
Optimal Control for Continuous-time Nonlinear Systems based on a
Linear-like Policy Iteration

Adnan Tahirovic1 and Alessandro Astolfi2

Abstract— We propose a novel strategy to construct optimal
controllers for continuous-time nonlinear systems by means of
linear-like techniques, provided that the optimal value function
is differentiable and quadratic-like. This assumption covers
a wide range of cases and holds locally in general. The
proposed strategy avoids solving the Hamilton-Jacobi-Bellman
(HJB) equation, that is a nonlinear partial differential equation,
which is known to be hard or impossible to solve. Instead,
the HJB equation is replaced with an easy-solvable state-
dependent Lyapunov matrix equation without introducing any
approximation. We achieve this exploiting a linear-factorization
of the underlying nonlinear system and a policy-iteration
algorithm (PI) to yield a linear-like PI for nonlinear systems.
The proposed control strategy solves optimal nonlinear control
problems in an exact, yet still linear-like manner. We prove
optimality of the resulting solution and illustrate the results via
two examples.

I. INTRODUCTION

The solution of optimal control problems for nonlinear
systems is based on the solution of the HJB partial dif-
ferential equations (PDE), which can be extremely difficult
or impossible to solve. Many approximation methods for
solving the HJB PDE have been developed, under a variety
of assumptions, at the cost of some optimality loss [1].

A first class of techniques is based on the theory of viscos-
ity solutions of the HJB PDE [2]. This solution is proved to
be the value function of the underlying optimal control. It is
required to be continuous, and not necessarily differentiable,
as it is assumed for classical solutions. For this reason, the
theory of viscosity solutions also provides a tool for dealing
with existence and uniqueness issues for nonlinear PDEs.
To get an approximate viscosity solution, finite-difference
and finite-element methods have been used: both require a
discretization of the state space, hence the computational cost
increases exponentially with the dimension of the state space.

A second class of techniques, also relevant to this paper,
is based on the PI algorithm, which reduces a nonlinear HJB
PDE to a linear PDE [3], [4]. This is used to find the cost
associated to an admissible control. The PI algorithm also
provides an incremental improvement of the control policy
and ensures convergence to the optimal control. In many
cases, solving a linear PDE is still not easy. In [5], Galerkin
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approximations have been used to approximately solve op-
timal control problems by combining this approximation
with the PI algorithm. Some other approaches developed to
approximate the solution of the HJB PDE, up to a desired
degree of accuracy, have been presented in [6]–[8].

A third class of techniques is based on results obtained
for linear systems and for a cost in quadratic form. For
such systems the HJB PDE reduces to an algebraic Riccati
equation (ARE), which is easy to solve. The methods based
on Jacobian linearization of the nonlinear system, feedback
linearization [9], [10], dynamic extensions [11], and state-
dependent Riccati equations (SDRE) [12]–[14], represent
techniques to approximate the optimal control by avoiding
solving nonlinear PDEs. The linearization-based approach
is feasible only in the vicinity of an equilibrium, while
feedback-linearization may cancel "useful" nonlinearities and
may not provide a near-to-optimal control law. The dynamic
extension-based approach relies on a modified cost to avoid
solving the HJB PDE, providing thus a suboptimal control
law. It is worth noting that the dynamic extension-based
control is capable to extract an upper bound of the modified
cost to provide a measure of the sub-optimality level of the
solution. The SDRE-based control approach relies upon a
linear-like factorization of the nonlinear system. Its main
disadvantage is the lack of stability guarantee.

We propose a control strategy for input-affine continuous-
time nonlinear systems which is based on the PI paradigm
combined with the linear-like factorization used in the SDRE
approach. We use the PI algorithm to ensure convergence of
the policy to the optimal control. Unlike other PI approaches,
we use the linear-like factorization of the nonlinear system to
avoid solving any PDE, thus replacing the PDE with a state-
dependent Lyapunov matrix equation (SDLE). In this way
the proposed control strategy solves the optimal nonlinear
control problem in an exact, but still linear-like, manner,
provided the optimal cost is in a quadratic-like form. If this
is not a case, the proposed approach may still ensure a near-
optimal solution in the vicinity of an equilibrium, around
which it provides a powerful approximation method.

