

NEWS-G: status and quenching factor measurement

Marie Vidal on behalf of the NEWS-G collaboration Magnificent CEvNS workshop: The PIT November 10th 2019

NEWS-G

- Spherical metallic vessel filled with noble gas, HV on central anode: Spherical Proportional Counter.
- Main goal: search for low mass Dark Matter
- Other applications: CEvNS detection, $0\nu\beta\beta$ search

Prototype Sedine: Laboratoire souterrain de Modane

Detectors

- Diameter: 15, 30, 60, 140 cm
- Sphere: stainless steel, copper, glass, aluminum
- Sensor diameter: 1 16 mm
- Gas: Neon, Argon, Helium, CH₄
- High voltage on sensor: $\vec{E} \sim 1/r^2$
- Large gain
- Low energy threshold, independent of the SPC size
- No e⁻/NR discrimination for P>200mbar
- Discrimination surface/volume events

Queen's lab

NEWS-G: pulse formation

- 1. Primary ionization Mean energy necessary to generate 1 e⁻/ion pair: $W = 27.6 \text{ eV} [1] \text{ in Neon} + CH_4$
- Drift of primary e⁻ towards sensor Typical drift times: ~ 2 ms, diffusion: ~100 µs for 140 Ø SPC
- 3. Avalanche in the vicinity of the anode Generation of thousands of secondary e⁻/ion pairs Governed by G (gain) and θ_{Polya}
- 4. Signal formation Current induced by ions → sphere surface
- 5. Read out: preamplifier

Example pulse

Amplitude provides estimation of the energy of the event.

Rise time provides an estimation of the radial distance of the event.

Data analysis: rise time versus energy

Rise time vs energy:

Simulations of the surface and volume events are used to determine the background in the region of interest \rightarrow volume events

Sensitivity to sub keV

Calibration measurements with a 30 cm SPC using bakelite sensor: Ar (2% CH_4), pressure = 500 mbar

7

NEWS-G first results: SEDINE detector

The NEWS-G collaboration has an experimental set up at LSM (Laboratoire Souterrain de Modane in France).

Data taking conditions:

9.6 kg days of exposure with Neon (+0.7% CH₄), pressure = 3.1 bar \rightarrow 42.7 days of data Shielding: 30 cm PE, 15 cm Pb, 8 cm Cu

 $60 \text{ cm } \emptyset \text{ copper sphere}$

NEWS-G at SNOLAB

- Larger sphere: 140 cm Ø copper vessel, 12 mm thick low activity copper, electroplating of 500 μm of pure copper.
- New sensor: better \vec{E} isotropy, better threshold
- Better shielding: archeological lead 3 cm, very low activity lead 22cm, 40 cm HDPE.
- Allow sensitivity down to ~ 10⁻⁴¹ cm², use of He and H targets to reach WIMP mass sensitivity down to 0.1 GeV.
- Commissioning of the detector at the LSM in summer before installation at SNOLAB beginning of 2020.

LSM commissioning

- Assembly of the detector at LSM
- Dedicated water tank for neutron shield
- Gas mixture: Neon 1bar (+2%CH₄) and CH₄ 135 mb
- Validation of:
 - Operation of 2 channels (``achinos" sensor) with south/north hemisphere
 - Laser and ³⁷Ar calibrations
 - ¹/₂ ionization/electron threshold
- Data under analysis for background/noise rejection.

LSM commissioning: first results on performance

11

G. Gerbier

NEWS-G: Goals

- Low atomic mass targets (He, CH_{4,} Ne) to match mass of light WIMPs
- What signal to expect from low mass WIMPs

Quenching factor

• ⁴He: data available using MIMAC.

²⁰Ne: need to get measurements, experiment at the TUNL facility.

13

- [3] D. Santos, F. Mayet, O. Guillaudin et al.: arXiv:08101137v1
- [4] B.Tampon, D. Santos, O. Guillaudin, J-F. Muraz, L. Lebreton, T. Vinchon and
- P. Querre: DOI: 10.1051/epjconf/201715301014

Quenching factor measurements

- E_n: known
- θ : chosen
- E_{nr}: calculated
- E_{ee}: extracted energy mean from energy spectrum (ideally)
- Backing detectors (BD)
- Beam Pick-off Monitor (BPM)

Quenching factor measurements

- Organization of 2 measurements campaign at the TUNL facility in May 2018 and in February 2019.
 - 2018 campaign: D+D→ n+³He+γ: Neutron beam 3.68 MeV, 4energy points: 4.95-28 keV_{nr}
 - 2019 campaign: p + ⁷Li → n + ⁷Be+ γ: Neutron beam 545keV, 8 energy points: 0.34-6.5 keV_{nr}
- Gas: Neon:CH₄ (97:3)
- Pressure (2018/2019): 500mbar/2bar
- Energy calibration: Fe55 peak at 5.9keV

Quenching factor: 2 Experimental Set Ups

Annulus configuration

Multiple energies configuration

Analysis: recoil event selection by BDs

Time of flight: time of the neutron event at backing detector – time of the neutron event at BPM

Analysis: recoil event selection

Analysis: recoil event selection

Analysis: recoil event selection

Rise time cuts to build energy spectra.

