
The p-value interpreted as the posterior probability of

explaining the data: Applications to multiple testing and to

restricted parameter spaces

June 19, 2020

David R. Bickel

Ottawa Institute of Systems Biology

Department of Biochemistry, Microbiology and Immunology

Department of Mathematics and Statistics

University of Ottawa

451 Smyth Road

Ottawa, Ontario, K1H 8M5

+01 (613) 562-5800, ext. 8670

dbickel@uottawa.ca



Abstract

Failures to replicate the results of scientific studies are often attributed to misinterpreta-

tions of the p value. The p value may be interpreted as an approximate posterior probability,

not that the null hypothesis is true but rather that it explains the data as well as the data-

generating distribution. That posterior probability modifies the p value in the following two

broad areas of application, leading to new methods of hypothesis testing and effect size esti-

mation. First, when corrected for multiple comparisons, the posterior probability that the null

hypothesis adequately explains the data overcomes both the conservative bias of corrected p

values and the anti-conservative bias of commonly used false discovery rate methods. Second,

the posterior probability that the null hypothesis adequately explains the data, conditional on

a parameter restriction, transforms the p value in such a way as to overcome difficulties in

restricted parameter spaces.

Keywords: multiple comparison procedures; multiple testing; null hypothesis significance testing;

restricted parameter space; replication crisis; reproducibility crisis



1 Introduction

As seen in Wasserstein and Lazar (2016) and Wasserstein et al. (2019), failed attempts to replicate

the results of scientific studies are often attributed to misinterpretations of the p value. Cox (1977)

considered two physical interpretations of the p value. First, the p value is the probability of

rejecting a true null hypothesis in the hypothetical situation that the significance level of the test

is just high enough to barely permit rejection. When “hypothetical” is dropped, that becomes the

routinely criticized misinterpretation of the p value as an error probability (e.g., Greenland, 2019,

§3). The second physical interpretation is that the p value is a random variable having a uniform

distribution between 0 and 1 under the null hypothesis (Cox, 1977). While that interpretation is

less confusing once grasped, it is not directly relevant to scientific applications (Bickel, 2019).

Fortunately, one-sided p values may be interpreted instead as approximations of posterior prob-

abilities under general conditions (Casella and Berger, 1987; Dudley and Haughton, 2002). Shi

and Yin (2020) similarly interpreted a two-sided p value as an approximate two-sided posterior

probability. The current paper generalizes that approach to vector parameters by interpreting the

p value as an approximate posterior probability that the null hypothesis has at least as much ex-

planatory power as the data-generating distribution. Here, the explanatory power is the ability of

a hypothesis to explain some aspect of the observed data.

Unlike interpretations in terms of the posterior probability that the null hypothesis is true, the

proposed interpretation applies even if the null hypothesis is known to be false, for a hypothesis

can serve as a potential explanation of data without being the true distribution that generated the

data. If the p value is sufficiently low, the null hypothesis is rejected for not explaining the data

well enough. Otherwise, there is a sufficiently high probability that the null hypothesis explains the

data as well as would the data generating distribution, in which case there is no need to reject the

null hypothesis.

The interpretation is made more precise in Section 2, which defines what is meant by explana-

tory power. While the probability that the null hypothesis has sufficient explanatory power is

approximately equal to a p value in many cases, it leads to new methods in two broad areas of

application. First, it generates multiple-testing p values that are as simple as common corrections

for multiple testing (e.g., Dudoit and van der Laan, 2008) but without the excessive conservatism of

controlling family-wise error rates (§3). They are applicable to making inferences about individual

hypotheses without the anti-conservative bias that Hong et al. (2009, Fig. 3), Bickel and Rahal

(2019), and Bickel (2019, Chap. 6) observed in standard false discovery rate methods. Second, re-
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stricted parameter spaces (Zhang and Woodroofe, 2003; Marchand and Strawderman, 2004; Wang,

2006, 2007; Marchand and Strawderman, 2013, 2006; Bickel, 2020a) have the problem of confidence

intervals that overlap with the forbidden region (Mandelkern, 2002; Fraser, 2011), with the extreme

of empty confidence intervals in the allowed region (see Ball et al., 2002; Bickel and Patriota, 2019).

