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Goal: study ν production with simpli�ed geometry

� ν energy and timing

� ν creation position, direction

� ν creation processes
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J. Haines et al., “Spallation neutron source target station design, development, and commissioning”, (2014).
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Simulating the Target

� Red: LHg target

� Gray: Steel (95% Fe, 5% C)
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2ORNL Technical Drawings, 2005.
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Simulating the Target – Adding moderator suite

� Blue: 95% Steel, 5% D2O Cylinder

� Gray: 90% Be, 10% D2O plugs

� Orange: LH2 Moderators

� Brown: H2O Moderator
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J. Haines et al., “Spallation neutron source target station design, development, and commissioning”, (2014).
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Proton Beam Window

� Located ∼2.3m upstream from Hg

� < 2017: Dual-layered Inconel �lms

� ≥ 2017: Aluminum plate

� Both PBW designs are water-cooled

� Also included for completeness:

. Concrete �oors/monolith

. Steel re�ectors outside target

. Detector reference locations
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J. Haines et al., “Spallation neutron source target station design, development, and commissioning”, (2014).
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Generating Events

� Monoenergetic protons, p̂ = −ẑ
� Generated at z = 5 m, uniform in xy

� Use Geant4’s QGSP BERT physics list

� Store info about π, µ, ν, K , Λ, etc.
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SNS ν Flux Calculation & Spectra

� SNS ν primarily have 0 < Eν < 50 MeV

� “Prompt” and “Delayed” time windows

� Convolve timing with 695 ns beam spill

� ∼0.087 ν per �avor per 1 GeV POT

� No change with di�erent beam window

(within Poisson errors)

� 4.3 × 10
7 ν/cm2

/s at 20 m from target

� Advantages of using SNS ν:

. Higher Eν than reactor ν
=⇒ Higher cross section

. Steady-state rejection!

. Background: beam-related neutrons

5
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D. Akimov et al., “COHERENT 2018 at the Spallation Neutron Source”, arXiv:1803.09183v2, 2018.
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Separating the ν Energy Spectrum

νµ Energy Eνµ separated by creation process

Particle ν/POT DAR DIF µ− Capture µ− DIO

νµ 0.087 98.88% 0.82% 0.22% 0.08%

ν̄µ 0.087 99.70% 0.30% – –

νe 0.087 99.99% 0.01% – –
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�e uncertainty in our calculation

� No data exists for π± production from 1 GeV protons on Hg

� LAHET also implemented Bertini cascade model

� Discrepancies were found between LAHET and world data

� Assigned conservative 10% systematic on our calculated SNS ν �ux

� Strategies:

. Update comparisons of our simulation to world data

. Compare our simulation to LAHET predictions

. Contribute to world data: measure SNS ν �ux

→ D2O talk from Jason Newby
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Recording Directional Information

� Most ν created < 1 m from target – neglecting position e�ects (for now)

� Goal: Compare HARP data to Geant4.10.04 sim results
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ν Production Positions

� ν produced primarily in Hg

� Some ν from the moderators

� Some ν produced before target
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ORNL in Future

� Plan to upgrade SNS from 1.4 MW to 2.8 MW

� First Target Station optimized for thermal neutrons

� Second Target Station optimized for cold neutrons
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ORNL in Future

Proton Power Upgrade

� Upgrade from 1.4 MW to 1.7 MW in 2022

� Final increase to 2.0 MW in 2024

� By 2024, proton energy will be 1.3 GeV

Second Target Station

� New user facility with dedicated experiments

� Proposed for use by 2028

� Power: 2.0 MW at FTS, 0.7 MW at STS

� Operations continue at 60 Hz

� Every 4th pulse to STS [15 Hz]
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Proton Power Upgrade (2024)

ν Energy with 1 GeV protons

Particle ν/POT DAR DIF

νµ 0.087 98.88% 0.82%

ν̄µ 0.087 99.70% 0.30%

νe 0.087 99.99% 0.01%

ν Energy with 1.3 GeV protons

Particle ν/POT DAR DIF

νµ 0.119 98.60% 0.97%

ν̄µ 0.119 99.57% 0.43%

νe 0.118 99.99% 0.01%
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STS Target Design

� FPSTS19 Workshop informed design

� Solid W instead of Liquid Hg

� 21 wedges; rotating assembly

� Compressed beam/moderator suite

� Assumed current PBW design
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A few details

� Diameter of target assembly: 1.1 m

� 3 layers surround each wedge:

. Tantalum coating

. Water (edge cooling)

. Steel casing

� Not all details are known:

. �ickness of wedge layers

. Gaps between wedges?

. Exact moderator con�gurations

. Shielding near target assembly

Above Target Below Target
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Initial Estimates: FTS vs. STS

� STS is a pion decay-at-rest source of ν, but:

. Small target, more decay-in-�ight

. Small moderators, more decay-in-�ight

. Shallow target, less ν produced in target

. Immediate target surroundings unknown

� Preliminary: 0.14 ν/POT for νµ, ν̄µ, νe

� 15 Hz proton beam [3/4 pulses to FTS]

� STS monolith has denser shielding than FTS

� STS advantage: detector positioning
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Summary

� Use simulation to monitor di�erences in SNS con�gurations

� 10% uncertainty from the model; simulation can’t reduce alone!

� Improvements we’ve made to our �ux simulation:

. Neutrino creation positions and production angle

. Breakdown �ux by creation process

� Future of the simulation:

. Determine position-related variations in ν �ux

. Compare newer Geant version with HARP data

. Build up STS geometry as details become available

. Compare simulation with results from planned D2O
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�ank you!
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Neutrino Production vs. Proton Energy

� 1 million POT per point

� Favors quadratic over linear
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