In Section II we define the problem and recall a general
form of the PI algorithm. In Section III we recall the SDRE
approach with its associated factorization technique and re-
define the optimal control problem. In Section IV, we define
the linear-like PI which computes the optimal control with
a modified cost. Section V introduces the modified linear-
like PI to solve the considered nonlinear optimal control
problem. Section VI provides an illustration of the results
via two examples, while Section VII concludes the paper.



II. CONTROL BASED ON POLICY ITERATION FOR
CONTINUOUS-TIME SYSTEMS

A. Problem description
Consider a class of continuous-time nonlinear systems

described by equations of the form

ẋ = f (x)+g(x)u, (1)

with state x(t) ∈ Rn, input u(t) ∈ Rm and f and g Lipschitz
continuous on a compact set Ω⊂Rn that contains the origin.
Suppose in addition that the system (1) has an equilibrium
at the origin for u = 0, that is f (0) = 0. Finally, assume that
the system is controllable in Ω, that is, it is possible to find
an input signal u(t) which steers the state of the system to
the origin xe = 0 from any initial condition x0 in Ω.

Consider now the cost function

V (x0,u) =
∫

∞

0
(l(x)+‖u‖2

R)dt, (2)

where the state penalty function l is a positive function on
Ω, such that l(0) = 0, the system (1) with output y = l(x) is
zero-state observable, and R ∈Rmxm is a symmetric positive
definite matrix. Typically, l(x) is quadratic, that is l(x) =
xT Qx, where Q is a positive semidefinite matrix.

A feedback control u = u(x) is called an admissible
control, u∈A (Ω), with respect to l on Ω, if u is continuous
on Ω, u(0) = 0, the zero equilibrium of the closed-loop
system is locally asymptotically stable with basin of attrac-
tion containing Ω, and the cost (2) is finite for all x0 ∈ Ω.
The minimal value of the cost function V , obtained for an
admissible control u∗(x) (the optimal control), is denoted as
the optimal cost V ∗(x), ∀x ∈Ω. This optimal cost V ∗, called
the value function, is the solution of the HJB equation

∂V ∗(x)
∂x

f (x)− 1
4

∂V ∗(x)
∂x

g(x)R−1g(x)T ∂V ∗(x)T

∂x
+ l(x) = 0,

(3)
which is a PDE, provided V is differentiable. Equation (3) is
in general hard to solve even in those cases in which a unique
solution is known to exist. The PDE makes the optimal
control problem virtually impossible to solve in closed-form.
If a solution exists, the optimal control is

u∗ = u∗(x) =−1
2

R−1gT (x)
∂V ∗(x)

∂x

T

. (4)

B. Policy iteration for nonlinear systems
To compute the value of the cost V̂0(x0), for a fixed initial

condition x0 and an admissible control û, one has to solve
(1) with u = û, which is not always possible, and compute
the integral (2) along the corresponding solution. Another
way to deal with this problem is to differentiate (2) along
the trajectories of the system yielding the linear PDE

∂V̂ (x)
∂x

( f (x)+g(x)û(x))+ l(x)+‖û‖2
R = 0, (5)

which represents an incremental expression of the cost of the
admissible control û, and it does not depend on the solution
trajectories of the system (1). If the optimal control (4) is
used, i.e. û = u∗, then (5) transforms into the nonlinear PDE

(3), the solution of which directly provides the optimal cost
V ∗ and the optimal control law u∗.

The optimal PI for continuous-time nonlinear systems
has been proposed in [4]. The main idea of this iterative
algorithm is to choose an arbitrarily initial admissible control
û(x) ∈ A (Ω) and solve the linear PDE (5) for V̂ , which
should be easier to solve than the nonlinear PDE (3). In
order to improve the performance of the arbitrarily selected
control û(x), one then defines the policy-update

û∗(x) = argmin
u

∂V̂ (x)
∂x

( f (x)+g(x)û(x))+ l(x)+‖û‖2
R =

− 1
2

R−1gT (x)
∂V̂ (x)T

∂x
,∀x ∈Ω.