Such problems may be solved by replacing the usual p value with the conditional probability that

the null hypothesis has sufficient explanatory power given the parameter restriction (§4). It will

be seen in Sections 3-4 that inverting the multiple-testing and restricted-parameter p values results

not only in new hypothesis tests but also in new interval estimates of effect sizes.

2 Probability that the null hypothesis is as useful as the truth

2.1 Usefulness probability and explanatory probability

“. . . our models are not the reality—a point well made by George Box in his oft-cited remark that

’all models are wrong, but some are useful’” (Hand, 2014). “In applying mathematics to subjects

such as physics or statistics we make tentative assumptions about the real world which we know

are false but which we believe may be useful nonetheless” (Box, 1976).

Accordingly, for each possible value θ of the parameter of interest in some parameter space Θ,

let u (θ) denote a real number called the usefulness of θ. Consider the null hypothesis that the

parameter is equal to θH 0
for a θH0

∈ Θ. The usefulness probability is Pr (u (θH 0
) ≥ u (ϑ)), the

posterior probability that the null hypothesis is at least as useful as ϑ, the unknown true value of the

parameter of interest. Other tail-area posterior probabilities in the literature include the evidence

value of Pereira and Stern (1999), the likelihood-ratio posterior probability of Aitkin (2010, p. 42),

and the strength of evidence of Evans (2015, p. 114). They are special cases of the extended

evidence value of Bickel (2020b), as Bickel (2020c) noted.

Example 1. Suppose that if θH 0
were sufficiently close to the true value ϑ, then the null hypothesis

that ϑ = θH 0
would be considered useful. In other words, the usefulness of that null hypothesis is

the indicator

u (θH 0
) = χ (D (θH 0

, ϑ) ≤ ∆) =















1 if D (θH 0
, ϑ) ≤ ∆

0 if D (θH 0
, ϑ) > ∆

for a ∆ > 0, where D is a metric, and where χ is the characteristic function that is equal to 1 if its
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argument is true and equal to 0 if it is false. Then the usefulness probability is

Pr (χ (D (θH 0
, ϑ) ≤ ∆) ≥ χ (D (ϑ, ϑ) ≤ ∆)) = Pr (χ (D (θH0

, ϑ) ≤ ∆) ≥ 1)

= Pr (D (θH 0
, ϑ) ≤ ∆) ,

which is the posterior probability that the null hypothesis is sufficiently close to the data-generating

distribution. N

One application of usefulness probability is explanatory inference according to which a hypothe-

sis is considered useful to the extent that it, if true, could explain why the observed data occurred (cf.

Lipton, 2004). The usefulness u (θ) is the potential explanatory power of θ if u (θ) is strictly mono-

tonically increasing with Pr (τθ (Y ) = τθ (y) |ϑ = θ) for some function τ• (•) and for the observed

sample y modeled as a realization of the random sample Y . For example, Pr (τθ (Y ) = τθ (y) |ϑ = θ)

is a likelihood if τθ (y) = y for all θ or, more generally, is a marginal likelihood if τθ (y) does not

depend on θ. The definition can be extended to likelihood functions and marginal likelihood func-

tions of a continuous θ by allowing u (θ) to be strictly monotonically increasing with a probability

density of τθ (y). A usefulness probability with the potential explanatory power as the usefulness

is called explanatory probability.

2.2 The p value as an explanatory probability

Recall that a p value testing the null hypothesis that ϑ = θ is

p (θ) = Pr (tθ (Y ) ≥ tθ (y) |ϑ = θ)

where each tθ (y
′) is a test statistic for a possible sample y ′. To connect that to explanatory

probability, consider the special case of potential explanatory power defined according to

τθ (y
′) = χ (tθ (y

′) ≥ tθ (y)) (1)

for every possible sample y ′. In that way, each τθ (y
′) indicates whether or not y ′ is as extreme as the

observed sample, and the potential explanatory power of θ is its ability to predict the observation

that τθ (Y ) = τθ (y) (cf. Davies, 2018; Bickel and Patriota, 2019).

