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EXTENDED ABSTRACT  

Background & Problem Statement: 
The drinking water distribution network in L-TOWN is built upon 42.6km of underground pipes 
which serves a total population size of 10,000 in both the residential and commercial domains. The 
entire network is generally divided into 3 key area: (a) Area A comprises of the residential and 
commercial facilities; (b) Area B comprises of a pressure reduction valve to reduce the background 
leakages; and (c) Area C comprises of a pump and water tank to supply enough pressure to the 
consumers in that area, and is also installed with 82 water demand reading sensors. 33 pressure 
sensors are also deployed across the most sensitive node locations within the network, as illustrated 
in Figure 1a, for maximizing the collective sensitivity of the sensors to detect pipes leakages over 
space and time. Figure 1b illustrates the respective distributions of the reported pipe leakages 
throughout the water distribution network in L-TOWN within the year of 2018.  

Figure 1: (1a, left) spatial distribution of 33 on-site pressure sensors/nodes in L-TOWN; (1b, right) spatial distribution 
of pipe leakages in L-TOWN for year of 2018 

Till present, it remains challenging for operators in the local water utility company of L-TOWN 
to pre-detect spatial pipe leakages, of small to big in their sizes, as fast as possible over time. In short, 
not every leakage event, localized at its exact coordinates and/or proximity, can be pre-detected 
before and after its occurrence. In addition, there are also concerns in the overall accuracy of the 
model’s numerical predictions due to physical uncertainties in the pipes’ roughness, diameters, and 
seasonality coefficients for the commercial and residential demand patterns.  

Objective of study: 
To address the above-discussed problem statement, this research study develops an alternative 
engineering tool, by combining the numerical capabilities of genetic algorithm and deep learning, 
which can pre-detect near and/or exact locations of pipe leakages within the water distribution 
network in L-TOWN over time. The genetic algorithm is programmed using an open-source Water 
Network Tool for Resilience (WNTR) in Python package. WNTR is an EPANET compatible Python 
version and is designed to simulate and analyze resilience of water distribution networks. For the 
deep learning component, a personalized feed-forward deep neural network (DNN) is built on 
Tensorflow platform to develop a trained predictive model using volumes of calibrated simulation 
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data derived from WNTR based on the physical characteristics of the water distribution network in 
L-TOWN. The trained DNN model is then leveraged to predict the near and/or exact locations of pipe 
leakages in L-TOWN using the real-world measured data from the reported years of 2018 and 2019. 
 
Methodology: 
Genetic Algorithm in WNTR 
We first calibrate a numerical model in WNTR capable of simulating the 2018 measured pressure 
profiles from all 33 installed pressure sensors, as shown in Figure 1a earlier, to the best possible extent 
under no-leak conditions (i.e. ideal scenario) for the water distribution network in L-TOWN. To do 
so, a genetic algorithm (GA), as illustrated in Figure 2, is adhered in WNTR by calibrating 4 key 
parameters, namely: (a) pipe diameter coefficient, 𝛼ଵ ; (b) pipe roughness, 𝛼ଶ ; (c) residential 
seasonality coefficient, 𝛼ଷ; and (d) commercial seasonality coefficient, 𝛼ସ. The objective function 
of the GA method is to minimize the average mean squared error (MSE) between the simulated and 
measured pressure data from all 33 pressure sensors across all timestamps (see Equation 1) which 
vary at every 5-minute interval.  
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where 𝑡 is the time counter which varies at every 5-minute interval, 𝑖 the pressure node index, 𝑃௦,௜ 
the simulated pressure value at pressure sensor 𝑖, and 𝑃௠,௜ the measured pressure value at pressure 
sensor 𝑖. 
 

 
Figure 2: Framework of implemented genetic algorithm (GA) in WNTR to calibrate pipe diameter (𝛼ଵ), pipe roughness 
(𝛼ଶ), residential seasonality (𝛼ଷ) and commercial seasonality (𝛼ସ) coefficients based on 2018 measured pressure 
data from the 33 installed pressure sensors in the water distribution network of L-TOWN 

By conducting several iterations using the proposed GA method from Figure 2, the lowest possible 
average MSE value, as compared between the simulated and 2018 measured pressure values for all 
33 pressure sensors, approximates to 0.138 (average RMSE of 0.371) based on the calibrated values 
of: (a) 𝛼ଵ = 0.947; (b) 𝛼ଶ = 1.03; (c) 𝛼ଷ = 1.10; and (d) 𝛼ସ = 1.07. These calibrated coefficients 
are then leveraged with a built-in numerical model in WNTR to simulate random leaks (arbitrary 10% 
of the calibrated pipe diameter for leak size) at the available pipes of the water distribution network 
in L-TOWN using a random generator. For each leak simulation in the random pipe selected, the 
following time boundary conditions are adopted.  

