
The CECAM Electronic Structure Library and the modular software
development paradigm

Micael J. T. Oliveira,1, a) Nick Papior,2, b) Yann Pouillon,3, 4, c) Volker Blum,5, 6 Emilio Artacho,7, 8, 9 Damien
Caliste,10 Fabiano Corsetti,11, 12 Stefano de Gironcoli,13 Alin M. Elena,14 Alberto Garćıa,15 V́ıctor M.
Garćıa-Suárez,16 Luigi Genovese,10 William P. Huhn,5 Georg Huhs,17 Sebastian Kokott,18 Emine Küçükbenli,13, 19

Ask H. Larsen,20, 4 Alfio Lazzaro,21 Irina V. Lebedeva,22 Yingzhou Li,23 David López-Durán,22 Pablo
López-Tarifa,24 Martin Lüders,1, 14 Miguel A. L. Marques,25 Jan Minar,26 Stephan Mohr,17 Arash A. Mostofi,11

Alan O’Cais,27 Mike C. Payne,9 Thomas Ruh,28 Daniel G. A. Smith,29 José M. Soler,30 David A. Strubbe,31

Nicolas Tancogne-Dejean,1 Dominic Tildesley,32 Marc Torrent,33, 34 and Victor Wen-zhe Yu5

1)Max Planck Institute for the Structure and Dynamics of Matter, D-22761 Hamburg,
Germany
2)DTU Computing Center, Technical University of Denmark, 2800 Kgs. Lyngby,
Denmark
3)Departamento CITIMAC, Universidad de Cantabria, Santander, Spain
4)Simune Atomistics, 20018 San Sebastián, Spain
5)Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708,
USA
6)Department of Chemistry, Duke University, Durham, NC 27708, USA
7)CIC Nanogune BRTA and DIPC, 20018 San Sebastián, Spain
8)Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
9)Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE,
United Kingdom
10)Department of Physics, IRIG, Univ. Grenoble Alpes and CEA, F-38000 Grenoble,
France.
11)Departments of Materials and Physics, and the Thomas Young Centre for Theory and Simulation of Materials,
Imperial College London, London SW7 2AZ, United Kingdom
12)Synopsys Denmark, 2100 Copenhagen, Denmark
13)Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
14)Scientific Computing Department, Daresbury Laboratory, Warrington WA4 4AD,
United Kingdom
15)Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra E-08193,
Spain
16)Departamento de F́ısica, Universidad de Oviedo & CINN, 33007 Oviedo, Spain
17)Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
18)Fritz Haber Institut, 14195 Berlin, Germany
19)John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,
Massachusetts 02138, USA
20)Nano-Bio Spectroscopy Group and ETSF, Departamento de F́ısica de Materiales,
Universidad del Páıs Vasco UPV/EHU, 20018 San Sebastián, Spain
21)Department of Chemistry, University of Zürich, CH-8057 Zürich, Switzerland
22)CIC Nanogune BRTA, 20018 San Sebastián, Spain
23)Department of Mathematics, Duke University, Durham, NC 27708-0320, USA
24)Centro de F́ısica de Materiales, Centro Mixto CSIC-UPV/EHU, 20018 San Sebastián,
Spain
25)Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale),
Germany
26)New Technologies Research Centre, University of West Bohemia, 301 00 Plzen,
Czech Republic
27)Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH,
52425 Jülich, Germany
28)Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
29)Molecular Sciences Software Institute, Blacksburg, Virginia 24060, USA
30)Departamento e Instituto de F́ısica de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid,
28049 Madrid, Spain
31)Department of Physics, University of California, Merced, CA 95343, USA
32)School of Chemistry, University of Southampton, Southampton, SO17 1BJ,
United Kingdom
33)CEA, DAM, DIF, F-91297 Arpajon, France
34)Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel,
France

(Dated: 6 June 2020, accepted by J. Chem. Phys. 8 June 2020, to appear in https://doi.org/10.1063/5.0012901)

2

First-principles electronic structure calculations are now accessible to a very large community of users across
many disciplines thanks to many successful software packages, some of which are described in this special issue.
The traditional coding paradigm for such packages is monolithic, i.e., regardless of how modular its internal
structure may be, the code is built independently from others, essentially from the compiler up, possibly
with the exception of linear-algebra and message-passing libraries. This model has endured and been quite
successful for decades. The successful evolution of the electronic structure methodology itself, however, has
resulted in an increasing complexity and an ever longer list of features expected within all software packages,
which implies a growing amount of replication between different packages, not only in the initial coding
but, more importantly, every time a code needs to be re-engineered to adapt to the evolution of computer
hardware architecture. The Electronic Structure Library (ESL) was initiated by CECAM (the European
Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model
and promote modularization, with the ambition to extract common tasks from electronic structure codes
and redesign them as open-source libraries available to everybody. Such libraries include, e.g., “heavy-duty”
ones that have the potential for a high degree of parallelisation and adaptation to novel hardware within
them, thereby separating the sophisticated computer science aspects of performance optimization and re-
engineering from the computational science done by, e.g., physicists and chemists when implementing new
ideas. We envisage that this modular paradigm will improve overall coding efficiency and enable specialists
(whether they be computer scientists or computational scientists) to use their skills more effectively, and
will lead to a more dynamic evolution of software in the community as well as lower barriers to entry for
new developers. The model comes with new challenges, though. The building and compilation of a code
based on many interdependent libraries (and their versions) is a much more complex task than that of a code
delivered in a single self-contained package. Here we describe the state of the ESL, the different libraries it
now contains, the short- and mid-term plans for further libraries, and the way the new challenges are faced.
The ESL is a community initiative into which several pre-existing codes and their developers have contributed
with their software and efforts, from which several codes are already benefiting, and which remains open to
the community.

I. INTRODUCTION

Electronic structure theory is among the most produc-
tive branches of computational science today.1 The nec-
essary underlying level of theory – Dirac’s Equation –
is analytically known exactly.2 It is applicable to con-
densed matter physics, chemistry, materials science and,
in fact, touches all branches of engineering – whenever
either modified or completely new technologically more
capable materials are needed. Practical, i.e., numeri-
cally tractable, approximations to Dirac’s Equation can
be used to predict the properties of molecules, solids,
liquids, interfaces, including their responses to environ-
mental stimuli (fields, currents, mechanical stimuli, etc.).
They typically provide sufficient accuracy and reliabil-
ity3 to formulate experimentally testable hypotheses and,
ultimately, accelerate the discovery and development of
“new” molecules and materials. The growth of the field is
reflected in a plethora of existing and new software devel-
opments that implement aspects of electronic structure
theory either for specialized or rather broad general use
cases. The community-wide psi-k.net website lists over
thirty “codes” at the time of writing (December 2019)
and 74 individual code projects are listed at the “Com-
munity Code Database” of the U.S. based Molecular Soft-

a)Electronic mail: micael.oliveira@mpsd.mpg.de
b)Electronic mail: nickpapior@gmail.com
c)Electronic mail: yann.pouillon@materialsevolution.es

ware Sciences Institute (MolSSI),4 another community-
bridging organization working to support a broad set of
“codes” and their users.5,6

While the electronic structure community (ESC) is
thus extremely active in developing software that enables
a host of scientific insights, developments have histori-
cally occurred in the form of different individual software
packages that are largely distinct from each another at
the code level. A notable exception are numerical and/or
performance related libraries which are often generic to
the broader computational community, e.g., basic linear
algebra subroutines (BLAS),7 exploiting parallelism at
the message passing interface (MPI) level,8 higher-level
linear algebra utilities (most importantly LAPACK9 and
its parallel counterpart, ScaLAPACK10) or fast Fourier
transforms (FFTW).11

ESC software development has historically taken place
within a model of largely monolithic programs, in which,
on top of a main quantum engine, all further develop-
ments are incorporated incrementally. The (now) more
traditional electronic structure codes are steadily grow-
ing, each incorporating all or many of the developments
that have become standard in the community. This
model is illustrated in Fig. 1(a). Furthermore, each code
needs re-engineering to adapt to the constant hardware
evolution, most notably in high-performance computing,
and most of the re-engineering is carried out on tasks that
are common to all or most of the codes. In addition to
this obvious inefficiency, two other important problems
are inherent in the monolithic model. Firstly, it stifles in-

mailto:micael.oliveira@mpsd.mpg.de
mailto:nickpapior@gmail.com
mailto:yann.pouillon@materialsevolution.es

3

FIG. 1. Comparison of the traditional monolithic and the
emerging modular paradigms in electronic structure coding.
One of today’s electronic-structure codes – large blue box in
panel (a) – thins down into the higher-level electronic struc-
ture driver that defines the particular code – blue box in panel
(b), allowing for a more specialized and sustainable develop-
ment of the different parts of the software. The acronyms
in the figure indicate operating system (OS), fast Fourier
transforms (FFT), input/output (I/O), molecular dynamics
(MD), and linear scaling with the number of atoms, O(N),
respectively, in addition to the central and graphical process-
ing units, CPU and GPU, respectively. Steering upper-level
drivers are distinguished between versatile toolkits such as
ASE, and handlers of massive amounts of quantum-engine
replicas, such as i-PI. In addition to the well-known MPI,
OpenMP, CUDA, and HDF libraries, other acronyms and
names relate to libraries described in Sections I, II, and IV.

novation: novel methodological (physics) ideas within the
wider community can only be implemented by joining any
of the pre-existing efforts. It is increasingly hard to start
a project from scratch. This problem is partly addressed
by the open-source model of programming, well estab-
lished in some modern electronic structure projects, to
which novel ideas can be incorporated by external coders,
at least in principle (note, however, that poor quality,
undocumented open source code does not fulfill this re-
quirement). Secondly, the monolithic model allows very
little differentiation in the profiles of human resources
needed for the project: there is a need for people with
expertise in the state-of-the-art for both computational
science (e.g., physics, chemistry, etc.) and computer sci-
ence (e.g., software engineering, performance optimisa-
tion, hardware architecture, numerical analysis etc.).

II. SHARED LIBRARIES AND THE ESL

A. The library sharing movement

Partly in response to the problems mentioned above,
and partly following the spirit of the open access move-

ment and inspired by well established practices in soft-
ware engineering, the computational physics and chem-
istry communities have witnessed the appearance of
libraries—understanding this term broadly—which per-
form particular, well-defined tasks that are common to
many codes. We will not review this movement here,
but will illustrate it with some examples from the ESC.
Take, for instance, the exploitation of symmetry in com-
putational simulation of both molecular and crystalline
systems. This involves a well-defined set of tasks, from
recognising the symmetry group for a specified structure,
to the labelling of eigenstates according to irreducible
representations, including the reduction of the eigenprob-
lem complexity, or the optimisation of Brillouin-zone
sampling. Several libraries have appeared within this
free sharing movement to perform these tasks (e.g., the
spglib library12).

The handling of symmetry is an example of a very
general pre- and post-processing tool whose function can
be defined completely independently and is one of many
other similar possibilities that constitute opportunities
for creating libraries. Another notable case is that of
wannier90,13 which not only calculates maximally lo-
calised Wannier functions14 from the outputs of elec-
tronic structure codes, but can also determine many
properties using these Wannier functions. Remarkably,
the authors’ ambition from the very beginning of the
project was to maximise its applicability to all classes
of electronic structure methods, and they have managed
to limit code dependencies to an absolute minimum. This
has enabled a very widespread adoption within the wider
electronic structure community (see Sec. IV K).

In addition to these kinds of tool, other sharing/library
efforts have been appearing which we can characterise
as top-level steering codes, and low-level routines, as
shown in Fig. 1(b), which illustrates the new emerg-
ing paradigm. Among the former is the integration of
electronic structure codes as “solvers” or “quantum en-
gines” into broader frameworks, typically handling the
nuclear degrees of freedom, such as the python-based
Atomic Simulation Environment (ASE)15 or the i-PI
framework16 for classical and path-integral molecular dy-
namics. Both of these support a large number of under-
lying electronic structure codes. Also in the top-level
category, much effort is now being dedicated to general-
purpose workflow tools that steer and automate the run-
ning of electronic structure codes in complex procedures
and encompass the ambition of versatility (see, e.g., the
AiiDA project17), providing a much more detailed pic-
ture of how electronic structure methods are applied as
compared to a decade ago. As a pioneering example of
a low-level shared library, we mention Libxc18,19, which
implements hundreds of local and semilocal exchange-
correlation functionals and is now very widely used (see
Sec. IV B).

There are many other tasks and needs in electronic
structure that may be generically abstracted in the form
of shared libraries, with common frameworks and shared

4

workloads in order to more readily achieve maturity of
established functionality, numerical correctness, and con-
tinued development of new functionality at the same
time. Developing electronic-structure software based on
common standards, libraries, application programming
interfaces (APIs), and flexible software components is a
trend that is therefore gaining prominence in the field.

Additionally, at a social level, such shared develop-
ments bring different communities together and reinforce
existing collaborations within the communities them-
selves. Significant challenges on this path are often sim-
ple, related to human time and workload and include:
identifying and locating an existing solution to a code
problem at the time when it is needed; finding and read-
ing documentation to understand and co-develop soft-
ware originally written by others; being able to down-
load, install and successfully link to an array of disparate
software pieces on a given, often individualized, compute
platform; having an effective pathway to communicate
with the developers of the library for advice and to of-
fer feedback and suggestions for improvement. These is-
sues are not specific to the ESC but rather reflect generic
challenges that confront all shared software development
efforts.

B. ESL

1. Concept

This is where the “Electronic Structure Library”
(ESL)20 enters, the subject of the present paper. A key
goal of the ESL is to alleviate and overcome the issues
mentioned above, creating an effective collaboration plat-
form for shared software developments, where these make
sense. Our vision is to sustain a community that devel-
ops, distributes and oversees electronic structure libraries
for the benefit of all electronic structure codes.

The ESL started in 2014 as a CECAM initiative,
with the aim of stimulating the segregation of well-
defined tasks into shared libraries, pushing the model
of Fig. 1(b), and confronting the challenges it entails.
From the beginning, the work of the ESL has been
done by programmers actively involved in successful
electronic structure codes and the ESL initiative has
been supported by the development teams of these
codes, which include ABINIT,21 Siesta,22 Octopus,23

Quantum ESPRESSO,24 BigDFT,25 FHI-aims,26 and
GPAW,27 amongst others.

The initial efforts focused on three aspects: (i) identi-
fying existing libraries suitable for inclusion in the ESL;
(ii) extracting and re-coding as libraries a number of sub-
packages from the community codes; and (iii) incorpo-
rating these libraries into other participant codes.

Ongoing efforts within the ESL include improving the
coordination between and interoperability of the various
software modules, expanding their integration into large
software development projects (e.g., some of the main

electronic structure codes in the community), and mak-
ing it easier to seamlessly distribute a consistent bundle
of library and software modules (see Sec. V).

A key enabler in all this process has been the will to
overcome the monolithic mentality, both at a scientific
level (one research group, one code) as well as at a busi-
ness model level (free software vs. open-source vs. pro-
prietary), allowing collaborations between communities
and making new public-private partnerships possible.

In addition to the obvious goal of avoiding re-inventing
the wheel for every code, by re-coding well-known algo-
rithms for well-established tasks, two other important
advantages are foreseen. The first relates to human re-
sources. Electronic structure codes encompass sophis-
ticated physics and sophisticated software engineering.
The monolithic development model demands highly edu-
cated personnel with expertise in both areas. An efficient
segregation of tasks into libraries would allow an abstrac-
tion of the low-level detail for physicists or chemists cod-
ing at a high-level, while software engineers could main-
tain and evolve the low-level software without needing a
high-level of expertise in the science used.

A related second advantage is that a widely-used ESL
library or set of libraries, with well-defined APIs, would
offer a good target for re-coding for software engineers
working close to the cutting-edge of hardware develop-
ments and high performance computing (HPC) centres.
This is, of course, a continuous process as it has to be
done at each step of hardware evolution. Indeed, it has
already happened with, e.g., Intel offering their own im-
plementation of linear-algebra libraries adapted to their
own compilers and processors. The ESL should be able
to offer many more targets for optimisation. It should
also be remembered that there is currently a substan-
tial level of resource dedicated to re-engineering codes
for new hardware, both at individual HPC centres and
funded by national (or trans-national, e.g., European
Union) research agencies. These efforts are usually di-
rected towards particular codes. Dedicating these efforts
to libraries would be more efficient, serve the community
more widely, and would also be easier to maintain as li-
braries are naturally composed of independent modules.
Ideally, scientists should aspire to adapt their codes to
new computers and to new computer paradigms as this
is usually the only way to access the largest computa-
tional systems. Through the ESL, this could be achieved
just by linking to the latest library implementation for a
given computer architecture.

These elements of the ESL vision rely, however, on
the conversion into libraries of massively parallel heavy-
duty code, which is an extremely ambitious goal. There
has been an emphasis on heavy-duty tasks in the ESL
efforts so far, although work has not focused exclusively
on this. These efforts are described in Section IV. The
segregation of heavy-duty libraries involves many new
challenges, which we now describe.

5

2. Challenges

In addition to the challenges mentioned above refer-
ring to shared software in general, the model proposed
here faces a number of additional important challenges.
Firstly, building a binary code (compilation and link-
ing), which depends on many libraries, and often their
specific version, is substantially more difficult than for
a self-contained (monolithic) program. Furthermore, the
complexity of the heterogeneous environments typically
encountered at HPC installations makes the build even
harder and more diverse. Ours is not the first community
to face these problems, and a significant part of the ESL
effort is expended in the bundling and building strategies
for the ESL, as described in Section V.