(6)
Having a new and improved control û∗, one can again solve
(5) to obtain the value function V̂ . By iteratively improving
the value function and the control law iterating (5) and (6),
the optimal PI algorithm ensures, in principle, the desired
convergence, i.e. limk→∞ V̂k(x) = V ∗(x) and limk→∞ ûk(x) =
u∗(x), ∀x ∈Ω, where k is the index of the iteration.

Although equation (5) should be easier to solve for V̂
than solving (1) and (2), it is still difficult. For this reason
different approaches to approximately deal with equation (5)
have been proposed, see, e.g. [4], [5]. The goal of this paper
is to show how PI can be exploited to find the optimal control
solution without the need to solve any PDE on the basis of
a simple linear-like procedure.

C. Policy iteration for linear systems

In this section we consider linear systems, that is system
(1) with f (x) = Ax, with A ∈ Rnxn, g(x) = B, with B ∈ Rnxm

and a quadratic cost, that is l(x) = xT Qx, with Q = QT ≥ 0,
in (2). Assume that the pair (A,B) is stabilizable and the pair
(Q1/2,A) is detectable.

Assuming that the optimal value function is of the form

V ∗(x) = xT P∗x, (7)

where P∗ = P∗T is a positive definite matrix, the HJB
equation (3) becomes the ARE

AT P∗+P∗A−P∗BR−1BT P∗+Q = 0, (8)

which is easily solvable and has a unique positive definite
solution P∗. The optimal control action can then be computed
from (4) yielding

u∗(x) =−R−1BT P∗x = Π
∗x, (9)

where Π∗ is the optimal control policy.
Although the solution to the optimal control problem for

continuous-time linear systems can be given in the closed-
form (9), we recall the optimal PI algorithm to understand
how to construct the optimal control in an iterative manner.

In the simplified version of the optimal PI algorithm for
linear systems the cost-update equation (5) becomes the
Lyapunov Matrix Equation (LME)

(A+BΠ̂)T P̂+ P̂(A+BΠ̂)+Q+ Π̂
T RΠ̂ = 0, (10)



which can be easily solved for a positive definite matrix P̂,
provided an admissible control û= Π̂x is given. Additionally,
the policy-update equation (6) for linear systems becomes

û∗ = Π̂
∗x =−R−1BT P̂x, Π̂

∗ =−R−1BT P̂. (11)

The proof for this linear case is provided in [15], where it
has been shown that the PI is actually Kleiman-Newton’s
method, which ensures convergence to the solution of the
ARE whenever the initial control is admissible.

III. POINTWISE FACTORIZATION OF THE OPTIMAL
CONTROL PROBLEM

Under mild regularity assumptions the nonlinear system
(1) can be rewritten in the form

ẋ = A(x)x+g(x)u, (12)

where A(x) : Rn→Rnxn is a smooth matrix valued function.
The main idea behind the factorizations of the function f (x)
as f (x) = A(x)x is to represent the nonlinear system (1) as a
pointwise linear system by assuming that A(x) and g(x) are
constant matrices for each state x along the trajectories of
the system (see, e.g. [14]).

In the spirit of the above factorization, similarly to the
linear case, we assume a pointwise quadratic form for the
optimal value function, namely

V ∗(x) = xT P∗(x)x, (13)

where P∗=P∗(x) is a state-dependent matrix valued function
and it is positive definite for all x ∈Ω.

For clarity, we first define the solution to the SDRE [14],
which represents the factorized version of the ARE (8).

Definition 1 A positive definite matrix P̄ is the pointwise
solution to the SDRE for the state x if

A(x)T P̄+ P̄A(x)− P̄g(x)R−1g(x)T P̄+Q = 0. (14)

As in the case of the ARE, the SDRE is easily solvable
for each fixed x∈Ω. By mimicking the linear-like procedure
presented in II-C, the control action can be computed by (9)
in the pointwise form

u∗(x) =−R−1gT (x)P̄x = Π̄x. (15)

Equations (14) and (15) form the SDRE-based control
method: (14) is solved for each x along the trajectories of
the system and the control law is computed as in (15).

