
Formal verification of deep neural networks using

learning cellular automata

by
Shrohan Mohapatra

School of Electrical Sciences
Indian Institute of Technology Bhubaneswar

sm32@iitbbs.ac.in

Dr. Manoranjan Satpathy
School of Electrical Sciences

Indian Institute of Technology Bhubaneswar
manoranjan@iitbbs.ac.in

April 16, 2019

Abstract

Deep neural networks (DNNs) have found diverse applications such
as image processing, video processing, text classification, computer vi-
sion, safety-critical systems such as controllers for autonomous vehicles
etc. But for DNNs in safety-critical systems, formal verification becomes
really essential before actual deployment. There have been several al-
gorithms, like the Reluplex algorithm, which are limitedly scalable. It
has been claimed that the formal verification can be made significantly
more scalable by means of intelligent parallelisation. Cellular automata
(CAs) have also analysed to have some computational power and univer-
sality apart from highly scaling data parallelism. Recent literature reveals
that cellular automata have been studied as a black box for neural net-
works to study their temporal evolution and predict the transition rules.
In this article, we propose a formal verification system for deep neural
networks by using equivalent learning cellular automata (LCA), a new
discrete structure that incorporates all the properties of a CA associated
with some learning algorithm. We provide necessary formal definitions of
CAs, DNNs, and LCAs, and prove that the emulation complexity of an
equivalent LCA for a given DNN is NP-complete. Finally, we describe the
overall layout of the verifier based on a polynomial-time approximation of
the emulation, illustrated by extensive experimental results.

1

1 Introduction

Deep neural networks consist of many nodes with some computational power,
arranged in layers, that pass data from one layer to another. Input neurons
get activated through sensors perceiving the environment, other neurons get
activated through weighted connections from previously active neurons [16].
The computational power that the nodes have is the activation function that
characterise the network. The commonly used activation functions include si-
nusoidal [12], linear, logarithmic, exponential functions [13], and rectified linear
units [11]. DNNs find a lot of applications in neural network controllers, image
recognition, text classification [14], safety-critical systems like controllers for au-
tonomous vehicles [8, 9, 10, 17], simulation of land use [15] etc. Applications
like those employed in safety-critical systems demand rigorous testing of the
DNNs, which is met by formal verification. Linear programming (LP), SMT
solvers [18, 19] and Reluplex solvers [8, 10] are some of the approaches sug-
gested in this direction. But they have been experimentally seen to be scalable
to a limited extent with respect to the size of the neural network and the size of
the specification. It has been claimed that the formal verification can be made
significantly more scalable by means of intelligent parallelisation.

Cellular automata (CA) [1] are machines consisting of a grid of cells, each
in one of a finite number of states. The grid evolves in terms of the states of its
cells, all following a common transition rule. All the cells evolve simultaneously,
thus exhibiting extremely high degree of data parallelism. Some elementary cel-
lular automata [1] show class 4 behaviour [2], i.e. they display globally complex
behaviour with locally interacting structures. Such CA were conjectured to be
Turing-complete. Rule 110 CA has been proven to be Turing-complete [4] but
the emulation complexity is too high to be practically implementable on a digital
computer. Also, two-dimensional CA like the Game of Life has also been proven
to be Turing-complete [3] by showing some seeds to be emulating logic gates like
AND, OR, and NOT gates. But even this emulation is practically expensive
and time-consuming. Recent applications of CA in deep learning ventures have
correlated the two somewhat different concepts in different ways. Cellular au-
tomata like Game of Life have been modelled as convolutional neural networks
[20] to learn the transition rules from the video of the temporal evolution of a
given cellular automata. There are also suggestions on applications of DNN by
means of a CA to simulate land use changes [15], where the DNN can be used
as a base of the CA model transition rule.

This article discusses a formal verification system for deep neural networks
by converting it into an approximate learning CA, a new discrete structure that
learns its own transition function from the incoming data. The CA we present
here shows the outcome of all possible values of the input data in the same
grid and keeps evolving its transition rules as per the learning algorithm, so it
performs the verification of all possible inputs. The following are the features
of our proposed system:

1. The overall system considers all possible inputs simultaneously in a single

2

cell, so the verification happens in constant time. The convergence of the
system is completely governed by the learning algorithm, so the focus lies
mostly on this other than the structure of the neural network.

2. It would be easy to determine the failing inputs directly from the grid itself,
as the contents of the cells are readily available and may be passed through
a digital logic implementing the post-conditions of the specification.

3. The overall structure can be easily reconfigurable to higher precision as
our algorithm is merely a truncation and runs in polynomial time, but
still behaves as a subclass of the overall solution that runs in exponential
time. The neural network is first converted to an equivalent function,
and is then approximated using the nultivariate Taylor series. For higher
precision, one can use higher orders of Taylor series approximation.

4. Changing the seed of the CA easily allows the same verification system to
emulate another completely different DNN without much difficulty, thus
facilitating ease of reuse.

The rest of the article is organised as follows. In section 3, we introduce some
formal notions of cellular automata, deep neural networks and learning cellular
automata. Also we present an algorithm to convert a DNN to its equivalent
LCA, and proved that it is in NP-complete. In section 4, we describe our pro-
posed LCA-based formal verifier. In section 5, we present various experiments
on the performance of this system and compare it with existing methods such
as SMT solvers and LP solvers. We finally conclude in section 6.