𝑇௅,௦௧௔௥௧ = 0 ≤ 𝑇௅,௦௧௔௥௧ (𝑑𝑎𝑦𝑠) < 365 − (2𝑎) 

𝑇௅,௠௔௫ = 365 − 𝑇௅,௦௧௔௥௧ − (2𝑏) 

𝑇௅,௦௜௠ = 0 ≤ 𝑇௅,௦௜௠ (𝑑𝑎𝑦𝑠) ≤ 𝑇௅,௠௔௫ − (2𝑐) 
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where 𝑇௅,௦௧௔௥௧  is the random starting time of the leak condition at the random pipe selected as 
measured in days, 𝑇௅,௠௔௫ the maximum allowable time duration of the leak condition at the same 
pipe before its repair as measured in days, and 𝑇௅,௦௜௠ the random time duration of the leak condition 
at the same pipe before its repair as measured in days.  
 

To simulate the leaks at random pipes across the network, the calibrated model first randomly 
selects the nodes available connected to defined pipe IDs. Upon targeting the random nodes selected, 
the leak condition is then simulated at the respective connected pipes using the time boundary 
conditions from Equations (2a – 2c) using a leak percent of 10% of the corresponding calibrated pipe 
diameter size. Each simulation run will be performed for the period of 365 days. For extensiveness, 
the following quantities of the anomaly nodes are simulated: (a) 50 to 100; (b) 100 to 200; (c) 200 to 
300; (d) 300 to 400; and (e) 400 to 500. In each scenario, a total of 200 simulation runs has been 
performed which generally incurred an average computational time of 6 hours due to multiple 
iterations involved to handle the relatively vast number of anomalies occurring at the different node 
locations. 100 simulation sets are then randomly picked from each scenario to build a common pool 
of simulation data which is subsequently used for training and validating a 1D feedforward DNN 
model for classification analysis.  

 
Deep learning model development 
Figure 3 depicts the 
simplified design of the 
1D feedforward DNN 
model adopted in this 
research study. The 
input layer to the DNN 
model comprises of 33 
neurons of which each 
neuron represents the 
simulated pressure 
value from each of the 
33 pressure sensors 
from each simulation run. The output layer (i.e. final hidden layer 6) of the same model is then built 
with 905 neurons to represent all available 905 pipes within the water distribution network of L-
TOWN. Note that each output neuron is associated with a 1D vector representation of shape (1,2), 
hence representing the binary class of no leak or leak condition at the specific pipe. Softmax activation 
function is attached to all neurons of the output layer for computing the probabilities outputs from all 
neurons at the end of each epoch run. The configuration of the multiple hidden layers of the proposed 
DNN model is summarized in Table 1, together with the hyperparameters and cost-function used to 
perform the model training and validation steps. It is worth noting that only the simulation data 
derived from the calibrated numerical model in WNTR is used to train and validate the DNN model, 
followed by independent model testing with the available 2018 measured data provided.  

Table 1: Quantitative description of the design configuration of DNN model adopted in this study 
Component of DNN model Quantitative description 

Hidden layer 1 66 neurons + Rectified Linear Unit (ReLU) activation function 
Hidden layer 2 132 neurons + Rectified Linear Unit (ReLU) activation function 
Hidden layer 3 264 neurons + Rectified Linear Unit (ReLU) activation function 
Hidden layer 4 528 neurons + Rectified Linear Unit (ReLU) activation function 
Hidden layer 5 1810 neurons + Rectified Linear Unit (ReLU) activation function 
Cost-function Training step: Cross-entropy loss; Validation step: Accuracy Score  

Other hyperparameters 
Batch Size: 2190, 3284; Epochs: 5, 10; Learning Rate: 0.0001; 

Optimizer: Adam 

Figure 3: Simplified representation of proposed DNN model which undergoes model 
training and validation with simulation data derived from calibrated model in WNTR 
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Results: 
Table 2 summarizes the final cross-entropy loss values and accuracy scores for the DNN model’s 
training and validation steps for the multiple pools of simulation data by adhering to different sets of 
hyperparameters as shown. Again, we note that each simulation run is performed for the entire period 
of 365 days. The derived results show that the cross-entropy loss reaches a stagnating value of 0.693 
at an early-stage due to the large volume of training data used and the final accuracy score gradually 
drops with an increasing number anomaly nodes simulated which suggests that effective pre-
detections of the anomalies may become more difficult. Finally, independent testing of the trained 
DNN model is performed using the available 2018 data and the best results derived are summarized 
in Tables 3a and 3b. Selection of the best results is based on two key criteria, namely: (a) detecting 
the exact or proximity of the actual leaking pipe; and (b) detection time with enough lead-time before 
the actual repair time of the leaking pipe.  

