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Abstract—This paper presents a steady-state model and as-
sociated power flow equations that can be applied to any dc
grid. State-of-art power flow methods and two newly proposed
methods are discussed and applied to the proposed steady-state
model. A standardized IEEE test feeder is used to benchmark the
power flow methods with respect to accuracy, convergence and
computational efficiency. It is shown that the two new methods
have a superior performance compared to the existing techniques
for the steady-state analysis of most common dc grids, providing
up to a 93 % increase in computational efficiency for the system
that was analyzed in this paper. Therefore, it is demonstrated
in this paper that these power flow techniques can be used for
the operation, planning, optimization, market simulation, and
security assessment of practical dc grids.

Index Terms—DC Grids, Modelling, Operation, Power Flow,
Steady-State

I. INTRODUCTION

RESEARCH into dc systems has increased rapidly in

industry and academia over the last decade [1]. Re-

newable energy resources, such as photovoltaic (PV) panels,

wind turbines, batteries and electric vehicles (EVs) are playing

a vital role in the energy transition from traditional energy

sources [2]–[4]. Since all of these technologies have dc volt-

ages in their conversion steps, the implementation of dc grids

at low and medium voltage is technically and economically

viable [5]–[7]. Moreover, many loads are becoming dc-based

such as LED lighting, USB type-C charging, and dc data

centers [8]–[10].

Power flow methods determine the steady-state operating

conditions of a power system. In general, the main goal of

power flow techniques is to determine all the bus voltages,

line currents, and power flows of a system, given the injected

or consumed power at each node [11], [12]. Power flow

analysis is widely used for the operation and planning of

electrical power systems, but can also be used for more
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complex applications such as stability analysis, economic

system optimization, flow-based market simulations and N-1

security assessments [12], [13].

Several dc power flow methods are presented in the tech-

nical literature. Most commonly, ac and dc power flow

solutions are determined iteratively by utilizing analytical

methods such as Gauss-Seidel (GS), Newton-Raphson (NR),

Backward-Forward (BF) sweep methods, or by incorporating

the system’s equation into an optimization problem (OP) [12]–

[15]. However, a Quadratic Solver (QS) can also be used to

find the power flow solution by directly solving the quadratic

equations [16].

Because all of the existing methods are derived from the

power flow analysis of conventional ac systems, power flow

methods developed for dc grids have the potential to provide

significant improvements in terms of computational efficiency.

Furthermore, no comparison exists of the application of exist-

ing methods to dc grids. Thus, this paper applies all these

methods to dc grids, proposes two novel techniques, and

compares them with respect to accuracy, convergence and

computational effort.

Based on the previous discussion, the main contributions of

this paper are three-fold. First, a steady-state model that can

be used to represent any dc grid is presented, showing how the

power flow equations can be derived from this model. Second,

the most common existing power flow methods for dc grids

are discussed in detail, showing how they can be applied to

dc grids. Finally, two novel power flow methods are proposed,

demonstrating that they are numerically superior to existing

methods in terms of accuracy, convergence, and computational

burden.

The remainder of this paper is organized as follows: In

Section II, the steady-state model of dc grids is presented.

In Section III, the different existing power flow methods are

discussed in detail, and two novel methods are presented. In

Section IV, the different power flow methods are compared

with respect to accuracy, convergence and computational cost,

using a realistic dc test system. Lastly, in Section V, the main

conclusions are drawn.



II. DC GRID STEADY-STATE MODEL

An example of a generalized dc grid is shown in Fig. 1.

Any dc grid can be fully described by its n nodes and l lines

with m conductors.

N1

N3

N5

N2

N4

L3

~ ~

L4

L1

L2
L5

L8

L7
L6

Fig. 1. Example of a dc grid with 5 nodes, 8 lines and 5 converters.

A. Distribution and Transmission Line Model

The lumped element models shown in Fig. 2 are commonly

used to model distribution and transmission lines. This lumped

approach provides reasonable accuracy when the wavelength

of the signals are much longer than the length of the lines [17],

as is the case in steady-state conditions.

L

½C

R

½G ½C½G

½L½R

CG

½L ½R

LR

CG

(a) 

(c) 

(b) 

Fig. 2. (a) Gamma, (b) pi, and (c) T lumped element line models.

