . We can show that there is
ok with k < j such that 1 and 2 like ok, and that ok is allocated to agent 2 with both
mechanisms. By Theorem 1, with the mechanism, the probabilities of 2 for ok and 1
for oj do not change for any positive bids of these agents for these items. WLOG, let
then u1j = 1, u1k = 2, u2j = 2, u2k = 1. Hence, the allocation that extends πj−1 by
allocating oj to agent 1 is not Pareto efficient ex post. ut

Let us next add the ex ante properties. There is an unbounded number of Pareto effi-
cient ex post and envy-free ex ante (or Pareto efficient ex ante) mechanisms that are not
strategy-proof. To see this, consider the mechanism for the instance in Example 2, that
runs the ONLINE RANDOM PRIORITY (or MAXIMUM LIKE) mechanism on each other
instance. Nevertheless, by Theorems 3 and 7, the only strategy-proof such mechanism
is the ONLINE RANDOM PRIORITY mechanism.

Corollary 2. A non-wasteful mechanism for online fair division is strategy-proof, Pa-
reto efficient ex post and envy-free ex ante iff it is ex post equivalent to the ONLINE
RANDOM PRIORITY mechanism.



Online Fair Division with Additive Utilities 11

A mechanism that is Pareto efficient ex post might not be Pareto efficient ex ante.
For example, the ONLINE RANDOM PRIORITY mechanism is Pareto efficient ex post
but not ex ante. To see this, consider the instance in Example 1. The reverse direc-
tion may also not hold. That is, a mechanism that is Pareto efficient ex ante may not
necessarily be Pareto efficient ex post. We show this in Example 4.

Example 4. Consider the mechanism that runs MAXIMUM LIKE on each instance ex-
cept on the instance from Example 1. In this instance, the mechanism works as follows:
agent 1 gets o1 and o2 with probabilities 1 and 1− ε, and agent 2 gets these items with
probabilities 0 and ε where ε > 0. With this mechanism, agent 1 gets expected utility
3 − 2ε, whilst agent 2 gets expected utility ε. This outcome is Pareto efficient ex ante
for any ε < 1/2. But, there is one returned allocation that gives o1 to agent 1 and o2 to
agent 2. This outcome is not Pareto efficient ex post. ut

It is easy to see that the mechanism in Example 4 is not strategy-proof. Interestingly,
we can give a complete characterization of mechanisms that are strategy-proof, Pareto
efficient ex post and Pareto efficient ex ante.

Theorem 8. A non-wasteful mechanism for online fair division is strategy-proof, Pa-
reto efficient ex post and ex ante iff it is ex post equivalent to the ONLINE SERIAL
DICTATOR mechanism.

Proof. We show the “if” direction. The mechanism returns the same allocation as ON-
LINE SERIAL DICTATOR. Hence, it is strategy-proof, Pareto efficient ex post and Pareto
efficient ex ante. We next show the “only if” direction. By Theorem 7, the mechanism
is a probability distribution of ONLINE SERIAL DICTATORS. Suppose that there are at
least two different allocations which are the result of different ONLINE SERIAL DIC-
TATORS in this distribution. WLOG, assume that agent 1 have the highest priority with
probability p1 ∈ (0, 1), agent 2 with p2 ∈ (0, 1 − p1] and agent k ∈ N \ {1, 2} with
pk ∈ [0, 1 − p1 − p2]. Suppose that agent i ∈ {1, 2} likes all items with 1 except oi
which they like with u, and agent k ∈ N \ {1, 2} likes items positively. The expected
utility of agent i ∈ {1, 2} is pi · (n− 1 + u) and the one of agent k ∈ N \ {1, 2} is pk
multiplied by the sum of their utilities. Consider now another distribution of allocations,
in which agent i ∈ {1, 2} gets pi for each item they like with 1 except items o1, o2,
p1 + p2 for item oi and 0 for o ∈ {o1, o2} \ {oi} whereas agent k ∈ N \ {1, 2} gets
pk for each item. This allocation Pareto improves the allocation of the mechanism for
u > max{(p1/p2), (p2/p1)}. Hence, the mechanism is not Pareto efficient ex ante.
Therefore, p1 and p2 cannot be both positive and, for this reason, each mechanism in
the distribution gives the highest priority to the same agent. We can inductively show
this for each priority. ut

