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The family of generalised Petersen graphs G (n, k), introduced by Coxeter et al. [4] and named by Watkins (1969), is
a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star
polygon. The Kronecker cover KC(G) of a simple undirected graph G is a special type of bipartite covering graph
of G, isomorphic to the direct (tensor) product of G and K2. We characterize all generalised Petersen graphs that are
Kronecker covers, and describe the structure of their respective quotients. We observe that some of such quotients
are again generalised Petersen graphs, and describe all such pairs. The results of this paper have been presented at
EUROCOMB 2019 and an extended abstract has been published elsewhere.
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1 Introduction
The generalised Petersen graphs, introduced by Coxeter et al. [4] and named by Watkins [18], form
a very interesting family of trivalent graphs that can be described by only two integer parameters. They
include Hamiltonian and non-Hamiltonian graphs, bipartite and non-bipartite graphs, vertex-transitive and
non-vertex-transitive graphs, Cayley and non-Cayley graphs, arc-transitive graphs and non-arc-transitive
graphs, graphs of girth 3, 4, 5, 6, 7 or 8. Their generalization to I-graphs does not introduce any new
vertex-transitive graphs but it contains also non-connected graphs and has in special cases unexpected
symmetries [2]. For further properties of I-graphs also see [8, 13].

Following the notation of Watkins [18], for given integers n and k < n
2 , we can define a generalised

Petersen graph G (n, k) as a graph on vertex-set {u0, . . . , un−1, v0, . . . , vn−1}. The edge-set may be
naturally partitioned into three equal parts (note that all subscripts are assumed modulo n): the edges
EO (n, k) = {uiui+1}n−1i=0 form the outer rim, inducing a cycle of length n; the edges EI (n, k) =
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{vivi+k}n−1i=0 form the inner rims, inducing gcd(n, k) cycles of length n
gcd(n,k) ; and the edgesES (n, k) =

{uivi}n−1i=0 , also called spokes, which induce a perfect matching in G (n, k). Hence the edge-set may be
defined as E (G (n, k)) = EO (n, k) ∪ EI (n, k) ∪ ES (n, k).

Various structural aspects of the mentioned family have been pointed out. Examples include identifying
generalised Petersen graphs that are Hamiltonian [1] or Cayley [12, 15], or isomorphic [8, 13, 16], or
finding their automorphism group [5]. Also, a related generalization to I-graphs has been introduced in
the Foster census [3], and further studied by Boben et al. [2].

The theory of covering graphs became one of the most important and successful tools of algebraic
graph theory. It is a discrete analog of the well known theory of covering spaces in algebraic topology. In
general, covers depend on the values called voltages assigned to the edges of the graphs. Only in some
cases the covering is determined by the graph itself. One of such cases is the recently studied clone cover
[11]. The other, more widely known case is the Kronecker cover.

The Kronecker cover KC (G) (also called bipartite or canonical double cover) of a simple undirected
graph G is a bipartite covering graph with twice as many vertices as G. Formally, KC (G) is defined as
a tensor product G × K2, i.e. a graph on a vertex-set V (KC (G)) = {v′, v′′}v∈V (G), and the edge-set
E (KC (G)) = {u′v′′, u′′v′}uv∈E(G). For H = KC (G), we also say that G is a quotient of H . Some
recent work on Kronecker covers includes Gévay and Pisanski [6] and Imrich and Pisanski [9].

In this paper, we study the family of generalised Petersen graphs in conjunction with the Kronecker
cover operation. Namely, in the next section we state our main theorem characterizing all generalised
Petersen graphs that are Kronecker covers, and describing the structure of their corresponding quotient
graphs. In Section 3 we focus on the necessary and sufficient conditions for a generalised Petersen graph
to be a Kronecker cover while in Section 4 we complement the existence results with the description of the
structure of the corresponding quotient graphs. We conclude the paper with some remarks and directions
for possible future research.

2 Main result
In order to state the main result we need to introduce the graphH and two 2-parametric families of cubic,
connected graphs.

Let H be the graph defined by the following procedure: Take the Cartesian product K3�P3, remove
the edges of the triangle connecting the three vertices of degree 4, add a new vertex and connect it to the
same three vertices. Note that the graphH is mentioned in [9] and is depicted in Figure 1.

As shown in [9], the Desargues graph G (10, 3) is the Kronecker cover of both G (5, 2) and H. Note
that in Figure 1 the edge-colored subgraphs of H lift to the corresponding edge-colored subgraphs of
G (10, 3).