2 Related work

The problem of formally verifying any deep neural network is NP-complete
[8]. Existing formal verification systems capable of handling various kinds of
constraints include SMT solvers [18, 19] and linear programming solvers [9]. But
these scale to a very limited extent [19]. An improvement in this direction was
the development of the Reluplex algorithm [8] that considered a limited subset
of all possible constraints. To improve further in terms of scalability, it has
been suggested that constraints might be represented in a better way, and some
smart parallelisation may be used. Cellular automata possess inherent data
parallelism which can be highly scaling. Also, the interaction of the various
’cells’ in a CA by means of its transition function, as defined in section 3.2,
produce interesting informational variation. But as of now, their applicability
is limited to domains like convolutional neural networks [20], detection of land
use patterns [15]. In this article, we have provided both general (which is in
NP-complete as shown in section 3.5) as well as approximate conversion of a
neural network to an equivalent cellular automaton that learns from the ambient
environment and changes its transition rules to emulate the learning behaviour
over the entire span of the input space in a largely parallelised fashion. The

3

algorithms presented here do not get heavily influenced by the scaling behaviour
of the constraints, but show good performance in terms of time and propagation
error as shown in section 5.

3 Background

In this section, we formally define general cellular automata and then introduce
the notion of learning cellular automata. We also formally define deep neural
networks with one single activation function in all the layers. We finally prove
that the emulation complexity of a DNN into a learning CA is NP-complete, by
presenting an algorithm to fulfil the same.

3.1 Formal definition of a first-order cellular automata

Any n-dimensional r-neighbourhood first-order cellular automata (CA) can
be defined as a 4-tuple (S,Qt, N, f) where S ⊆ N, known as the set of states;
Qt is an l1 × l2 × l3 · · · × ln matrix for an instance of time t, where ∀k ∈
{1, 2, 3, 4, . . . n}∀ik ∈ {1, 2, 3, 4, . . . lk}, Qt[i1, i2, i3, . . . in] ∈ S; N is an r×n ma-
trix known as the neighbourhood matrix; and finally f : Sr+1 → S, known as
the transition function. Here the future state of a cellular automaton is defined
in the following way

∀k ∈ {1, 2, 3, 4, . . . n}∀ik ∈ {1, 2, 3, 4, . . . lk},

Qt+1[i1, i2, i3, . . . in] = f(Qt[i1, i2, i3, . . . in], h1, h2, h3, . . . hr)

where hm = Qt[{(ik +N [m, k]) mod lk)∀k ∈ {1, 2, 3...lm}}]
∀m ∈ {1, 2, 3, . . . r}.

A special case where n = 1, r = 2, S = {0, 1}, N = (1,−1)T , the cellular automa-
ton becomes an elementary cellular automaton. The decimal equivalent of the
binary number formed by an ordered sequence of the images of the function f of
an elementary cellular automaton is said to be its ’rule’, or the ’Wolfram rule’.
An example running of rule 110 cellular automaton is graphically illustrated in
figure 1 [4]. Also, I hereby would refer to the sequence Q1, Q2, Q3, Q4 . . . as the
temporal evolution of a cellular automaton, the matrix Q1 as the seed of the
machine. Another classical example of a two dimensional cellular automaton is
shown in figure 2, known as the ’Conway’s Game of Life’ [3], whose transition
function is verbally described as follows.

1. Any live cell with fewer than two live neighbours dies, as if by underpop-
ulation.

2. Any live cell with two or three live neighbours lives on to the next gener-
ation.

4

3. Any live cell with more than three live neighbours dies, as if by overpop-
ulation.

4. Any dead cell with exactly three live neighbours becomes a live cell, as if
by reproduction.

Figure 1: A demonstration of the rule 110 cellular automaton [4]. The first row
shows the transition rules. It is noteworthy of the binary number formed of the
outputs, whose decimal equivalent is rule 110. The subsequent grid shows the
temporal evolution, where the initial seed consists of a single one and rest all
zeroes.

Figure 2: A demonstration of the Game Of Life cellular automaton [3]. The
first grid shows the seed, and the subsequent grids show the temporal evolution
of the same. This is known as a ’glider’.

3.2 Formal definition of a general cellular automata

An n-dimensional r-neighbourhood g-order cellular automata can be defined as
a 4-tuple (S,Qt, N, f) where S ⊆ N, known as the set of states; Qt is an l1 ×

5

l2× l3 · · ·× ln matrix for an instance of time t, where ∀k ∈ {1, 2, 3, 4, . . . n}∀ik ∈
{1, 2, 3, 4, . . . lk}, Qt[i1, i2, i3, . . . in] ∈ S; N is an r × n matrix known as the
neighbourhood matrix; and finally f : S(g+1)(r+1) → S, known as the transition
function. Here the future state of a cellular automaton is defined in the follow-
ing way

∀k ∈ {1, 2, 3, 4, . . . n}∀ik ∈ {1, 2, 3, 4, . . . lk},

Qt+1[i1, i2, i3, . . . in] = f(Qt[i1, i2, i3, . . . in], h1, h2, h3, . . . hr)

where hm = {
Qt−u[{(ik +N [m, k]) mod lk)∀k ∈ {1, 2, 3...lm}}]∀u ∈ {0, 1, 2, 3 . . . g}
}
∀m ∈ {1, 2, 3, . . . r}.