Lemma 1. If u (θ) is the potential explanatory potential of θ on the basis of equation (1), then

u (θ) is strictly monotonically increasing with p (θ).
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Proof. By equation (1),

Pr (τθ (Y ) = τθ (y) |ϑ = θ) = Pr (χ (tθ (Y ) ≥ tθ (y)) = χ (tθ (y) ≥ tθ (y)) |ϑ = θ)

= Pr (χ (tθ (Y ) ≥ tθ (y)) = 1|ϑ = θ)

= Pr (tθ (Y ) ≥ tθ (y) |ϑ = θ) = p (θ) .

Therefore, since u (θ), as the potential explanatory potential of θ, is strictly monotonically increasing

with Pr (τθ (Y ) = τθ (y) |ϑ = θ), so it is with p (θ).

If, to some order of approximation denoted by
.
=, the posterior distribution of ϑ satisfies

Pr (p (ϑ) ≤ α)
.
= α (2)

for any α between 0 and 1, then that posterior distribution is called an approximate confidence

distribution (Bickel, 2020b; cf. Schweder and Hjort, 2016). For example, the order of approximation

could be defined in a sense of Dudley and Haughton (2002), who prove under broad conditions the

approximate equality of likelihood-ratio test p values and posterior probabilities of half-spaces.

Definition 1. Let ξ (θH 0
), called the ξ value of the null hypothesis that ϑ = θH 0

, denote the

explanatory probability under the above conditions, namely, that

1. The posterior distribution of ϑ is an approximate confidence distribution.

2. The usefulness of θ is the potential explanatory power of θ defined according to equation (1).

The p value may be interpreted as an approximate ξ value.

Theorem 1. To the same order of approximation as the approximate confidence distribution,

ξ (θH 0
)
.
= p (θH 0

).

Proof. Since, by Lemma 1, u (θ) is strictly monotonically increasing with p (θ),

Pr (u (θH 0
) ≥ u (ϑ)) = Pr (p (ϑ) ≤ p (θH 0

)) .

By the definition of an approximate confidence distribution, Pr (p (ϑ) ≤ p (θH0
))

.
= p (θH 0

). It

follows that Pr (u (θH0
) ≥ u (ϑ))

.
= p (θH 0

) .
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2.3 Effect-size estimation

For any α between 0 and 1 and a parameter space Θ, the α (100%) usefulness region is the set of

all parameter values of usefulness probability of at least α:

{θH0
∈ Θ : Pr (u (θH 0

) ≥ u (ϑ)) ≥ α} .

In the case that the usefulness is potential explanatory power, it is called the α (100%) explanatory

region. If, in addition, the conditions of Definition 1 hold, then it is called the α (100%) ξ region.

The regions are typically intervals when θH 0
is a scalar. For example, if α = 0.05, then a 5% ξ

set of scalar parameter values would typically be a 5% ξ interval.

According to Theorem 1, the α (100%) ξ region is an approximate (1− α) (100%) confidence

region. However, that relation between ξ regions and confidence regions breaks down in cases of

multiple testing and restricted parameter spaces, as seen in Sections 3.4 and 4.3, respectively.

3 Corrections for multiple testing

3.1 Corrected usefulness probability and corrected explanatory proba-

bility

Let m be the number of parameters of interest about which simultaneous claims of statistical

significance will be made in the form of flagging their null hypotheses as “inadequate” or “useless”

as opposed to the usual “false.” In our approximate Bayesian framework, m may depend on the

data and may be less than the total number of parameters considered in a study.