Energy spectrum for 2018 campaign

Signal histogram: inside onset window counts 30 Contributions from recoils ⁵⁵Fe events and 55Fe + 25 environmental BG Total fit 20 Data 15 recoils 10 10 20 15 25 Energy [keV]

- During data taking the ⁵⁵Fe source was still in front the window.
 - Fit of the recoils peak with a gaussian
 - Fit of the background with interpolation of the background energy spectrum (from outside onset window).
 - E_{ee} mean returned by fitter: estimation of QF for the 4 data points investigated in 2018.

Energy spectrum for 2019 campaign

- No calibration during data taking.
- The recoil peak can no longer be modelled by a gaussian.
- Background flat and noise peak.
- Can no longer extract the energy mean $\rm E_{ee}$ from fit.
- Need to come up with a model of the recoil peak
- Unbinned log likelihood of the data.

Study of the peak shape

Recoil energy spectrum

- Take into account the geometry of the experiment: impact on scattering angle
- Take into account the response of the detector:
 - Primary ionization: Poisson
 - Second ionization (avalanche): Polya
- Include quenching factor: constant
- Simulation and data don't match at higher energy.

 $QF(E_{nr})$

- Lindhard: $f_n = \frac{kg(\epsilon)}{1 + kg(\epsilon)}$ $k = 0.133Z^{2/3}A^{-1/2}$ $\epsilon = 11.5E_rZ^{7/3}$ $g(\epsilon) = 3\epsilon^{0.15} + 0.7\epsilon^{0.6} + \epsilon$
- Parametrization of Lindhard, already used by DM experiments (e.g. Edelweiss):

$$QF(E_{nr}) = \alpha E_{nr}^{\beta}$$

Quenching factor as a function of nuclear recoil energy

Study of the peak shape

- Higher energies described better.
- Fit the data using QF(E_{nr}): Lindhard parametrization.
- Work on the ULLH is on going: paper to come out soon.

Recoil energy spectrum

Preliminary calculation: CEvNS

First estimation of the event rate:

- Target: ⁴⁰Ar
- Source nuclear reactor: Baldoncini's model, neutrino flux of ~ $2 \times 10^{20} \nu/s/GW$
- 1 GW thermal power
- Detector 10m from core
- Lindhard: quenching factor (arXiv:0712.2470v2 [nucl-ex])
- Considering $E_{th} = 100 \text{ eV}_{ee}$: ~ 7 CEvNS events/kg/day

Differential event rate of the CEvNS

$CE\nu NS$ future work

- Include complete response of the detector
- Study of the background, develop appropriate shielding
 - shielding expected size: $1.4 \times 1.4 \times 1.4 \text{ m}^3$
- Find nuclear power plant site
- Develop a complete simulation (Geant4): size SPC (its response), gas, pressure, shielding
 - constrained by the detectable rate of neutrino interactions

Conclusion

- The NEWS-G collaboration is competitive in light dark matter searches.
 - Promising first results
 - New experiment development NEWS@SNO
- Quenching factor measurements
 - Neon down to 0.34 keV_{nr}: paper soon to be published.
 - Challenge on proton: developing a low energy neutron beam project at RMTL.
- Use technology developed by NEWS-G collaboration to detect CEvNS.
- Develop a project to use SPCs to detect CEvNS using reactor neutrinos. Collaborations are welcome!

Thank you

R&D sensor

"old sensor"

achinos

"new sensor" Rod + umbrella (bakelite) + ball

QF experiments at Queen's: RMTL

- The Reactor Materials Testing Laboratory tests materials and devices for radiation damages.
- 1-8 MeV proton beam
- High beam current: 0.05-45 μ A
- Target: LiF from Université de Montréal
- First tests:
 - target can handle 20 μ A without elaborate cooling system.
 - proton beam profile is offset or broadened by 30 keV.
 - neutron energy spectrum very broad: due to proton beam profile, but also reflections r moderation?

QF experiments at Queen's: RMTL

Background summary: Ne + 2%CH₄ at 2 bar

	Source	Contamination / flux		dru <1 keV
Copper Sphere	²¹⁰ Pb	28.5	mBq/kg	1.04
500 μm	²³⁸ U	3	µBq/kg	0.0117
of electrolyte	²³² Th	13	µBq/kg	0.0754
Archeological Lead	²¹⁰ Pb	<50	mBq/kg	0.28
	²³⁸ U	44.5	µBq/kg	0.142
	²³² Th	9.1	µBq/kg	0.0256
Modern Lead	²¹⁰ Pb	4.6	Bq/kg	0.053
	²³⁸ U	79	µBq/kg	0.17
	²³² Th	9	µBq/kg	0.0251
Cavern	Gamma	2.11E+00	γ/cm2/s	0.00837
	Neutron	4000	n/m2/day	0.00438
	Muon	0.27	µ/m2/day	6.20E-04
Total without upper limit				1.56

Background summary: Ne + 2%CH₄ at 2 bar

Details of the SNOLAB project

- Glovebox system: Saclay (CEA) and LSM
- Copper sphere + lead shield: France
- Seismic platform: SNOLAB

Detector pictures