A second important challenge is the loss of the global
coherence in data structures and parallelisation that
monolithic programs can adopt (although it is not always
possible or convenient). This implies the need for con-
version routines to adapt data structures from one sec-
tion of the code to another. Again, this challenge is not
new, and it represents an intrinsic element of this modu-
lar paradigm. Associated with these conversions, and in
general, with the whole strategy, is an expected loss of
efficiency, compared to that achievable within perfectly
coded (and constantly maintained) monolithic programs.
However, the savings in (limited) human resources that
modularity brings are likely to outweigh a loss in (contin-
uously expanding) hardware cycles. An analogy can be
made with the controversies in the early seventies regard-
ing the use of high-level languages (instead of machine
language) for the implementation of system software.28

It is now clear that the apparently wasteful road led to
significant progress.

Another challenge faced by the ESL to date stems from
the fact that the majority of the libraries currently in
the ESL have been extracted from pre-existing electronic
structure codes. This means that the API and inter-
nals of the library were chosen with its parent environ-
ment in mind. Finally, the issue of licensing should be
mentioned. Different libraries are released under differ-
ent licenses, which may impose conditions on the licenses
under which the using codes are distributed. This repre-
sents a challenge as well, although of a different kind.

III. COMMON ELEMENTS OF ELECTRONIC
STRUCTURE CODES

Before describing the existing library implementations
in the ESL, we give here a brief overview of the task that
they are supposed to handle or, to put it more simply,
what are the common elements of the electronic structure
codes. From the many available methods to approximate
Dirac’s equation in a computationally tractable form, the
majority fall into one of two broad classes: density func-
tional theory (DFT) and wave-function based methods.
In this paper we concentrate on the former, although

many of the tools described here are also useful for other
methods also based on effective single-particle models,
such as Hartree-Fock.

In the non-relativistic limit, the equations to be solved
for ground-state DFT are the Kohn-Sham equations:29

ĥKS[n]φi(r) = εiφi(r) , (1)

where φi and εi are the Kohn-Sham (KS) orbitals and

eigenenergies, respectively, and ĥKS is the Kohn-Sham
hamiltonian. The hamiltonian is usually decomposed in
the following way:

ĥKS[n] = t̂s + vext + vH[n] + vxc[n] , (2)

where vext is the external potential (typically the poten-
tial generated by the nuclei), vH is the Hartree poten-
tial, and vxc is the exchange and correlation potential.
t̂s is the single-particle kinetic energy operator. In non-
relativistic form,

t̂s = −1

2
∇2. (3)

However, practically every electronic structure code em-
ploys at least a scalar-relativistic variant of t̂s (the ap-
plicability of the non-relativistic expression is limited to
the lightest chemical elements only). In codes employ-
ing pseudopotential-type techniques (see below), relativ-
ity is usually incorporated implicitly through the form
of the projectors. In all-electron codes, explicit scalar-
relativistic forms of t̂s are used. The Kohn-Sham equa-
tions are a set of one-particle equations that need to be
solved self-consistently as several terms in Eq. (2) are
functionals of the electronic density:

n(r) =
∑
i

fi|φi(r)|2 . (4)

fi are occupation numbers, ensuring that the orbitals
are only occupied as far as there are electrons (i.e.,∑

i fi = Nel, where Nel is the number of electrons in the
system). Any code that aims to solve the Kohn-Sham
equations must therefore perform the following tasks: 1.
given a set of atomic coordinates, evaluate vext; 2. eval-
uate vH[n]; 3. evaluate vxc[n]; 4. solve the eigenvalue
problem of Eq. (1); 5. find the density that solves the
self-consistency problem. Each of these steps thus repre-
sents an opportunity for electronic structure packages to
share and reuse code:

1. To reduce the computational cost, many DFT
codes use the pseudopotential approximation.30

The pseudopotentials are normally generated by
specialized codes that output them using a par-
ticular one of the existing file formats. Therefore,
codes that want to use a specific pseudopotential
are required to know the corresponding file format
to parse the corresponding information.

6

2. The Hartree potential vH[n](r) is defined as

vH[n](r) =

∫
dr′

n(r′)

|r − r′|
. (5)

Direct evaluation of this integral is not usually nu-
merically efficient and it is common practice to in-
stead solve the corresponding Poisson equation.

3. Many hundreds of different approximations to
the exchange-correlation functional have been pro-
posed, some of which require the evaluation of long,
complex mathematical expressions. Implementing
such approximations is thus a tedious, error prone
task.

4. Many different methods exist in the literature for
solving eigenvalue problems such as Eq. (1). Upon
discretization of the orbitals φ, one can write the
problem in the language of matrices and vectors.
Then solving Eq. (1) reduces to the standard lin-
ear algebra problem of diagonalizing a matrix, in
this case the hamiltonian matrix. For cases where
the size of this matrix is too large for direct diag-
onalisation, either due to the memory or computa-
tional time required, iterative eigensolvers can be
used which only require the result of the hamilto-
nian operating on an orbital, or alternative formu-
lations of the problem can be solved, such as the
ones based on Green’s functions or Fermi-operator
expansions.

5. Finding the density that solves the self-consistency
problem is usually done iteratively: starting from
a guess for the density, one solves Eq. (1), thus ob-
taining a new set of orbitals φ which, in turn, are
used to obtain a new density. The process is then
repeated using the new density until the changes in
the density are smaller than some defined thresh-
old. Since the total computational cost strongly
depends on how fast the iterative procedure con-
verges, many methods are available to accelerate
this process.

In the case of wave-function based methods, many of
these require a solution to the Hartree-Fock equations as
a starting point. These equations share many similarities
with the Kohn-Sham equations: both are sets of one-
particle equations that need to be solved self-consistently.
This further increases the opportunities for code sharing
and reuse among electronic structure packages.

To numerically solve either the Kohn-Sham or the
Hartree-Fock equations, the relevant quantities are typ-
ically discretized in some way, either using basis-sets or
grids. Each type of discretization requires specialized
functions that can, in principle, be shared among codes
that use the same basis-set or type of grid. For example,
atom-centred basis sets require the efficient evaluation of
one- and two-particle integrals.

Along with the common elements of electronic struc-
ture packages which are directly related to the equations
solved, other types of operations are also performed by
most ES codes. A prime example are I/O operations,
which range from parsing an input file to writing physical
quantities of interest to disk for visualization or further
processing.

IV. EXISTING LIBRARY IMPLEMENTATIONS IN THE
ESL

In the following, we briefly present the libraries and
packages that are currently part of the ESL, giving a
brief description of their scope, history, and use cases.
They are tabulated in Table I.

A. PSolver

Electrostatic potentials play a fundamental role in
nearly any field of physics and chemistry. It is, therefore,
essential to have efficient algorithms to find the electro-
static potential V arising from a charge distribution ρ
(associated to the particle density n in Eqs. (4) and (5))
in a dielectric medium described by the dielectric con-
stant ε(r), or, in other words, to solve the generalized
Poisson’s equation

∇ · ε(r)∇φ(r) = −4πρ(r). (6)

The large variety of situations in which this equation is
encountered led us to address this problem for different
choices of the boundary conditions (BC). The long-range
behavior of the inverse Laplacian operator makes this
problem strongly dependent on the BC of the system.
Therefore, any method aiming at providing a solution
to Eq. (6) has to deal with the BC, which, for instance,
could be either periodic or free (otherwise referred to as
“isolated” or “open”) along each of the three directions
x, y, z. In the case of fully periodic BC, the most natural
(and efficient) approach to the problem is the reciprocal
space treatment. It amounts to expanding both the den-
sity and the potential as superpositions of plane waves
(Fourier series), thereby Eq. (6) becoming – for a homo-
geneous dielectric – algebraic in the Fourier components
of ρ and V . This equation is readily solved and the re-
sult is finally transformed back into real space. Forward
and backward transformations are carried out via Fast
Fourier Transforms (FFT), hence the overall computa-
tional scaling of the method with respect to the number
N of grid points is a rather appealing O(N logN).

The situation is less straightforward for the same prob-
lem but different BC, e.g., free (isolated) BC. In this case
the solution of Poisson’s equation in vacuum can formally
be obtained from a three-dimensional integral:

V (r) =

∫
dr′G(|r− r′|)ρ(r′) , (7)

7

TABLE I. Libraries included in the ESL and ESL bundle. The first twelve are dedicated to electronic structure (ES) func-
tionality; the last ten are tools of more general (GEN) applicability beyond electronic structure theory. They are described in
Section IV, except for Futile, which is described in Section VI B 2. The licence acronyms expand as follows: GPL: GNU General
Public Licence, in versions 2.031 and 3.0;32 LGPL: GNU Lesser GPL, version 3.0;33 MPL: Mozilla Public Licence, version 2.0;34

MIT: Massachusetts Institute of Technology Licence;35 CeCILL-C: The CeCILL-C Free Software License Agreement;36 BSD:
Berkeley Software Distribution licence, in either the 2-clause37 or the 3-clause38 versions.

Library Functionality Licence

PSolver ES: Poisson solver for 0, 1, 2 and 3 dimensions, varying dielectrics and Poisson-Boltzmann GPL-2.0

Libxc ES: Pointwise evaluation of exchange & correlation for LDAs and GGAs MPL-2.0

libvdwxc ES: Evaluation of Van der Waals non-local exchange & correlation GPL-3.0

libGridXC ES: Evaluation of exchange & correlation in regular grids incl. non-local Van der Waals DFs BSD 3-clause

pspio ES: Input/output of pseudopotentials in most popular formats LGPL-3.0

libPSML ES: Standardized pseudopotential markup language specification and associated library BSD 3-clause

ESCDF ES: Electronic-structure data format specification and associated library LGPL-3.0

ELSI ES: Unified interface calling a variety of Hamiltonian solver libraries BSD 3-clause

PEXSI ES: Pole expansion and selective inversion solver library BSD 3-clause

LibOMM ES: Iterative minimization non-orthogonal solver BSD 2-clause

PIKSS ES: Parallel iterative Kohn-Sham solvers GPL-3.0

wannier90 ES: Postprocessing to obtain maximally-localized Wannier functions and derived quantities GPL-2.0

ELPA GEN: High-performance dense eigenvalue solver library LGPL-3.0

NTPoly GEN: Sparse linear-scaling solver library MIT

SLEPc-SIPs GEN: Shift-and-invert parallel slicing solver BSD 2-clause

SuperLU DIST GEN: Sparse linear system solver BSD 3-clause

Scotch GEN: Graph partitioning library CeCILL-C

MatrixSwitch GEN: Matrix-format-independent abstraction layer of linear algebra operations BSD 2-clause

flook GEN: Connection between Fortran and Lua for embedded scripting code control MPL-2.0

LibFDF GEN: Flexible data format for input of control parameters BSD 3-clause

xmlf90 GEN: Fortran library to parse and write well-formed XML files BSD 2-clause

Futile GEN: Low-level toolbox (handles YAML-code mapping, dynamic memory, timing, error, etc.) GPL-3.0

where G(r) = 1/r is the Green function of the Lapla-
cian operator in the unconstrained R3 space. The long
range nature of the kernel operator G does not allow us
to approximate free BC with a very large periodic vol-
ume. Consequently, the description of non-periodic sys-
tems using a periodic formalism always introduces long-
range interactions between supercells that compromise
the results.

Due to the simplicity of plane wave methods, vari-
ous attempts have been made to generalize the recip-
rocal space approach to free BC.39–41 All of them use a
FFT at some point, and thus have a O(N logN) scaling.
These methods use ad hoc screening functions to subtract
the spurious interactions between super-cells. They have
some restrictions and cannot be used blindly. For ex-
ample, the method of Füsti-Molnar and Pulay40 is only
efficient for spherical geometries and the method of Mar-
tyna and Tuckerman41 requires artificially large simula-
tion boxes that are computationally expensive. Nonethe-
less, the usefulness of reciprocal space methods has been
demonstrated for a variety of applications, and plane-
wave based approaches are widely used in the chemical
physics community.

Two-dimensional periodic systems, such as surfaces,
are another prominent choice of BC. The many surface-
specific experimental techniques developed in recent
years produce important results that can greatly benefit
from theoretical interpretation and analysis. The devel-
opment of efficient computational techniques for systems
with such boundary conditions thus became very impor-
tant. A number of explicit Poisson solvers have been
developed in this framework42–44 based on a reciprocal
space treatment. Essentially, these Poisson solvers are
constructed by implementing a suitable generalization
for surface BC of the same methods that were developed
for isolated systems. As for the free BC case, screening
functions are applied to subtract the artificial interac-
tion between the supercells in the non-periodic direction.
Therefore, they exhibit the same kind of intrinsic limi-
tations, e.g., good accuracy is only achieved inside the
bulk of the computational region, with the consequent
need for artificially large simulation boxes, which may
increase the computational overhead.

Following these considerations, a series of efficient
and accurate Poisson solvers have been developed that
compatible with all possible combinations of mixed iso-

8

lated/periodic boundary conditions. The solvers also
support screened and unscreened Coulomb operators in
vacuum45–47 and distributed, non-uniform dielectrics in-
cluding the Poisson-Boltzmann equation.48,49 In contrast
to Poisson solvers based solely on a reciprocal space treat-
ment, the fundamental operations of this Poisson solver
are based on a mixed reciprocal-real space representa-
tion of the charge density. This allows different boundary
conditions in different directions to be naturally satisfied.
Screening functions or other approximations are thus not
needed.

The basic advantage of this approach is that the real-
space values of the potential V (r) are obtained to very
high accuracy on the uniform mesh of the simulation do-
main, via a direct solution of Poisson’s equation by con-
volving the density with the appropriate Green’s func-
tion of the Laplacian. As already mentioned, the Green’s
function can be discretized for the most common types
of boundary conditions encountered in electronic struc-
ture calculations, namely free, wire, slab and periodic.
This approach can therefore be straightforwardly used in
all DFT codes that are able to express the densities ρ(r)
on uniform real-space grids. This is very common be-
cause the XC correlation potential is usually calculated
on such a grid, at least in pseudopotential-based codes.
This approach has also proved to be, in its parallel CPU
version, the fastest in most cases50 and is therefore inte-
grated in various DFT codes such as abinit,21 CP2K,51

Octopus,23,52 and Conquest.53

To conclude, the Poisson solver algorithm has already
been ported on Graphic Processing Units (GPU)54 and
is readily available in the ESL package. It enables af-
fordable calculation of exact exchange operators in large
systems.55

B. Libxc

The exchange-correlation functional is at the heart
of density-functional theory,29 and it is ultimately re-
sponsible for the accuracy of any such electronic struc-
ture calculation. It is, therefore, perhaps not surpris-
ing that hundreds of different approximations to this
term have been proposed over the last decades. Most
of these can be classified into five families, usually of-
ten identified as different rungs of Jacob’s ladder,56 lead-
ing from the Hartree world to the Heaven of chemical
accuracy. The rungs correspond to the local-density
approximation, the generalized-gradient approximation,
the meta-generalized-gradient approximation, function-
als that depend on the occupied Kohn-Sham orbitals,
and finally, functionals that also depend on the virtual
orbitals. Libxc18,19 is a library that contains the mathe-
matical expressions for functionals belonging to the first
three families, together with the semi-local parts for the
functionals of the last two rungs.

Libxc has, by now, a long history, with its roots at the
beginning of this century and version 1.0.0 appearing in

2010 (the current stable version is 4.3.4). The number
of functionals included has increased steadily over the
years with more than 500 functionals, arising from more
than half a century of theoretical developments, imple-
mented to date. Recently, the library was completely re-
structured to allow the definition of the functionals to be
written in Maple 2016 (Ref. 57), which simplifies the in-
sertion of new functionals (Maple’s symbolic language is
considerably simpler than C, and well adapted for math-
ematical manipulations). Moreover, all derivatives are
evaluated symbolically by Maple. This significantly re-
duces the possibility of errors in the implementation and
opens the way for the evaluation of higher derivatives of
the functionals. Currently, Libxc supports up to fourth-
derivatives, required, for example, for the calculation of
Hessians of potential energy surfaces for excited-states.

There are a number of advantages of Libxc for the users
of electronic structure codes. First, they have instant
access to nearly all the exchange-correlation functionals
ever developed. Furthermore, most functionals are im-
plemented in Libxc shortly after their publication, giving
access to the latest theoretical developments in density-
functional theory often only requiring a simple recompi-
lation of the library. Finally, it makes the comparison of
different codes and methods much simpler. Libxc is by
now used by more than 30 electronic structure codes,
developed both by the Physics communities (such as
Abinit,58 BigDFT,25 FHI-aims,59 WIEN2k,60 etc.), the
Quantum Chemistry community (such as Psi4,61 Orca,62

PySCF,63 or Turbomole,64 etc.), commercially developed
codes (QuantumATK65), as well as other libraries, e.g.,
libGridXC [see Sec. IV D]. Libxc guarantees reliable, bug
free implementations of the functionals, which are often
cross-checked with reference code from the original au-
thors of the functionals. Finally, Libxc provides a simple
means to perform benchmark calculations in a variety
of physical systems and using diverse numerical methods
(see, e.g. Ref. 66).

C. libvdwxc

libvdwxc67 is a software library which evaluates the
the non-local correlation term for density functionals in
the vdW-DF family68,69 such as vdW-DF,70 vdW-DF2,71

and vdW-DF-cx.72 It also implements the recent spin-
generalization of these functionals.73 It is written in C
and released under the GNU GPL licence.

Libxc evaluates functionals point-wise and hence sup-
ports only local and semi-local functionals. The purpose
of libvdwxc is to complement Libxc by providing just the
missing non-local term. libGridXC contains an alterna-
tive implementation — see Section IV D below.

The vdW-DF functionals are the sum of three terms:
The correlation energy from LDA; the exchange energy
from a GGA functional, which is often chosen differently
for different vdW functionals; and finally the non-local
vdW correlation energy which is characteristic of the

9

vdW-DF family. This latter term is an integral over a
kernel function φ(r, r′):

Enl
c [n] =

1

2

∫∫
n(r)φ(r, r′)n(r′) dr dr′. (8)

Direct integration of this expression scales as O(N2) and
is very expensive, so most codes use the spline interpo-
lation method due to Román-Pérez and Soler.74 This re-
duces the integral to a convolution in Fourier space whose
computational cost is only O(N logN).