To describe the quotients of generalised Petersen graphs, we use the LCF notation, named by devel-
opers Lederberg, Coxeter and Frucht, for the representation of cubic hamiltonian graphs (for extended
description see [14]).

In a Hamiltonian cubic graph, the vertices can be arranged in a cycle, which accounts for
two edges per vertex. The third edge from each vertex can then be described by how many
positions clockwise (positive) or counter-clockwise (negative) it leads. The basic form of the
LCF notation is just the sequence [a0, a1, . . . , an−1] of numbers of positions, starting from
an arbitrarily chosen vertex and written in square brackets.
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Fig. 1: The Desargues graph and both its quotients; H and the Petersen graph.

To state our results, we only use a special type of such LCF-representable graphs, namely C+(n, k)
and C−(n, k), which we define below.

Definition 1. Let n be a positive even integer and let k < n/2 be a positive integer such that k2 ≡ 1
(mod n). Assuming all numbers are modulo n, define graphs

C+(n, k) =
[n

2
,
n

2
+ (k − 1),

n

2
+ 2(k − 1), . . . ,

n

2
+ (n− 1)(k − 1)

]
,

and similarly

C−(n, k) =
[n

2
,
n

2
− (k + 1),

n

2
− 2(k + 1), . . . ,

n

2
− (n− 1)(k + 1)

]
.

It is easy to show that, under the mentioned restrictions on k from above, both graphs C+(n, k) and
C−(n, k) are well defined. For the case ofC+(n, k), pick an i-th chord, and (from its LCF-representation)
look at the values on its endpoints ai and ai+ai

– namely n/2+i(k−1) and n/2+(i+n/2+i(k−1))(k−1).
The claim follows from the fact that their sum is divisible by n.

In [9] it was proven that G (10, 3) is the Kronecker cover of two non-isomorphic graphs. Here we
prove among other things that this is the only generalised Petersen graph that is a multiple Kronecker
cover. Every other generalised Petersen graph is either a Kronecker cover of a single graph or it is not a
Kronecker cover at all. More precisely;

Theorem 1. Among the members of the family of generalised Petersen graphs,G (10, 3) is the only graph
that is the Kronecker cover of two non-isomorphic graphs, the Petersen graph and the graph H. For any
other G ' G (n, k), the following holds:

a) If n ≡ 2 (mod 4) and k is odd, G is a Kronecker cover. In particular

a1) if 4k < n, the corresponding quotient graph is G
(
n
2 , k
)
, and

a2) if n < 4k < 2n the quotient graph is G
(
n
2 ,

n
2 − k

)
.
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b) If n ≡ 0 (mod 4) and k is odd, G is a Kronecker cover if and only if n | k
2−1
2 . Moreover,

b1) if k ≡ 1 (mod 4) the corresponding quotient is C+(n, k) while

b2) if k ≡ 3 (mod 4) the quotient is C−(n, k).

c) Any other generalised Petersen graph is not a Kronecker cover.

For k = 1 and even n each G(n, 1) is a Kronecker cover. If n = 4t case b1) applies and the quotient
graph is the Möbius ladder Mn (see [7]). For G(4, 1) the quotient is K4 = M4. Similarly, the 8-sided
prism G(8, 1) is the Kronecker cover of M8. In case n = 4t + 2 the case a1) applies and the quotient is
G(n/2, 1). For instance, the 6-sided prism is the Kronecker cover of the 3-sided prism. For k > 1 the
smallest cases stated in Theorem 1 are presented in Table 1.

It is well-known that any automorphism of a connected bipartite graph either preserves the two sets
of bipartition or interchanges the two sets of bipartition. In the former case we call the automorphism
colour preserving and in the latter case colour-reversing. Clearly, the product of two color-reversing auto-
morphisms is a color preserving automorphism and the collection of all color preserving automorphisms
determines a subgroup of the full automorphism group that is of index at most 2.

3 Identifying the Kronecker involutions
Before we state an important condition that classifies Kronecker covers we give the following definition.

Definition 2. A color-reversing involution ω from the automorphism group of a bipartite graph is called
a Kronecker involution, if the vertices v and ω(v) are non-adjacent for every vertex v.

We proceed by a well-known proposition from [9], regarding the existence of Kronecker covers.

Theorem 2. For a bipartite graphG, there existsG′ such that KC (G′) ' G, if and only ifAut(G) admits
a Kronecker involution. Furthermore, the corresponding quotient graph may be obtained by contracting
all pairs of vertices, naturally coupled by a given Kronecker involution.

The following result is well-known. One can find it, for instance in [8].