Note that the SDRE-based control does not provide the
optimal solution to the optimal control problem for the
nonlinear system, since (14) has not been derived from the
HJB equation (3). Another issue pertains to the matrix P̄,
for which we do not have a closed form solution, that is
P̄ = P̄(x), but only the pointwise value for each state x
along the trajectories of the system. This prevents V = xT P̄x
from being a Lyapunov function candidate, since its time
derivative along the trajectories of the system, namely

V̇ ∗(x) = ẋT P̄(x)x+ xT P̄(x)ẋ+ xT ˙̄P(x)x, (16)

has the additional term ˙̄P(x), which is impossible to obtain
analytically and to be used for further analysis.

Lemma 1 [Direct optimal control] Assume that the optimal
value function for the optimal control problem for the non-
linear factorized system (12) is given in the quadratic-like
form (13), where P∗(x) is a positive definite matrix for all
x ∈Ω. Then P∗(x) is the solution of the HJB equation

xT{A(x)T P∗+P∗A(x)−P∗g(x)R−1g(x)T P∗+Q}x
+uT

corrRucorr + xT Ṗ∗x = 0,
(17)

while the optimal control is given by u∗ = ū+ucorr, where

ū =−R−1gT (x)P∗(x)x, (18)

ucorr =−
1
2

R−1[
n

∑
i=1

n

∑
j=1

xix jgT (x)
∂ pi, j

∂x
], (19)

and pi, j indicates the (i, j)th element of the matrix P∗(x).

Although Lemma 1 provides the exact solution to the
optimal control problem, the HJB equation (17), which is
itself a PDE, is as hard to solve for P∗ as the initial HJB
equation (3). However, equation (17) allows for a separation
of the optimal control problem into two simpler problems,
one aimed at finding the solution ū, which is a counterpart
of (14), and the second one aimed at finding a correction
term from the last two terms in (17), which are discussed in
Section IV and V, respectively.

IV. AN APPROXIMATE CONTROL BASED ON LINEAR-LIKE
POLICY ITERATION

A. The State-dependent Lyapunov Equation - SDLE

The main idea behind the linear-like PI is to use the PI
algorithm for nonlinear systems by avoiding using PDEs, i.e.
by using only Lypaunov matrix equations as in the linear
case presented in Section II-C. To do so, we conduct the PI
by omitting the last two terms in (17) to get the Lyapunov
equation instead of the PDE at the cost of optimality loss.
For clarity, we define the State-dependent Lyapunov Equa-
tion (SDLE) which is used as the approximate cost-update
equation in the PI algorithm.

Definition 2 (Approximate cost-update) Consider the ad-
missible control û = Π̂x ∈ A (Ω). A differentiable function
V̂ = xT P̂(x)x : Ω→ R (V̂ (0) = 0), where P̂(x) is a positive
definite matrix, is the approximate cost function of û if P̂(x)
satisfies the SDLE

(A(x)+g(x)Π̂)T P̂+ P̂(A(x)+g(x)Π̂)+Q+ Π̂
T RΠ̂ = 0.

(20)
We call (20) the approximate cost-update equation for the
nonlinear system and write P̂(x) = CUSDLE(Π̂(x)), where
the index SDLE indicates that one has to solve the state-
dependent Lyapunov matrix equation (20) to obtain P̂(x).

Note first that this equation is easy solvable as in the linear
case (10). Moreover, unlike the idea behind the SDRE (14),
where P is computed pointwise for each single x along the
trajectories of the system, the SDLE provides an analytical



form of P̂(x). Having P̂(x) in closed form, it is then possible
to compute the time derivative ˙̂P(x) along the trajectories of
the system, thus circumventing one of the main limitations
of the SDRE-based approach.

Note also that the SDLE can be derived from (5), by
leting û = ū+ ucorr, where the terms equal to the last two
terms in (17) are omitted for simplicity. This would mean
that the SDLE can be considered as the cost-update equation
when taking ucorr(x) = 0, for all x, and by omitting the time
derivative Ṗ(x). For this reason we call (20) the approximate
cost-update equation, and we write P̂(x) =CUSDLE(Π̂) .

B. The linear-like policy iteration based on the SDLE

Along with Definition 2, we introduce a new definition
and a result to define the linear-like PI based on the SDLE.