Conveniently, in a dc system, all the lumped element

models can be reduced to the same steady-state model, which

consists of a simple resistor, i.e., the inductive and capacitive

components can be neglected. Furthermore, the conductance

G can also be neglected, since most systems have very low

conductance, which is especially true for the typical low and

medium voltage dc grids.

B. DC Grid Model

For monopolar systems, the incidence matrix γ describes

the interconnection of the nodes in the grid and is given by:

γ(j, i) =

{

1 if Ij is flowing from node i

−1 if Ij is flowing to node i
, (1)

where the index i is used to indicate a node, and the index j

is used to indicate a line. Consequently, the current Ij is the

current flowing in line j.

Unipolar and bipolar dc systems have multiple conductors in

each line, which have different potentials and carry different

currents. Therefore, the multi-conductor incidence matrix Γ

differentiates between conductors and is derived as follows:

Γ ((j − 1)m+ k, (i− 1)m+ k) = γ (j, i) , (2)

where the index k is used to indicate a specific conductor, and

one must cycle through all line, node and conductor indices

to find the elements of this matrix [18].

If all the resistances of the conductors in the dc systems’

lines are put in a diagonal matrix R, the currents in the

system’s lines can be defined as:

IL = R−1
ΓUN , (3)

where UN is the vector containing the voltages at each node,

and IL is the vector containing the currents in each line.

According to Kirchhoff’s law, the sum of the currents

flowing into each node must equal 0. Therefore, the current

flowing from the power electronic converters into each node,

defined as IN , must be equal to the current flowing out of

that node via the connected lines. Thus:

IN = Γ
T IL = Γ

TR−1
ΓUN = Y UN , (4)

where Y is the admittance matrix of the dc system.

C. Power Flow Formulation

When the power in each node is used instead of the injected

current, the system’s equations become:

PN = 〈UN ,Y UN 〉, (5)

where 〈·, ·〉 represents the scalar product of two vectors. From

this equation, it is clear that the power flow equations are

quadratic, and can hence not be explicitly solved for larger

networks, requiring numerical techniques. More importantly,

the admittance matrix is singular and can therefore not be

inverted or factorized, because if only the currents are defined

in the system, an infinite number of solutions exist for the

node voltages. Therefore, a slack node, i.e., a node with a

constant voltage, is required. However, at least one node that

establishes a given relationship with a specified voltage will

also yield a single solution, thus making the system solvable.

III. DC GRID POWER FLOW METHODS

In this section, the most commonly used methods for

solving dc power flow problems are discussed in detail. Two

novel power flow methods that arise from the dc system’s

equations are also presented. All methods presented in this

section provide an adequate numerical approximation of the

power flow solution, since determining the explicit solution

becomes intractable for large systems.

A. Quadratic Solver (QS)

Equation (5) can be expanded as:

Pi = Ui

n
∑

j=1

YijUj , (6)

where Yij refers to the element in row i and column j of the

admittance matrix Y . In matrix form, this equation becomes:

PN =







U1 . . . 0
...

. . .
...

0 . . . Un






Y UN . (7)

To solve these equations directly, often Newton or Quasi-

Newton methods are used to find the solution [16]. In this

paper the Newton search algorithm is utilized.



B. Optimisation Problem (OP)

The power flow problem can also be adapted into a Quadrat-

ically Constrained Quadratic Problem (QCQP) as follows:

min
n
∑

i=1

ǫ2i , (8)

s.t. ǫi = Pi − Ui

n
∑

j=1

YijUj . (9)

Methods to solve these types of problems include the in-

terior point, augmented Lagrangian, and the Simplex algo-

rithms [19]–[21]. In this paper, an interior point solver is used,

to which the Hessian and the Gradient matrices are provided

to improve convergence.

Alternatively, semidefinite or second order cone program-

ming can also be used to incorporate the equations into an

optimization problem.

C. Gauss-Seidel (GS)

The GS method utilizes a simple fixed-point iteration [12],

[22]. It is based on the equations for each individual node

voltage, iterating on a node by node basis until the convergence

criteria are met. The equations for the voltage at each node,

for iteration k, are given by:

Uk+1

i =
1

Yii





Pi

Uk
i

−
i−1
∑

j=1

YijU
k+1

j −
n
∑

j=i+1

YijU
k
j



 . (10)

In matrix form this equation becomes:

Uk+1

i =
1

Yii

(

Pi

Uk
i

− Y ∗

i
UN

)

, (11)

where Y ∗ is the admittance matrix where the diagonal entries

are removed, and Y ∗

i
represents the i-th row of this matrix.