The algorithm uses a number (conventionally 20) of
helper functions,74 θn(r), and their Fourier transforms.
This still requires more memory and computation time
than a standard GGA functional. libvdwxc focuses on
parallel scalability in order that this computation will
not become a bottleneck. It works in parallel using MPI
with the Fourier transform library FFTW.11,75 For par-
allel computations, the grids use the 1D block distribu-
tion of FFTW. libvdwxc additionally supports the PFFT
library,76 an extension to FFTW which improves scala-
bility for massively parallel architectures.

libvdwxc takes the density and its gradient on a uni-
form 3D grid as input. The grid directions need not be
orthogonal. It calculates the total energy and its deriva-
tives at each point, following Libxc conventions for ease
of integration with DFT codes.

D. libGridXC

The libGridXC library77 started life as SiestaXC, a
collection of modules within Siesta to compute the
exchange-correlation energy and potential in DFT calcu-
lations for atomic and periodic systems. The “grid” part
of the name refers to the discretization for charge den-
sity and potential used in those calculations. The original
code included a set of low-level routines to compute the
exchange-correlation energy density and potential, εxc(r)
and Vxc(r), respectively, at a point for (semilocal) LDA
and GGA functionals (i.e., a subset of the functional-
ity now offered by Libxc), and two high-level routines to
handle the computations in the whole domain (with ra-
dial or 3D-periodic grids), including computations of any
gradients, integrations, etc, needed. The most relevant
feature of SiestaXC was its pioneering implementation of
efficient and practical algorithms for van der Waals func-
tionals,74 in particular for the evaluation of the non-local
correlation term. These algorithms have found their way
into numerous other implementations, as exemplified in
Sec. IV C on libvdwxc. Another strength of the code is
its support for non-collinear spin densities, as needed in
particular for calculations with spin-orbit-coupling. Like
libvdwxc, it inputs the density on a uniform grid, not
necessarily orthogonal, and outputs the XC energy and
potential on the same grid. But in contrast with libvd-
wxc, the density gradient is evaluated internally.

The current libGridXC retains most of the SiestaXC
functionality, and enhances it by offering an interface to

Libxc that supports a much wider selection of XC func-
tionals. The code, written in Fortran, has been stream-
lined and re-packaged into a proper stand-alone library,
with an automatic build-system. It is used by modern
versions of Siesta, it is being adopted in ABINIT, and
it is also being considered for BigDFT and other codes.

E. pspio

For a long time, the development of pseudopotentials
has generally been coupled to a parent DFT code. This
has resulted in a proliferation of file formats and in-
compatibilities, preventing or severely limiting collabo-
ration involving different codes. Even worse, some ver-
sions of a pseudopotential format are not compatible
with some versions of the DFT code they originated
from. To address this issue, many discussions took place
from 2002 on to define a common file format for pseu-
dopotentials. While this led to the successful creation
of the PAW-XML format for projector augmented-wave
(PAW) datasets,78 no agreement was reached at the time
for norm-conserving pseudopotentials (see, however, Sec-
tion IV F below).

pspio takes exactly the reverse perspective: since many
file formats exist and will continue to exist for the foresee-
able future, let us design and implement a library that is
able to read and write all of them, including the different
versions of each format. Any pseudopotential generator
or DFT code using pspio will thereby be free of file-format
problems. However, pspio is not intended to act as a
“universal translator”, which would basically require im-
plementation of a pseudopotential generator within the
library. Indeed, different file formats store different quan-
tities, some of which have to be reconstructed to convert
one format to another. As a consequence, direct format
conversion is only possible in a very limited number of
cases.

pspio currently supports the FHI98PP, ABINIT6 and
UPF-1 file formats. Support for Siesta PSF and ONCV
formats is currently being tested. It can be found in
Ref. 79.

F. libPSML

Several well-known programs generate pseudopoten-
tials in a variety of formats, tailored to the needs of
specific electronic-structure codes. While some genera-
tors are now able to output data in different bespoke
formats, and some simulation codes are now able to read
different pseudopotential formats (with the help from ps-
pio in Section IV E, for example), the common historical
pattern in the design of those formats has been that a
generator produced data for a single particular simula-
tion code, most likely to be the one maintained by the
same group. The consequence was often that a number

10

of implicit assumptions, shared by generator and user,
have entered into the formats and fossilized there.

This leads to practical problems, not only of program-
ming, but also of interoperability and reproducibility,
which depend on spelling out a large number of details
which are not always well known or documented for all
codes or existing formats.

PSML (for PSeudopotential Markup Language)80,81 is
a file format for norm-conserving pseudopotential data
which is designed to encapsulate, to the greatest extent
possible, the abstract concepts in the domain’s ontology,
and to provide appropriate metadata and provenance
information. PSML files can be produced by the ON-
CVPSP30 and ATOM82 pseudopotential generator pro-
grams, and are a download-format option in the Pseudo-
Dojo database of curated pseudopotentials.83,84

The software library libPSML80,81 can be used by elec-
tronic structure codes to transparently extract the infor-
mation in a PSML file and adapt it to their own data
structures, or to create converters for other formats. It
is currently used by Siesta and ABINIT, making full
pseudopotential interoperability possible and thus facili-
tating comparisons of calculation results.

A feature of the PSML format and library is worth
noting: the exchange-correlation flavor used in the gen-
eration of the pseudopotential is encoded in the PSML
file as a set of Libxc “ids”. It exemplifies the importance
of software standards in scientific computing and their
implementation in widely available libraries. Given the
comprehensive support for functionals in Libxc, this is
very close to a “universal” specification. The combina-
tion of libPSML and Libxc (with maybe libGridXC as an
intermediate layer) is thus a basic ingredient for interop-
erability.

G. Electronic structure common data format (ESCDF)

The electronic structure common data format (ES-
CDF)85 and the accompanying library libescdf86 are cur-
rently being developed with the aim of simplifying a num-
ber of I/O related issues: (1) many codes deal with the
same information, foremost structural data about the
system of interest, which could easily be interchangeable
between codes, and for which a common format would
be useful; (2) having a common standard available would
simplify workflow systems, chaining e.g. ab initio calcula-
tions with post-processing spectroscopy calculations and
data visualization; (3) parallel I/O of large data sets for
general output or for code-specific restart files is becom-
ing increasingly important and having a common tool to
facilitate this at a low level would help many code devel-
opers. Over the last decades, there have been several at-
tempts to introduce such common standards in the ESC,
with varying degrees of success. The main challenge is
that much of the data is not actually interchangeable be-
tween codes which are based on different computational
methods. For instance, it is, in general, not meaningful

to use wave functions generated in a plane wave pseudo-
potential method in an all-electron LAPW code. ES-
CDF acknowledges that fact and does not try to impose
a rigid standard but, rather, to provide lower level tools
which define a common vocabulary for writing data and
to provide the necessary meta-data to clearly describe
how the data in a given file is represented. This ambi-
tion for flexibility is further illustrated in the specification
of structure, which allows for periodicity in any dimen-
sion (0 to 3), as used by the PSolver (Section IV A), and
even beyond, as for non-periodic embedding in infinite
or semi-infinite structures, as used by multiple-scattering
methods.87–89

The ideas behind the ESCDF are, to a large extent,
based on the ETSF-IO library and associated specifi-
cations,90,91 which it tries to extend and modernize by
moving from netCDF-4 to HDF-592 as the underlying
technology. They also build on the wavefunction format
of the BerkeleyGW code,93 which was defined as both
a specification and a library of reading and writing rou-
tines, used by Octopus and other DFT codes in preparing
inputs for GW and Bethe-Salpeter calculations. The de-
velopment has been driven by a collaboration of ETSF
developers and new developers, in particular from the
EUSpec94 network, which had the specific goal of pro-
viding tools for chaining calculations and post-processing
tools. The ESCDF specifications also have been aligned
as much as possible with existing specifications from
the NOMAD project95 and have also informed NOMAD
about their new extensions. The ESCDF specifications
are developed and maintained by a dedicated curating
team.

One of the core features of the implementation of
libescdf is the separation of the format specification and
the library code. The specifications are defined in a
JSON file, which can easily be extended without the need
to change the code in the library. Specific code for the
library is then generated automatically from the JSON
file and the format documentation is also auto-generated
from this central specifications file. This strategy will
make the library more maintainable and effectively de-
couples the science from the underlying software design.

Currently, both the specifications and the library are
still under development, with several sections of the for-
mer already complete. As soon as it is possible, libescdf
will be interfaced with the ESL Demonstrator project
and included in the ESL Bundle (see Sec. V).

H. ELSI and supported solver libraries: ELPA, PEXSI,
NTPoly, SLEPc-SIPs, SuperLU-DIST, Scotch

This group of libraries solves or circumvents the Kohn-
Sham or generalized Kohn-Sham eigen problem, i.e.
the central problem of electronic structure calculations.
They can be used in conjunction with the open-source
ELSI library (ELectronic Structure Infrastructure, http
s://elsi-interchange.org), but the associated solvers

https://elsi-interchange.org
https://elsi-interchange.org

11

can be and are also used in a standalone fashion with
different electronic structure packages. ELSI provides a
unified software interface that connects electronic struc-
ture codes to various high-performance solver libraries to
solve or circumvent eigenproblems encountered in elec-
tronic structure theory.96 In addition to providing inter-
faces, matrix conversion, etc., ELSI also abstracts com-
mon tasks in handling eigenvalue problems in an elec-
tronic structure code. The tasks handled by ELSI and re-
lated solvers often amount to the most compute-intensive
ones in electronic structure codes. These ESL compo-
nents therefore already offer support for several past and
present pre-exascale hardware developments, notably In-
tel’s many-core architectures as well as NVidia’s GPUs.
Solvers currently supported in ELSI include conventional
dense eigensolvers (ELPA,97,98 EigenExa,99 LAPACK,9

and MAGMA100), the orbital minimization method (Li-
bOMM101), sparse iterative eigensolvers (SLEPc102 and
SLEPc-SIPs), the pole expansion and selected inversion
method (PEXSI103), and linear scaling density matrix
purification methods (NTPoly104). As sketched in Fig. 2,
an electronic structure code interfacing to ELSI automat-
ically has access to all the eigensolvers and density matrix
solvers supported in ELSI. In addition, the ELSI interface
is able to convert arbitrarily distributed dense and sparse
matrices to the specification expected by the solvers, tak-
ing this burden away from the electronic structure code.
A comprehensive review of the capabilities of the lat-
est version of ELSI, including parallel solution of prob-
lems found in spin-polarized systems (two spin channels)
and periodic systems (multiple k -points), scalable matrix
I/O, density matrix extrapolation, iterative eigensolvers
in a reverse communication interface (RCI) framework,
is presented in a separate publication.105

The development of ELSI, including its API design,
internal data structure, build system, testing, and inte-
gration with electronic structure codes, was driven from
its inception by contributions and feedback from the com-
munity. In workshops organized by the ESL, ELSI has
been a primary focus from the outset. Moreover, de-
velopers and users of several electronic structure codes
participate in open ELSI monthly video meetings to ex-
change ideas, ensuring a direct information flow in or-
der to develop ELSI as a software package that fits the
needs of as many electronic structure projects as possi-
ble. To date, the ELSI interface has been adopted by
the DFTB+,106 DGDFT,107 FHI-aims,26 and Siesta22

codes. To aid in the selection of the solver that is best
suited for a particular application problem, ELSI pro-
vides a series of benchmarks to assess the performance
of the solvers for different problem types and on differ-
ent computer architectures.96,105 This benchmark effort
has been greatly accelerated by a separate FortJSON li-
brary, shipped with ELSI, which enables the output of
runtime parameters, matrix dimensions, timing statistics
etc. into a standard JSON file. Thanks to the popularity
and portability of JSON, ELSI log files written by FortJ-
SON can be easily processed and analyzed by existing

FIG. 2. Interaction of the ELSI interface with electronic struc-
ture codes. An electronic structure code has access to various
eigensolvers and density matrix solvers via the ELSI API.
Whenever necessary, ELSI handles the conversion between
different units, conventions, matrix formats, and program-
ming languages. (a) lists the electronic structure codes that
currently use ELSI. (b), (c), (d), and (e) list the programming
language, solvers, matrix formats, and output quantities, re-
spectively, supported by ELSI.

tools. Comparing different solvers in different codes on
an equal footing is thus significantly simplified by the
ELSI infrastructure.

ELSI ships with its own tested versions of several in-
dividual solver libraries (which are also included in the
ESL) but, additionally, linking against already compiled
upstream versions from each solver library is supported
as much as possible. The installation of the different
components is handled by a single CMake-based build
system that either compiles redistributed source code of
the solvers or links ELSI against user-supplied solver li-
braries.

I. LibOMM non-orthogonal eigensolver

Now integrated into the larger bundle of eigensolvers
provided by ELSI, LibOMM was developed during the
first ESL workshop as a standalone library, and can still
be used as such. It is written in Fortran with C bind-
ings, and can be compiled either for serial or MPI parallel
operation.

The orbital minimization method (OMM) is an itera-
tive solver method based on finding the set of Wannier
functions describing the occupied subspace by the mini-
mization of a specially-defined energy functional. The pe-
culiarity of the OMM is that only an unconstrained min-
imization is required, thus avoiding a potentially expen-

12

sive orthogonalization step; the properties of the func-
tional drive the Wannier functions towards orthonormal-
ity as it is minimized. The OMM has an interesting his-
tory (discussed briefly in Ref. 101) stemming from re-
search on linear-scaling DFT methods. The LibOMM li-
brary, however, is based on a later re-implementation of
the method used in Siesta as an efficient cubic-scaling
solver for a basis of finite-range numerical atomic or-
bitals.101 As such, the library provides a tensorial correc-
tion for non-orthogonal basis sets, either via a Cholesky
factorization of the overlap matrix or a preconditioner
suitable for localized orbitals.

The library is built for maximum efficiency in data
reuse; the API is designed for repeated calls within an
outer self-consistency loop in the host code. Data is
reused between calls in two ways: (a) some matrices,
such as the coefficients matrix of the Wannier functions,
are repeatedly passed in at each call, updated during the
call and passed out again; (b) other data is allocated and
stored internally by the library, and, therefore, a final
call to free all memory must be performed.

The library is also written to be agnostic with respect
to both the data storage scheme of the matrices and
the implementation of the matrix operations. This is
achieved by making use of an underlying library for ma-
trix operations, MatrixSwitch, described in Section IV L.

J. PIKSS: Parallel iterative Kohn-Sham solvers

In addition to ELSI and its supported solvers
(Secs. IV H and IV I), the parallel iterative Kohn-Sham
(KS) solvers library PIKSS is a bundle of several iterative
diagonalization eigensolvers that have been extracted
from the Quantum ESPRESSO (QE) suite, and recast
in an independent, code-agnostic fashion. It includes the
popular Davidson diagonalization and a band-by-band
conjugate gradient minimization methods, but also im-
plements the more recently developed Projected Precon-
ditioned Conjugate Gradient (PPCG),108 and Parallel
Orbital (ParO) update solvers109 that allow new paral-
lelization paradigms.

As ideal within the ESL concept, the library is de-
signed such that the interaction with the main electronic
structure code is via routine library calls with a well-
specified API. The operations performed by the library
depend on the chosen diagonalization method, but gen-
erally include application of the hamiltonian to a set of
candidate wavefunctions, computation of the overlap ma-
trix, approximation of inverse matrices, etc.

Unlike the original, strictly plane-wave implementation
in QE, the KS-Solvers library allows for any internal rep-
resentation of the wavefunction and Hamiltonian. To fur-
ther exemplify how to expand the usability of the solvers,
a Reverse Communication Interface version for one of the
solvers (Davidson diagonalization) is also provided. The
library is currently hosted in Ref. 110.

Initially integrated within KS-Solvers but currently

being developed as a stand-alone library, the miniP-
WPP module serves as a demonstrator for the KS-
Solver library. miniPWPP, a barebone DFT imple-
mentation based on planewave-empirical pseudopotential
framework, showcases the usage of the several methods
within KS-Solvers library. It allows performance com-
parison of them on different hardware platforms (e.g.
CPU, GPU), and with different parallelization paradigms
(e.g. over bands, task groups etc.). Both the KS-Solvers
and miniPWPP, along with other libraries (i.e. FFTXlib
and LAXlib) that originated from Quantum ESPRESSO
suite and tailored for plane wave basis, will be inserted
in the ESL bundle in future releases.

K. wannier90

Wannier functions (WFs)111,112 provide a localised
real-space representation of the electronic structure of
materials that is complementary to the reciprocal-space
representation of Bloch bands. The freedom associated
with the choice of gauge of Bloch states can be used
to construct exponentially localized WFs.113 So-called
maximally-localized Wannier functions (MLWFs)14 are
obtained by choosing the gauge that minimizes the total
quadratic spread of the WFs. Both the case of isolated
bands,14 i.e., a composite set of bands that is separated
from other bands in the Brillouin zone (BZ) by energy
gaps, and the case of entangled bands114 can be treated.

MLWFs are used routinely, for example, to analyse and
understand chemical bonding, to perform high-accuracy
fine-grained interpolation of quantities in the BZ (such
as band energies, Berry phase properties and electron-
phonon interactions), to characterise topological materi-
als, to construct compact tight-binding models of mate-
rials, and to compute charge transport properties. We
direct the reader to Refs. 112 and 115 for details of the
underlying theory of MLWFs and their diverse applica-
tions. Instead, here we focus on (1) the aspects of the
wannier90 code13,115,116 and its development that have
enabled it to emerge as a paradigmatic example of an in-
teroperable software tool, and (2) future plans that will
take the code further in directions that reflect the broader
philosophy of the ESL.