3.3 Learning cellular automata

An n-dimensional first-order learning cellular automaton (LCA) as a 6-
tuple (S,Qt, Rt, N, ft, A) where S ⊆ N; Qt is an l1 × l2 × l3 · · · × ln matrix for
an instance of time t, where ∀k ∈ {1, 2, 3, 4, . . . n}∀ik ∈ {1, 2, 3, 4, . . . lk},
Qt[i1, i2, i3, . . . in] ∈ S; N is an r×n matrix; ft : Sr+1 → S, the transition func-
tion for the instance of time t. Here the future state of a cellular automaton is
defined in the following way

∀k ∈ {1, 2, 3, 4, . . . n}∀ik ∈ {1, 2, 3, 4, . . . lk},

Qt+1[i1, i2, i3, . . . in] = ft(Qt[i1, i2, i3, . . . in], h1, h2, h3, . . . hr)

where hm = Qt[{(ik +N [m, k]) mod lk)∀k ∈ {1, 2, 3...lm}}]
∀m ∈ {1, 2, 3, . . . r}.

Here Rt is the observed data matrix at time instance t (which is of the same
dimension as Qt), that is meant to be coming from the ambient environment,
ft+1 = A(ft, Rt, Qt), where A is the learning algorithm. The emulation of an
NN to an LCA would lead to the learning parameters that show up in the learn-
ing algorithm.

Similarly, an n-dimensional r-neighbourhood g-order cellular automata can be
defined as a 6-tuple (S,Qt, Rt, N, ft, A) where S ⊆ N, known as the set of
states; Qt is an l1 × l2 × l3 · · · × ln matrix for an instance of time t, where
∀k ∈ {1, 2, 3, 4, . . . n}∀ik ∈ {1, 2, 3, 4, . . . lk}, Qt[i1, i2, i3, . . . in] ∈ S; N is an r×n
matrix known as the neighbourhood matrix; and finally f : S(g+1)(r+1) → S,
known as the transition function. Here the future state of a cellular automaton
is defined in the following way

∀k ∈ {1, 2, 3, 4, . . . n}∀ik ∈ {1, 2, 3, 4, . . . lk},

6

Qt+1[i1, i2, i3, . . . in] = f(Qt[i1, i2, i3, . . . in], h1, h2, h3, . . . hr)

where hm = {
Qt−u[{(ik +N [m, k]) mod lk)∀k ∈ {1, 2, 3...lm}}]∀u ∈ {0, 1, 2, 3 . . . g}
}
∀m ∈ {1, 2, 3, . . . r}.

3.4 Deep neural networks

Formally, for a deep neural network (DNN) with an activation function Θ : R→
R, along the lines of [8],

1. We use n to denote the number of layers.

2. si denotes the size of ith layer (i.e. the number of nodes in the ith layer),
1 ≤ i ≤ n,

(a) Layer 1 is the input layer.

(b) Layers 2, 3, . . . n− 1 are the hidden layers.

(c) Layer n is the output layer.

3. The value of jth node of the layer i is denoted by vij and the column
vector [vi,1, vi,2, . . . vi,si]

T is denoted by Vi|si×1.

4. Each layer i, 2 ≤ i ≤ n has a weight matrix Wi of si × si−1 and a bias
vector Bi|si×i such that

Vi|si×1 = Θ(Wi|si×si−1 × Vi−1|si−1×1 +Bi|si×1) (1)

An architectural example of the DNN is illustrated in figure 3, where any
activation function can be incorporated. One commonly used activation func-
tion is the rectified linear unit (ReLU), defined as Θ(x) = max(0, x), used in a
lot of applications [11], consequently calling for a large number of solutions to
the formal verification problem specifically for ReLU DNNs [8, 9, 10, 14]. Other
activation functions include sinusoidal function (Θ(x) = sin(x)) [12] and some
other prominent functions such as linear, logarithmic, and exponential functions
[13].

3.5 Conversion of neural network to LCA is NP-complete

Here we are trying to present an emulation of a neural network consisting in an
equivalent cellular automaton based on algorithms used in symbolic computa-
tion. The emulation consists of the following phases.

7

Figure 3: A fully connected DNN with 5 input nodes (in green), 5 output nodes
(in red), and 4 hidden layers containing a total of 36 hidden nodes (in blue)
[10].

Phase 1: Extraction of an equivalent function from the neural net-
work Here we can treat the input neural network as a parse tree with the
nodes consisting of activation functions and the edges. Therefore, applying
bottom up parsing through this network allows the generation of the expres-
sion by supplementing an appropriate S-attributed grammar. So this phase of
conversion is in P, the time consumed is linear with respect to the number of
nodes in the neural network, as the proposed algorithm is essentially a modified
breadth-first search from the leafs of the equivalent directed acyclic graph.

Phase 2: Finding a differential equation satisfied by the function To
analyse this phase, we first try to pose the problem as, ’Given a function F
and a differential equation D, does F satisfy D?’. Guenter [7] suggests a graph-
theoretic method of symbolic differentiation of a given function, which is proven
and observed to be faster than some commercially viable computer algebra sys-
tem. For a function f : Rn → Rm with an expression with ν nodes, the time to
perform symbolic differentiation is O(mnν3). Also, the evaluation of differential
expression is also in P, from the algorithm discussed in phase 1. Since the posed
problem is in P, from the formal definition, finding at least one such D for a
given F is in NP.