In general, the GS method is easy to implement, but the

convergence is slow compared to other methods. Therefore,

an accelerating factor α is often used to improve conver-

gence [12]. The algorithm is then appended with:

Uk+1

i = Uk
i + α

(

Uk+1

i − Uk
i

)

, (12)

where usually an α between 1.4 and 1.6 is used.

D. Newton-Raphson (NR)

The NR method and its many variations is the most widely

used computational method in industry [12], [23]–[25]. For

this method, the mismatch between the specified power and

the calculated power can be defined as:

∆PN,i = Pi − Ui

n
∑

j=1

YijUj . (13)

Based on this mismatch equation, the Jacobian matrix J is

used to determine the next iteration of the node voltages

according to:

UN
k+1 = UN

k + J−1∆PN , (14)

where:

J =







∂P1

∂U1

. . . ∂P1

∂Un

...
. . .

...
∂Pn

∂U1

. . . ∂Pn

∂Un







= Y







U1 . . . 0
...

. . .
...

0 . . . Un






+ diag(Y UN ), (15)

and diag() defines a diagonal matrix from the elements of a

vector.

Since the partial derivatives are taken into account and

the power flow equations are quadratic, the NR converges

relatively fast. However, every iteration requires a refactor-

ization of the Jacobian leading to increased computational

effort per iteration, although strategies could be used to reduce

this computational burden as is done for ac power flow

techniques [12].

E. Backward-Forward (BF)

Another method that has been successfully implemented

for radial or weakly meshed dc grids is the BF sweep

method [26]–[28], where at every iteration, backward and

forward sweeps are carried out. For the backward sweep,

the nodes voltages are considered constant, and therefore the

current from each converter can be represented as:

Iki =
Pi

Uk
i

. (16)

Next, the algorithm iterates through all the lines from down-

stream to upstream, where for every line j connecting node a

(downstream) to node b (upstream), the current in line j and

the current flowing into node b can be found as follows:

Ikj = Ika , (17)

Ikb = Ikb + Ika . (18)

Consequently, the node current Ib is the sum of the currents

in downstream lines, and the current in every line is the

cumulative current in its downstream node. For the forward

sweep, the line currents are considered constant and the node

voltages are calculated. The algorithm iterates again through

all the lines, but now from upstream to downstream, with the

node voltages given by:

Uk+1
a = Uk+1

b − Ikj Rj . (19)

The main advantages of the BF method are its simplic-

ity and convergence. However, a clear downstream-upstream

hierarchy of the lines in the system is required. Moreover,

the method only converges satisfactorily for radial or weakly

meshed dc grids.

F. Direct Matrix-Current Approximation (DM-CA)

Here, a novel power flow method is presented that combines

the strengths of the NR, BF, and interior point methods to

solve the quadratic power flow problem. For every iteration,



the constant power loads are linearized as a constant current

load, utilizing the node voltages from the previous iteration.

The resulting system is linear and the resulting node voltages

can be solved explicitly.

It was mentioned before that for the admittance matrix to be

invertible, one or more of the voltages in the system must be

referenced to a pre-determined voltage. If one or more of the

nodes in the system are a slack node (have a constant voltage),

the currents in the lines are given by:

IL = R−1
Γ̌ǓN +R−1

Γ̂ÛN , (20)

where ǓN contains the unknown node voltages; ÛN contains

the known node voltages; Γ̌ contains the columns of the

incidence matrix referring to the unknown node voltages; and

Γ̂ contains the columns of the incidence matrix referring to

the known node voltages. Therefore, the currents flowing from

the converters into nodes where voltage is not defined, must

be equal to:

ǏN = Γ̌
TR−1

Γ̌ǓN + Γ̌
TR−1

Γ̂ÛN = Y̌ ǓN + I0. (21)

Based on the the BF method and (21), the unknown voltages

for each iteration can then be calculated as follows:

Ǔ
k+1

N
= Y̌ −1

















P1

Uk

1

...
Pn

Uk
n









− I0









. (22)

This method directly uses the system’s matrices instead of

the Jacobian, and approximates the constant power nodes as a

current source. Therefore, this method is referred here as the

DM-CA method.