From its conception,117 wannier90 was designed to
make the addition of new functionality as easy as pos-
sible, by being modular, well-documented and well-
commented, and to be as independent as possible from
the underlying code that calculates the Bloch bands
from which the MLWFs are constructed. As such,

wannier90 requires only the matrix elements M
(k,b)
mn =

〈umk|unk+b〉, where unk(r) is the cell-periodic part of
the Bloch function ψnk(r) = unk(r)eik·r, together with
an initial guess for the choice of gauge. The latter can
be obtained either by projecting an appropriate set of
atomic-like orbitals gn(r) onto the initial Bloch states,
or by using the recently implemented “selected-columns
of the density matrix” (SCDM) method,118–120 that does

13

not demand the human intervention often needed to de-
fine good projection functions.

Since these matrix elements, together with the eigen-
values of the single-particle hamiltonian, are independent
of the specific implementational details of the underlying
electronic structure code (e.g., basis set, grids, symmetry
operations, level of theory, pseudopotentials), wannier90
is fully interoperable with any code that is able to calcu-
late them. The onus is largely on the developers of elec-
tronic structure codes, therefore, to develop and main-
tain their own interface that provides these quantities.
wannier90 allows for two interface modes: (1) via read-
ing and writing files to/from disk and running wannier90
as a separate external executable; and (2) via calls to
the wannier90 library directly from within a program.
Electronic structure codes that interface to wannier90
include: Quantum ESPRESSO,24 ABINIT,58 VASP,121

Siesta,22 WIEN2k,60 Fleur,122, Octopus,23,52 ELK,123

BigDFT,25 GPAW,27 pyscf,124 and openmx.125 New de-
velopments in wannier90, therefore, are available to the
vast majority of the user community rapidly, which serves
to accelerate research.

The most recent major release (v3.x) of wannier90
is able to compute a growing range of properties,115 a
range that is increasingly difficult to maintain in one code
with a small group of developers. Furthermore, there is
a growing community of researchers and codes, includ-
ing Gollum,126 WannierTools,127 NanoTCAD ViDES,128

Yambo,129 Z2Pack,130 Triqs,131 and EPW132 that use
wannier90 to calculate an even wider range of prop-
erties. For these reasons, in 2016, ten years after its
first release,117 wannier90 transitioned to a community-
development model in which the code is hosted on
GitHub116 and community-driven developments are in-
vited via a fork and pull-request approach. Code in-
tegrity is maintained via a documented coding style
guide that contributors must adhere to, together with
nightly automated building and testing on a Buildbot133

test farm, and continuous integration with Travis CI134,
whereby a pull-request triggers a suite of test calculations
and is blocked if any tests fail.

What does the future hold for wannier90? Currently,
only a small subset of the full functionality of the code is
accessible in the library mode of wannier90, and only
in serial processing. The next major planned devel-
opment, therefore, is to completely re-engineer the li-
brary mode of the code such that the full functionality
of wannier90 (including parallel processing) is accessible
via library calls from within, e.g., an overarching work-
flow, a dynamical simulation, or a self-consistent field
iteration. This would enable advanced materials prop-
erties to be calculated seamlessly on the fly. Using the
code in this way is made significantly more practical due
to recent developments in generating MLWFs automati-
cally with minimal user-intervention.118 Some challenges
will need to be overcome, however, including: determin-
ing the optimal strategy for parallelisation given that this
is likely to conflict with that of the host electronic struc-

ture code; and handling errors thread-safely yet unob-
trusively. When this development is complete, like the
ouroboros that swallows its own tail135, we envisage the
main wannier90 code becoming a wrapper for its own
library calls.

L. MatrixSwitch

The MatrixSwitch library was developed alongside Li-
bOMM during the first ESL workshop, but is indepen-
dent of it. Its aim is to act as an intermediary layer be-
tween high-level routines for physics-related algorithms
and low-level routines dealing with matrix storage and
manipulation, allowing the former to be written in a way
which is close to mathematical notation, while also en-
abling seamless switching between different matrix stor-
age formats and implementations of the matrix opera-
tions. As new formats are introduced in MatrixSwitch,
they can immediately be used in the high-level routines
without any further modification of the code. Both dense
and sparse formats are supported, as well as serial and
parallel distributions.

At the centre of MatrixSwitch is the matrix object, a
Fortran derived type defined by the library which acts
as a wrapper for the specific storage format. A small
number of basic operations are defined for this object,
such as setting and getting elements, matrix-matrix mul-
tiplication, matrix addition, traces, etc. The API is also
easily extensible to include more complex matrix opera-
tions which are not part of the standard set, as the object
is quite transparent and can be unpacked when needed
to operate directly on the underlying data structures.

An additional feature of the library is that it facilitates
its usage only for a subset of the host code (e.g., in a
specific module), by permitting pre-existing matrix data
conforming to one of the supported storage formats to
be simply registered by MatrixSwitch without the need
for copying, converting, or allocating new memory. The
registered matrix can then be used for any MatrixSwitch
operation as if it were natively managed.

As well as being used by LibOMM, MatrixSwitch is
also currently being used in parts of Siesta (e.g., for the
recently developed real-time time-dependent DFT algo-
rithm) and in smaller codes used for individual research
projects.136 MatrixSwitch has recently been extended137

to use the DBCSR library138,139 (Distributed Block Com-
pressed Sparse Row), a linear-algebra parallel engine for
sparse matrices. The original Siesta linear-scaling solver
based on OMM with finite support solutions140 is being
refactored to use MatrixSwitch and thus take advantage
of the DBCSR backend. This strategy will be extended
to other related solvers.141

14

M. flook

The flook library was developed with the objective to
control flow and move lightweight operations into script-
able code. It provides a simple way to code top steering
tools (see Fig. 1 b) such as molecular dynamics (MD)
methods which are called only once every MD step and
are typically light operations, but it also allows deeper-
level control of the code, such as the tuning of mixing
parameters or stopping calculations when certain crite-
ria are met, for example.

The scripting can be efficiently implemented by embed-
ding a Lua interpreter into the application program. Lua
is a lightweight embeddable scripting language.142 The
software library flook enables Fortran and Lua to com-
municate together in a seamless way by passing variables
to and from “tables” in Lua. Having a hook between
Lua and Fortran empowers end-users to create their own
scripts in Lua in order to extend the functionality of
codes. Since any data can be moved between Fortran
and Lua, the Lua script which implements a particular
functionality can be used to replace that functionality
inside the core Fortran code, if so desired.

This methodology works by assigning Lua functions
to be called in Fortran. By populating a table with the
internal data-structure in Fortran using dictionaries one
can easily enable variable passing between Fortran and
Lua using a single line of code. As an example, here is a
snippet of Fortran and Lua code which enables access to
the atomic coordinates in the Siesta DFT package.

a. Fortran code:

type(dictionary_t) :: variables
! Add atomic coordinates to table of variables
variables = variables // (’geom.xa’.kvp.xa)

b. Lua code:

-- Retrieve atomic coordinates and manipulate
local xa = siesta.geom.xa

Currently flook is used in Siesta to extend molecular
dynamics methods, customize outputs, force-constants
calculations and convergence of precision parameters. It
also exposes convergence variables which allows the user
to change these parameters while a calculation is running.
A derived project (flos [https://github.com/siesta-p
roject/flos]) implements the scriptable Lua functions
that may be used for other projects using flook.

N. LibFDF

FDF stands for Flexible Data Format, designed within
the Siesta project to simplify the handling of input op-
tions. It is based on a keyword/value paradigm (includ-
ing physical units when relevant), and is supplemented
by a block interface for arbitrarily complex blobs of data.

LibFDF143 is the official implementation of the FDF
specifications for use in client codes. At present the FDF

format is used extensively by Siesta, and it has been an
inspiration for several other code-specific input formats.

New input options can be implemented very easily.
When a keyword is not present in the FDF file the corre-
sponding program variable is assigned a pre-programmed
default value. This enables programmers of client codes
to insert new input statements anywhere in the code,
without worrying about “reserving a slot” in a possibly
already crowded fixed-format input file.

O. xmlf90

xmlf90 is a package to handle XML in Fortran. It has
two major components: (i) A XML parsing library, with
the most complete programming interface based on the
very successful SAX (Simple API for XML) model,144 al-
though a partial DOM interface and a very experimental
XPATH interface are also present. The SAX parser in
particular was designed to be a useful tool in the ex-
traction and analysis of data in the context of scien-
tific computing, and thus the priorities were efficiency
and the ability to deal with potentially large XML files
while maintaining a small memory footprint. (ii) A li-
brary (xmlf90-wxml) that facilitates the writing of well-
formed XML, including such features as automatic start-
tag completion, attribute pretty-printing, and element
indentation. There are also helper routines to handle the
output of numerical arrays. xmlf90 is the parsing engine
for the libPSML library of Section IV F.

V. THE ESL BUNDLE

Adopting a modular approach has many advantages:
smaller software units to develop and maintain, easier
testing of each component, faster propagation of fixes,
better separation of technical domains, reduced duplica-
tion of code, to cite a few obvious ones. However, it also
implies some risks: if not addressed explicitly, the asyn-
chronous evolution of the individual components — aka
modules — quickly becomes a severe obstacle to the im-
provement and maintenance of the whole. Libxc is an
emblematic example of this kind of situation: whenever
a new exchange-correlation functional is implemented in
Libxc, a few dozen DFT codes are just one compilation
away from using it. However, if the API of Libxc changes,
each DFT code has to update its interface to Libxc to be
able to use the new version, which results in a situation
where some codes use one version of the library while
others are stuck with an older version.

When one module depends on another, or a number
of others, a few aspects have to be considered with great
care:

• A given version of the dependent module is compat-
ible with only some versions of those it is dependent
on.

https://github.com/siesta-project/flos
https://github.com/siesta-project/flos

15

ELPA

NTPoly

PEXSI

Scotch

SuperLU_dist

Spglib

ESL Bundle

ELSI

ELSI_RCI

Libpspio

Flook

Fdict

LibFDF

LibGridXC

LibPSML

Libvdwxc

PSolver

Wannier90

LibOMM MatrixSwitch

LibXC

XMLF90

Futile

FIG. 3. Internal dependencies between the components of
the ESL Bundle. White background: components extracted
from electronic-structure codes participating in the ESL. Blue
background: components created within the ESL or through
its activities. Orange background: components maintained
outside the ESL. The complete tree of solvers accessed by
ELSI appears in Fig. 2.

• Even when the two versions are compatible, not all
configuration options available will actually work,
i.e. the two modules may have conflicting require-
ments in some situations.

• In addition to technical aspects, social considera-
tions have to be taken into account, in particular
when the two modules are developed by different
teams.

To mitigate these risks, we provide all the ESL soft-
ware libraries in the form of a bundle. The ESL Bundle
provides a set of ready-to-use software modules such that
to each version of the ESL Bundle there corresponds a
well defined set of module versions that are compatible
among themselves. The contents of the ESL Bundle are
curated through the activities of the ESL and supervised
by the ESL Steering Committee (for more details about
the governing structure of the ESL, see Appendix A).
Adding, updating or removing modules is discussed dur-
ing ESL workshops and Steering Committee meetings
until an agreement is reached, before being thoroughly
tested to detect possible compatibility issues. The vali-
dation of any change within the ESL Bundle sometimes
involves a high level of complexity, which is why it is
performed by a team of volunteers and includes manual
steps. Indeed, the ESL Bundle is meant to be used in
production by ESC codes, not just to be successfully in-
stalled on a given set of systems. What will finally decide
whether a module can be updated will be the usability of

its new version by these ESC codes, which is why comple-
mentary tests should be conducted with the codes them-
selves before releasing a new version of the ESL Bundle.
Fig. 3 summarises the dependencies between individual
modules, which are actively monitored in collaboration
with their respective developers. Changes and improve-
ments brought by the ESL are reported to the original
developers of the affected modules and contributed back
to the upstream module whenever possible.

However, providing a bundle by itself is not enough.
To ensure its usability, the ESL Bundle must be easy to
compile and install on different platforms and by users
with different needs and goals. With so many different
components, written in different programming languages
and using different build systems, this is far from be-
ing a trivial task. This is why the ESL Bundle needs
to be distributed in different forms, each targeting a dif-
ferent use case. We describe two of these distribution
channels in greater detail in the following subsections.
A third distribution channel currently under considera-
tion is to provide the ESL Bundle as Debian and RPM
packages. Several components, like Libxc, are already
included in the official repositories of several popular
Linux distributions, like Debian or Fedora, as well as
in the MacPorts package manager for macOS, but we
would like to extend this to the whole ESL Bundle. A
fourth channel of distribution for the bundle is the collec-
tion of docker images released publicly on docker hub, at
https://hub.docker.com/u/eslib . After each release
a new docker image is built using JHBuild scripts, tagged
and used to test the ESL Demonstrator. These images
can be handy for quick access to a binary distribution
of the bundle, of benefit to both developers and curious
users.

A. JHBuild bundler

To provide the ESL Bundle in a fully self-contained
way with a common installation interface for all of its
components, we use the JHBuild framework.145 JHBuild
is an actively-maintained Python build framework used
by the GNOME Project146, an open-source desktop envi-
ronment for Unix-like operating systems, which has been
solving the same challenges as the ESL over the last two
decades. JHBuild is able to build a collection of mod-
ules, that it names modulesets, from a minimal amount
of information: download URL, type of build system, and
one-to-one dependencies, plus optional on-the-fly correc-
tions (patches). JHBuild determines the correct order
of compilation of the modules by itself and strictly sepa-
rates the aspects related to the modulesets from those be-
longing to the build environment. The latter is achieved
by using configuration files to tune the build parame-
ters, globally or for each module. In the case of the ESL
Bundle, we provide a curated collection of such configu-
ration files for Linux-based systems and macOS. The use
of JHBuild greatly simplifies the installation of the ESL

https://hub.docker.com/u/eslib

16

Bundle and is ideal for developers or users of electronic
structure codes that require one or more components to
be installed on their personal computers, but do not care
too much about performance.

B. HPC-oriented distribution

Once we consider software provisioning for HPC re-
sources, where software such as the ESL Bundle should
leverage the available hardware and seamlessly integrate
into the existing software stack, the situation becomes
vastly more challenging. In this context, the ESL is
far from alone in the depth and complexity of its soft-
ware stack. Application developers, HPC sites, and end
users around the world spend significant amounts of time
creating and verifying optimised software installations
for such resources. Although the problems that arise
with installing scientific software are ubiquitous, there
is currently inadequate collaboration between HPC sites
and/or HPC domains. At the “Getting Scientific Soft-
ware Installed” Birds-of-a-Feather session at SC’19 less
than 30% of the survey respondents answered ’yes’ when
asked whether they work together with other HPC sites
on software installation.

EasyBuild147 is a tool for providing optimised, repro-
ducible, multi-platform scientific software installations in
a consistent, efficient, and user-friendly manner. Easy-
Build is currently used by well over 100 HPC sites world-
wide (including Jülich Supercomputing Centre, CSCS,
Compute Canada, SURFsara, SNIC, . . .). Leveraging
EasyBuild for HPC-oriented distribution provides the
ESL with an HPC-oriented build infrastructure that can
quickly and reliably distribute the bundle to a large num-
ber of HPC sites.

EasyBuild employs so-called compiler toolchains, or
simply toolchains for short, which are a major facili-
tator in handling the build and installation processes.
A typical toolchain consists of one or more compilers,
usually put together with some libraries which provide
specific functionality, e.g., for using an MPI stack for
distributed computing, or which provide optimized rou-
tines for commonly used math operations, e.g., the well-
known BLAS/LAPACK APIs for linear algebra routines.
For each software package being built, the toolchain to
be used must be specified. Notably, EasyBuild already
supports over 1800 software packages, including many of
the (direct and indirect) dependencies of the ESL Bun-
dle. These verified and consistent infrastructures allow
ESL development efforts to focus primarily on its compo-
nent libraries which can be synchronised with the Easy-
Build toolchain release cycle (which currently has two
updates per year). This is why EasyBuild replaces JH-
Build for the distribution of the ESL Bundle on HPC
environments.

VI. USE CASES IN END USER CODES

Fig. 4 illustrates the usage of ESL packages by the elec-
tronic structure programs engaged in the ESL project.
There are more cases of usage not covered here, namely,
other electronic structure codes which use some of the
libraries described above. As stated previously, ESL col-
lects both libraries that have been built or extracted
from codes purposely for ESL, together with indepen-
dently developed and maintained libraries, as e.g., Libxc
and wannier90, which predate ESL, and whose authors
agree with (and contribute to) their incorporation into
the ESL. The libraries in Fig. 4 are the ones that are
(or are being) included in the ESL Bundle described in
Section V.

The lines in Fig. 4 show dependencies between compo-
nents of the ESL and user codes. The red lines indicate
dependencies on libraries (depicted as ovals) that have
been extracted as independent library components of the
ESL from the connected user code (the rectangles). Of
course, the original codes use them as well. The blue lines
show which user codes use components that were inde-
pendently developed in the ESL. Some of the libraries,
although not extracted from any given code, were devel-
oped by code developers of a particular code. However,
such connections are not indicated in the figure. In the
following we describe the links and ESL usage illustrated
in Fig. 4 for the codes shown, starting with the ESL
Demonstrator, a very lean electronic structure code cre-
ated from scratch in a couple of weeks and built on the
ESL.