Theorem 3. A generalised Petersen graph G(n, k) is bipartite if and only if n is even and k is odd.

We also include the classification concerning symmetries of generalised Petersen graphs, which follows
from the work of Frucht et al. [5], Nedela and Škoviera [12], and Lovrečič-Saražin [15].

Theorem 4 ([5, 12, 15]). Let G (n, k) be a generalised Petersen graph. Then

a) it is symmetric if and only if

(n, k) ∈ {(4, 1) , (5, 2) , (8, 3) , (10, 2) , (10, 3) , (12, 5) , (24, 5)} ,

b) it is vertex-transitive if and only if k2 ≡ ±1 (mod n) or if n = 10 and k = 2,

c) it is a Cayley graph if and only if k2 ≡ 1 (mod n).
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In general the word symmetric means arc-transitive. For cubic graphs this is equivalent to saying vertex-
transitive and edge-transitive. For a generalised Petersen graph symmetric is equivalent to edge-transitive.

In order to understand which generalised Petersen graphs are Kronecker covers we have to identify all
Kronecker involutions for eachG(n, k). In what follows, for a given pair (n, k), our arguments rely on the
structure of the automorphism group A(n, k) of G (n, k). We define three types of permutations on the
vertex set of a generalised Petersen graph which are useful for describing elements of its automorphism
group.

Definition 3. For i ∈ [0, n− 1], define the permutations α, β and γ on V (G (n, k)) by

α (ui) = ui+1, α (vi) = vi+1,

β (ui) = u−i, β (vi) = v−i,

γ (ui) = vki, γ (vi) = uki.

Let us paraphrase Theorem 5 of Loverčič-Saražin [15] that follows from Frucht et al. [5]

Theorem 5. If (n, k) is not one of (4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), or (24, 5), then the follow-
ing holds:

• if k2 ≡ 1 mod n, then

A(n, k) = 〈α, β, γ|αn = β2 = γ2 = 1, αβ = βα−1, αγ = γαk, βγ = γβ〉

• if k2 ≡ −1 mod n, then

A(n, k) = 〈α, β, γ|αn = β2 = γ4 = 1, αβ = βα−1, αγ = γαk, βγ = γβ〉

In this case β = γ2.

• In all other cases the graph G(n, k) is not vertex-transitive and

A(n, k) = 〈α, β|αn = β2 = 1, αβ = βα−1〉

Since all of α, β and γ preserve the set of spokes, it is clear that the automorphism group of a symmetric
graph is not generated by α, β and γ. As there is only five symmetric bipartite generalised Petersen graphs,
we simply checked their automorphism group by using SageMath software [17], identified the Kronecker
involutions, and the corresponding quotient graphs. It turns out that the quotients of generalised Petersen
graphs may be obtained by Kronecker involutions from 〈α, β, γ〉, except in the case n = 10 and k = 3 by
another involution which we call ∆, and corresponds to the quotient graphH.

However, for the non-symmetric members of generalised Petersen graphs, Theorem 5 implies that any
element of the automorphism group (including any Kronecker involution) may be expressed in terms of
α, β and γ. In fact, in the next lemma we show that any such element may be expressed in a canonical
way.

Lemma 6. Let n ≥ 3 and 1 ≤ k < n/2 be integers such that (n, k) is not one of the pairs (4, 1), (5, 2),
(8, 3), (10, 2), (10, 3), (12, 5), or (24, 5). Then any automorphism ω from A(n, k) may associated unique
triple (a, b, c) ∈ Zn × Z2 × Z2 such that ω = αaβbγc.
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n k case involution quotient
4 1 b1 α2γ C+(4, 1)
6 1 a1 α3 G(3, 1)
8 1 b1 α4γ C+(8, 1)
10 1 a1 α5 G(5, 1)
10 3 · α5,∆ G(5, 2),H
12 1 b1 α6γ C+(12, 1)
12 5 b1 α6γ C+(12, 5)
14 1 a1 α7 G(7, 1)
14 3 a1 α7 G(7, 3)
16 1 b1 α8γ C+(16, 1)
18 1 a1 α9 G(9, 1)
18 3 a1 α9 G(9, 3)
18 5 a2 α9 G(9, 4)
20 1 b1 α10γ C+(20, 1)
20 9 b1 α10γ C+(20, 9)
22 1 a1 α11 G(11, 1)
22 3 a1 α11 G(11, 3)
22 5 a1 α11 G(11, 5)
24 1 b1 α12γ C+(24, 1)
24 7 b2 α12βγ C−(24, 7)
26 1 a1 α13 G(13, 1)
26 3 a1 α13 G(13, 3)
26 5 a1 α13 G(13, 5)
26 7 a2 α13 G(13, 6)
28 1 b1 α14γ C+(28, 1)
28 13 b1 α14γ C+(28, 13)