Say function f is differentiated n times with respect to x, resulting in a sequence

S = {f, ∂f∂x ,
∂2f
∂x2 ,

∂3f
∂x3 , · · · ∂

nf
∂xn }, and an algebraic expression E({x1, x2, · · ·xn}).

We can always find a finite set of functions F = {f1, f2, f3, · · · fn} and another
algebraic expression E′({x1, x2, · · ·xn}), satisfying

E(S) = 0 =⇒ E′(F) = 0 (2)

8

Separating the coefficients for each of the elements fi ∈ F , there will be n differ-
ent equations E′′1 , E

′′
2 , · · ·E′′n, each with c coefficients (not necessarily non-zero),

described by the coefficient matrix C as follows.

C =

a11 a12 a13 · · · a1c

a21 a22 a23 · · · a2c

· · · · · · · · · · · · · · ·
an1 an2 an3 · · · anc

 (3)

The ith row of the matrix C shows the coefficients in the equation E′′i . Each
such equation E′′i is to be solved for the unknown coefficients {ai1, ai2, · · · aic} as-
sociated with the terms Ti = {ti1, ti2, ti3 · · · tin} as an instance of the subset sum
problem for the multi-set (Ti,mi), wheremi(tik) = max({ai1, ai2, · · · aic}) ∀1 ≤
k ≤ n. Since we know that subset sum problem is in NP-complete, using the
above polynomial-time reduction, one can claim that finding a differential equa-
tion D satisfied by a given function f is NP-complete.

Phase 3: Converting a differential equation into recurrence relation
Again we can define an S-attribute grammar that can be applied over LR-parsing
of the differential equation, that substitutes each differential term by the recur-
rence relation obtained by first principle derivative. A similar approach is used
in Risch’s algorithm [6] where known integrals are substituted in accordance
with the Liouville theorem. So this conversion is also in P.

Phase 4: Expression of a recurrence relation using a cellular automa-
ton Omohundro’s algorithm [5] suggests that the transition function of the
converted CA can be calculated using the recurrence relation itself. The bound-
ary condition of the differential equation appears in the initial seed of the CA.
So this final phase is also in P.

For example, consider the DNN in figure 4 with n = 2 layers, activation
function Θ(x) = tan−1(x), s1 = 3, s2 = 2, and

1. V1 =

xy
z

2. W2 =

[
0.3 0.7 0
0 0.8 0.2

]

3. B2 =

[
1
2

]
In phase 1, we get V2 = tan−1(W2V1 +B2), which is,

9

V2 = tan−1(

[
0.3 0.7 0
0 0.8 0.2

]xy
z

+

[
1
2

]
)

=

[
tan−1(0.3x+ 0.7y + 1)
tan−1(0.8y + 0.2z + 2)

]
=

[
f1(x, y, z)
f2(x, y, z)

]
=⇒ f1(x, y, z) = tan−1(0.3x+ 0.7y + 1), f2(x, y, z) = tan−1(0.8y + 0.2z + 2)

In phase 2, specifically for function f1(x, y, z), an ideal symbolic manipula-
tion after the first differentiation with respect to the variables leads us to

tan(f1) = 0.3x+ 0.7y + 1

=⇒ ∂f1

∂x
=

0.3

1 + (0.3x+ 0.7y + 1)2
= 0.3cos2(f1)

∂f1

∂y
=

0.7

1 + (0.3x+ 0.7y + 1)2
= 0.7cos2(f1)

∂f1

∂z
= 0

=⇒ ∂f1

∂x
+
∂f1

∂y
+
∂f1

∂z
= cos2(f1)

In phase 3, the differential equation is converted to a recurrence relation
by replacing each differential term by the derivative by first principle, as is
explained below.

∂f1

∂x
+
∂f1

∂y
+
∂f1

∂z
= cos2(f1)

=⇒ lim
∆x→0

f1(x+ ∆x, y, z)− f1(x, y, z)

∆x
+ lim

∆y→0

f1(x, y + ∆y, z)− f1(x, y, z)

∆y

+ lim
∆z→0

f1(x, y, z + ∆z)− f1(x, y, z)

∆z
= cos2(f1(x, y, z))

By choosing appropriate values of ∆x,∆y, and ∆z, we can safely claim that

f1(x+ ∆x, y, z)− f1(x, y, z)

∆x
+
f1(x, y + ∆y, z)− f1(x, y, z)

∆y

+
f1(x, y, z + ∆z)− f1(x, y, z)

∆z
= cos2(f1(x, y, z))

=⇒ f1(x, y, z + ∆z) = f1(x, y, z)+

∆z

[
cos2(f1(x, y, z))−

(
f1(x+ ∆x, y, z)− f1(x, y, z)

∆x
+
f1(x, y + ∆y, z)− f1(x, y, z)

∆y

)]

10

In phase 4, the above recurrence relation is converted into the corresponding
CA using the Omohundro’s algorithm [5]. In general, due to phase 2, auto-
mated emulation of a neural network into an equivalent cellular automaton is
in NP-complete. Other than the performance, uniqueness of the solution is also
under question. There can be more than one differential equation satisfied by
a function. If one DE D is found satisfied by a function F , another DE D′ ob-
tained by differentiating both sides by the same variable, but is also satisfied by
F . So there can be infinitely many differential equations fulfilling the purpose.
Working in the reverse direction, integration with respect to any one variable in-
troduces an integration constant, which can take any value. So this shows that
an emulating CA can represent infinitely many neural networks. This shows
that the equivalent CA forms the basis of a class of neural networks.