Definition 3 [Approximate policy-update] Consider the dif-
ferentiable function V̂ = xT P̂(x)x : Ω→R (V̂ (0) = 0), where
for each x, P̂(x) is a positive definite matrix. The control û∗

is said to update the control û (or the policy Π̂∗ updates the
policy Π̂) in accordance with the approximate policy-update
equations for nonlinear systems

û∗ =−R−1g(x)T P̂(x)x, Π̂
∗ =−R−1g(x)T P̂(x), (21)

and we write Π̂∗ = PUSDLE(P̂(x)).

Note that (21) includes only the first term (18) of the
optimal control given by (18)-(19). For this reason, we
also call Π̂∗ = PUSDLE(P̂(x)) the approximate policy-update
equation.

Theorem 1 [Control based on linear-like policy iteration]
Consider an admissible control ûk = Π̂kx, which ensures that
the matrix A+ gΠ̂k is stable, and assume that the matrix
Q+ Π̂T

k RΠ̂k is positive definite. Then there is a unique, sym-
metric and positive definite solution P̂k to the approximate
cost-update in accordance with Definition 2, that is P̂k =
CUSDLE(Π̂k). If now Π̂k+1 is computed by the approximate
policy-update in accordance with Definition 3, that is Π̂k+1 =
PUSDLE(P̂k), then V̂k > V̂k+1, where P̂k+1 = CUSDLE(Π̂k+1).
The pair (P̂k, Π̂k+1) represents the kth iteration of the linear-
like PI based on the SDLE for nonlinear systems. Moreover,
this linear-like PI fully resembles the optimal PI with respect
to the modified state cost l(x) = xT Q̄x, where Q̄ = Q− Ṗ.

We call the solution based on this approach the PI-SDLE
control. One of the main advantages of the proposed PI-
SDLE control is that the linear-like PI can also be com-
puted pointwise using (20), instead of finding a closed form
solution. In such a case, one needs to conduct the whole
PI algorithm for every single x along the trajectories of
the system. Such a procedure is similar to the pointwise
computation of the ARE solution when the SDRE-based
control is used. Unlike the SDRE-based control, the PI-SDLE
based control is proven to be stabilizable in Ω provided the
initial control is admissible.

V. OPTIMAL CONTROL BASED ON LINEAR-LIKE POLICY
ITERATION

We now show how it is possible to use the linear-like PI
proposed in Theorem 1 to obtain the optimal solution for
the optimal control problem for continuous-time nonlinear
systems.

Let the matrix P̄1(x) and the control ū1(x) be the solutions
obtained by the linear-like PI equations (22)-(23), that is

(A(x)+g(x)Π̂1
k)

T P̂1
k + P̂1

k (A(x)+g(x)Π̂1
k)+Π̂

1T

k RΠ̂
1
k +Q= 0,

(22)
û∗1k+1 =−R−1gT (x)P̂1

k (x)x. (23)

Let also the matrix P̄2(x) and the control ū2(x) be the
solutions obtained by the modified linear-like PI equations
(24)-(25), that is

(A(x)+g(x)Π̂2
k,i)

T P̂2
k,i + P̂2

k,i(A(x)+g(x)Π̂2
k,i)+ Π̂

2T

k,i RΠ̂
2
k,i

+Q+ ˙̄P2
i−1|A(x)x+g(x)ū2

i−1
= 0,

(24)
û∗2k+1,i =−R−1gT (x)P̂2

k,i(x)x. (25)

The index i indicates one complete ith PI (24)-(25).
˙̄P2
i−1|A(x)x+g(x)ū2

i−1
is the time derivative of P̄2

i−1 along the
trajectories of the system when ū2

i−1 = Π̄2
i−1x is used. Both

˙̄P2
i−1 and ū2

i−1 are obtained from the (i−1)th PI (24)-(25) as
the respective solutions. This means that ˙̄P2

i−1|A(x)x+g(x)ū2
i−1

is
a fixed matrix function during the ith PI (24)-(25). The initial
admissible control ū2

0 and the matrix ˙̄P2
0 required for the first

PI (24)-(25) (i = 1), are taken from the solutions of the PI
(22)-(23), as ū2

0 = ū1 and ˙̄P2
0 = ˙̄P1.

Lemma 2 The matrix ˙̄P2
i (∀i), is a positive definite matrix

in the same region as the matrix ˙̄P1, xT ˙̄P1x≥ 0.