Tab. 1: The smallest generalised Petersen graphs that are Kronecker covers, together with their corresponding Kro-
necker involutions ω and the quotient graphs.
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Proof: LetG (n, k) be a generalised Petersen graph and let a, b, c be arbitrary integers. Then, by definition
of the three generators α, β, γ (or the three permutations) it clearly holds

1. βαa = α−aβ,

2. γαa = αakγ. If k2 ≡ 1 mod n.

3. γαa = α−akγ. If k2 ≡ −1 mod n.

4. γβ = βγ,

We omit the arguments for (1) and (4) as they are repeated from the definition. Property (2) follows
from the facts αγ = γαk and k2 ≡ 1 mod n. Since αaγ = γαak for any a, take a = k and we get
αkγ = γαk2

= γα and the result follows. In a similar way we prove (3).
By using the commuting rules (1–4) above we may transform any product of permutations α, β, γ to a

form αaβbγc with 0 ≤ b, c ≤ 1. In non-vertex-transitive case we have c = 0 while in vertex-transitive
non-Cayley case, one could have γ, γ2, γ3. However, we may always use the fact that γ2 = β and the
result follows readily.

A shorter proof was suggested by a referee: Namely, from Theorem 5 it clearly follows that both β and
γ normalize α, and so the fact that the intersection of 〈α〉 and 〈β, γ〉 (which is clearly isomorphic to one
of Z2, Z2 × Z2 and Z4) is trivial implies that A(n, k) is a semidirect product of Zn by Z2, Z2 × Z2 or
Z4.

Note that in a bipartiteG (n, k) automorphisms α and γ are color-reversing, while β is color preserving.

Proposition 7. For a bipartite generalised Petersen graph G (n, k), the following statements hold:

1. αa is a Kronecker involution if and only if a = n/2 and n ≡ 2 (mod 4);

2. αaβ is not a Kronecker involution;

3. if k2 ≡ −1 (mod n), then neither αaγ nor αaβγ is a Kronecker involution, for any admissible a.

Proof: We prove the claims separately.
(1) Let ω = αa be a Kronecker involution. It is clear that ω does not fix any edge, and since ω is an

involution we trivially have a = n
2 . But since ω must be color-reversing, a must at the same time be odd,

hence the conclusion.
(2) Let ω = αaβ be a Kronecker involution. Since ω is color-reversing, a must be odd. Letting

i = a−1
2 , it is enough to observe that an edge uiui+1 is fixed by ω.

(3) In both cases, the resulting squared permutation can be written in form αa′
β, which contradicts the

fact that the original permutation is an involution.

In every generalised Petersen graph G(n, k) the permutations α and β are automorphisms. Moreover,
they generate the dihedral group Dn of order 2n of automorphisms which is, in general, a subgroup of the
full automorphism group A(n, k). The two vertex orbits under Dn are exactly the outer rim and the union
of the inner rims. The three edge orbits are outer-rim, inner-rim and the spokes. Clearly, Proposition 7
deals with Kronecker involutions from Dn and in particular implies the condition for G (n, k) being
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Kronecker cover described in a) of Theorem 1. But additional Kronecker involutions may exist by the
fact that the automorphism group of a generalised Petersen graph may be larger then Dn. In the next
subsection we describe these additional Kronecker involutions, which may (see (3) of Proposition 7) only
happen when k2 ≡ 1 (mod n).

3.1 Additional Kronecker involutions with k2 ≡ 1 (mod n)

In what follows, we assume k2 ≡ 1 (mod n) and define Q, such that k2 − 1 = Qn. The only two
permissible types of involutions are αaγ and αaβγ.

For an integer i let b(i) be the maximal integer such that 2b(i) divides i. In particular, we have

b(n) = b(k + 1) + b(k − 1)− b(Q). (1)

In the following two subsections, we prove the condition for a generalised Petersen graph being a
Kronecker cover, described in (b1) and (b2) of Theorem 1, respectively.

Involutions of type αaγ

We have ωa = αaγ such that ωa(vi) = uki+a and ωa(ui) = vki+a, so let us for easier notation define
a function Ωa : Zn → Zn such that Ωa(i) = ki + a. By these definitions, Theorem 2 translates to the
following properties:

P1 Permutation ωa is color-reversing if and only if Ωa(i) ≡ i (mod 2), in other words if a is even.