For each of the unknown parameter values ϑ1, . . . , ϑm and their null hypothesis values θ1, . . . , θm ,

consider testing the null hypothesis that ϑi = θi . To extend the framework of Section 2 to the

problem of testing whether all m of the null hypotheses are useless, define the corrected usefulness

probability by the posterior probability that at least one of them is as useful as its corresponding

true value:

Pr (u (θ1) ≥ u (ϑ1) or · · · or u (θm) ≥ u (ϑm)) = 1− Pr (u (θm) < u (ϑm) , . . . , u (θm) < u (ϑm))

= 1−

m
∏

i=1

Pr (u (θi) < u (ϑi)) = 1−

m
∏

i=1

(1− Pr (u (θi) ≥ u (ϑi))) ,

(3)
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the last line of which holds under the posterior mutual independence of ϑ1, . . . , ϑm . In applications,

if the corrected usefulness probability is sufficiently low, all of the null hypotheses are rejected in

the sense of being judged unsuitable for further use as working hypotheses. If the usefulness of

a hypothesis is its potential explanatory probability as defined in Section 2.1, then the corrected

usefulness probability is the corrected explanatory probability.

3.2 Corrected ξ values

Let pi (θi) denote a p value for testing the null hypothesis that ϑi = θi . If the conditions of Definition

1 hold for each ϑi with respect to each p value function pi of the ith parameter of interest, then the

corrected explanatory probability is called the multiple-test ξ value and is denoted by ξ (θ1, . . . , θm).

A related quantity is

ξ⊥ (θ1, . . . , θm) = 1−

m
∏

i=1

(1− pi (θi)) . (4)

Calling it the independence ξ value of θ1, . . . , θm is justified by the next result.

Corollary 1. If ϑ1, . . . , ϑm are mutually independent, then ξ⊥ (θ1, . . . , θm) is approximately equal

to ξ (θ1, . . . , θm) in the sense that

(1− ξ⊥ (θ1, . . . , θm))
1

m
.
= (1− ξ (θ1, . . . , θm))

1

m ,

where the order of approximation is the same as that of equation (2).

Proof. Since ϑ1, . . . , ϑm are mutually independent, equation (3) yields

ξ (θ1, . . . , θm) = 1−
m
∏

i=1

(1− ξ (θi))

(1− ξ (θ1, . . . , θm))
1

m =

(

m
∏

i=1

(1− ξ (θi))

)
1

m

. (5)

By Theorem 1, ξ (θi)
.
= p (θi) for all i = 1, . . . ,m. It follows that 1 − ξ (θi)

.
= 1 − p (θi) for all

i = 1, . . . ,m and thus that

(

m
∏

i=1

(1− ξ (θi))

)
1

m

.
=

(

m
∏

i=1

(1− p (θi))

)
1

m

= (1− ξ⊥ (θ1, . . . , θm))
1

m , (6)

in which the exact equality is implied by equation (4). The left-hand side of equation (6) is the

right-hand side of equation (5).
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If p (θi) ≈ 0 for all i = 1, . . . ,m, then ξ⊥ (θ1, . . . , θm) is approximately equal to

ξ≈ (θ1, . . . , θm) =

m
∑

i=1

pi (θi) , (7)

which is called the approximate ξ value of θ1, . . . , θm .

A quantity is a corrected ξ value if it is a multiple-test ξ value, an independence ξ value, or a

an approximate ξ value. That umbrella term is patterned after the concept of correcting p values

for multiple testing.

3.3 Relations to corrected p values

Equations (4) and (7) resemble the maximum corrected p values of Sidak (1967) and Bonferroni,

respectively:

p⊥ (θ1, . . . , θm) = max
i=1,...,m

1− (1− pi (θi))
m (8)

p≈ (θ1, . . . , θm) = max
i=1,...,m

m pi (θi) . (9)

The procedure of rejecting all m null hypotheses if and only if p⊥ (θ1, . . . , θm) ≤ α controls the

family-wise error rate at level α under the mutual independence of the samples. If p (θi) ≈ 0 for

all i = 1, . . . ,m, then p⊥ (θ1, . . . , θm) is approximately equal to p≈ (θ1, . . . , θm). The resemblance

may be formalized as inequalities:

Proposition 1. For all p values, ξ⊥ (θ1, . . . , θm) ≤ p⊥ (θ1, . . . , θm).

Proof. 1− ξ⊥ (θ1, . . . , θm) =
∏m

i=1 (1− pi (θi)) ≥ mini=1,...,m (1− pi (θi))
m and

p⊥ (θ1, . . . , θm) = 1− min
i=1,...,m

(1− pi (θi))
m
.