The result from Lemma 2 is required to ensure all matrices
˙̄P2
i−1 in (24) are positive definite when xT ˙̄P1x≥ 0.

Theorem 2 Assume that the optimal value function is in the
form (13). Then the optimal control u∗(x) ∈A (Ω) is given
as

u∗(x) =

{
ū2 if xT ˙̄P1x≥ 0
ū1 + ū1

corr if xT ˙̄P1x < 0,
(26)

where ū2 = −R−1g(x)T P̄2x, ū1 = −R−1g(x)T P̄1x, and ū1
corr

is the correction component obtained as solution to the
quadratic matrix equation

ū1T

corrRū1
corr + xT ˙̄P1|g(x)ū1

corr
x+ xT ˙̄P1|A(x)x+g(x)ū1x = 0, (27)

which preserves continuity in u∗(x).

When xT ˙̄P1x ≥ 0, ˙̄P2
i−1 is positive definite (Lemma 2)

implying that (24)-(25) is solvable for a positive definite
˙̄P2
i . For this reason, the repetition of the PI (24)-(25) can

be interpreted as follows. The first PI (i = 1), for which
this additional cost is xT ˙̄P2

0 x = xT ˙̄P1x, aims at finding the
control ūi=1 (the control after the first PI is completed) for
the modified state cost xT (Q+ ˙̄P2

0 )x. During the first PI (24)-
(25) for i = 1, the algorithm resembles the optimal control



for the modified cost xT (Q+ ˙̄P2
0 − ˙̄P2

1 )x (Theorem 1). This
cost can be interpreted as an improved cost with respect
to the cost considered in the preceding policy itearation.
After the ith PI is completed, we obtain the modified state
cost xT (Q+ ˙̄P2

i−1− ˙̄P2
i )x for which the linear-like PI (24)-

(25) finds the optimal solution. In accordance to the the
PI algorithm, we have limi→∞(

˙̄P2
i−1− ˙̄P2

i ) = 0. This means
that the modified cost, with respect to which the linear-like
PI (24)-(25) finds the optimal control, tends to the original
state cost, hence the obtained control solution converges to
the optimal control.

When xT ˙̄P1x< 0, the quadratic equation (27) follows from
the last two terms of the HJB equation (17). It is solvable
for a real-valued ū1

corr to provide the correction part of the
optimal control.

VI. ILLUSTRATIVE EXAMPLES

We provide simulation results by considering two non-
linear systems. For the first system the optimal control and
the optimal value function are known, so it is possible to
assess the proposed approach against the optimal solution.
In the second example we compare our approach against
the control based on the Galerkin approximation (GAC) by
considering a nonlinear system with an unknown optimal
control policy and an unknown optimal value function. This
example illustrates the capability of the proposed approach
to solve such nonlinear control problems. In all examples,
after the linear-like PI (22)-(23) is used, we complete only
one modified PI (24)-(25), that is i = 1, while both PIs have
been conducted for three iterations only (up to k = 3).

A. Optimal control of the Van Der Pol oscillator

Consider the Van Der Pol oscillator

ẋ1 = x2, ẋ2 =−x1−µ(1− x2
1)x2 + x1u, (28)

with µ = 0.5, the state cost l(x) = x2
2 and assume R = 1. The

optimal control is u∗ = −x1x2, with optimal value function
V ∗ = x1

2 + x2
2. The system can be easily factorized with

A(x) =

 0 1

−1 −1
2
(1− x2

1)

 , B(x) =

[
0
x1

]
. (29)

The initial admissible control for the linear-like PI is selected
to be the one that cancels out the nonlinearities and stabilizes
the system, that is u =− 1

2 x1x2.
Fig. 1 provides a comparison between the proposed ap-

proach and the optimal control for the system for x0 =
[−1;1]. From the control signals, cumulative costs and phase
portrait, we conclude optimality of the proposed approach. In
Fig. 1 one can also see the switching function xT ˙̄P1x, which
is used in (26). This function indicates the time intervals
when the two different forms of the optimal control (26)
have been used. Another interesting observation is that this
function becomes zero before the states reach the origin. This
phenomenon has not been investigated in this work, and it
can be a promising direction for further understanding of the
proposed framework. This means that the system trajectory
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Fig. 1: Comparison between the optimal and proposed con-
trols in terms of control signals (a), cumulative costs (b),
and phase portrait (c) obtained along the trajectory from the
initial condition x = [−1;1]. Subfigure (d) shows the values
of the boundary function used in (26), that is xT ˙̄P1x.