P2 Permutation ωa is an involution if and only if Ωa(Ωa(i)) ≡ i (mod n), i.e. if a(k + 1) ≡ 0
(mod n).

P3 Permutation ωa may not fix any spoke. In particular, ωa fixes some edge if and only if there exists
an integer i, such that Ωa(i) ≡ i (mod n). In other words, a is not allowed to be any multiple of
(k − 1) in Zn.

We now describe an alternative reformulation of the property P3.

Lemma 8. Assume that properties P1 and P2 hold. Then the property P3 is equivalent to b(gcd(n, a)) <
b(gcd(n, k − 1)).

Proof: First observe that gcd(k − 1, k + 1) = 2, while n | (k + 1)(k − 1). But, by P2 also n | (k + 1)a
holds, hence every odd divisor of gcd(n, k − 1) must also divide gcd(n, a). To conclude the proof it is
enough to observe that whenever a is some multiple of (k − 1) in Zn (i.e. the negation of P3), it must
also hold that b(gcd(n, a)) ≥ b(gcd(n, k − 1)).

It is now easy to derive the existence version of our main theorem, for the involutitons of type αaγ.

Corollary 9. LetG = G(n, k) with k2 ≡ 1 (mod n), and let a be an integer. ThenG admits a Kronecker
involution of type αaγ if and only if n | k

2−1
2 and k ≡ 1 (mod 4).

Proof: By Theorem 2 and Lemma 8, a permutation αaγ is a rim-switching Kronecker involution if and
only if b(gcd(n, a)) < b(gcd(n, k − 1)), in addition to the properties P1 and P2.

It is easy to see that in the case when these properties hold for αaγ, we also have n | k2−1
2 and k ≡ 1

(mod 4). Indeed, as n and a are both even, it follows that 4 | gcd(n, k− 1), in particular 4 | n, and k ≡ 1
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(mod 4), and hence trivially b(k + 1) = 1. Now observe that by Lemma 8 the only possible values for
b(k − 1) and b(a) are b(n) and b(n)− 1, respectively. But then (1) implies b(Q) = 1, i.e. 2n | k2 − 1.

Conversely, assume that b(Q) = 0. Then (1) implies b(k − 1) ≤ b(n) − 1, while Lemma 8 in turn
implies b(a) ≤ b(n)−2, for otherwise P3 is violated. But b(a) ≤ b(n)−2 then violates Property P2.

Involutions of type αaβγ

In this section we focus on Kronecker involutions that also include the reflection β. While this fact requires
some adjustments by the fact that we are now considering involutions of type αaβγ, the subsection is
mostly a compact transcript of the previous one.

Define ω′a = αaβγ i.e. ω′a(vi) = ua−ki and ω′a(ui) = va−ki, and let Ω′a : Zn → Zn be a function
defined as Ω′a(i) = a − ki. In this case, the requirements for the ω′a being Kronecker involution are by
Theorem 2 equivalent to:

P1′ Permutation ω′a is color-reversing if and only if a is even.

P2′ Permutation ω′a is an involution if and only if a− ak ≡ 0 (mod n).

P3′ Permutation ω′a may only fix an i-th spoke if and only if there exists an integer i, such that Ω′a(i) ≡ i
(mod n). As before, this is equivalent to saying that a is not allowed to be any multiple of (k + 1)
in Zn.

We now describe an alternative reformulation of the property P3′.

Lemma 10. Assume that properties P1′ and P2′ hold. Then the property P3′ is equivalent to

b(gcd(n, a)) < b(gcd(n, k + 1)).

Proof: First observe that gcd(k − 1, k + 1) = 2, while n | (k + 1)(k − 1). But, by P2′ also n | (k − 1)a
holds, hence every odd divisor of gcd(n, k + 1) must also divide gcd(n, a). To conclude the proof it is
enough to observe that whenever a is some multiple of (k + 1) in Zn (i.e. the negation of P3), it must
also hold that b(gcd(n, a)) ≥ b(gcd(n, k + 1)). It is now easy to derive the existence version of our

main theorem, for the involutitons of type αaβγ.

Corollary 11. Let G = G(n, k) with k2 ≡ 1 (mod n), and let a be an integer. Then G admits a
Kronecker involution of type αaβγ if and only if n | k

2−1
2 and k ≡ 3 (mod 4).

