

ORNL Neutrino Flux Simulations FTS and STS

Rebecca Rapp Carnegie Mellon University

Monday, November 11 Magnificent CEvNS 2019

Goal: study ν production with simplified geometry

- $\diamond~\nu$ energy and timing
- $\diamond~\nu$ creation position, direction
- $\diamond~\nu$ creation processes

Rebecca Rapp (Carnegie Mellon University)

Neutrino Flux Simulations at the FTS and STS

November 11, 2019 2/19

¹J. Haines et al., "Spallation neutron source target station design, development, and commissioning", (2014).

Simulating the Target

² ORNL Technical Drawings, 2005.

Rebecca Rapp (Carnegie Mellon University)

Neutrino Flux Simulations at the FTS and STS

November 11, 2019 3/19

Simulating the Target - Adding moderator suite

- ♦ Blue: 95% Steel, 5% D₂O Cylinder
- $\diamond \ Gray: 90\% \ Be, \ 10\% \ D_2O \ plugs$
- ♦ Orange: LH₂ Moderators
- ◊ Brown: H₂O Moderator

Rebecca Rapp (Carnegie Mellon University) Ne

Neutrino Flux Simulations at the FTS and STS

November 11, 2019 4 / 19

³J. Haines et al., "Spallation neutron source target station design, development, and commissioning", (2014).

Proton Beam Window

- $\diamond~$ Located ${\sim}2.3m$ upstream from Hg
- $\diamond~<$ 2017: Dual-layered Inconel films
- $\diamond~\geq$ 2017: Aluminum plate
- $\diamond~$ Both PBW designs are water-cooled
- $\diamond~$ Also included for completeness:
 - ▷ Concrete floors/monolith
 - $\,\triangleright\,$ Steel reflectors outside target
 - ▷ Detector reference locations

⁴J. Haines et al., "Spallation neutron source target station design, development, and commissioning", (2014).

Neutrino Flux Simulations at the FTS and STS

November 11, 2019 5 / 19

Generating Events

SNS ν Flux Calculation & Spectra

- $\diamond~$ SNS ν primarily have 0 $< E_{\nu} <$ 50 MeV
- $\diamond~$ "Prompt" and "Delayed" time windows
- $\diamond~$ Convolve timing with 695 ns beam spill
- $\diamond~{\sim}0.087~\nu$ per flavor per 1 GeV POT
- ◊ No change with different beam window (within Poisson errors)
- $\diamond~4.3\times10^7~\nu/{\rm cm^2/s}$ at 20 m from target
- $\diamond~$ Advantages of using SNS $\nu :$
 - $\triangleright~$ Higher E_{ν} than reactor ν
 - \implies Higher cross section
 - Steady-state rejection!
 - Background: beam-related neutrons

⁵D. Akimov et al., "COHERENT 2018 at the Spallation Neutron Source", arXiv:1803.09183v2, 2018.

Separating the ν Energy Spectrum

Particle	ν /POT	DAR	DIF	μ^- Capture	μ^- DIO
$ u_{\mu}$	0.087	98.88%	0.82%	0.22%	0.08%
$ar{ u}_{\mu}$	0.087	99.70%	0.30%	-	-
$\nu_{\rm e}$	0.087	99.99%	0.01%	-	-

Rebecca Rapp (Carnegie Mellon University) Neutrino Flux Simula

The uncertainty in our calculation

- $\diamond\,$ No data exists for π^\pm production from 1 GeV protons on Hg
- $\diamond~$ LAHET also implemented Bertini cascade model
- $\diamond~$ Discrepancies were found between LAHET and world data
- $\diamond~$ Assigned conservative 10% systematic on our calculated SNS ν flux
- ♦ Strategies:
 - $\triangleright~$ Update comparisons of our simulation to world data
 - ▷ Compare our simulation to LAHET predictions
 - $\triangleright\,$ Contribute to world data: measure SNS ν flux
 - $\rightarrow D_2 O$ talk from Jason Newby

Recording Directional Information

nuDirections

piDirections

♦ Most ν created < 1 m from target – neglecting position effects (for now)
 ♦ GOAL: Compare HARP data to Geant4.10.04 sim results

Rebecca Rapp (Carnegie Mellon University) Neutrino Flux Simulations at the FTS and STS