Proposition 2. For all p values, ξ≈ (θ1, . . . , θm) ≤ p≈ (θ1, . . . , θm).

Proof. ξ≈ (θ1, . . . , θm) =
∑m

i=1 pi (θi) ≤ m maxi=1,...,m pi (θi) and

p≈ (θ1, . . . , θm) = m max
i=1,...,m

pi (θi) .
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Figure 1: The maximum Bonferroni p value, the maximum Sidak p value, the approximate ξ value,
and the independence ξ value as functions of the significance level α for the 15 real-data hypothesis
tests specified in Example 2. Here, m (α), the number of null hypotheses rejected at uncorrected
level α, is used as m in equations (9), (8), (7), and (4).

Those results say the independence ξ value and the corrected ξ value are no more conservative

than the Sidak and Bonferroni p values when used to determine whether to reject the same m null

hypotheses. In practice, the corrected ξ values tend to be much less conservative than the corrected

p values.

Example 2. Benjamini and Hochberg (1995) considered 15 p values from Neuhaus et al. (1992)

for testing thrombolytic-treatment outcomes. For deciding whether to reject only the uncorrected p

values less than or equal to some significance level α, the corrected ξ values and corrected p values

are displayed in Figure 1 N

Example 3. This example uses order statistics to achieve a level of generality while suppressing

sampling error. Suppose, following much of the statistics literature, that the distribution of the

standard normal quantiles of m independent one-sided p values is N
(

0, σ2
)

, the normal distribution

of mean 0 and standard deviation σ. Note that σ = 1 under the null hypothesis, for in that case the

p values have the U(0, 1) distribution. For any q between 0 and 1, let pq denote the qth quantile

of the corresponding two-sided p value.

The ideal sample of m two-sided p values based on expected order statistics of a sample of m

independent draws from the U(0, 1) distribution is
(

p1/(m +1), . . . , pm /(m +1)

)

. Setting the Type I

error rate α (the probability that a two-sided p value is greater than α given σ = 1) at α = 0.05

as the significance threshold for the two-sided p values, let β (σ) denote the Type II error rate

(probability that the two-sided p value is less than α) at each value of σ 6= 1.

For each of the four ideal samples of m = 2, 4, 8, 16 two-sided p values on the basis of various

values of σ, the corrected ξ values and corrected p values are displayed in Figure 2 as functions of
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Figure 2: The maximum Bonferroni p value, the maximum Sidak p value, the approximate ξ value,
the independence ξ value, and the uncorrected two-sided p value as functions of β, the probability
of a Type II error, given α = 0.05 as the probability of a Type I error. The first four quantities are
given by equations (9), (8), (7), and (4), respectively. The headings of the four plots correspond to
m = 2, 4, 8, 16, respectively. Expected order statistics are used to generate the uncorrected p values
that the other quantities depend on, as described in Example 3.

β (σ), which is 1 minus the power of the test given σ. N

3.4 Effect-size estimation under multiple testing

In analogy with Section 2.3, the α (100%) corrected usefulness (corrected explanatory, corrected ξ)

region is the set of all parameter values of corrected usefulness probability (corrected explanatory

probability, corrected ξ value, respectively) of at least α. The α (100%) corrected ξ region may be

the α (100%) multiple test ξ region

{(θ1, . . . , θm) : ξ (θ1, . . . , θm) ≥ α} ,
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the α (100%) independence ξ region

{(θ1, . . . , θm) : ξ⊥ (θ1, . . . , θm) ≥ α} ,

or the α (100%) approximate ξ region

{(θ1, . . . , θm) : ξ≈ (θ1, . . . , θm) ≥ α} .

The latter two regions are subsets of the corresponding (1− α) (100%) confidence regions according

to Propositions 1 and 2.