Proof: By Theorem 2 and Lemma 10, a permutation αaβγ is a rim-switching Kronecker involution if and
only if b(gcd(n, a)) < b(gcd(n, k + 1)), in addition to the properties P1′ and P2′.

It is easy to see that in the case when these properties hold for αaβγ, we also have n | k
2−1
2 and k ≡ 3

(mod 4). Indeed, as n and a are both even, it follows that 4 | gcd(n, k+ 1), in particular 4 | n, and k ≡ 3
(mod 4), and hence trivially b(k − 1) = 1. Now observe that by Lemma 10 the only possible values for
b(k + 1) and b(a) are b(n) and b(n)− 1, respectively. But then (1) implies b(Q) = 1, i.e. 2n | k2 − 1.

Conversely, assume that b(Q) = 0. Then (1) implies b(k + 1) ≤ b(n) − 1, while Lemma 10 implies
b(a) ≤ b(n)− 2, for otherwise P3′ is violated. But b(a) ≤ b(n)− 2 then violates Property P2′.

In the next section we prove that for any generalised Petersen graph except G (10, 3), all quotients are
isomorphic.
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4 The quotients of generalised Petersen graphs
For a given generalised Petersen graph, so far we identified all its Kronecker involutions. In this section we
determine the structure of the corresponding quotient graphs, for each of these involutions. Namely, the
next two subsections deal with the structural part of the statements a) and b) of Theorem 1, respectively.

4.1 Involutions of Dn

We already know that the only Kronecker involution in the Dihedral group is the rotation αn/2, which is
realized whenever n ≡ 2 (mod 4) and k is odd. In order to prove a) of Theorem 1, it is enough to show
the following proposition, which describes the corresponding quotient graph explicitly.

Proposition 12. For an odd n and an integer k < n
2 , we have

KC (G (n, k)) '

{
G (2n, k) ; k is odd;

G (2n, n− k) ; k is even.

Proof Proof of a) from Theorem 1: Let G ' G(n, k) and G′ ' KC (G), for an odd integer n and
k < n

2 . The edges of KC (G) are naturally partitioned into the following three groups:

(E1) u′iv
′′
i and u′′i v

′
i;

(E2) u′iu
′′
i+1 and u′′i u

′
i+1;

(E3) v′iv
′′
i+k and v′′i v

′
i+k.

For easier notation, define k′ to be equal to k or n−k, depending on whether k is odd or even, respectively.
Furthermore, let H := G (2n, k′) and denote its vertex set with

V (H) = {a0, . . . , a2n−1, b0, . . . , b2n−1} ,

while its edge set consists of edges of the form aiai+1, aibi and bi, bi+k′ . To show the left implication
of Proposition 12, it is enough to show that G′ ' H . Throughout the proof all subscripts for vertices
of H (on the left-hand side) are assumed to be modulo 2n, while all subscripts for vertices of G′ (on
the right-hand side) are assumed to be modulo n. To show an equivalence, we introduce a bijection
f : V (H)→ V (G′), such that

ai 7→

{
u′i if i is even,
u′′i if i is odd,

and bi 7→

{
v′′i if i is even,
v′i if i is odd.

for any 0 ≤ i < 2n. Since n is odd, f is clearly a bijection and it is enough to show that f is a
homomorphism between H and G′. We now check that all edges of H map to edges in G′. First observe
that inH , edges of types aiai+1 and aibi map to these in (E2) and (E1), respectively. Indeed, by definition
we have

f (aiai+1) =

{
u′iu
′′
i+1 if i is even,

u′′i u
′
i+1 if i is odd,

and f (aibi) =

{
u′iv
′′
i if i is even,

u′′i v
′
i if i is odd.
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Finally, for edges of type bi, bi+k′ , we now observe that

f (bibi+k′) =

{
v′′i v
′
i+k′ if i is even,

v′iv
′′
i+k′ if i is odd.

(2)

Indeed, if k is odd or even, we have

bi+k 7→

{
v′′i+k if i+ k is even,
v′i+k if i+ k is odd.

and bi−k+n 7→

{
v′′i+n−k if i− k + n is even,
v′i+n−k if i− k + n is odd,

respectively. Keep in mind that all subscripts on the right hand side are modulo n. By (2) we conclude that
edges of type bibi+k′ correspond to the edges of type (E3) in G′. Since both G′ and H are by definition
cubic and of the same cardinality, the isomorphism follows.

It remains to describe the behavior of the rest of Kronecker involutions satisfying the conditions n ≡ 0

(mod 4) and n | k
2−1
2 , while k < n

2 . In the next subsection we describe their equivalence (for fixed n, k),
and also the corresponding quotient structure.