has approached the hyper-surface xT ˙̄P1x= 0 (in this example,
a curve) and then has moved along this surface towards the
equilibrium. Somewhat surprisingly, once the system states
are on this hyper-surface, along which the PIs (22)-(23) and
(24)-(25) are equivalent, one only needs the linear-like PI
(22)-(23) to obtain the remaining part of the optimal control.

Fig. 2 illustrates how the control signal obtained using
the proposed approach (a) and its associated cumulative
cost (b) converge towards the optimal values depending
on the number of iterations used in the linear-like policy-
iteration (22)-(23) and in the modified linear-like policy-
iteration (24)-(25). One can observe that both cumulative
cost and control signal obtained after three iterations (green)
are almost identical to the optimal counterparts (blue). We
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Fig. 2: Cumulative costs (a) and control signals (b) obtained
for the initial condition x = [−1;1] when using a different
number of iterations, for both policy-iterations (22)-(23) and
(24)-(25), that is k = {1},k = {1,2} and k = {1,2,3}.

provide also the final expression of the estimated optimal cost
function for the case based on one iteration, due to a very
high order of the rational function produced by the case based
on three iterations. The estimated optimal function based on



only one iteration is V̂1(x) =
(x2

1x2
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Fig. 3: Cost deviation between the one which is iteratively
improved by the linear-like PI approach and the optimal one.
The deviations shown in subfigures (a) and (b) are obtained
based on one and three iterations, respectively.

Fig. 3 shows the deviation of the estimated optimal cost
function obtained from the proposed approach and the actual
value function. In Fig. 3a, only one iteration is conducted,
that is k = {1}, while Fig. 3b shows the deviation resulting
after three iterations, that is k = {1,2,3}. From Fig. 3b, one
can observe that the convergence is locally achieved.

B. Comparison against control based on Galerkin approxi-
mations

Consider the nonlinear system

ẋ =

[
−x3

1− x2

x1 + x2

]
+

[
0
1

]
u, (30)

with the state cost l(x) = x2
1 + x2

2 and assume R = 1. The
system can be easily factorized with

A(x) =

[
−x2

1 −1
1 1

]
, B(x) =

[
0
1

]
. (31)

The initial admissible control for the linear-like PI is selected
to be the control based on feedback linearization (FL) which
is obtained in the form [5]

u(x) = 3x5
1 +3x2

1x2− x2 +0.4142x1−1.3522(x3
1 + x2). (32)

The GAC solution has been obtained for different orders
of the approximation and those can be found in [5]. In this
example, we use two such controls obtained for N = {8,15}.
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Fig. 4: The cost values for different initial conditions for x1,
where x2 = 0 (a) and x2 = 0.2 (b).

We illustrate the comparison of the GAC, FL and the
proposed approach in terms of their associated costs as in
[5]. Fig. 4 shows the costs that have been obtained for
different initial conditions in x1, while x2 is constant, that
is x2 = 0 (a) and x2 = 0.2 (b). One can observe that the
proposed linear-like policy-iteration generates the minimal
cost, although the GAC with N = 15 is similar. However, we
stress that the GAC requires a number of preconditions for
a valid implementation [5].

VII. CONCLUSION

We have presented several results to develop a method
to determine optimal control strategies for continuous-time
nonlinear systems. In Definitions 2 and 3 we have defined the
approximate linear-like PI based on the SDLE to compute an
approximate control law. The potential of such approximate
control framework can be seen from the result in Theorem 1,
in which it has been shown that the control is optimal with
respect to a modified state cost.

In Theorem 2 we have given the main result which pertains
to the definition of a novel optimal control approach for
continuous-time nonlinear systems. From the results obtained
on two case studies one can observe the optimality of the
proposed approach and conclude that the proposed approach
can be a control choice even in cases in which the optimal
value function is not known.
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