A. ESL Demonstrator

Four years after the ESL was initiated, the ESL team
realised it had gathered sufficient libraries to account for
nearly all the complex parts of a simple DFT code. In
February 2018, the 5th ESL workshop was focused on
building an entire DFT code from scratch, within a fort-
night. The purpose of such demonstrator code is to show-
case the usage of ESL libraries and to provide a frame-
work to test the ESL Bundle. It is not in any way in-
tended to be a competitor to existing DFT codes. In-
stead, it can be seen as being part of the ESL documen-
tation, guiding new users and developers of the ESL. As
such, some effort has been made to make it clear, simple
and easily extendable.

The resulting code, the ESL Demonstrator, is a func-
tional DFT code which makes extensive use of the ESL
libraries presented in Fig. 5. It uses pspio for reading
pseudo potentials, PSolver to calculate the Hartree po-
tential, LibFDF as the input engine, libGridXC to cal-
culate the XC potential on a grid, Libxc to evaluate the
XC functional on the points of that grid, ELSI for calcu-
lating eigenstates, and flook to make scriptable control
flows. During the development it was also decided to fol-
low the Sphinx documentation style to retain a unified

17

FIG. 4. Use of ESL libraries within electronic structure codes. The rectangular boxes at the top show electronic structure
programs (end users), red indicating open-source programs (licensed via GPL), while FHI-aims is distributed by a registered
non-profit organization (Molecular Simulations from First Principles e.V., MS1P – https://ms1p.org/) under a proprietary
licence, and QuantumATK is under commercial licence distributed by the software company Synopsys. This set contains
codes connected to the ESL, mostly via contributors to ESL being developers of these codes (there are many other codes
that use at least some of the depicted libraries). Blue ellipses indicate libraries described in this paper. The larger (green)
ellipse corresponds to ELSI as a general interface to several Hamiltonian solvers, with its associated libraries. Arrows indicate
dependencies. Thick black dashed lines indicate libraries dependent on other libraries, blue lines show libraries directly used by
the codes, and red lines indicate libraries that were re-engineered by extracting them from a particular code (and are also used
by that code). DBCSR138,139 is included here because it has been coupled137 to MatrixSwitch as a parallel sparse linear-algebra
engine. ELPA is also used by ABINIT, QuantumESPRESSO, and GPAW.

documentation scheme.

The development of the demonstrator code was care-
fully divided between teams formed from the 14 people
who attended the workshop coding session. The tasks
were assigned to suit the individual expertise within each
team whilst also taking into account the backbone code
of the demonstrator. In particular there are several parts
of a DFT program required, 1) user input, 2) Hartree po-
tential, 3) XC potential, 4) eigenstate solver, 4) scriptable
work-flows. While most codes use either a plane-wave or
a localized orbital basis, the ESL Demonstrator allows
users to use either of the two. Such a decision makes the
code slightly more complicated, but it allows an increase
in the range of libraries used and provides newcomers to
DFT codes an easy access point to two classes of basis
sets that require very different numerical methods.

The ESL Demonstrator successfully uses the afore-
mentioned libraries. It currently only allows non spin-
polarized, Γ-point calculations as well as serial execution.
Some of the missing features are due to shortcomings in
the ESL Bundle. For example, it currently contains no
libraries to generate k-point grids, which restricts the
ESL Demonstrator to Γ-point only calculations. Other

missing features are not due to the underlying libraries,
but simply reflect the early stage of development of the
ESL Demonstrator. Our plan is to keep extending the
ESL Demonstrator to cover more features provided by
existing ESL libraries and by new libraries added to ESL
Bundle in the meantime. Work is underway on allowing
parallel execution and spin-polarized calculations.

An important effect of developing the ESL Demonstra-
tor is the exposure of possible bugs, missing features and
testing how integrable and inter-operable libraries actu-
ally are. Indeed the development of the demonstrator
led to the discovery of certain bugs and build problems
in ESL libraries. The ESL Demonstrator acts a de facto
test for the ESL Bundle where a successful build and run
of the demo is a prerequisite to release a new bundle.
The code is hosted here https://gitlab.com/Electro
nicStructureLibrary/esl-demo.

https://gitlab.com/ElectronicStructureLibrary/esl-demo
https://gitlab.com/ElectronicStructureLibrary/esl-demo

18

FIG. 5. Libraries used in the full DFT program developed
as a demonstrator for the ESL. It allows the user to choose
between plane-waves or atomic orbitals as basis sets. The
libraries themselves are as in Fig. 4, and as described in this
section.

B. ESL in participating codes

1. ABINIT

ABINIT pioneered the open-source model within the
electronic-structure community. It is a plane-wave-based
code that has allowed contributions from quite an open
community of developers, some of them coding new fea-
tures, tools, etc. in modules being integrated into the
code. In that sense it can claim to have taken the first
intellectual step within the electronic-structure commu-
nity that led to the ESL. In addition to this contribution
to the ESL concept, ABINIT benefits from the usage of
Libxc for the local and semi-local exchange-correlation
terms, and it now incorporates libGridXC on top of Libxc
for the global grid treatment on non-local functionals. It
also makes use of PSolver for the computation of the
Hartree terms to energy and potential, and the PSML
standard and associated library for pseudopotential in-
put.

2. BigDFT

For several years already, the monolithic sources of
BigDFT have been divided into several subdirectories,
that slowly became independent from each other and
were finally separated into their own modules, living
in a separate Git tree and that are shipped with their

own build system. This direction of work was seen by
the developer team as a way to keep the development
sustainable in terms of functionalities and maintenance.
It started with a library implementing a tool box for
Fortran, Futile that is available in the ESL. This tool
box started with in-memory representation of a YAML
document,148 but was quickly extended to keep track
of dynamic memory allocations, time measurements, er-
ror handling, etc. The versatile Poisson solver used in
BigDFT is now completely independent from its origins
and also available in the ESL. Some other components of
BigDFT available in the ESL, were developed from the
start as separated libraries, like the sparse matrix library
CheSS.149 BigDFT is also taking advantage of codes de-
veloped outside the project. Like numerous other DFT
codes, it is using Libxc for the exchange and correla-
tion calculation. An interface exists to post-process the
calculated wave functions using wannier90. While ini-
tially coded for the Hutter-Goedecker-Hartwigsen pseu-
dopotential formalism,150 a link with pspio was written
to allow a greater range of pseudopotentials. Finally,
BigDFT is distributed as a bundle, like the ESL. It takes
care of the compilation and linking of the various libraries
and the end project itself, to deliver a single executable
to the end user.

3. FHI-aims

FHI-aims developers have greatly contributed to the
ESL through joint involvement in the broader, U.S. NSF-
funded ELSI project, described in Section IV H. ELSI was
inspired by the ESL and represented an early U.S. ini-
tiative in this effort, in an otherwise primarily European
endeavour. Through ELSI, FHI-aims now benefits from
a range of Hamiltonian solvers in a seamless framework.
This list includes ELPA, which originated within FHI-
aims and is maintained as a standalone solver library led
by the Max-Planck Computing and Data Facility, as well
as PEXSI, NTPoly and all other solvers supported by
ELSI. The libraries used by FHI-aims are not restricted
to solvers, as Libxc is supported for the calculation of
the exchange-correlation contribution for local and semi-
local functionals.

4. GPAW

The GPAW code allows for different modes of oper-
ation, according to the way Kohn-Sham wavefunctions
are represented.27,151 They are based on, namely, finite
differences (FD), plane waves (PW), or linear combina-
tion of atomic orbitals (LCAO). The LCAO mode uses
ELPA for fast parallel diagonalization of the Hamilto-
nian matrix. GPAW also uses Libxc plus libvdwxc to
support LDA, GGA, meta-GGA, and vdW-DF exchange-
correlation functionals.

19

5. Multiple scattering codes

Codes built around the computation of the Kohn-Sham
Green’s function, by means of multiple scattering (MS)
theory, give immediate access to spectroscopic properties,
transport and many other response functions. In addi-
tion, these methods can deal with many different prob-
lems in electronic structure theory for systems with and
without periodicity, such as disordered alloys and semi-
infinite surfaces.88 Multiple-scattering codes typically im-
port data such as self-consistent Kohn-Sham potentials or
charge densities from other ES codes. The set of ESCDF
format specifications and the associated library is ideal
for that purpose. It is being already used by data trans-
fers between codes such as the Munich SPR-KKR88,89

and MSSpec.87

6. Octopus

Octopus is currently interfaced to several libraries that
are part of the ESL Bundle. The Libxc library, although
it is now completely independent, was originally devel-
oped within Octopus. When treating finite systems in
Octopus, the default method to solve Poisson’s equation
is the one provided by PSolver. Evaluation of exchange
and correlation functionals that depend explicitly on the
density is done exclusively using the Libxc and libvdwxc
libraries. Support for reading pseudopotentials using the
pspio library is also provided, as well as the possibility of
using wannier90 to compute maximally-localised Wan-
nier functions from the Bloch states. Finally, the ELPA
library can be used whenever direct diagonalization of
matrices is required.

7. QuantumATK

QuantumATK is a commercially-developed platform
which includes its own LCAO and plane-wave DFT
solvers, as well as semi-empirical tight-binding and force-
fields. The code is closed-source, but makes use of sev-
eral external software libraries; among these are three
libraries in the ESL Bundle: Libxc, ELPA and PEXSI
(the last two included independently of ELSI). ELPA and
PEXSI are used not only for the LCAO-DFT solver but
also for the various semi-empirical tight-binding solvers.

QuantumATK is a unique case amongst the list of cur-
rent codes using ESL libraries, for a number of reasons:
(a) its closed-source and commercial nature means that
there are strict constraints on the licensing of libraries it
can use (the most common being MIT, BSD and LGPL);
(b) it uses C++ as its backend language (with a Python
frontend), and the ESL libraries are therefore linked to
C++ rather than Fortran or C; and (c) executables are
compiled and shipped for Windows as well as Linux.

8. Quantum ESPRESSO

This plane-wave program distribution contains a va-
riety of optimised iterative Hamiltonian solvers tailored
for the plane-wave basis. Within the ESL effort, they
were extracted and isolated into the PIKKS KS-Solvers
suite and library, together with additional components
to perform fast-Fourier transforms (FFTXlib) and par-
allel linear algebra operations (LAXlib). These will be
inserted in the ESL bundle in future releases. Use of
these components is demonstrated in a simple empirical
pseuodopotential code that can be used as tool for fur-
ther developments.110 Quantum ESPRESSO codes link
to these libraries, as well as to other ESL libraries of
different origin, such as Libxc, ELPA, and wannier90.

9. SIESTA

Two libraries now in the ESL (libGridXC, LibFDF)
originated as modules within Siesta. Several more
(flook, xmlf90 and libPSML) were developed with general
usefulness in mind but also to address issues of relevance
to that program. Siesta is thus an important contribu-
tor to the ESL. In the opposite direction, Siesta bene-
fits from other ESL-provided functionality, most clearly
in the area of solvers, with an interface to ELSI that has
significantly extended the choices available and enhanced
the performance of the code. The Libxc library is also
used through the interface to libGridXC. wannier90 has
also been fully incorporated as a library. Work is now
being done to incorporate the new functionality avail-
able in the PSolver library in Siesta and there are plans
to benefit from some of the low-level utilities in the Futile
package.

VII. FUTURE

The ESL represents a channel for possible spontaneous
utility projects to develop and link into present and new
electronic structure packages. In this sense, the future
evolution of the ESL from the point of view of the sub-
packages it contains is quite open.

For the mid- and long-term future of the ESL, a key
metric of success will be wide usage. In addition to com-
munication (as done in this paper and on the web), the
following aspects will be important. (i) Content – use-
ful features. High-level programmers should be able to
find in the ESL key tools for their programs. (ii) Perfor-
mance. The libraries will need to be maintained, keeping
up with hardware evolution, and maintaining competi-
tive standards of efficiency and scalability. An important
component of future performance will be the definition
and stabilisation of APIs, in addition to good standards
of documentation. (iii) Easy use. The library has to
be user friendly, not necessarily for the end user, but
for computational-scientist coders, who will implement

20

new codes and/or features linking to the ESL. (iv) Easy
build. End users of programs that link to the ESL should
be able to compile their codes reasonably easily.

Concerning content, there is a list of candidate libraries
to include, as well as modules in present programs that
can be extracted as libraries. In the short term, there
are packages (some of them mentioned above) that are
being prepared for inclusion into the ESL and its bun-
dle. This is the case for the CheSS library,149 which
implements a linear-scaling Hamiltonian solver based on
a Fermi-operator expansion. It arises from the BigDFT
program, but it already works as a separate library, and is
already used by other codes, such as Siesta. Similarly,
the connection between MatrixSwitch and DBCSR, il-
lustrated in Fig. 4 will soon be bundled into the ESL.
Also a candidate for bundling into the ESL is the lib-
PAW library,152 currently distributed in the ABINIT
package, but also used in BigDFT and other codes. It
is a collection of objects and routines intended to facili-
tate the porting of the projector augmented-wave method
“out of the box” onto any ES code regardless of the basis
used for the wave functions. DFTB+106,153 developers
are also joining the ESL effort contributing their semi-
empirical electronic structure engine and the stand-alone
SAYDX library (Structured Array Data Exchange),154

which is an auxiliary library that provides a platform for
exchanging array data using a simple tree structure. It
offers a framework to build, manipulate and query such
array data trees, as well as send and receive them through
various transport layers. They will be incorporated into
future ESL bundles.

Although the ESL and this paper focus on electrons,
an important line of future work is the incorporation
of upper-level steering packages and libraries, promi-
nently molecular-dynamics engines, and, more generally,
codes dealing with the nuclear degrees of freedom, both
classically and quantum-mechanically. Large-scale first-
principles condensed-matter and molecular simulations
are extremely versatile, but most of their applicability de-
mands an efficient treatment of both electrons and nuclei,
which will benefit from (i) improved robust communi-
cation between nuclear-dynamics drivers and electronic-
structure engines on varied platforms, and (ii) hierarchi-
cal parallelisation of the integrated code, to allow very
large scale simulations on massively parallel computers.
Library solutions for both problems and, especially, their
integration, represents a promising direction for the com-
munity, building on initiatives such as i-PI.16 It is a line of
work that would involve the core of the CECAM commu-
nity, not only the electronic side, representing a great op-
portunity for the future of condensed-matter and molec-
ular simulations.

VIII. CONCLUSIONS

The electronic structure library project presented here
is an initiative to stimulate, coordinate and amplify the

efforts in library sharing already started within the elec-
tronic structure community. It was initiated by CE-
CAM, which continues its support together with the E-
CAM European Centre of Excellence, spearheading a
push within the community for a better model of elec-
tronic structure software development which, it is hoped,
will enhance dynamism, versatility, maintainability and
optimisation of electronic structure codes. It will ratio-
nalise coding effort by avoiding useless repetition, and by
separating different types of coding task to be carried out
by people with suitable profiles and backgrounds, distin-
guishing between computational scientists and computer
scientists or software engineers. We believe that it will
allow the re-engineering efforts needed for deployment of
electronic codes on novel computer architectures to be
carried out more efficiently, widely, and by professionals
close to hardware companies and HPC centres.

Importantly, it is a community effort, pushed by peo-
ple involved in the development of very prominent and
popular electronic structure codes, representing a wide
spectrum of the community. Most of the library pack-
ages presented in this paper were extracted from those
codes, and many of these are currently being used by
codes other than their parent codes. There has been an
emphasis on library packages for highly-parallel heavy-
duty tasks, the sharing of which is more challenging, but
very important for the ambitions of the ESL.

In addition to extracting, generating, and documenting
the library packages and adapting their APIs for general
use, part of the ESL effort is dedicated to facing the new
challenges arising with the model. Most prominently, the
integration of units with different data structures and
parallelisation, and the bundling of the set of packages
in the ESL library for consistent and automatic building
and compiling.

Finally, as a community effort, the ESL community
welcomes new additions to the ESL, and, of course, the
use of the ESL or its components by any electronic struc-
ture programmer, or indeed any other community, as well
as user feedback.

AUTHORS CONTRIBUTIONS

All authors have contributed to this paper by coding
and organizing the coding events. Micael J. T. Oliveira,
Nick Papior, Yann Pouillon and Volker Blum have con-
tributed to the ESL by coordinating the project at cod-
ing events and in between them; Micael J. T. Oliveira,
Nick Papior, and Yann Pouillon have maintained the soft-
ware infrastructure. Most authors have contributed to
the writing of the paper, either of particular sections or
by revising it. Micael J. T. Oliveira and Emilio Artacho
have coordinated the writing.

21

ACKNOWLEDGMENTS

The authors would like to thank CECAM for launch-
ing and pushing the ESL, as well as hosting part of its
infrastructure, and partly funding the extended work-
shops where most of the coding was done, both in the
Lausanne headquarters as in the Dublin, Trieste and
Zaragoza nodes. Within CECAM, particular thanks
to Sara Bonella, Bogdan Nichita, and Ignacio Pago-
nabarraga. The authors also acknowledge all the peo-
ple that have supported and contributed to the ESL in
different ways, including Luis Agapito, Xavier Andrade,
Balint Aradi, Emanuele Bosoni, Lori A. Burns, Chris-
tian Carbogno, Ivan Carnimeo, Abel Carreras Conill,
Alberto Castro, Michele Ceriotti, Anoop Chandran,
Wibe de Jong, Pietro Delugas, Thierry Deutsch, Hu-
bert Ebert, Aleksandr Fonari, Luca Ghiringhelli, Paolo
Giannozzi, Matteo Giantomassi, Judit Gimenez, Ivan
Girotto, Xavier Gonze, Benjamin Hourahine, Jürg Hut-
ter, Thomas Keal, Jan Kloppenburg, Hyungjun Lee,
Liang Liang, Lin Lin, Jianfeng Lu, Nicola Marzari, Donal
MacKernan, Layla Martin-Samos, Paolo Medeiros, Fawzi
Mohamed, Jens Jørgen Mortensen, Sebastian Ohlmann,
David O’Regan, Charles Patterson, Etienne Plésiat,
Markus Rampp, Laura Ratcliff, Stefano Sanvito, Paul
Saxe, Matthias Scheffler, Didier Sebilleau, Søren Smid-
strup, James Spencer, Atsushi Togo, Joost Vandevon-
dele, Matthieu Verstraete, and Brian Wylie.