4.2 The rim-switching Kronecker involutions
Let us now turn to the Kronecker involutions containing permutation α, which are described by item b)

in Theorem 1, so we assume that k2 ≡ 1 (mod n) and Q = k2−1
n is even. In addition, we assume that

our involution is of type αiγ (or αiβγ), whenever k ≡ 1 (mod n) (or k ≡ 3 (mod n)), respectively. We
will say that a positive integer a is nice whenever αaγ or αaβγ, is a Kronecker involution.

In contrast with involutions from Dn, whenever G (n, k) admits a rim-switching Kronecker involution,
there may exist several different such involutions, so we will first enumerate all such involutions. These
involutions could potentially give rise to several non-isomorphic quotients. In order to show that this is
not the case, we will need the following extension of the LCF notion.

Definition 4. For an involution g without fixed points of type [n] → [n], we define f(i) = g(i) − i and
write, for short, [f ] instead of [f(0), f(1), . . . , f(n− 1)].

It is easy to see that both graphs C+(n, k) and C−(n, k) from Definition 1 correspond to [n2 +(k−1)x]
and [n2 − (k + 1)x], respectively. In order to complete the proof of the main theorem, it remains to show
that for all possible Kronecker involutions, the corresponding quotient is unique. We split the further
analysis into two cases, depending on the value of k (mod 4).

Case 1: k ≡ 1 (mod 4)

Define amin = n/gcd(n, k + 1). The next lemma describes all nice values and hence enumerates the
Kronecker involutions for this case.

Lemma 13. The value amin is the smallest nice value. Furthermore, a is nice whenever a ≡ samin

(mod n) for some odd integer s.

Proof: From P2 it follows that a(k + 1) is a multiple of n. In other words, there exists a positive integer
C, such that a = Cn

k+1 . It is clear that a is minimized whenever Cn = lcm(k + 1, n), i.e.

amin =
lcm(k + 1, n)

k + 1
=

n

gcd(n, k + 1)
.
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Note that in general C may be some s-th multiple of lcm(k + 1, n)/n, however, by Lemma 8, such value
of s corresponds to a nice value if and only if s is positive and odd.

After showing that any positive odd s defines a = sa′min and subseqently a Kronecker involution of
the form αaγ, with Ωa(i) = a + ki, let us look at the corresponding quotient graph G′. By Definition 1
and Theorem 2 the graph G′ is isomorphic to an outer-rim, augmented by a matching edges of type
i ∼ Ω−1a (i), which implies G′ ' [fa], where

fa(i) = Ω−1a (i)− i = ik + a− i.

To show that for any odd s, all instances of corresponding Kronecker involutions are equivalent, we
first prove the following lemma.

Lemma 14. Let a′ = a+ gcd(k − 1, Q) · amin. Then [fa] ' [fa′ ].

Proof: First notice amin = Qn
gcd(Qn,Q(k+1)) = k−1

gcd(Q,k−1) . To prove the claim it is enough to observe that
the LCF sequence of graph [fa′ ] is equivalent to the LCF sequence of [fa], cyclically shifted by one, i.e.
fa′(i) = fa(i+ 1). Indeed, this is clear as

fa′(i) = a+ gcd(k − 1, Q)amin + i(k − 1)

= a+ (i+ 1)(k − 1) = fa(i+ 1).

We are now ready to show item b1) of Theorem 1.

Proposition 15. Let k2 ≡ 1 (mod n) with n | k2−1
2 and k ≡ 1 (mod 4). Then G (n, k) have unique

quotient [f ].

Proof Proof of b1) of Theorem 1: Let S be the set of all gcd(n, k + 1)/2 Kronecker involutions.
Lemma 14 partitions S into equivalence classes with respect to the relation of having the correspond-
ing quotients isomorphic. We show that all elements of S are members of the same equivalence class.

In other words, this is equivalent to being in an additive group of order gcd(n,k+1)
2 and calculating the

order of the element gcd(Q,k−1)
2 . Clearly, all classes of such partition of S have the same cardinality, while

the number of these classes is equal to

gcd

(
gcd(n, k + 1)

2
,

gcd(Q, k − 1)

2

)
= gcd

(
n

2
,
k + 1

2
,
k − 1

2
,
Q

2

)
≤ gcd

(
k + 1

2
,
k − 1

2

)
= 1.