Figure 4: The exemplary DNN with two layers with edges labelled with weights.
The activation function considered here is Θ(x) = tan−1(x).

4 Overall framework for the proposed formal
verification

Here we present the design of the overall framework for the formal verification
of the neural networks using learning cellular automata. We begin with a poly-
nomial time approximation of the algorithm presented in section 3.5. We use
this to present stage-by-stage analytical architecture of our system.

11

4.1 A polynomial time approximation for LCA from neu-
ral networks

A general NP-complete algorithm to obtain an equivalent cellular automata
from a given neural network has been shown in section 3.5. Precisely, the NP-
completeness arises from the phase 2 of the algorithm, where one needs to obtain
a differential equation satisfied by a given function. Here, a polynomial time
approximation of this phase is shown here for a general function, f : Rn → R,
of n variables.

Using a simple multivariate Taylor expansion we can obtain n + 1 constants
α1, α2, . . . , αn, β from the function f such that

f(x1, x2, . . . xn) = β + α1x1 + α2x2 + · · ·+ αnxn +O(x1x2 . . . xn) (4)

where,

β = f(0, 0, 0 . . . 0)

αi =
∂f

∂xi
|(0,0,0...0)∀i ∈ {1, 2, 3, . . . n}

One of all the PDEs satisfied by f is given as,

∂f

∂x1
+

∂f

∂x2
+ · · ·+ ∂f

∂xn
= α1 + α2 + · · ·+ αn (5)

where f(0, 0, 0 . . . 0) = β and f(x1, x2 . . . xn−1, 0) are defined for xi 6= 0, 1 ≤
i ≤ n. Here xn may be treated as a temporal variable, and αis may vary with
time. Since function simplification and derivative computation can happen in
polynomial time, obtaining the differential equation with this approximation
can also be done in polynomial time.

4.2 Formal verification system

Now we present the design of the formal verification system for the deep neural
network using the polynomial time heuristic sketched in section 4.1 that converts
the DNN into an equivalent LCA. We begin with phase 1 explained in section 3.5,
where we obtain the function from neural network. Using equation 1 described in
section 3.4 for a neural network with n−1 hidden layers and activation function
Θ, we obtain subsequent final formulas for the output from the corresponding
layers as,

12

V2 = Θ(W2V1 +B2)

V3 = Θ(W3V2 +B3)

= Θ(B3 +W3Θ(B2 +W2V1))

V4 = Θ(B4 +W4Θ(B3 +W3Θ(B2 +W2V1)))

.

Vn = Θ(Bn +WnΘ(Bn−1 +Wn−1Θ(. . .Θ(B2 +W2V1) . . .)))

Ultimately, the nth layer vector Vn can be represented as a set of functions
F = {f1, f2, f3 . . . fn} such that

vn,i = fi(v1,1, v1,2, . . . , v1,s1)

Now we are going to obtain the differential equations corresponding to all
the functions f ∈ F . Rearranging equation 5, we obtain

∂f

∂xn
=

n∑
i=1

αi −
n−1∑
i=1

∂f

∂xi
(6)

Following phase 3 of the general algorithm in section 3.5,

lim
∆xn→0

f(x1, x2, x3 . . . , xn−1, xn + ∆xn)− f(x1, x2, x3 . . . , xn−1, xn)

∆xn
=

n∑
i=1

αi −
n−1∑
i=1

lim
∆xi→0

f(x1, x2, . . . xi−1, xi + ∆xi, xi+1, . . . xn)− f(x1, x2, . . . xi−1, xi, xi+1, . . . xn)

∆xi

An appropriate choice of the incrementals ∆xi,∀i ∈ {1, 2, . . . n}, leads us to,

f(x1, x2, x3 . . . xn + ∆xn) = f(x1, x2, x3, . . . xn)+

∆xn

(
n∑
i=1

αi −
n−1∑
i=1

f(x1, x2, . . . xi−1, xi + ∆xi, xi+1, . . . xn)− f(x1, x2, . . . xi−1, xi, xi+1, . . . xn)

∆xi

)
(7)

From this, we can define the equivalent LCA L as the 6-tuple (S,Qt, Rt, N, ft, A)
where S = R, Qxn

(x1, x2, . . . xn−1) = f(x1, x2, x3 . . . xn), Rt comes from the ac-
tual data coming from the environment, ft is corresponding CA rule for the
recurrence relation defined in equation 7, A is the learning algorithm and

N =

∆x1 0 0 · · · 0

0 ∆x2 0 · · · 0
0 0 ∆x3 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · ∆xn−1

 (8)

13

Figure 5: The overall design of the formal verification system. The blocks
containing ’Spec. Logic’ have a common first-order logic based representation
of the formal specification.