The authors would also like to thank the Psi-k network
for having partially funded several of the ESL workshops.
Alan O’Cais, Emilio Artacho, David López-Durán, Ste-
fano de Gironcoli, Emine Küçükbenli, Arash Mostofi,
and Mike Payne have received funding from the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gram under the grant agreement No. 676531 (Centre
of Excellence project E-CAM). The same project has
partly funded the extended software development work-
shops in which most of the ESL coding effort has hap-
pened. Alberto Garćıa, Stephan Mohr, and Emilio Ar-
tacho acknowledge support from the European Union’s
Horizon 2020 research and innovation program under
the grant agreement No. 824143 (Centre of Excellence
project MaX). Miguel A.L. Marques acknowledges par-
tial support from the DFG through the project MA-
6786/1. Daniel G.A. Smith was supported by U. S.
National Science Foundation (NSF) grant ACI-1547580.
Mike Payne acknowledges support from EPSRC under
grant EP/P034616/1. Arash Mostofi acknowledges sup-
port from the Thomas Young Centre under grant TYC-
101, the Wannier Developers Group and all of the authors
and contributors of the wannier90 code (see Ref. 116 for
a complete list). Alin M. Elena acknowledges support by
CoSeC, the Computational Science Centre for Research
Communities, through CCP5: The Computer Simulation
of Condensed Phases, EPSRC grants EP/M022617/1 and
EP/P022308/1. Alberto Garćıa and José M. Soler ac-
knowledge grant PGC2018-096955-B-C42 from Spain’s
Ministry of Science. Emilio Artacho, Alberto Garćıa and

José M. Soler acknowledge grant FIS2015-64886-C5 from
Spain’s Ministry of Science. Yann Pouillon, David López-
Durán and Emilio Artacho acknowledge support from
grant RTC-2016-5681-7 from Spanish MINECO and EU
Structural Investment Funds. Martin Lüders acknowl-
edges support from EPRSC under grant EP/M022668/1.
Martin Lüders, Micael J. T. Oliveira, and Yann Pouillon
acknowledge support from the EU COST action MP1306.
Jan Minar was supported by the European Regional
Development Fund (ERDF), project CEDAMNF, reg.
no. CZ.02.1.01/0.0/0.0/15-003/0000358. Victor Wen-
zhe Yu, William Paul Huhn, Yingzhou Li, and Volker
Blum acknowledge support from the National Science
Foundation under award number ACI-1450280 (the ELSI
project). Victor Wen-zhe Yu furthermore acknowledges
a MolSSI fellowship (NSF award ACI-1547580). Simune
Atomistics S.L. is thanked for their allowing Ask Larsen
and Yann Pouillon to contribute to ESL, as is Synopsys
Inc. for Fabiano Corsetti’s partial availability.

DATA AVAILABILITY STATEMENT

Data sharing not applicable — no new data generated.
Repositories for all ESL software packages mentioned in
this work have been properly cited, and are publicly avail-
able.

Appendix A: Community organization and Steering
Structure of the ESL

Formally, the ESL project was kick-started at a work-
shop organized at CECAM-HQ by Emilio Artacho, Mike
Payne, and Dominic Tildesley. Hosting around 20 partic-
ipants, the workshop was held during the summer of 2014
over a period of six weeks. After extensive discussions,
the objectives and scope of the library were agreed and
the basic infrastructure was put in place. At this point,
the key element was the ESL wiki containing information
about existing libraries and modules. Also at this time,
a governance structure was put into place consisting in a
Curating Team (CT) and a Scientific Advisory Board.

Since then, more workshops have been organized,
roughly one per year, where the ESL has been changed,
improved, and expanded. It has evolved from a reposi-
tory of information about software libraries and tools in
the domain of electronic structure to a curated bundle
of tightly integrated software libraries. As the project
evolved and mutated, its governance adapted to better
serve its objectives. In 2019, the Advisory Board was re-
placed by a Steering Committee (SC). The SC proposes
and defines the guidelines that the CT should follow.
There are quarterly meetings which are open to the pub-
lic and which focus on at least 3 tasks: i) deciding which
new libraries should be added to the ESL Bundle, ii)
proposing which versions of existing ESL software should
be shipped and iii) discussions of topics for coming work-

22

shops. The SC aims to include as many developers of
software included in the ESL Bundle and from codes us-
ing it as possible. It currently has 12 members and all CT
members are part of the SC as well. More recently, the
curating team has been expanded from 3 to 6 members.
The CT manages everyday activities within the ESL by
holding monthly meetings, creating proposal drafts and
communicating with code developers and the SC. Each
member of the CT is tasked with supervising one specific
aspect of the ESL. These include, amongst others, bundle
maintenance, organization of the ESL workshop, the ESL
website, and ESL documentation. Note that there are no
competing interests between CT and SC. The ESL ini-
tiative aims to hold at least one workshop a year. These
have a duration of 14 days of which 2 days are for dis-
cussions and the remaining 12 days of are for hands-on
development activities. The focus of the workshops shifts
each year with the topic decided by the SC.

Appendix B: Sustainability and software engineering of the
ESL demonstrator

Continuous Integration (CI) is a software engineer-
ing practice which allows code integration from multi-
ple contributors automatically into the main repository
of a project. The process is enabled by a set of tools
and stages that assert the correctness of the code at each
change. We strongly believe that CI is a critical require-
ment for any scientific software project, in order to main-
tain a sufficient level of quality over time.

CI is used within the ESL in a systematic way for the
development of the ESL Bundle and the ESL Demonstra-
tor, as well as to check that the ESL Demonstrator can
keep relying on new versions of the ESL Bundle. The
ESL Demonstrator is a basic example of ESC code built
exclusively with ESL components to explain to develop-
ers how to use them in their own codes (see section VI A).
As such, it has to be permanently kept in a working state.
Some of the individual components of the ESL also ben-
efit from CI, upon choice of their respective developers.

As an example, the ESL Demonstrator relies on a se-
ries of widespread tools and technologies: Gitlab CI155,
CTest from CMake156, YAML148 and Docker/Docker
Hub157. All these ingredients are glued together to pro-
vide development workflows implemented in the ESL (see
Fig 6). After each commit, the CI infrastructure auto-
matically checks that the code successfully builds and the
corresponding tests pass.

Docker is one of the tools designed to help with run-
ning and deployment of applications by using container
technology. It is relatively straightforward to use and
we deploy the entire ESL Bundle on it. We offer three
Linux flavours for our Docker images: Ubuntu, Fedora
and OpenSUSE. These Docker images are the ones we
use in the build and testing stage. The images are public
and distributed via Docker Hub.

The EasyBuild framework is of great help in this con-

ĚÀŃŋåĿ Ĝåţ ÚĿÀĜÛý
ÚĿÀĜÛý

ţģĿđ

Ûģ
Ě
Ě
Āŋ

ŋåŃŋŃ ļÀŃŃ̓

ÛĀ
Úģ

ŋ

]ģ

ŽŨ

ĿåŢĀåţ
§åŃ

ĚåĿøå
ĿåľŏåŃŋ

§å
Ń

]ģ

ŽŨ

FIG. 6. Continuous integration workflow integrated with git.

text. It has support for generating Singularity and
Docker container recipes which will use EasyBuild to
build and install reference software stacks. The latter
will then be used within the CI infrastructure of the ESL,
which mostly uses container-based runners in the cloud.

Gitlab CI is the integrated Gitlab tool for continuous
integration, continuous delivery and deployment, and is
highly configurable. At the moment we are using it only
for CI.

CTest is a testing tool distributed as part of CMake. It
integrates seamlessly with CMake, which is our build sys-
tem of choice and one can easily use it to run unit tests or
regression tests. We choose to use the latter due to the
lack of any maintained unit testing framework for For-
tran. A test is deemed passed or failed based on match-
ing a regular expression at the end of execution. We also
defined a target that monitors the code coverage of our
tests. In order to help with the automation of testing,
the output of the ESL Demonstrator is YAML-compliant,
helping us to easily check the output. For checking out-
put we rely on a simplified version of Siesta’s YAML
output testing.

In the ESL workflow (see Fig. 6), the user starts from a
validated version of the master repository by branching
their own branch, a user branch. Once the work envis-
aged is done and the user commits the changes to the
branch, the Gitlab CI automatically runs the designed
tests. If the tests fail, the user corrects the errors and
commits again. Once the tests pass, the code is ready
for a merge request. A merge request is issued by the
user for inclusion in the master branch of the project. A
peer review process then kicks in. Two reviewers have to
agree for the code to be included in the master branch.
If issues are found the code is returned to the user to
fix the issues. If both reviewers agree then the code is
integrated.

1P. Mavropoulos and P. Dederichs, “Statistical
data about density functional calculations,” Ψk

Scientific Highlight of the Month 135 (April 2017), https://psi-
k.net/download/highlights/Highlight 135.pdf.

2P. A. M. Dirac, “Quantum mechanics of many-electron sys-
tems,” Proceedings of the Royal Society of London. Series A,

http://arxiv.org/abs/https://psi-k.net/download/highlights/Highlight_135.pdf
http://arxiv.org/abs/https://psi-k.net/download/highlights/Highlight_135.pdf
http://www.jstor.org/stable/95222

23

Containing Papers of a Mathematical and Physical Character
123, 714–733 (1929).

3N. Mardirossian and M. Head-Gordon, “Thirty years of
density functional theory in computational chemistry:
an overview and extensive assessment of 200 density
functionals,” Molecular Physics 115, 2315–2372 (2017),
https://doi.org/10.1080/00268976.2017.1333644.

4“The Molecular Sciences Software Institute (MolSSI),” (2016),
https://molssi.org/software-search/.

5N. Wilkins-Diehr and T. D. Crawford, “Nsf’s inaugural soft-
ware institutes: The science gateways community institute and
the molecular sciences software institute,” Computing in Science
Engineering 20, 26–38 (2018).

6A. Krylov, T. L. Windus, T. Barnes, E. Marin-Rimoldi,
J. A. Nash, B. Pritchard, D. G. A. Smith, D. Altarawy,
P. Saxe, C. Clementi, T. D. Crawford, R. J. Harrison, S. Jha,
V. S. Pande, and T. Head-Gordon, “Perspective: Com-
putational chemistry software and its advancement as illus-
trated through three grand challenge cases for molecular sci-
ence,” The Journal of Chemical Physics 149, 180901 (2018),
https://doi.org/10.1063/1.5052551.

7“BLAS technical forum,” (since 1979), http://www.netlib.o

rg/blas/blast-forum.
8“MPI forum,” (since 1991), https://www.mpi-forum.org.
9E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Dem-
mel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK users’ guide (SIAM,
1999).

10“ScaLAPACK,” (since 1992), http://www.netlib.org/scalapa
ck.

11M. Frigo and S. G. Johnson, “The design and implementation
of FFTW3,” Proceedings of the IEEE 93, 216–231 (2005), spe-
cial issue on “Program Generation, Optimization, and Platform
Adaptation”.

12A. Togo and I. Tanaka, “Spglib: a software library for crystal
symmetry search,” arXiv:1808.01590 (2018).

13“The wannier90 code,” https://www.wannier.org/ ().
14N. Marzari and D. Vanderbilt, “Maximally localized generalized

Wannier functions for composite energy bands,” Phys. Rev. B
56, 12847–12865 (1997).

15A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli,
R. Christensen, M. Du lak, J. Friis, M. N. Groves, B. Ham-
mer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen,
J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaas-
bjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen,
L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt,
M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Wal-
ter, Z. Zeng, and K. W. Jacobsen, “The atomic simulation en-
vironment—a python library for working with atoms,” Journal
of Physics: Condensed Matter 29, 273002 (2017).

16V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman,
T. Spura, B. Cheng, A. Cuzzocrea, R. H. Meißner, D. M.
Wilkins, B. A. Helfrecht, P. Juda, S. P. Bienvenue, W. Fang,
J. Kessler, I. Poltavsky, S. Vandenbrande, J. Wieme, C. Cormin-
boeuf, T. D. Kühne, D. E. Manolopoulos, T. E. Markland, J. O.
Richardson, A. Tkatchenko, G. A. Tribello, V. V. Speybroeck],
and M. Ceriotti, “i-PI 2.0: A universal force engine for advanced
molecular simulations,” Comp. Phys. Commun. 236, 214 – 223
(2019).

17G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozin-
sky, “Aiida: automated interactive infrastructure and database
for computational science,” Computational Materials Science
111, 218 – 230 (2016).

18M. A. L. Marques, M. J. T. Oliveira, and T. Burnus, “Libxc:
A library of exchange and correlation functionals for density
functional theory,” Comput. Phys. Commun. 183, 2272–2281
(2012).

19S. Lehtola, C. Steigemann, M. J. Oliveira, and M. A. Marques,
“Recent developments in libxc — a comprehensive library of
functionals for density functional theory,” SoftwareX 7, 1 – 5

(2018).
20“ESL– The Electronic Structure Library,” Main site: http:

//esl.cecam.org; Repository: https://github.com/Electroni

cStructureLibrary and in https://gitlab.com/ElectronicS

tructureLibrary.
21X. Gonze, B. Amadon, P. Anglade, J. Beuken, F. Bot-

tin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas,
M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi,
S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard,
S. Leroux, M. Mancini, S. Mazevet, M. Oliveira, G. Onida,
Y. Pouillon, T. Rangel, G. Rignanese, D. Sangalli, R. Shaltaf,
M. Torrent, M. Verstraete, G. Zerah, and J. Zwanziger,
“ABINIT: first-principles approach to material and nanosystem
properties,” Comput. Phys. Commun. 180, 2582–2615 (2009).

22J. M. Soler, E. Artacho, J. D. Gale, A. Garćıa, J. Junquera,
P. Ordejón, and D. Sánchez-Portal, “The SIESTA method
for ab initio order-N materials simulation,” Journal of Physics:
Condensed Matter 14, 2745–2779 (2002).

23N. Tancogne-Dejean, M. J. T. Oliveira, X. Andrade, H. Appel,
C. H. Borca, G. Le Breton, F. Buchholz, A. Castro, S. Corni,
A. A. Correa, U. De Giovannini, A. Delgado, F. G. Eich, J. Flick,
G. Gil, A. Gomez, N. Helbig, H. Hübener, R. Jestädt, J. Jornet-
Somoza, A. H. Larsen, I. V. Lebedeva, M. Lüders, M. A. L. Mar-
ques, S. T. Ohlmann, S. Pipolo, M. Rampp, C. A. Rozzi, D. A.
Strubbe, S. A. Sato, C. Schäfer, I. Theophilou, A. Welden, and
A. Rubio, “Octopus, a computational framework for exploring
light-driven phenomena and quantum dynamics in extended and
finite systems,” The Journal of Chemical Physics 152, 124119
(2020), https://doi.org/10.1063/1.5142502.

24P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B.
Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso,
S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti,
A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerst-
mann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko,
A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari,
F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. O. de-la Roza,
L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra,
M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thon-
hauser, P. Umari, N. Vast, X. Wu, and S. Baroni, “Advanced
capabilities for materials modelling with quantum ESPRESSO,”
J. Phys. Cond. Matt. 29, 465901 (2017).

25L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S. A.
Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson,
A. Bergman, and R. Schneider, “Daubechies wavelets as a ba-
sis set for density functional pseudopotential calculations,” The
Journal of Chemical Physics 129, 014109 (2008).

26V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren,
K. Reuter, and M. Scheffler, “Ab initio molecular simulations
with numeric atom-centered orbitals,” Computer Physics Com-
munications 180, 2175–2196 (2009).

27J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-
space grid implementation of the projector augmented wave
method,” Phys. Rev. B 71, 035109 (2005).

28D. M. Ritchie, “The development of the C language,” https:

//www.bell-labs.com/usr/dmr/www/chist.html (1993).
29R. M. Martin, Electronic structure: basic theory and practical
methods (Cambridge University Press, Cambridge, 2004).

30D. R. Hamann, “Optimized norm-conserving Vanderbilt pseu-
dopotentials,” Phys. Rev. B 88, 085117 (2013).

31“The GNU General Public Licence, version 2.0,” (), see: https:
//www.gnu.org/licenses/old-licenses/gpl-2.0.en.html.

32“The GNU General Public Licence, version 3.0,” (), see: https:
//www.gnu.org/licenses/gpl-3.0.en.html.

33“The GNU Lesser General Public Licence, version 3.0,” See:
https://www.gnu.org/licenses/lgpl-3.0.en.html.

