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Goal: study v production with simplified geometry
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1. Upper Inner Reflector Plug

2. Upper Outer Reflector Plug

3. Intermediate Inner Reflector Plug

4. Intermediate Outer Reflector Plug

5. Lower Inner Reflector Plug

6. Lower Outer Reflector Plug

7. Core Vessel Ullage Volume

8. Core Vessel Drain Line

9. Core Vessel Lid

10. Core Vessel Chimney

11. Core Vessel Vacuum Line

12. Core Vessel Helium Suction Line

13. Proton Beam Window
Removable Shielding

14. Proton Beam Window

15. Core Veessel Lower Section

16. Outer Support Cylinder

17. Inner Support Cyiinder

¢ v energy and timing

¢ v creation position, direction

¢ v creation processes
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Simulating the Target

¢ Red: LHg target
¢ Gray: Steel (95% Fe, 5% C)
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Simulating the Target — Adding moderator suite

Neutron |
Moderators
Neutron Beam ~
Flight Paths

¢ Blue: 95% Steel, 5% D,0 Cylinder
o Gray: 90% Be, 10% D0 plugs
¢ Orange: LH; Moderators

o Brown: H,O Moderator
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Proton Beam Window

window

Located ~2.3m upstream from Hg

< 2017: Dual-layered Inconel films
> 2017: Aluminum plate
Both PBW designs are water-cooled
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Also included for completeness:
> Concrete floors/monolith
> Steel reflectors outside target
> Detector reference locations Ngg
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Generating Events
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Y Position (cm)
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© Monoenergetic protons, p = —2
¢ Generated at z = 5 m, uniform in xy
¢ Use Geant4’s QGSP_BERT physics list

o Store info about 7, u, v, K, A, etc.
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SNS v Flux Calculation & Spectra
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SNS v primarily have 0 < E, < 50 MeV

“Prompt” and “Delayed” time windows

a.u.

Convolve timing with 695 ns beam spill
~0.087 v per flavor per 1 GeV POT

No change with different beam window
(within Poisson errors)
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o 4.3 x 107 v/cm?/s at 20 m from target

— Prompt v,

— Delayed vo and v,

¢ Advantages of using SNS v:

a.u.

> Higher E, than reactor v
— Higher cross section
> Steady-state rejection!
0 1c;oo 2(;00 3&00 4000 5000 6060 7000 ac;oo 9&0010000 > Background: beam-related neutrons

time from POT onset (ns)
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Separating the v Energy Spectrum

v, Energy

E,, separated by creation process

(Carnegie Mellon University)
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50 100 50 200 ECN 0 100 150 200 -
Particle | v/POT | DAR | DIF | p~ Capture | = DIO
Vy 0.087 | 98.88% | 0.82% 0.22% 0.08%
vy 0.087 | 99.70% | 0.30% - -
Ve 0.087 | 99.99% | 0.01% - -
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The uncertainty in our calculation

o No data exists for 7* production from 1 GeV protons on Hg

¢ LAHET also implemented Bertini cascade model

&

Discrepancies were found between LAHET and world data

<

Assigned conservative 10% systematic on our calculated SNS v flux

o

Strategies:
> Update comparisons of our simulation to world data
> Compare our simulation to LAHET predictions
> Contribute to world data: measure SNS v flux
— D,0 talk from Jason Newby
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Recording Directional Information

nuDirections piDirections

cos(0)
cos(8)
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¢ Most v created < 1 m from target — neglecting position effects (for now)

o GoaL: C HARP data to Geant4.10.04 si It )
ompare ata to uean S1m results ((C aﬂ@ %@S
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Cumulative neutrino production (normalized)

v Production Positions

¢ v produced primarily in Hg
¢ Some v from the moderators

© Some v produced before target
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ORNL in Future

¢ Plan to upgrade SNS from 1.4 MW to 2.8 MW
¢ First Target Station optimized for thermal neutrons

¢ Second Target Station optimized for cold neutrons ot
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ORNL in Future

Proton Power Upgrade
¢ Upgrade from 1.4 MW to 1.7 MW in 2022
¢ Final increase to 2.0 MW in 2024
¢ By 2024, proton energy will be 1.3 GeV

Second Target Station

¢ New user facility with dedicated experiments
¢ Proposed for use by 2028
¢ Power: 2.0 MW at FTS, 0.7 MW at STS
¢ Operations continue at 60 Hz
¢ Every 4th pulse to STS [15 Hz]
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Proton Power Upgrade (2024)
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v Energy with 1 GeV protons v Energy with 1.3 GeV protons
Particle | v/POT | DAR DIF Particle | v/POT | DAR DIF
Yy 0.087 | 98.88% | 0.82% Vy 0.119 | 98.60% | 0.97%
Uy 0.087 | 99.70% | 0.30% vy 0.119 | 99.57% | 0.43%
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STS Target Design

o FPSTS19 Workshop informed design s o
¢ Solid W instead of Liquid Hg

¢ 21 wedges; rotating assembly

Tungsten
target assembly

¢ Compressed beam/moderator suite

¢ Assumed current PBW design

— Lower tube
moderator
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https://conference.sns.gov/event/171/

A few details

¢ Diameter of target assembly: 1.1 m
¢ 3 layers surround each wedge:

> Tantalum coating

> Water (edge cooling)

> Steel casing
¢ Not all details are known:

> Thickness of wedge layers

> Gaps between wedges?

> Exact moderator configurations
> Shielding near target assembly

Figure from FPSTS19: Gallmeier Moderator Design

Above Target Below Target
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Initial Estimates: FTS vs. STS

¢ STS is a pion decay-at-rest source of v, but:
> Small target, more decay-in-flight
> Small moderators, more decay-in-flight
> Shallow target, less v produced in target
> Immediate target surroundings unknown
¢ Preliminary: 0.14 v/POT for v, vy, v,
¢ 15 Hz proton beam [3/4 pulses to FTS]
¢ STS monolith has denser shielding than FTS

¢ STS advantage: detector positioning
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Summary

¢ Use simulation to monitor differences in SNS configurations
¢ 10% uncertainty from the model; simulation can’t reduce alone!
¢ Improvements we’ve made to our flux simulation:

> Neutrino creation positions and production angle

> Breakdown flux by creation process

¢ Future of the simulation:

> Determine position-related variations in v flux
> Compare newer Geant version with HARP data
> Build up STS geometry as details become available
> Compare simulation with results from planned D,0O
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Thank you!
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BACKUP SLIDES
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Neutrino Production vs. Proton Energy
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