Spec. logic

Spec. logic

Spec. logic SAT/UNSAT

SAT/UNSAT

SAT/UNSAT

LEARNING CELLULAR AUTOMATON

CONVERSION
ALGORITHM

Neural network

This is one such LCA for the corresponding function f ∈ F . There are sn
such simultaneous LCAs that would approximately emulate the entire DNN.
This framework can be used for formal verification of the DNN in the following
way:

1. The indices xi,∀i ∈ 1, 2, 3, . . . n of the grid of the LCA, i.e. Qt are chosen
so that they satisfy the pre-conditions of the specification.

2. The cells of the grid Qt of the LCA, along with their neighbours defined
by the neighbourhood matrix N , are passed through the digital logic ac-
cording to the post-conditions of the specification.

Figure 5 shows the overall design of the formal verification system. For
example, consider the DNN in figure 6 with n = 2 layers, activation function
Θ(x) = tan−1(x), s1 = 3, s2 = 1, and

1. V1 =

xy
z

2. W2 =

[
g1(t) g2(t) g3(t)

]
3. B2 =

[
0
]

In phase 1, we get V2 = tan−1(W2V1 +B2), which is,

14

Figure 6: Another exemplary DNN with two layers with edges labelled with
weights. The activation function considered here is Θ(x) = tan−1(x).

g1(t)
x

y

z

Input layer Output layer

f1(x,y,z,t)g2(t)

g3(t)

V2 = tan−1

([
g1(t) g2(t) g3(t)

] xy
z

+
[
0
])

=

[
tan−1

(
g1(t)x+ g2(t)y + g3(t)z

)]
=
[
f1(x, y, z, t)

]
=⇒ f1(x, y, z, t) = tan−1

(
g1(t)x+ g2(t)y + g3(t)z

)

where g1(t) = 0.5
0.447

(
1.62t−(−0.62)t

)
, g2(t) = 0.3

0.447

(
1.62t−(−0.62)t

)
and

g3(t) = 0.2
0.447

(
1.62t−(−0.62)t

)
.

Computing αi, i ∈ {1, 2, 3, 4} as described in equation 4,

α1 =
∂f1

∂x
|0,0,0,0 = 1

α2 =
∂f1

∂y
|0,0,0,0 = 1

α3 =
∂f1

∂z
|0,0,0,0 = 1

α4 =
∂f1

∂t
|0,0,0,0 = 0

15

β = f1(0, 0, 0, 0) =
π

4

Following the lines, we obtain the differential equation,

∂f1

∂t
= 3−

(
∂f1

∂x
+
∂f1

∂y
+
∂f1

∂z

)
Assuming ∆x = ∆y = ∆z = ∆t = 1, we obtain the recurrence relation as,

f1(x, y, z, t+ 1)− f1(x, y, z, t) =

3−
(
f1(x+ 1, y, z, t)− f1(x, y, z, t) + f1(x, y + 1, z, t)

−f1(x, y, z, t) + f1(x, y, z + 1, t)− f1(x, y, z, t)

)
=⇒ f1(x, y, z, t+ 1) = 4f1(x, y, z, t) + 3− f1(x+ 1, y, z, t)

−f1(x, y + 1, z, t)− f1(x, y, z + 1, t) (9)

with the boundary conditions f1(0, 0, 0, 0) = π
4 , and f1(x, y, z, 0) = tan−1(x+

y+z), x 6= 0, y 6= 0, z 6= 0. So we can define the equivalent LCA L as the 6-tuple
(S,Qt, Rt, N, ft, A) where S = R, Qt(x, y, z) = f1(x, y, z, t), Rt comes from the
actual data coming from the environment, ft is the corresponding CA rule for
the recurrence relation defined in equation 9, A is the learning algorithm and

N =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (10)

For example, Q1(1, 1, 1) = 0.784735 and the original neural network results
in f1(1, 1, 1, 1) = 0.784739, which renders approximately 0.0007% error. The
variation of this error against various parameters has been adjudged in section
5. As an example of verification for a time instance t0, we consider the following
specification of the local adversarial robustness around a given point (x0, y0, z0)
[8].

∀(x, y, z) ∈ R3, ‖(x, y, z)− (x0, y0, z0)‖ < δ

=⇒ ‖f1(x, y, z, t0)− f1(x0, y0, z0, t0)‖ < ε (11)

Let (x0, y0, z0) = (1, 2, 3), δ = 1, ε = 3. For time instances t0 = 1, 2, 3, 4,
Table 1 shows the points where the specification 11 is met or not. The time
taken to check these points for the satisfiability of the formal specification is not
much, but are dependent on some factors as shown in section 5.

16

Table 1: The specification verification table for the considered neighbourhood
points at the given time instances.