Table 2: Summary of final cross-entropy loss values and accuracy scores for the DNN model’s training and validation 
steps using multiple pools of simulation data with different sets of hyperparameters 

Combination Batch size  Number of Epochs 
Cross-entropy loss 

(training step) 
Accuracy score 
(validation step) 

1*  2190 5 0.693 0.922 
1 3284 5 0.693 0.922 
1 2190 10 0.693 0.922 
1 3284 10 0.693 0.922 
2* 2190 5 0.693 0.905 
2 3284 5 0.693 0.905 
2 2190 10 0.693 0.905 
2 3284 10 0.693 0.905 
3* 2190 5 0.693 0.890 
3 3284 5 0.693 0.890 
3 2190 10 0.693 0.890 
3 3284 10 0.693 0.890 

* Combination 1: Combined pool of 50 to 100, 100 to 200 and 200 to 300 anomaly nodes; each group has 200 
simulation runs 
** Combination 2: Combined pool of 50 to 100, 100 to 200, 200 to 300 and 300 to 400 anomaly nodes; each group has 
200 simulation runs 
*** Combination 3: Combined pool of 50 to 100, 100 to 200, 200 to 300, 300 to 400 and 400 to 500 anomaly nodes; 
each group has 200 simulation runs 
 
Table 3a: Prediction results from the simulation data pool of Combination 1 using the hyperparameters of Batch size of 

3285 and Number of Epochs of 5 

Actual leaking pipe no. Actual repair time 
Closest predicted 
leaking pipe no. 

Predicted leaking time 

p461 2018-04-02 11:40 p447 2018-03-31 00:15:00 
p232 2018-02-10 09:20 p461 2018-02-01 04:50:00 
p673 2018-03-23 10:25 p139 2018-03-01 03:50:00 
p628 2018-05-29 21:20 p647 2018-05-03 04:35:00 
p538 2018-06-02 06:05 p708 2018-02-03 01:05:00 
p866 2018-06-12 03:00 p867 2018-06-02 09:25:00 
p31 2018-08-12 17:30 p866 2018-05-01 03:50:00 

p183 2018-09-01 17:10 p461 2018-08-31 15:35:00 
p158 2018-10-23 13:35 p226 2018-10-01 17:10:00 
p369 2018-11-08 20:25 p866 2018-06-20 01:45:00 
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Table 3b: Prediction results from the simulation data pool of Combination 3 using the hyperparameters of Batch size of 
3285 and Number of Epochs of 5 

Actual leaking pipe no. Actual repair time 
Closest predicted 
leaking pipe no. 

Predicted leaking time 

p461 2018-04-02 11:40 p448 2018-03-31 00:15:00 
p232 2018-02-10 09:20 p461 2018-02-01 04:50:00 
p673 2018-03-23 10:25 p139 2018-03-01 03:50:00 
p628 2018-05-29 21:20 p647 2018-05-03 04:35:00 
p538 2018-06-02 06:05 p708 2018-02-03 01:05:00 
p866 2018-06-12 03:00 p867 2018-06-02 09:25:00 
p31 2018-08-12 17:30 p866 2018-06-20 01:45:00 

p183 2018-09-01 17:10 p357 2018-08-06 18:30:00 

p158 2018-10-23 13:35 
p226 
p647 

2018-10-01 17:10:00 
2018-10-21 08:05:00 

p369 2018-11-08 20:25 p866 2018-06-20 01:45:00 
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SUMMARY 
Effective spatiotemporal pre-detections of pipe leakages in urbanized water distribution networks 
continue to be a challenging engineering problem today. Pre-detection criteria includes: (a) the ability 
to localize the exact leaking pipes or surrounding pipes of proximity to the actual leaking pipes; and 
(b) enough lead-time for detection timing prior to the actual repair times of the respective leaking 
pipes. This research study combines the numerical capabilities of genetic algorithm and deep learning 
to develop the required predictive tool which can achieve the above-outlined pre-detection criteria. 
Specifically, the genetic algorithm is responsible for calibrating the key physical parameters 
associated with the known water distribution network in L-TOWN using the available measured data 
from 2018. The calibrated numerical model is then leveraged to generate a series of simulation data 
relating to random anomalies simulated at the different node locations associated to their respective 
pipe IDs, hence simulating the leakage events at the associated pipes. Different pools of simulation 
data are then used to train and validate a personalized 1D feedforward deep neural network (DNN) 
model which maps the calibrated numerical pressure values at 33 known pressure sensor locations to 
an output layer for determining the specific pipe ID having the highest probability of leakage at the 
given time-step. By varying the hyperparameters of batch-size and number of epoch runs, the trained 
DNN model can pre-detect the pipes close to the actual leaking pipes before their respective repair 
times from the available 2018 measured data as part of the model testing phase. Finally, the trained 
DNN model is then adhered to perform the predictions on the 2019 measured data for pre-determining 
the possible leaking pipes within the water distribution network of L-TOWN at specific timings.   