The main advantage of this method is that the matrix Y̌

remains constant throughout the iterations, and therefore only

has to be factorized once. Only the injected current for each

node, Pi/Ui, and the product with the factorized admittance

matrix has to be determined every iteration. Therefore, the

complexity of this method mostly depends on one factorization

of the admittance matrix and multiple matrix multiplications

of this matrix.

G. Direct Matrix-Impedance Approximation (DM-IA)

Another novel power flow technique is proposed here, where

the constant current model (21) is modified by adding a

parallel impedance. Therefore, the current flowing from each

constant power converter is approximated by:

Ik+1

i ≈
2Pi

Uk
i

−
Pi

(

Uk
i

)2
Uk+1

i =
2Pi

Uk
i

− Zk
i U

k+1

i . (23)

Consequently, the current flowing from the converters into

each node can be given as follows:

ǏN = Ž
−1

ǓN + Y̌ ǓN + I0, (24)

where Ž is a diagonal impedance matrix with elements

determined from (23). The voltages at each iteration can then

be determined by utilizing:

Ǔ
k+1

N
=

(

Žk−1
+ Y̌

)

−1

















2P1

Uk

1

...
2Pn

Uk
n









− I0









. (25)

Since this method adds an impedance to the approximation

of the constant power nodes, this method is referred here as the

DM-IA method. The main advantage of this method over the

DM-CA is that its iterations converge faster, since it also takes

into account the gradient from the constant power converters’

behavior. However, this comes at the cost of having to factorize

Žk
−1

+ Y̌ at every iteration, thus increasing the complexity

of every iteration. Both the DM-CA and DM-IA methods give

a numerical approximation of the power flow solution with an

error dependent on the convergence criteria.

An advantage of both DM methods is that they can deal

with a broader set of grids than those with only slack and

constant power nodes. In this case, any linear node behavior

can be modelled by a linear combination of a constant voltage,

impedance, or current node. Furthermore, non-linear behavior

can be approximated by a constant current and a constant

impedance that are updated every iteration, as was done for the

constant power nodes. However, for the sake of convergence,

every grid has to have at least one slack node, or a node with

an impedance.

IV. POWER FLOW METHODS BENCHMARK

In this section, the power flow methods presented in the

previous section are compared with respect to accuracy, con-

vergence, and computational effort. Accuracy is defined here

as a Root Mean Square Error (RMSE) with respect to the

actual solution of the power flow problem. For the iterative

methods, the convergence is given by the number of iterations

that are required to achieve a convergence criteria, with com-

putational effort being measured as the required computational

time to converge.

For the iterative power flow methods, the iterative process

stops when the solution converges with a desired tolerance

according to

∣

∣

∣

∣

∣

Uk+1

i − Uk
i

Uk
i

∣

∣

∣

∣

∣

< ǫ ∀i, (26)

where ǫ is the desired tolerance. Note that a set tolerance does

not always guarantee a similar accuracy for all methods, as

discussed next.

The results in this section are obtained by implementing the

power flow methods in Matlab 2017b, and run on a computer

with Windows 7, an Intel Xeon E5-1620 processor, and 8 GB

of RAM.



A. IEEE Test Feeder

To compare the power flow methods the IEEE European

Low Voltage Test Feeder [29] is used, as is illustrated in Fig. 3,

and consists of 111 nodes and 112 lines. The ac feeder is a

representative neighborhood grid that includes household load

profiles and line parameters, and it is assumed here to be a

dc feeder with the same line parameters. In this case, 10.000

simulations of one day are carried out, where a day consists of

96 time steps of 15 minutes. In addition to the 55 households

included in the test feeder, 15 photovoltaic (PV) systems and

15 electric vehicles (EVs) are randomly distributed among the

households for every simulation. A convergence tolerance of

10−6 is used.

Fig. 3. IEEE European Low Voltage Test Feeder [29].