34“Mozilla Public Licence version 2.0,” See: https://www.mozill

a.org/MPL/2.0.
35“The MIT license,” https://opensource.org/licenses/MIT.
36“The CeCILL-C Free Software License Agreement,” https://

http://www.jstor.org/stable/95222
http://www.jstor.org/stable/95222
http://dx.doi.org/ 10.1080/00268976.2017.1333644
http://arxiv.org/abs/https://doi.org/10.1080/00268976.2017.1333644
https://molssi.org/software-search/
http://dx.doi.org/ 10.1109/MCSE.2018.05329813
http://dx.doi.org/ 10.1109/MCSE.2018.05329813
http://dx.doi.org/10.1063/1.5052551
http://arxiv.org/abs/https://doi.org/10.1063/1.5052551
http://www.netlib.org/blas/blast-forum
http://www.netlib.org/blas/blast-forum
https://www.mpi-forum.org
http://www.netlib.org/scalapack
http://www.netlib.org/scalapack
https://www.wannier.org/
http://stacks.iop.org/0953-8984/29/i=27/a=273002
http://stacks.iop.org/0953-8984/29/i=27/a=273002
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2018.09.020
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2018.09.020
http://dx.doi.org/ https://doi.org/10.1016/j.commatsci.2015.09.013
http://dx.doi.org/ https://doi.org/10.1016/j.commatsci.2015.09.013
https://doi.org/10.1016/j.cpc.2012.05.007
https://doi.org/10.1016/j.cpc.2012.05.007
http://dx.doi.org/https://doi.org/10.1016/j.softx.2017.11.002
http://dx.doi.org/https://doi.org/10.1016/j.softx.2017.11.002
http://esl.cecam.org
http://esl.cecam.org
https://github.com/ElectronicStructureLibrary
https://github.com/ElectronicStructureLibrary
https://gitlab.com/ElectronicStructureLibrary
https://gitlab.com/ElectronicStructureLibrary
http://dx.doi.org/10.1063/1.5142502
http://dx.doi.org/10.1063/1.5142502
http://arxiv.org/abs/https://doi.org/10.1063/1.5142502
http://dx.doi.org/10.1063/1.2949547
http://dx.doi.org/10.1063/1.2949547
http://dx.doi.org/10.1103/PhysRevB.71.035109
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.mozilla.org/MPL/2.0
https://www.mozilla.org/MPL/2.0
https://opensource.org/licenses/MIT
https://spdx.org/licenses/CECILL-C.html

24

spdx.org/licenses/CECILL-C.html.
37“2-clause BSD licence,” (), see: https://opensource.org/lic

enses/BSD-2-Clause.
38“3-clause BSD licence,” (), see: https://opensource.org/lic

enses/BSD-3-Clause.
39R. W. Hockney, “Potential calculation and some applications,”

Methods Comput. Phys. 9, 135–211 (1970).
40L. Füsti-Molnar and P. Pulay, “Accurate molecular inte-

grals and energies using combined plane wave and gaus-
sian basis sets in molecular electronic structure theory,”
The Journal of Chemical Physics 116, 7795–7805 (2002),
https://doi.org/10.1063/1.1467901.

41G. J. Martyna and M. E. Tuckerman, “A reciprocal
space based method for treating long range interactions
in ab initio and force-field-based calculations in clusters,”
The Journal of Chemical Physics 110, 2810–2821 (1999),
https://doi.org/10.1063/1.477923.

42P. Minary, M. E. Tuckerman, K. A. Pihakari, and G. J. Mar-
tyna, “A new reciprocal space based treatment of long range
interactions on surfaces,” The Journal of chemical physics 116,
5351–5362 (2002).

43R. W. Hockney and J. W. Eastwood, Computer Simulation Us-
ing Particles (McGraw-Hill, 1981).

44J. J. Mortensen and M. Parrinello, “A density func-
tional theory study of a silica-supported zirconium mono-
hydride catalyst for depolymerization of polyethylene,” The
Journal of Physical Chemistry B 104, 2901–2907 (2000),
https://doi.org/10.1021/jp994056v.

45L. Genovese, T. Deutsch, A. Neelov, S. Goedecker, and
G. Beylkin, “Efficient solution of poisson’s equation with free
boundary conditions,” The Journal of Chemical Physics 125,
074105 (2006), https://doi.org/10.1063/1.2335442.

46L. Genovese, T. Deutsch, and S. Goedecker, “Efficient and
accurate three-dimensional poisson solver for surface prob-
lems,” The Journal of Chemical Physics 127, 054704 (2007),
https://doi.org/10.1063/1.2754685.

47A. Cerioni, L. Genovese, A. Mirone, and V. A. Sole, “Ef-
ficient and accurate solver of the three-dimensional screened
and unscreened poisson’s equation with generic boundary con-
ditions,” The Journal of Chemical Physics 137, 134108 (2012),
https://doi.org/10.1063/1.4755349.

48G. Fisicaro, L. Genovese, O. Andreussi, N. Marzari, and
S. Goedecker, “A generalized poisson and poisson-boltzmann
solver for electrostatic environments,” The Journal of Chemical
Physics 144, 014103 (2016), https://doi.org/10.1063/1.4939125.

49G. Fisicaro, L. Genovese, O. Andreussi, S. Mandal, N. N. Nair,
N. Marzari, and S. Goedecker, “Soft-sphere continuum sol-
vation in electronic-structure calculations,” Journal of Chem-
ical Theory and Computation 13, 3829–3845 (2017), pMID:
28628316, https://doi.org/10.1021/acs.jctc.7b00375.

50P. Garćıa-Risueño, J. Alberdi-Rodriguez, M. J. Oliveira, X. An-
drade, M. Pippig, J. Muguerza, A. Arruabarrena, and A. Rubio,
“A survey of the parallel performance and accuracy of poisson
solvers for electronic structure calculations,” J. Comp. Chem.
35, 427–444 (2014).

51J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele,
“Cp2k: atomistic simulations of condensed matter systems,”
Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

52X. Andrade, J. Alberdi-Rodriguez, D. A. Strubbe, M. J. T.
Oliveira, F. Nogueira, A. Castro, J. Muguerza, A. Arruabar-
rena, S. G. Louie, A. Aspuru-Guzik, A. Rubio, and M. A. L.
Marques, “Time-dependent density-functional theory in mas-
sively parallel computer architectures: the octopus project,” J.
Phys.: Condens. Matter 24, 233202 (2012).

53M. J. Gillan, D. R. Bowler, A. S. Torralba, and T. Miyazaki,
“Order-N first-principles calculations with the CONQUEST
code,” Comput. Phys. Commun. 177, 14–18 (2007).

54N. Dugan, L. Genovese, and S. Goedecker, “A customized 3D
GPU Poisson solver for free boundary conditions,” Computer
Physics Communications 184, 1815 – 1820 (2013).

55L. E. Ratcliff, A. Degomme, J. A. Flores-Livas, S. Goedecker,
and L. Genovese, “Affordable and accurate large-scale hybrid-
functional calculations on GPU-accelerated supercomputers,”
Journal of Physics: Condensed Matter 30, 095901 (2018).

56J. P. Perdew, “Jacob’s ladder of density functional approxima-
tions for the exchange-correlation energy,” in AIP Conference
Proceedings, Vol. 577 (AIP, Antwerp (Belgium), 2001) pp. 1–20.

57Maple (Maplesoft, a division of Waterloo Maple Inc., Waterloo,
Ontario) See: https://maplesoft.com.

58X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon,
T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder,
A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté,
F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B. Do-
rado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier,
M. Giantomassi, Y. Gillet, D. Hamann, L. He, G. Jomard,
J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier,
F. Liu, I. Lukačević, A. Martin, C. Martins, M. Oliveira,
S. Poncé, Y. Pouillon, T. Rangel, G.-M. Rignanese, A. Romero,
B. Rousseau, O. Rubel, A. Shukri, M. Stankovski, M. Torrent,
M. Van Setten, B. Van Troeye, M. Verstraete, D. Waroquiers,
J. Wiktor, B. Xu, A. Zhou, and J. Zwanziger, “Recent de-
velopments in the ABINIT software package,” Comput. Phys.
Commun. 205, 106–131 (2016).

59V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren,
K. Reuter, and M. Scheffler, “Ab initio molecular simulations
with numeric atom-centered orbitals,” Computer Physics Com-
munications 180, 2175 – 2196 (2009).

60P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz,
R. Laskowsi, F. Tran, and L. D. Marks, WIEN2k: An Aug-
mented Plane Wave plus Local Orbitals Program for Calculating
Crystal Properties (2018).

61R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett,
A. E. DePrince, E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov,
R. Di Remigio, R. M. Richard, J. F. Gonthier, A. M. James,
H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P.
Pritchard, P. Verma, H. F. Schaefer, K. Patkowski, R. A. King,
E. F. Valeev, F. A. Evangelista, J. M. Turney, T. D. Crawford,
and C. D. Sherrill, “Psi4 1.1: An open-source electronic struc-
ture program emphasizing automation, advanced libraries, and
interoperability,” Journal of Chemical Theory and Computation
13, 3185–3197 (2017).

62F. Neese, “The ORCA program system,” Wiley Interdisciplinary
Reviews: Computational Molecular Science 2, 73–78 (2012).

63Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo,
Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma,
S. Wouters, and G. K.-L. Chan, “Pyscf: the python-based sim-
ulations of chemistry framework,” Wiley Interdisciplinary Re-
views: Computational Molecular Science 8, e1340 (2018).

64R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel, “Elec-
tronic structure calculations on workstation computers: The
program system turbomole,” Chemical Physics Letters 162, 165
– 169 (1989).

65S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellen-
dorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A.
Khomyakov, U. G. Vej-Hansen, M.-E. Lee, S. T. Chill, F. Ras-
mussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen,
M. L. N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge,
and K. Stokbro, “QuantumATK: an integrated platform of elec-
tronic and atomic-scale modelling tools,” Journal of Physics:
Condensed Matter 32, 015901 (2019).

66P. Borlido, T. Aull, A. W. Huran, F. Tran, M. A. L. Marques,
and S. Botti, “Large-scale benchmark of exchange–correlation
functionals for the determination of electronic band gaps of
solids,” Journal of Chemical Theory and Computation 15, 5069–
5079 (2019).

67A. H. Larsen, M. Kuisma, J. Löfgren, Y. Pouillon, P. Erhart,
and P. Hyldgaard, “libvdwxc: a library for exchange–correlation
functionals in the vdW-DF family,” Modelling and Simulation
in Materials Science and Engineering 25, 065004 (2017).

68K. Berland, V. R. Cooper, K. Lee, E. Schröder, T. Thonhauser,

https://spdx.org/licenses/CECILL-C.html
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
http://dx.doi.org/ 10.1063/1.1467901
http://arxiv.org/abs/https://doi.org/10.1063/1.1467901
http://dx.doi.org/ 10.1063/1.477923
http://arxiv.org/abs/https://doi.org/10.1063/1.477923
http://dx.doi.org/10.1021/jp994056v
http://dx.doi.org/10.1021/jp994056v
http://arxiv.org/abs/https://doi.org/10.1021/jp994056v
http://dx.doi.org/10.1063/1.2335442
http://dx.doi.org/10.1063/1.2335442
http://arxiv.org/abs/https://doi.org/10.1063/1.2335442
http://dx.doi.org/ 10.1063/1.2754685
http://arxiv.org/abs/https://doi.org/10.1063/1.2754685
http://dx.doi.org/10.1063/1.4755349
http://arxiv.org/abs/https://doi.org/10.1063/1.4755349
http://dx.doi.org/10.1063/1.4939125
http://dx.doi.org/10.1063/1.4939125
http://arxiv.org/abs/https://doi.org/10.1063/1.4939125
http://dx.doi.org/10.1021/acs.jctc.7b00375
http://dx.doi.org/10.1021/acs.jctc.7b00375
http://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.7b00375
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2013.02.024
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2013.02.024
http://dx.doi.org/10.1088/1361-648x/aaa8c9
https://maplesoft.com
http://dx.doi.org/ 10.1016/j.cpc.2016.04.003
http://dx.doi.org/ 10.1016/j.cpc.2016.04.003
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/ 10.1021/acs.jctc.7b00174
http://dx.doi.org/ 10.1021/acs.jctc.7b00174
http://dx.doi.org/10.1002/wcms.81
http://dx.doi.org/10.1002/wcms.81
http://dx.doi.org/10.1002/wcms.1340
http://dx.doi.org/10.1002/wcms.1340
http://dx.doi.org/ https://doi.org/10.1016/0009-2614(89)85118-8
http://dx.doi.org/ https://doi.org/10.1016/0009-2614(89)85118-8
http://dx.doi.org/ 10.1088/1361-648x/ab4007
http://dx.doi.org/ 10.1088/1361-648x/ab4007
http://dx.doi.org/10.1021/acs.jctc.9b00322
http://dx.doi.org/10.1021/acs.jctc.9b00322
http://stacks.iop.org/0965-0393/25/i=6/a=065004
http://stacks.iop.org/0965-0393/25/i=6/a=065004

25

P. Hyldgaard, and B. I. Lundqvist, “van der Waals forces in
density functional theory: a review of the vdW-DF method,”
Reports on Progress in Physics 78, 066501 (2015).

69P. Hyldgaard, K. Berland, and E. Schröder, “Interpretation
of van der Waals density functionals,” Physical Review B 90,
075148 (2014).

70D. C. Langreth, M. Dion, H. Rydberg, E. Schröder,
P. Hyldgaard, and B. I. Lundqvist, “van der Waals density
functional theory with applications,” International Journal of
Quantum Chemistry 101, 599–610 (2005).

71D. C. Langreth, B. I. Lundqvist, S. D. Chakarova-Käck, V. R.
Cooper, M. Dion, P. Hyldgaard, A. Kelkkanen, J. Kleis,
L. Kong, S. Li, P. G. Moses, E. Murray, A. Puzder, H. Ryd-
berg, E. Schröder, and T. Thonhauser, “A density functional
for sparse matter,” Journal of Physics: Condensed Matter 21,
084203 (2009).

72K. Berland and P. Hyldgaard, “Exchange functional that tests
the robustness of the plasmon description of the van der Waals
density functional,” Physical Review B 89, 035412 (2014).

73T. Thonhauser, S. Zuluaga, C. A. Arter, K. Berland,
E. Schröder, and P. Hyldgaard, “Spin signature of nonlocal
correlation binding in metal-organic frameworks,” Physical Re-
view Letters 115, 136402 (2015).

74G. Román-Pérez and J. M. Soler, “Efficient implementation of
a van der waals density functional: Application to double-wall
carbon nanotubes,” Phys. Rev. Lett. 103, 096102 (2009).

75S. G. Johnson and M. Frigo, “Implementing FFTs in practice,”
in Fast Fourier Transforms, edited by C. S. Burrus (Connex-
ions, Rice University, Houston TX, 2008) Chap. 11.

76M. Pippig, “PFFT - An extension of FFTW to massively paral-
lel architectures,” SIAM J. Sci. Comput. 35, C213–C236 (2013).

77“libGridXC,” (), see: https://gitlab.com/siesta-project/l

ibraries/libgridxc.
78F. Jollet, M. Torrent, and N. Holtzwarth,

“XML specification for atomic PAW datasets,”
Https://esl.cecam.org/mediawiki/index.php/Paw-xml.

79“PSPIO library,” https://gitlab.com/ElectronicStructure

Library/libpspio.
80A. Garćıa, M. J. Verstraete, Y. Pouillon, and J. Junquera,

“The psml format and library for norm-conserving pseudopo-
tential data curation and interoperability,” Computer Physics
Communications 227, 51 – 71 (2018).

81See: https://siesta-project.github.io/psml-docs, accessed
November 2019.

82atom code for the generation of norm-conserving pseudopoten-
tials. The version maintained by the Siesta project can be ac-
cessed at http://icmab.es/siesta/Pseudopotentials/index.h
tml. An alternative version is available at http://bohr.inesc-m
n.pt/~jlm/pseudo.html. (Accessed July 2017).

83M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Ver-
straete, D. R. Hamann, X. Gonze, and G. M. Rignanese,
“The PSEUDODOJO: Training and grading a 85 element
optimized norm-conserving pseudopotential table,” Computer
Physics Communications 226, 39–54 (2018).

84See: http://www.pseudo-dojo.org, accessed November 2019.
85See: https://esl.cecam.org/ESCDF_-_Electronic_Structure

_Common_Data_Format.
86See: https://esl.cecam.org/Libescdf.
87D. Sébilleau, C. Natoli, G. M. Gavaza, H. Zhao, F. Da Pieve,

and K. Hatada, “Msspec-1.0: A multiple scattering package for
electron spectroscopies in material science,” Comp. Phys. Com-
mun. 182, 2567–2579 (2011).

88H. Ebert, D. Koedderitzsch, and J. Minar, “Calculating
condensed matter properties using the kkr-green’s function
method—recent developments and applications,” Rep. Prog.
Phys. 74, 096501 (2011).

89H. Ebert, J. Braun, D. Ködderitzsch, and S. Mankovsky, “Fully
relativistic multiple scattering calculations for general poten-
tials,” Phys. Rev. B 93, 075145 (2016).

90(), see: https://www.etsf.eu/.

91(), see: https://esl.cecam.org/ETSF_File_Format_Specifica

tions.
92See: https://www.hdfgroup.org/solutions/hdf5/.
93J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Co-

hen, and S. G. Louie, “BerkeleyGW: A massively parallel com-
puter package for the calculation of the quasiparticle and optical
properties of materials and nanostructures,” Comp. Phys. Com-
mun. 183, 1269 – 1289 (2012).

94See: http://euspec.eu/.
95See: https://nomad-coe.eu/.
96V. W.-z. Yu, F. Corsetti, A. Garćıa, W. P. Huhn, M. Jacquelin,

W. Jia, B. Lange, L. Lin, J. Lu, W. Mi, A. Seifitokaldani, Álvaro
Vázquez-Mayagoitia, C. Yang, H. Yang, and V. Blum, “ELSI:
A unified software interface for Kohn-Sham electronic struc-
ture solvers,” Computer Physics Communications 222, 267–285
(2018).

97A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auck-
enthaler, A. Heinecke, H. J. Bungartz, and H. Lederer, “The
ELPA library: Scalable parallel eigenvalue solutions for elec-
tronic structure theory and computational science,” Journal of
Physics: Condensed Matter 26, 213201 (2014).

98P. Kůs, A. Marek, S. S. Köcher, H.-H. Kowalski, C. Carbogno,
C. Scheurer, K. Reuter, M. Scheffler, and H. Lederer, “Op-
timizations of the eigensolvers in the ELPA library,” Parallel
Comput. 85, 167–177 (2019).