November 11, 2019 10 / 19

ν Production Positions

Rebecca Rapp (Carnegie Mellon University)

Neutrino Flux Simulations at the FTS and STS

November 11, 2019 11 / 19

ORNL in Future

- ♦ Plan to upgrade SNS from 1.4 MW to 2.8 MW
- First Target Station optimized for thermal neutrons \diamond
- Second Target Station optimized for cold neutrons \diamond

Neutrino Flux Simulations at the FTS and STS

ORNL in Future

Proton Power Upgrade

- ♦ Upgrade from 1.4 MW to 1.7 MW in 2022
- $\diamond~$ Final increase to 2.0 MW in 2024
- \diamond By 2024, proton energy will be 1.3 GeV

Second Target Station

- ♦ New user facility with dedicated experiments
- \diamond Proposed for use by 2028
- $\diamond\,$ Power: 2.0 MW at FTS, 0.7 MW at STS
- $\diamond~$ Operations continue at 60 Hz
- $\diamond~$ Every 4th pulse to STS [15 Hz]

Proton Power Upgrade (2024)

Particle	<i>ν</i> / POT	DAR	DIF	Particle	ν /POT	DAR	DIF
ν_{μ}	0.087	98.88%	0.82%	$ u_{\mu} $	0.119	98.60%	0.97%
$\bar{ u}_{\mu}$	0.087	99.70%	0.30%	$\bar{ u}_{\mu}$	0.119	99.57%	0.43%
$\nu_{\rm e}$	0.087	99.99%	0.01%	$\nu_{\rm e}$	0.118	99.99%	0.01%

Rebecca Rapp (Carnegie Mellon University)

STS Target Design

- ♦ FPSTS19 Workshop informed design
- $\diamond~$ Solid W instead of Liquid Hg
- ♦ 21 wedges; rotating assembly
- ♦ Compressed beam/moderator suite
- ◊ Assumed current PBW design

Rebecca Rapp (Carnegie Mellon University)

Neutrino Flux Simulations at the FTS and STS

November 11, 2019

15/19

A few details

Figure from FPSTS19: Gallmeier Moderator Design

Rebecca Rapp (Carnegie Mellon University)

- ◇ Diameter of target assembly: 1.1 m
- ◊ 3 layers surround each wedge:
 - ▷ Tantalum coating
 - ▷ Water (edge cooling)
 - ▷ Steel casing
- ◊ Not all details are known:
 - ▷ Thickness of wedge layers
 - ▷ Gaps between wedges?
 - ▷ Exact moderator configurations
 - ▷ Shielding near target assembly

Initial Estimates: FTS vs. STS

- $\diamond~$ STS is a pion decay-at-rest source of $\nu,$ but:
 - ▷ Small target, more decay-in-flight
 - ▷ Small moderators, more decay-in-flight
 - $\,\triangleright\,$ Shallow target, less ν produced in target
 - Immediate target surroundings unknown
- ♦ **Preliminary**: 0.14 ν /POT for ν_{μ} , $\bar{\nu}_{\mu}$, ν_{e}
- \diamond 15 Hz proton beam [3/4 pulses to FTS]
- $\diamond~$ STS monolith has denser shielding than FTS
- $\diamond~$ STS advantage: detector positioning

Summary

- $\diamond~$ Use simulation to monitor differences in SNS configurations
- ◇ 10% uncertainty from the model; simulation can't reduce alone!
- ◊ Improvements we've made to our flux simulation:
 - Neutrino creation positions and production angle
 - Breakdown flux by creation process
- ◇ Future of the simulation:
 - $\triangleright~$ Determine position-related variations in $\nu~$ flux
 - ▷ Compare newer Geant version with HARP data
 - ▷ Build up STS geometry as details become available
 - \triangleright Compare simulation with results from planned D₂O

Thank you!

Neutrino Flux Simulations at the FTS and STS

November 11, 2019 19 / 19

BACKUP SLIDES

Rebecca Rapp (Carnegie Mellon University) Neutrino Flux Simulations at the FTS and STS

November 11, 2019 1/2

Neutrino Production vs. Proton Energy

- ◇ 1 million POT per point
- ◇ Favors quadratic over linear