The power consumption from each household is randomly

determined, assuming a uniform Probability Density Function

(PDF) from the provided load profiles in the test feeder at

every time step. Furthermore, the PV production is simulated

using a Gaussian PDF, with a variance of 1/6 of the expected

value. Additionally, the arrival time of the EVs is simulated by

a Gaussian PDF with a mean at 18:00 and a standard deviation

of 1.2 hours, while the charging time is defined as a Weibull

distribution with k = 2.022 and λ = 2.837 [30], [31], resulting

in a Gaussian-like PDF for the probability that a vehicle is

charging with a constant power of 3 kW. The expected power

for all these grid elements are shown in Fig. 4.
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Fig. 4. Expected power for the IEEE test feeder load profiles, PV systems,
and EVs.

B. Numerical Results

For the first step in the power flow calculations, an initial

guess of 350 V is used at all nodes. Furthermore, the solution

of each time step t is used as initial guess for the next time step

(t+ 1). Note that, because this system is relatively large and

the matrices are sparse, LU factorization significantly reduces

the average computation times.

The RMSE, average number of iterations, and average

computation time (per simulation of a day) for the various

power flow methods applied to the IEEE test feeder are shown

in Table I. Observe that the OP and DM-IA methods converge

faster (have less iterations on average), since both these

methods incorporate the non-linear behavior of the constant

power loads. Besides the GS method (which is notorious for

slow convergence) and QS method (which is not an iterative

method), the other methods exhibit similar convergence.

TABLE I
COMPUTATIONAL METRICS WITH ǫ = 10

−6

Method RMSE [p.u.]
Average
Iterations

Average
Time [s]

GS 0.000189 367 2.87

NR 1.1 ∗ 10
−9 2.74 0.0445

BF 3.0 ∗ 10
−9 2.88 0.109

DM-CA 2.9 ∗ 10
−9 2.87 0.0031

DM-IA 2.7 ∗ 10
−14 2.00 0.0175

QS 5.3 ∗ 10
−15 N/A 240

OP 4.1 ∗ 10
−10 2.00 9.54

Notice that the DM methods require the least computational

effort of all the power flow methods. Moreover, even though

the DM-IA converges faster than the DM-CA method, the

DM-CA method requires the least computational effort of

all methods. This is because, for the DM-CA method, the

factorized admittance matrix is re-used for every iteration and

every time step. Also note that, due to the slow convergence

and many iterations of the GS method, the GS does not

achieve the level of accuracy that one would expect with these

convergence criteria. Consequently, these criteria should be

adjusted for the GS method if higher levels of accuracy are

required.

For the simulation, a convergence tolerance ǫ = 10−6 was

used. However, to ensure that a comprehensive comparison

of the different power flow methods is given, the RMSE,

average number of iterations, and average computation time

for the same simulation with ǫ = 10−3 are given in Table II.

Note that, as expected, for all methods, the average number of

required iterations decreases when the convergence tolerance is

substantially increased. Nevertheless, the results are consistent

with the previous simulations.



TABLE II
COMPUTATIONAL METRICS WITH ǫ = 10

−3

Method RMSE [p.u.]
Average
Iterations

Average
Time [s]

GS 0.00841 1.028 0.0141

NR 5.9 ∗ 10
−7 1.684 0.0277

BF 1.1 ∗ 10
−6 1.683 0.0705

DM-CA 1.1 ∗ 10
−6 1.683 0.0022

DM-IA 6.0 ∗ 10
−10 1.684 0.0141

QS 2.4 ∗ 10
−12 N/A 240

OP 3.4 ∗ 10
−10 2.003 9.59

V. CONCLUSIONS

The existing literature discusses several iterative power flow

methods for dc grids such as the GS, NR, and BF methods,

but it is shown that the problem can also be formulated and

solved as an OP or by using a QS. In this paper, a steady-state

power flow model for dc grids was presented. Furthermore,

state-of-art power flow methods were discussed and applied

to the dc grid model, and two novel power flow methods were

proposed. Finally, the existing and novel power flow methods

were benchmarked with respect to accuracy, convergence, and

computational effort.

The results show that the proposed DM-CA method re-

quires the least computational effort overall (up to 93%

less than the NR method). However, this comes at a cost

of diminished convergence. Furthermore, the proposed DM-

IA method shows improved convergence and requires up to

60% less computational effort compared to the NR method.

Therefore, it is shown that both DM methods have superior

performance compared to existing techniques for the steady-

state analysis of most dc grids, and hence can be used for

planning, optimization, and analysis purposes.
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