We next observe one last difference to the offline setting where stochastic Pareto
efficiency and envy-freeness are always possible [8]. In online fair division, no mecha-
nism (even wasteful) satisfies Pareto efficiency ex ante and envy-freeness ex ante unless
we consider simple 0/1 utilities (e.g. the BALANCED LIKE mechanism).

Theorem 9. With general cardinal utilities, no mechanism for online fair division is
envy-free ex ante and Pareto efficient ex ante.
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Proof. Consider an envy-free ex ante mechanism and the instance with non-zero utili-
ties in Example 1. By Theorem 4, to ensure envy-freeness ex ante for o1, the mechanism
should give it to each agent with 1/2. By Theorem 4, to ensure envy-freeness for both
o1 and o2, the mechanism then should give o2 to each agent with 1/2. The expected
utility of each agent is 3/2. This expected allocation is Pareto dominated by the alloca-
tion in which each agent gets the item they value with 2. Hence, the mechanism is not
Pareto efficient ex ante. ut

To sum up, we might use the ONLINE RANDOM PRIORITY or PARETO LIKE mech-
anism for Pareto efficiency ex post, or the MAXIMUM LIKE or ONLINE SERIAL DIC-
TATOR mechanism for Pareto efficiency ex ante. With 0/1 utilities, we may also use the
LIKE or BALANCED LIKE mechanism.

8 Conclusions

We summarize all results in Table 1 and Figure 1. For completeness, we add some
simple results for the case of identical utilities when the PARETO LIKE and MAXIMUM
LIKE mechanisms become ex post equivalent to the LIKE mechanism, the BALANCED
LIKE mechanism becomes ex ante equivalent to the LIKE mechanism, and each of these
becomes Pareto efficient as the sum of agents’ utilities is a constant in each allocation.

Table 1. Axiomatic results. Key: ? - the result follows from [Aleksandrov et al., 2015].

mechanism SP OSP EFA SEFA EFP SEFP BEFP PEA PEP
general cardinal utilities

ONLINE RP X X X X × × × × X
ONLINE SD X X × × × × × X X

MAXIMUM LIKE × × × × × × × X X
PARETO LIKE × × × × × × × × X

LIKE X? X X? X ×? × ×? × ×
BALANCED LIKE ×? X ×? × ×? × ×? × ×

identical cardinal utilities
LIKE X? X X? X ×? × × X X

BALANCED LIKE × X X X ×? × × X X
binary cardinal utilities

LIKE X? X X? X ×? × ×? X X
BALANCED LIKE ×? X X? × ×? × X? X X

Fig. 1. General characterization results. Key: ∅ - no mechanisms,∞ - inf. many mechanisms.

In future work, we will add quotas to our setting as in some offline settings (e.g.
[20]). And, we will extend our results to approximations of envy-freeness (e.g [11, 12])
and general monotone utilities (e.g. [24]).
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7. Beviá, C.: Fair allocation in a general model with indivisible goods. Review of Economic
Design 3(3), 195–213 (1998)

8. Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem. Journal of
Economic Theory 100(2), 295–328 (2001)

9. Brams, S.J., Edelman, P.H., Fishburn, P.C.: Fair division of indivisible items. Theory and
Decision 55(2), 147–180 (Sep 2003)

10. Brams, S.J., King, D.L.: Efficient fair division: Help the worst off or avoid envy? Rationality
and Society 17(4), 387–421 (2005)

