Programming Brain Mapping Hypotheses in NeuroLang **Open Science Room - OHBM 2020**

Gaston E. Zanitti, Valentin Iovene, & Demian Wassermann Parietal Team - INRIA

gaston.zanitti@inria.fr

About this presentation

- NeuroLang: Probabilistic language based on Datalog+/-[1].
- One of its main features:

neuroimaging data

shoping stifficult for approach allings, there are placetillar and

What we can achieve? Replicating NeuroSynth[4] results

```
term_docs[term, pmid] :- \
    ns_pmid_term_tfidf[pmid, term, tfidf] & \
    term == 'auditory' & \
    tfidf > 1e-3
                                                       term
act_term_counts[term, voxid, agg_count(pmid)] :-
    ns activations by id[pmid, voxid] &
    term docs[term, pmid]
term_counts[term, agg_count(pmid)] :-
    ns_pmid_term_tfidf[pmid, term, tfidf] &
    term docs[term, pmid]
p_act_given_term[voxid, x, y, z, term, prob] :-
    act_term_counts[term, voxid, act_term_count] &
    term_counts[term, term_count] &
    ns_vox_id_MNI[voxid, x, y, z] &
    (prob == (act_term_count / term_count))
```

'auditory'.

*We are working on a probabilistic solver to avoid having to compute this information here.

- Studies that mention a given
- Counting the activations for each term
- Counting terms
- Probability of activation given a term*

NeuroSynth[4] results:

z-score: 0				What's here?	
X:	0	Y:	0	Z:	0

Using First Order Logic (FOL), we defined a set of implications for obtaining information from the NeuroSynth[4] database, in this case, related to the term

What we can achieve? Replicating NeuroSynth[4] results

Activations not related with the auditory cortex

What we can achieve? Adding atlas information

<pre>term_docs[term, pmid] := \ ns_pmid_term_tfidf[pmid, term, tfidf] & \ term == 'auditory' & \ tfidf > 1e-3 act_term_counts[term, voxid, agg_count(pmid)] ns_activations_by_id[pmid, voxid] & term_docs[term, pmid] term_counts[term, agg_count(pmid)] :- ns_pmid_term_tfidf[pmid, term, tfidf] & term_docs[term, pmid] p_act_given_term[voxid, x, y, z, term, prob] :- act_term_counts[term, voxid, act_term_count] & term_counts[term, term_count] & ns_vox_id_MNI[voxid, x, y, z] & (prob == (act_term_count / term_count))</pre>	First query:	1
<pre>act_term_counts[term, voxid, agg_count(pmid)] :- ns_activations_by_id[pmid, voxid] & term_docs[term, pmid] term_counts[term, agg_count(pmid)] :- ns_pmid_term_tfidf[pmid, term, tfidf] & term_docs[term, pmid] p_act_given_term[voxid, x, y, z, term, prob] :- act_term_counts[term, voxid, act_term_count] & term_counts[term, term_count] & ns_vox_id_MNI[voxid, x, y, z] & (prob == (act_term_count / term_count))</pre>	<pre>term_docs[term, pmid] :- \ ns_pmid_term_tfidf[pmid, term, tfidf] & \ term == 'auditory' & \ tfidf > 1e-3</pre>	a A
<pre>term_counts[term, agg_count(pmid)] :- ns_pmid_term_tfidf[pmid, term, tfidf] & term_docs[term, pmid] p_act_given_term[voxid, x, y, z, term, prob] :- act_term_counts[term, voxid, act_term_count] & term_counts[term, term_count] & ns_vox_id_MNI[voxid, x, y, z] & (prob == (act_term_count / term_count))</pre>	<pre>act_term_counts[term, voxid, agg_count(pmid)] ns_activations_by_id[pmid, voxid] & term_docs[term, pmid]</pre>	
<pre>p_act_given_term[voxid, x, y, z, term, prob] :- act_term_counts[term, voxid, act_term_count] & term_counts[term, term_count] & ns_vox_id_MNI[voxid, x, y, z] & (prob == (act_term_count / term_count))</pre>	<pre>term_counts[term, agg_count(pmid)] :- ns_pmid_term_tfidf[pmid, term, tfidf] & term_docs[term, pmid]</pre>	Ir
	<pre>p_act_given_term[voxid, x, y, z, term, prob] :- act_term_counts[term, voxid, act_term_count] & term_counts[term, term_count] & ns_vox_id_MNI[voxid, x, y, z] & (prob == (act_term_count / term_count))</pre>	×