99T. Imamura, S. Yamada, and M. Machida, “Development of
a high-performance eigensolver on a peta-scale next-generation
supercomputer system,” Progress in Nuclear Science and Tech-
nology 2, 643–650 (2011).

100J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. To-
mov, and I. Yamazaki, “Accelerating numerical dense linear
algebra calculations with GPUs,” in Numerical computations
with GPUs (Springer, 2014) pp. 3–28.

101F. Corsetti, “The orbital minimization method for electronic
structure calculations with finite-range atomic basis sets,” Com-
puter Physics Communications 185, 873–883 (2014).

102V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scal-
able and flexible toolkit for the solution of eigenvalue prob-
lems,” ACM Transactions on Mathematical Software 31, 351–
362 (2005).

103L. Lin, M. Chen, C. Yang, and L. He, “Accelerating atomic
orbital-based electronic structure calculation via pole expansion
and selected inversion,” Journal of Physics: Condensed Matter
25, 295501 (2013).

104W. Dawson and T. Nakajima, “Massively parallel sparse matrix
function calculations with NTPoly,” Computer Physics Com-
munications 225, 154–165 (2018).

105V. W.-z. Yu, C. Campos, W. Dawson, A. Garćıa, V. Havu,
B. Hourahine, W. P. Huhn, M. Jacquelin, W. Jia, M. Keçeli,
R. Laasner, Y. Li, L. Lin, J. Lu, J. Moussa, J. E. Roman,
A. Vázquez-Mayagoitia, C. Yang, and V. Blum, “ELSI – an
open infrastructure for electronic structure solvers,” (2019),
arXiv:1912.13403 [physics.comp-ph].

106B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri,
C. Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitrică,
A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Her-
mann, S. Irle, J. J. Kranz, C. Köhler, T. Kowalczyk, T. Kubař,
I. S. Lee, V. Lutsker, R. J. Maurer, S. K. Min, I. Mitchell,
C. Negre, T. A. Niehaus, A. M. N. Niklasson, A. J. Page,
A. Pecchia, G. Penazzi, M. P. Persson, J. Řezáč, C. G. Sánchez,
M. Sternberg, M. Stöhr, F. Stuckenberg, A. Tkatchenko,
V. W.-z. Yu, and T. Frauenheim, “Dftb+, a software pack-
age for efficient approximate density functional theory based
atomistic simulations,” J. Chem. Phys. 152, 124101 (2020),
https://doi.org/10.1063/1.5143190.

107W. Hu, L. Lin, and C. Yang, “DGDFT: A massively parallel
method for large scale density functional theory calculations,”
The Journal of Chemical Physics 143, 124110 (2015).

108E. Vecharynski, C. Yang, and J. E. Pask, “A projected pre-
conditioned conjugate gradient algorithm for computing many

http://dx.doi.org/ 10.1088/0034-4885/78/6/066501
http://dx.doi.org/10.1103/PhysRevB.90.075148
http://dx.doi.org/10.1103/PhysRevB.90.075148
http://dx.doi.org/ 10.1103/PhysRevB.89.035412
http://dx.doi.org/10.1103/PhysRevLett.115.136402
http://dx.doi.org/10.1103/PhysRevLett.115.136402
http://dx.doi.org/ 10.1103/PhysRevLett.103.096102
http://cnx.org/content/m16336/
https://gitlab.com/siesta-project/libraries/libgridxc
https://gitlab.com/siesta-project/libraries/libgridxc
https://gitlab.com/ElectronicStructureLibrary/libpspio
https://gitlab.com/ElectronicStructureLibrary/libpspio
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2018.02.011
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2018.02.011
https://siesta-project.github.io/psml-docs
http://icmab.es/siesta/Pseudopotentials/index.html
http://icmab.es/siesta/Pseudopotentials/index.html
http://bohr.inesc-mn.pt/~jlm/pseudo.html
http://bohr.inesc-mn.pt/~jlm/pseudo.html
http://dx.doi.org/10.1016/j.cpc.2018.01.012
http://dx.doi.org/10.1016/j.cpc.2018.01.012
http://www.pseudo-dojo.org
https://esl.cecam.org/ESCDF_-_Electronic_Structure_Common_Data_Format
https://esl.cecam.org/ESCDF_-_Electronic_Structure_Common_Data_Format
https://esl.cecam.org/Libescdf
https://www.etsf.eu/
https://esl.cecam.org/ETSF_File_Format_Specifications
https://esl.cecam.org/ETSF_File_Format_Specifications
https://www.hdfgroup.org/solutions/hdf5/
http://dx.doi.org/ 10.1016/j.cpc.2011.12.006
http://dx.doi.org/ 10.1016/j.cpc.2011.12.006
http://euspec.eu/
https://nomad-coe.eu/
http://dx.doi.org/10.1016/j.parco.2019.04.003
http://dx.doi.org/10.1016/j.parco.2019.04.003
http://arxiv.org/abs/1912.13403
http://dx.doi.org/10.1063/1.5143190
http://arxiv.org/abs/https://doi.org/10.1063/1.5143190

26

extreme eigenpairs of a hermitian matrix,” J. Comp. Phys. 290,
73 – 89 (2015).

109Y. Pan, X. Dai, S. [de Gironcoli], X.-G. Gong, G.-M. Rignanese,
and A. Zhou, “A parallel orbital-updating based plane-wave ba-
sis method for electronic structure calculations,” J. Comp. Phys.
348, 482 – 492 (2017).

110“PIKSS,” https://gitlab.e-cam2020.eu/esl/PIKSS.
111G. H. Wannier, “The structure of electronic excitation levels in

insulating crystals,” Phys. Rev. 52, 191 (1937).
112N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Van-

derbilt, “Maximally localized Wannier functions: Theory and
applications,” Rev. Mod. Phys. 84, 1419–1475 (2012).

113C. Brouder, G. Panati, M. Calandra, C. Mourougane, and
N. Marzari, “Exponential localization of wannier functions in
insulators,” Phys. Rev. Lett. 98, 046402 (2007).

114I. Souza, N. Marzari, and D. Vanderbilt, “Maximally localized
Wannier functions for entangled energy bands,” Phys. Rev. B
65, 035109 (2001).

115G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth,
G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koret-
sune, J. Ibañez Azpiroz, H. Lee, J.-M. Lihm, D. Marchand,
A. Marrazzo, Y. Mokrousov, J. I. Mustafa, N. Y., Y. Nomura,
L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S.
Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza,
A. A. Mostofi, and J. R. Yates, “Wannier90 as a community
code: new features and applications,” J. Phys.: Condens. Mat-
ter 32, 165902 (2020).

116“The wannier90 GitHub repository,” https://github.com/wan

nier-developers/wannier90 ().
117A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,

and N. Marzari, “Wannier90: A tool for obtaining maximally-
localised wannier functions,” Comp. Phys. Commun. 178, 685
– 699 (2008).

118V. Vitale, G. Pizzi, A. Marrazzo, J. R. Yates, N. Marzari, and
A. A. Mostofi, “Automated high-throughput Wannierisation,”
ArXiv e-prints arXiv:1909.00433 (2019).

119A. Damle, L. Lin, and L. Ying, “Compressed representation of
kohn–sham orbitals via selected columns of the density matrix,”
J. Chem. Theory Comput. 11, 1463–1469 (2015).

120A. Damle and L. Lin, “Disentanglement via entanglement: A
unified method for Wannier localization,” Multiscale Model.
Sim. 16, 1392–1410 (2018).

121G. Kresse and J. Furthmüller, “Efficiency of ab-initio total en-
ergy calculations for metals and semiconductors using a plane-
wave basis set,” Comp. Mat. Sci. 6, 15 – 50 (1996).

122S. Blügel and G. Bihlmayer, “Full-potential linearized aug-
mented planewave method,” in Computational Nanoscience:
Do It Yourself !, Vol. 31, edited by J. Grotendorst, S. Blügel,
and D. Marx (John von Neumann Institute for Computing,
Jülich, 2006) pp. 85–129.

123“The Elk code,” http://elk.sourceforge.net (2019).
124Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth,

S. Guo, Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova,
S. Sharma, S. Wouters, and G. K. Chan, “Pyscf: the
python-based simulations of chemistry framework,” (2017),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340.

125H. Weng, T. Ozaki, and K. Terakura, “Revisiting magnetic
coupling in transition-metal-benzene complexes with maximally
localized wannier functions,” Phys. Rev. B 79, 235118 (2009).

126J. Ferrer, C. J. Lambert, V. M. Garćıa-Suárez, D. Z. Manrique,
D. Visontai, L. Oroszlany, R. Rodŕıguez-Ferradás, I. Grace,
S. W. D. Bailey, K. Gillemot, H. Sadeghi, and L. A. Al-
gharagholy, “GOLLUM: a next-generation simulation tool for
electron, thermal and spin transport,” New Journal of Physics
16, 093029 (2014).

127Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov,
“Wanniertools: An open-source software package for novel topo-
logical materials,” Computer Physics Communications 224, 405
– 416 (2018).

128“NanoTCAD ViDES,” http://vides.nanotcad.com.

129A. Marini, C. Hogan, M. Grüning, and D. Varsano, “yambo:
An ab initio tool for excited state calculations,” Comp. Phys.
Commun. 180, 1392 – 1403 (2009).

130D. Gresch, G. Autès, O. V. Yazyev, M. Troyer, D. Vanderbilt,
B. A. Bernevig, and A. A. Soluyanov, “Z2pack: Numerical
implementation of hybrid wannier centers for identifying topo-
logical materials,” Phys. Rev. B 95, 075146 (2017).

131O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko,
L. Messio, and P. Seth, “Triqs: A toolbox for research on inter-
acting quantum systems,” Computer Physics Communications
196, 398 – 415 (2015).

132S. Poncé, E. Margine, C. Verdi, and F. Giustino, “Epw:
Electron-phonon coupling, transport and superconducting prop-
erties using maximally localized wannier functions,” Computer
Physics Communications 209, 116 – 133 (2016).

133“Buildbot,” https://www.buildbot.net.
134“Travis-CI,” https://www.travis-ci.org.
135“Ouroboros — Wikipedia, the free encyclopedia,” https://

en.wikipedia.org/wiki/Ouroboros, [online; accessed 21-April-
2020].

136F. Corsetti, A. A. Mostofi, and J. Lischner, “First-principles
multiscale modelling of charged adsorbates on doped graphene,”
2D Materials 4, 025070 (2017).

137See: https://e-cam.readthedocs.io/en/latest/Electronic

-Structure-Modules/modules/MatrixSwitchDBCSR/readme.ht

ml#id8, accessed February 2020.
138U. Borštnik, J. VandeVondele, V. Weber, and J. Hut-

ter, “Sparse matrix multiplication: The distributed block-
compressed sparse row library,” Parallel Computing 40, 47–58
(2014).

139See: https://github.com/cp2k/dbcsr and https://www.cp2k

.org/dbcsr, accessed February 2020.
140P. Ordejón, D. A. Drabold, R. M. Martin, and M. P. Grumbach,

“Linear system-size scaling methods for electronic-structure cal-
culations,” Physical Review B 51, 1456 (1995).

141D. R. Bowler and T. Miyazaki, “Methods in electronic structure
calculations,” Reports on Progress in Physics 75, 036503 (2012).

142R. Ierusalimschy, Programming in Lua, Fourth Edition (Feisty
Duck Digital Book Distribution, 2016).

143“LibFDF,” (), see: https://gitlab.com/siesta-project/lib

raries/libfdf.
144“SAX, Simple API for XML,” See: https://en.wikipedia.org

/wiki/Simple_API_for_XML.
145“Jhbuild,” (since 2003), https://wiki.gnome.org/Projects/

Jhbuild.
146“Gnome project,” (since 1999), https://www.gnome.org.
147D. Alvarez, A. O’Cais, M. Geimer, and K. Hoste, “Scientific

software management in real life: Deployment of easybuild on a
large scale system,” in 2016 Third International Workshop on
HPC User Support Tools (HUST) (2016) pp. 31–40.

148“Yaml,” (since 2001), https://yaml.org.
149S. Mohr, W. Dawson, M. Wagner, D. Caliste, T. Nakajima,

and L. Genovese, “Efficient computation of sparse matrix func-
tions for large-scale electronic structure calculations: the chess
library,” J. Chem. Theory Comput. 13, 4684–4698 (2017).

150C. Hartwigsen, S. Gœdecker, and J. Hutter, “Relativistic sepa-
rable dual-space gaussian pseudopotentials from h to rn,” Phys.
Rev. B 58, 3641 (1998).

151A. H. Larsen, M. Vanin, J. J. Mortensen, K. S. Thygesen, and
K. W. Jacobsen, “Localized atomic basis set in the projector
augmented wave method,” Phys. Rev. B 80, 195112 (2009).

152T. Rangel, D. Caliste, L. Genovese, and M. Torrent, “A
wavelet-based projector augmented-wave (paw) method: Reach-
ing frozen-core all-electron precision with a systematic, adaptive
and localized wavelet basis set,” Comp. Phys. Commun. 208,
1–8 (2016).

153B. Aradi, B. Hourahine, and T. Frauenheim, “DFTB+, a sparse
matrix-based implementation of the DFTB method,” The Jour-
nal of Physical Chemistry A 111, 5678–5684 (2007).

154“SAYDX — Structured Array Data Exchange,” https://gith

http://dx.doi.org/ https://doi.org/10.1016/j.jcp.2015.02.030
http://dx.doi.org/ https://doi.org/10.1016/j.jcp.2015.02.030
http://dx.doi.org/ https://doi.org/10.1016/j.jcp.2017.07.033
http://dx.doi.org/ https://doi.org/10.1016/j.jcp.2017.07.033
https://gitlab.e-cam2020.eu/esl/PIKSS
https://github.com/wannier-developers/wannier90
https://github.com/wannier-developers/wannier90
http://elk.sourceforge.net
http://dx.doi.org/ 10.1002/wcms.1340
http://dx.doi.org/ 10.1002/wcms.1340
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340
http://dx.doi.org/10.1103/PhysRevB.79.235118
http://dx.doi.org/ 10.1088/1367-2630/16/9/093029
http://dx.doi.org/ 10.1088/1367-2630/16/9/093029
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2017.09.033
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2017.09.033
http://vides.nanotcad.com
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2009.02.003
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2009.02.003
http://dx.doi.org/ 10.1103/PhysRevB.95.075146
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2015.04.023
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2015.04.023
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2016.07.028
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2016.07.028
https://www.buildbot.net
https://www.travis-ci.org
https://en.wikipedia.org/wiki/Ouroboros
https://en.wikipedia.org/wiki/Ouroboros
http://dx.doi.org/10.1088/2053-1583/aa6811
https://e-cam.readthedocs.io/en/latest/Electronic-Structure-Modules/modules/MatrixSwitchDBCSR/readme.html#id8
https://e-cam.readthedocs.io/en/latest/Electronic-Structure-Modules/modules/MatrixSwitchDBCSR/readme.html#id8
https://e-cam.readthedocs.io/en/latest/Electronic-Structure-Modules/modules/MatrixSwitchDBCSR/readme.html#id8
https://github.com/cp2k/dbcsr
https://www.cp2k.org/dbcsr
https://www.cp2k.org/dbcsr
https://gitlab.com/siesta-project/libraries/libfdf
https://gitlab.com/siesta-project/libraries/libfdf
https://en.wikipedia.org/wiki/Simple_API_for_XML
https://en.wikipedia.org/wiki/Simple_API_for_XML
https://wiki.gnome.org/Projects/Jhbuild
https://wiki.gnome.org/Projects/Jhbuild
https://www.gnome.org
http://dx.doi.org/ 10.1109/HUST.2016.009
http://dx.doi.org/ 10.1109/HUST.2016.009
https://yaml.org
http://dx.doi.org/ 10.1103/PhysRevB.80.195112
https://github.com/aradi/libsaydx

27

ub.com/aradi/libsaydx.
155“Gitlab-CI,” (since 2011), https://about.gitlab.com/product

/continuous-integration.

156“CTest from CMake,” (since 2000), https://gitlab.kitware
.com/cmake/community/wikis/doc/ctest/Testing-With-CTe

st.
157“Docker,” (since 2013), https://www.docker.com.

https://github.com/aradi/libsaydx
https://about.gitlab.com/product/continuous-integration
https://about.gitlab.com/product/continuous-integration
https://gitlab.kitware.com/cmake/community/wikis/doc/ctest/Testing-With-CTest
https://gitlab.kitware.com/cmake/community/wikis/doc/ctest/Testing-With-CTest
https://gitlab.kitware.com/cmake/community/wikis/doc/ctest/Testing-With-CTest
https://www.docker.com

	The CECAM Electronic Structure Library and the modular software development paradigm
	Abstract
	Introduction
	Shared libraries and the ESL
	The library sharing movement
	ESL
	Concept
	Challenges

	Common elements of electronic structure codes
	Existing library implementations in the ESL
	PSolver
	Libxc
	libvdwxc
	libGridXC
	pspio
	libPSML
	Electronic structure common data format (ESCDF)
	ELSI and supported solver libraries: ELPA, PEXSI, NTPoly, SLEPc-SIPs, SuperLU-DIST, Scotch
	LibOMM non-orthogonal eigensolver
	PIKSS: Parallel iterative Kohn-Sham solvers
	wannier90
	MatrixSwitch
	flook
	LibFDF
	xmlf90

	The ESL Bundle
	JHBuild bundler
	HPC-oriented distribution

	Use cases in end user codes
	ESL Demonstrator
	ESL in participating codes
	ABINIT
	BigDFT
	FHI-aims
	GPAW
	Multiple scattering codes
	Octopus
	QuantumATK
	Quantum ESPRESSO
	SIESTA

	Future
	Conclusions
	Authors contributions
	Acknowledgments
	Data Availability Statement
	Community organization and Steering Structure of the ESL
	Sustainability and software engineering of the ESL demonstrator