4 Restricted parameter spaces

4.1 Conditional usefulness probability and conditional explanatory prob-

ability

Let the restriction set R be a subset of Θ, the parameter space. The conditional usefulness proba-

bility of θH 0
, given that ϑ ∈ R, is the posterior probability that the null hypothesis is as useful as

the data-generating distribution, conditional on the restriction:

Pr (u (θH 0
) ≥ u (ϑ) |ϑ ∈ R) =

Pr (u (θH 0
) ≥ u (ϑ) , ϑ ∈ R)

Pr (ϑ ∈ R)
, (10)

assuming that Pr (ϑ ∈ R) > 0.

Example 4. If Θ is the real line and the parameter of interest is restricted to non-negative values,

then the relevant restriction set is R = [0,∞[. Assume that Pr (ϑ ≥ 0) > 0. The conditional

usefulness probability of θH 0
, given that ϑ ≥ 0, is

Pr (u (θH 0
) ≥ u (ϑ) |ϑ ≥ 0) =

Pr (u (θH 0
) ≥ u (ϑ) , ϑ ≥ 0)

Pr (ϑ ≥ 0)
.

N

In the case that the usefulness is the potential explanatory power, Pr (u (θH 0
) ≥ u (ϑ) |ϑ ∈ R)

is called the conditional explanatory probability, given that ϑ ∈ R.
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4.2 Conditional ξ values

4.2.1 Restricted parameter space

If the conditions of Definition 1 hold, then the conditional usefulness probability of θH 0
, given that

ϑ ∈ R, is called the conditional ξ value, given that ϑ ∈ R, and is denoted by ξ (θH 0
|R).

Lemma 2. If Pr (ϑ ∈ R) > 0, then the conditional ξ value of θH0
, given that ϑ ∈ R, is

ξ (θH 0
|R) = Pr (p (ϑ) ≤ p (θH 0

) |ϑ ∈ R) =
Pr (p (ϑ) ≤ p (θH 0

) , ϑ ∈ R)

Pr (ϑ ∈ R)
.

Proof. Since, by Lemma 1, u (θ) is strictly monotonically increasing with p (θ),

Pr (u (θH 0
) ≥ u (ϑ) |ϑ ∈ R) = Pr (p (ϑ) ≤ p (θH 0

) |ϑ ∈ R) .

The claim then follows from equation (10).

The evidential equivalent of ξ (θH 0
|R) first appeared in Bickel (2020a).

4.2.2 Nonnegative parameter value

This section uses the setting of a real-valued parameter of interest restricted to be non-negative.

Theorem 2. Assume the setting of Example 4. The following statements hold for any real value

θH 0
. Let p> (θH 0

) denote a one-sided p value for testing the null hypothesis that ϑ = θH 0
with the

alternative hypothesis that ϑ > θH0
, and let

p 6= (θH 0
) = 2min (p> (θH 0

) , 1− p> (θH 0
)) (11)

denote the corresponding two-sided p value for testing the null hypothesis that ϑ = θH 0
with the

alternative hypothesis that ϑ 6= θH 0
. If p> (θH 0

) increases monotonically with θH 0
and if the

conditions of Definition 1 hold for p> (θH 0
) and p 6= (θH 0

), then the two-sided conditional ξ value of

θH 0
, given that ϑ ≥ 0, is

ξ6= (θH 0
| [0,∞[) =































p 6=(θH0
)−p

>
(0)

1−p
>
(0) if p> (0) <

p 6=(θH0
)

2

p 6=(θH0
)/2

1−p
>
(0) if

p 6=(θH0
)

2 ≤ p> (0) < 1−
p 6=(θH0

)
2

1 if p> (0) ≥ 1−
p 6=(θH0

)
2

.
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Proof. From Lemma 2 and the assumption that p> (θH 0
) increases monotonically with θH 0

,

ξ6= (θH0
| [0,∞[) =

Pr
(

p 6= (ϑ) ≤ p 6= (θH 0
) , ϑ ≥ 0

)

Pr (ϑ ≥ 0)

=
Pr
(

p 6= (ϑ) ≤ p 6= (θH 0
) , p> (ϑ) ≥ p> (0)

)

Pr (p> (ϑ) ≥ p> (0))