But then any Kronecker involution corresponds to the unique quotient C+(n, k). For this case of k ≡ 1
(mod 4), an easy example of such an involution is αn/2γ.
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Case 2: k ≡ 3 (mod 4)

Define a′min = n/gcd(n, k + 1). We will say that a positive integer a is nice whenever ωa = αaβγ is a
Kronecker involution. We proceed by enumerating the Kronecker involutions for this case.

Lemma 16. The value a′min is the smallest nice value. Furthermore, a is nice whenever a ≡ samin

(mod n) for some odd integer s.

Proof: From P2′ it follows that a(k − 1) is a multiple of n. In other words, there exists a positive integer
C, such that a = Cn

k−1 . It is clear that a is minimized whenever Cn = lcm(k − 1, n), i.e.

a′min =
lcm(k − 1, n)

k − 1
=

n

gcd(n, k − 1)
.

Note that in general C may be some s-th multiple of lcm(k−1, n)/n, however, by Lemma 10, such value
of s corresponds to a nice value if and only if s is positive and odd.

After showing that any odd s defines a = sa′min and subseqently a Kronecker involution of the form
ω′a = αaβγ, with Ω′a(i) = a−ki. By Definition 1 and Theorem 2 the corresponding quotient graph G′ is
isomorphic to an outer-rim, augmented by matching edges of type i ∼ Ω−1a (i), which implies G′ ' [fa],
where

fa(i) = Ω′−1a (i)− i = a− ik − i.

Before we can show the item b2) of Theorem 1, we need tp prove the following lemma.

Lemma 17. Let a′ = a+ gcd(k + 1, Q) · a′min. Then [fa] ' [fa′ ].

Proof: Again notice a′min = Qn
gcd(Qn,Q(k−1)) = k+1

gcd(Q,k+1) . We similarly prove the claim by observing
fa′(i) = fa(i− 1). Indeed, we have

fa′(i) = a+ gcd(k + 1, Q)a′min − i(k + 1)

= a− (i− 1)(k + 1) = fa(i− 1).

The following proposition is equivalent to the item b2) of Theorem 1.

Proposition 18. Let k2 ≡ 1 (mod n) with n | k
2−1
2 and k ≡ 3 (mod 4). Then G (n, k) have the unique

quotient C−(n, k).

Proof Proof of b2) of Theorem 1: Let S be the set of all gcd(n,k−1)
2 Kronecker involutions. Again, we

show that Lemma 17 eventually covers the whole set S.
In this case one may consider an additive group of order gcd(n,k−1)

2 and calculate the order of the
element gcd(k+1,Q)

2 . The number of such orbits is equal to

gcd

(
gcd(n, n− k + 1)

2
,

gcd(k + 1, Q)

2

)
= 1.
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Fig. 2: The Dürer graph G (6, 2) and its Kronecker cover KC(G (6, 2)) with proper vertex two-coloring.

We finally conclude that also in this case of k ≡ 3 (mod 4), any Kronecker involution corresponds to the
unique quotient C−(n, k). Since we described the quotients of all existing

Kronecker involutions, this concludes the proof of Theorem 1. We conclude with an observation about an
easy example of rim-switching Kronecker involutions whenever they exist, by simply setting a = n/2.

Corollary 19. Let G (n, k) admit a rim-switching Kronecker involution. Then either αn/2γ or αn/2βγ is
such a Kronecker involution.

Proof: Assume k ≡ 1 (mod 4) and observe that setting a = n/2 immediately satisfies P1 and P2. To
conclude the proof it is hence enough to observe that b(n/2) = b(n)−1, which is by Lemma 8 equivalent
to P3. We omit the case of k ≡ 3 (mod 4) as it is the same.

5 Concluding remarks and future work
In this paper, we classified parameters (n, k) such that G (n, k) is a Kronecker cover of some graph, and
described the corresponding quotients. From our main result it easily follows:

Corollary 20. KC (G (n, k)) is itself a generalised Petersen graph if and only if n is odd.

We analyzed the problem of Kronecker covers of the family of generalised Petersen graphs. It would
be interesting to transfer this problem to the family of I-graphs [2, 3, 13, 8] or Rose-Window graphs [19],
or some other families of cubic or quartic graphs.

Graphs KC (G (n, k)) that are not generalised Petersen graphs, in other words if n is even, fall into two
known classes, depending on the parity of k. If k is odd, we have KC (G (n, k)) = 2G (n, k). It would be
interesting to investigate the family of graphs KC (G (n, k)) with both n and k even. The smallest case is
depicted in Figure 2. This is the Kronecker cover of the Dürer graph G (6, 2).



Generalized Petersen Graphs and Kronecker Covers 15

Acknowledgements
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