(x0, y0, z0) (0,2,3) (2,2,3) (1,1,3) (1,3,3) (1,2,2) (1,2,4)
t0 Robustness
1 UNSAT F T T T T T
2 SAT T T T T T T
3 UNSAT F T T T T T
4 UNSAT T T T T T T

5 Experimental results

In this section, we show some experimental results that exhibit the efficiency
of the proposed formal verification system in terms of time complexity. There
are two aspects of this: the time taken to convert the given neural network to
the CA, and time taken to verify the properties using that CA. The dependence
of the time taken on various characteristics of a DNN such as number of lay-
ers, number of nodes per layer, choice of activation etc. are illustrated through
the results shown in section 5.1. The other aspect, i.e. the verification time
complexity, has been dealt with and its variation with the number of boolean
conditions/predicates and the number of layers in DNN has been shown in sec-
tion 5.2. Also, as seen in equation 4, the truncation error of approximation
is O(∆x1∆x2 . . .∆xn), where n is the number of nodes in the input layer and
∆xis are the resolution differences. This error gets propagated to the verifi-
cation stage as well, when the values are borrowed from the LCA grid. This
has been experimented upon and shown in section 5.3. Finally, the existence
of classes of formal verification methods such as satisfiability modulo theories
(SMT) solvers and linear programming (LP) solvers has also been considered,
and some experimental comparison with our proposed methodology has been
made in section 5.4. All the implementations have been done in Mathemat-
ica 11.2, where well-optimised in-built functions such as NetGraph (used for
constructing deep neural networks), CellularAutomaton (used for emulation of
learning CA), FindInstance (which makes use of SMT to find a satisfiable in-
stance for a predicate) and LinearProgramming (which solves LP problems using
some compile-time optimisations) are effectively used.

5.1 Experiments on conversion of DNN to LCA

The time taken to convert a neural network into its learning cellular automata
using the four-phase method explained in section 4 varies with the choice of
activation function, number of layers and number of nodes per layer. Figure 7
illustrates that the variation of time is dictated by how complex the activation
function is. Figure 8 and Figure 9 show that the time increases steadily with
the increase in total number of nodes in the DNN.

17

Figure 7: A plot of the time taken by the conversion algorithm against various
activation functions. Each DNN considered here has 5 layers having 4 nodes each
(except for the output layer that has only one node). The function ’LogSigmoid’
represents logistic sigmoid function.

Activation function
ArcTan Sin LogSigmoid ReLU Tanh

0

10

20

30

40

50

60

Time (in seconds)

Figure 8: A plot of the time taken by the conversion algorithm against the
number of layers. Each DNN considered here has 4 nodes per layer (except for
the output layer that has only one node) with ReLU as the activation function.

Number of layers
3 4 5 6 7

0

5

10

15

20

25

30

35

Time (in seconds)

5.2 Experiments on verification using LCA

The actual verification phase for the DNN, as explained in section 4.2, involves
only the equivalent LCA, specifically the grid values. A first-order logic formula
representing the formal specification for the DNN takes into account these grid
values for the verification. So the overall verification time solely depends on
the specification (in fact, it increases with the number of conditions) and not
on the size of the neural net itself. This is clearly visible from figures 10 and
11. It is also noteworthy that the time taken for the conversion part (several

18

Figure 9: A plot of the time taken by the conversion algorithm against the
number of nodes per layer. Each DNN considered here has 5 layers, one node
in the output layer, and all the nodes are activated by the ReLU function.

Nodes/layer
3 4 5 6 7

0

10

20

30

40

Time (in seconds)

tens of seconds) is about a thousand times that taken for the verification (a few
milliseconds). This is so because the output data for all possible inputs to the
DNN is present on the complete grid, and every cell there evolves simultaneously
at a single time instance. So once we have an equivalent learning CA generated
from the DNN, the actual formal verification is extremely fast.

Figure 10: A plot of the time taken to verify the DNN using the LCA against
the number of Boolean conditions/predicates in the specification. The DNN
considered here has 5 layers with 4 nodes each (except for the output layer
which has one node) with ReLU as the activation function.

2 4 6 8 10 12 14
No of conditions

0.5

1.0

1.5

2.0

Verification time(in ms)

19

Figure 11: A plot of the time taken to verify the DNN using the LCA against the
number of layers. The DNN considered here has 4 nodes in each layer (except
for the output layer which has one node) with ReLU as the activation function.
A Boolean predicate-based specification containing 12 Boolean predicates was
chosen randomly among all possible (2212

) specifications.

3 4 5 6 7
No of layers0.42

0.44

0.46

0.48

0.50

Verification time(in ms)

5.3 Experiments on finding truncation errors

As is visible in equation 4, the error of truncation involved in our polynomial-
time approximation algorithm is O(∆x1∆x2∆x3 . . .∆xn), where n is the num-
ber of input variables in the original DNN, and ∆xis are the resolution dif-
ferences. Assuming ∆xi = δ, ∀i, 1 ≤ i ≤ n, and k = ∂nf

∂x1∂x2...∂xn
|{0,0,0...0}, f

being the equivalent function of the DNN, the error complexity is O(kδn). The
variation of this propagated error is shown in figures 12 and 13. The value of
k is dictated by the choice of activation function. Also, as expected, the larger
the input layer, lesser is the error, and lesser the resolution, the lesser is the er-
ror. But lesser resolution implies larger number of cells in the LCA grid, where
one needs to adhere to some appreciable trade-off. Also, with the apt choice of
resolution and the number of the input variables, as seen more prominently in
figure 12, the propagated error is really small. So the convergence of the learn-
ing cellular automata towards the corresponding value produced by the DNN is
restricted to one or two time instances.