.
=

Pr
(

p 6= (ϑ) ≤ p 6= (θH 0
) , p> (ϑ) ≥ p> (0)

)

1− p> (0)
,

with the approximate equality following from equation (2). By equation (11),

ξ6= (θH0
| [0,∞[)

.
=

Pr
(

2 p> (ϑ) ≤ p 6= (θH 0
) , p> (ϑ) ≥ p> (0)

)

+ Pr
(

2 (1− p> (ϑ)) ≤ p 6= (θH 0
) , p> (ϑ) ≥ p> (0)

)

1− p> (0)

=
Pr
(

p> (0) ≤ p> (ϑ) ≤ p 6= (θH 0
) /2
)

+ Pr
(

p> (ϑ) ≥ max
(

p> (0) , 1− p 6= (θH 0
) /2
))

1− p> (0)

Using Pr (p> (ϑ) ≤ α)
.
= α from equation (2), the three cases of that are

1. If p> (0) < p 6= (θH 0
) /2, then

ξ6= (θH 0
| [0,∞[)

.
=

(

p 6= (θH 0
) /2− p> (0)

)

+
(

1−
(

1− p 6= (θH 0
) /2
))

1− p> (0)

=
p 6= (θH 0

)− p> (0)

1− p> (0)
.

2. If p 6= (θH 0
) /2 ≤ p> (0) < 1− p 6= (θH 0

) /2, then

ξ6= (θH 0
| [0,∞[)

.
=

0+
(

1−
(

1− p 6= (θH 0
) /2
))

1− p> (0)
=

p 6= (θH 0
) /2

1− p> (0)
.

3. If p> (0) ≥ 1− p 6= (θH 0
) /2, then

ξ6= (θH 0
| [0,∞[)

.
=

0 + (1− p> (0))

1− p> (0)
= 1.

The three cases of ξ6= (θH 0
| [0,∞[) can be seen in Figure 3, in which θH 0

is varied in order to

leave p 6= (θH 0
) constant at 0.05 as p> (0) varies. Figure 4 instead displays ξ6= (0| [0,∞[) with θH0

held constant at 0 in order to show the effect of p> (0) on the conditional ξ value for the same null

hypothesis, that ϑ = 0. Both figures indicate that as confidence regions overlap more and more

with the forbidden region (ϑ < 0), the conditional ξ value gets closer and closer to 1.
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Figure 3: The two-sided conditional ξ value of θH 0
, given that ϑ ≥ 0, as a function of p> (0)

according to Theorem 2, with the two-sided p value held fixed at p 6= (θH 0
) = 0.05. The one-sided

p value p> (0) is the observed confidence level (Polansky, 2007) of the forbidden region (ϑ < 0) in
the sense that Pr (ϑ < 0) = Pr (p> (ϑ) < p> (0))

.
= p> (0) by equation (2) and the assumption that

p> (θ) monotonically increases with θ.

Figure 4: The two-sided conditional ξ value of θH0
= 0, given that ϑ ≥ 0, as a function of p> (0)

according to Theorem 2. The sense in which p> (0) may be interpreted as the confidence of the
forbidden region is given in the caption of Figure 3.
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4.3 Effect-size estimation under restricted parameter spaces

The definitions of Section 2.3 extend by analogy to their conditional counterparts. Thus, the

α (100%) conditional usefulness region, given that ϑ ∈ R, is the set of all parameter values of

conditional usefulness probability of at least α:

{θH0
∈ Θ : Pr (u (θH 0

) ≥ u (ϑ) |ϑ ∈ R) ≥ α} .

In the case that the usefulness is potential explanatory power, it is called the α (100%) conditional

explanatory region, given that ϑ ∈ R.

Likewise, the α (100%) conditional ξ region, given that ϑ ∈ R, is the set of all parameter values

of conditional ξ values of at least α:

{θH0
∈ Θ : ξ (θH 0

|R) ≥ α} .

That is not necessarily a (1− α) (100%) confidence region, as may be seen from Theorem 2. In

fact, Figures 3-4 illustrate that even when a confidence region is entirely in the forbidden region,

the conditional ξ region is not.
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