11. Budish, E., Cantillon, E.: The multi-unit assignment problem: Theory and evidence from
course allocation at Harvard. American Economic Review 102(5), 2237–2271 (2012)

12. Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A.D., Shah, N., Wang, J.: The unrea-
sonable fairness of maximum nash welfare. In: Proceedings of the 2016 ACM Conference
on EC ’16, Maastricht, The Netherlands, July 24-28, 2016. pp. 305–322 (2016)

13. Chevaleyre, Y., Endriss, U., Estivie, S., Maudet, N.: Multiagent resource allocation in k-
additive domains: preference representation and complexity. Annals of Operations Research
163(1), 49–62 (Oct 2008)

14. Chevaleyre, Y., Lang, J., Maudet, N., Monnot, J., Xia, L.: New candidates welcome! Possible
winners with respect to the addition of new candidates. Mathematical Social Sciences 64(1),
74–88 (2012)

15. Dickerson, J.P., Procaccia, A.D., Sandholm, T.: Dynamic matching via weighted myopia
with application to kidney exchange. In: Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence (2012)

16. Dickerson, J.P., Procaccia, A.D., Sandholm, T.: Failure-aware kidney exchange. In: ACM
Conference on Electronic Commerce, EC ’13. pp. 323–340 (2013)

17. Dickerson, J.P., Sandholm, T.: Futurematch: Combining human value judgments and ma-
chine learning to match in dynamic environments. In: Proceedings of the Twenty-Ninth
AAAI Conference. pp. 622–628 (2015)

18. Freeman, R., Zahedi, S.M., Conitzer, V., Lee, B.C.: Dynamic proportional sharing: A game-
theoretic approach. Proceedings of the ACM on Measurement and Analysis of Computing
Systems - SIGMETRICS 2(1), 3:1–3:36 (Apr 2018)

19. Gibbard, A.: Manipulation of voting schemes: A general result. Econometrica 41(4), 587–
601 (1973)



14 M. Aleksandrov, T. Walsh

20. Hosseini, H., Larson, K., Cohen, R.: Matching with dynamic ordinal preferences. In: Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. pp. 936–943.
AAAI’15, AAAI Press (2015)

21. Kash, I.A., Procaccia, A.D., Shah, N.: No agent left behind: Dynamic fair division of multiple
resources. JAIR 51, 579–603 (2014), https://doi.org/10.1613/jair.4405

22. Lian, J.W., Mattei, N., Noble, R., Walsh, T.: The conference paper assignment problem: Us-
ing order weighted averages to assign indivisible goods. In: Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. pp.
1138–1145 (2018)

23. Manea, M.: Serial dictatorship and Pareto optimality. Games and Economic Behavior 61(2),
316–330 (2007), https://doi.org/10.1016/j.geb.2007.01.003

24. Plaut, B., Roughgarden, T.: Almost envy-freeness with general valuations. In: Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
New Orleans, LA, USA, January 7-10, 2018. pp. 2584–2603 (2018)

25. Svensson, L.G.: Queue allocation of indivisible goods. Social Choice and Welfare 11(4),
323–330 (1994)

26. Svensson, L.G.: Strategy-proof allocation of indivisible goods. Social Choice and Welfare
16(4), 557–567 (1999)

27. Walsh, T.: Online cake cutting. In: Proceedings of 2nd ADT International Conference, Pis-
cataway, New Jersey, USA, October 26-28, 2011. pp. 292–305 (2011)

28. Walsh, T.: Allocation in practice. In: Proceedings of the Thirty-Seventh KI 2014, Stuttgart,
Germany, September 22-26, 2014. pp. 13–24 (2014)

29. Xia, L., Conitzer, V.: Strategy-proof voting rules over multi-issue domains with restricted
preferences. In: Internet and Network Economics - 6th International Workshop, WINE 2010.
pp. 402–414 (2010)

30. Zhou, L.: On a conjecture by Gale about one-sided matching problems. Journal of Economic
Theory 52(1), 123–135 (1990)