5.4 Comparison with existing formal methods

There exist other formal verification methods such as those based on SMT
solvers, that optimise on the predicate-variant of the original DPLL algorithm,
and LP based algorithms, applicable to neural nets having linear activation func-
tions, such as ReLU. Several LP based approaches exist in literature such as the
simplex algorithm, Reluplex algorithm (specifically for ReLU based DNNs) [8]
etc. In figure 14, the proposed LCA-based verification system has been com-
pared with optimised SMT solvers and LP solvers available in the Mathematica
libraries in terms of the total verification time taken. Clearly our system takes
much less time in comparison to the others, and this does not scale much with

20

Figure 12: The plot of propagated error of truncation against the number of
input variables to the DNN. Here each of the four neural nets (for different
activation functions) contains 5 hidden layers with 4 nodes per layer. The value
of δ is fixed at 0.01. The function ’Ramp’ is the rectified linear unit (ReLU).

Figure 13: The plot of propagated error of truncation against the resolution,
i.e. the value of δ. Here each of the four neural nets (for different activation
functions) contains 5 hidden layers with 4 nodes per layer, with 5 nodes in the
input layer. The function ’Ramp’ is the rectified linear unit (ReLU).

the increasing size of the neural net. This can be explained by the high level of
data parallelism present inherently in the definition of a cellular automata.

6 Conclusion

In this paper, we present formal definitions of first-order and general cellular
automata, and deep neural networks, and introduce the notion of learning cellu-
lar automata. Also, we prove that the conversion of deep neural network to an
equivalent LCA is in NP-complete, and present an LCA-based formal verifica-
tion system based on a Taylor series based polynomial time approximate of the

21

Figure 14: A plot of the time taken by the formal verification system compared
with the SMT solver and LP solver available in the libraries of Mathematica
11, and its variation against the number of layers in the DNN. The neural net
has 4 nodes per layer (except for the output layer that has only one node) with
ReLU as the activation function.

conversion. Finally, we show the performance of the system, in terms of time
consumption and error rate, and compare the performance with some existing
methods which are implementable in the experimental environment. The mag-
nitude of the propagation error allows programmability and faster convergence
of the LCA. Also, the system is usable for most of the possible applications as it
is not functionally influenced by the choice of activation function. But the most
visible bottleneck in the total time consumption of the formal verification sys-
tem is the conversion of DNN to LCA which consumes majority of the time. In
future, work can be done to optimise upon the polynomial time approximation
of the NP-complete algorithm, while ensuring less error complexity to facilitate
the convergence.

References

[1] J. Schiff, ”Introduction to Cellular Automata”, 1st edition, Wiley and sons

[2] Wolfram, S., ”Cellular automata as models of complexity”, in Nature, Vol.
311, No. 5985, pp. 419-424, 1984

[3] Renard, J.P., ”Implementation of logical functions in the Game of Life”, in
A. Adamatzky (Ed.), Collision-Based Computing, pp. 491-512, 2002

[4] Cook, M., ”Universality in elementary cellular automata”, in Complex Sys-
tems, vol. 1, pp. 1-40, 2004

[5] Omohundro, S., ”Modelling Cellular Automata with Partial differen-
tial equations”, in Physica D: Nonlinear Phenomena, 10.1016/0167-
2789(84)90255-0

22

[6] Geddes, K.O., Czapor, S.R., Labahn, G. ”Algorithms for Computer Alge-
bra”, in Kiuwer Academic Publishers

[7] Guenter, B.K., ”Efficient symbolic differentiation for graphics applica-
tions”, in ACM Trans. Graph., 2007

[8] Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M., ”Reluplex: An
Efficient SMT solver for deep neural networks”, in International Conference
on Computer Aided Verification, pp., 97-117, 2017

[9] Sun, X., Khedr, H., Shoukry, Y., ”Formal Verification of Neural Network
Controlled Autonomous Systems”, arXiv: 1810.13072, 2018

[10] Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M., ”To-
wards Proving the Adversarial Robustness of Deep Neural Networks”,
arXiv:1709.02802, 2017

[11] Agarap, A., ”Deep Learning using Rectified Linear Units (ReLU)”,
arXiv:1803.08375, 2018

[12] Gashler, M., Ashmore, S., ”Training Deep Fourier Neural Networks To Fit
Time-Series Data”, arXiv:1405.2262, 2014

[13] Godfrey, L., Gashler, M., ”A continuum among logarithmic, linear, and
exponential functions, and its potential to improve generalization in neural
networks”, in 7th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management: KDIR, 2016

[14] Lomuscio, A., Maganti, L., ”An approach to reachability analysis for feed-
forward ReLU neural networks”, arXiv:1706.07351, 2017

[15] Charif, O., Omrani, H., Basse, R.M., ”Cellular automata based on artificial
neural network for simulating land use changes”, in Proceedings of the 45th
Annual Simulation Symposium, Article No. 1, 2012

[16] Schmidhuber, J., ”Deep Learning in Neural Networks: An Overview”, in
Neural Networks, 61:85-117, arXiv:1404.7828, 2015

[17] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B. et al, ”End to
End Learning for Self-Driving Cars”, arXiv:1604.07316, 2016.

[18] Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Cri-
minisi, A., ”Measuring Neural Net Robustness with Constraints”, in Proc.
30th Conf. on Neural Information Processing Systems (NIPS), 2016

[19] Pulina, L., Tacchella, A., ”Challenging SMT Solvers to Verify Neural Net-
works”, in AI Communications, 25(2):117-135, 2012

[20] Gilpin, W., ”Cellular automata as convolutional neural networks”,
arXiv:1809.02942, 2018

23