We can use spatial information from an atlas to filter the results to specific regions

New information:

• r_g_temporal_middle & l_g_temporal_middle

Destrieux^[5] atlas

What we can achieve? Adding atlas information

- We need to address every region manually
- Error-prone

What we can achieve? Adding ontologies Adding priori information about the region to be analysed

Complex filter based on ontology information

What is an ontology?

A formal way of representing knowledge in an hierarchical way in which concepts are described both by their meaning and their relationship to each other.

FMA ontology[6] subset for the "regional_part" property of the temporal lobe

What we can achieve? Adding ontologies

x=-63

- Not only useful for unifying regions
- \bullet

We can use ontologies to obtain synonyms: For example 'pain' -> 'nociceptive' & 'noxious'

NeuroLang Technical interlude

- Probabilistic language based on Datalog^{+/-} [1].
- Strong theoretical framework on which to develop NeuroLang, drawing on more than forty years of proven theories [2].
- An attempt to take a step in the direction of providing a unifying framework that allows researchers to represent their theories in a structured way, something that is not possible at this time [3].
- To be released as an open source tool.
- More information: <u>https://github.com/NeuroLang</u> or contact me: gaston.zanitti@inria.fr

One more thing... **Reverse** inference

- We can continue combining information. \bullet
- \bullet activations.

Next step: Use ontologies to filter results based on cognitive processes, diseases, etc

Probability of a term being mention in a document given the selected

Exp. Val	Term				
0.0014	temporal	0	2.4e+02		
0.0011	magnetic	1	1.8e+02		
0.0011	resonance	2	1.2e+02	6	3
0.0011	magnetic resonance	3	60		
0.0010	functional magnetic	4	0	5	X
0.0010	using	5	R ^{2.4e+02}		
0.0010	gyrus	6	1.8e+02	and the	
0.0009	superior	7	1.2e+02	643	
0.0009	task	8	60		
0.0009	auditory	9	0	3	y=
0.0009	frontal	10			

Thanks!

gaston.zanitti@inria.fr

References

- (1995).
- 2. Gallaire, H., Minker, J. (eds.): Logic and data bases. Plenum Press, New York (1978).
- the search for mental structure. Annual review of psychology 67, 587-612 (Jan 2016).
- 4. Yarkoni, T.: Neurosynth core tools v0.3.1 (May 2014).
- using standard anatomical nomenclature. Neurolmage 53 (1), 1–15 (Oct 2010).
- Bioinfor-matics, vol. 6, pp. 59–117. Springer London, London (2008)

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Reading, Mass

3. Poldrack, R.A., Yarkoni, T.: From brain maps to cognitive ontologies: informatics and

5. Destrieux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical gyri and sulci

6. Rosse, C., Mejino, J.L.V.: The Foundational Model of Anatomy Ontology. In: Dress, A., Vingron, M., Myers, G., Giegerich, R., Fitch, W., Pevzner, P.A., Grip-pen, G., Felsenstein, J., Gusfield, D., Istrail, S., Karlin, S., Lengauer, T., McClure, M., Nowak, M., Sankoff, D., Shamir, R., Steel, M., Stormo, G., Tavar'e, S., Warnow, T., Burger, A., Davidson, D., Baldock, R. (eds.) Anatomy Ontologies for

