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Background

« EU Blue Action project

- This research is supported by Blue
Action project (European Union’s
Horizon 2020 research and innovation

program, Grant 727852).

- Qur paper has been submitted to MWR

Liu, Y., Bogaardt, L., Attema, J., & Hazeleger, W.
(2020). Extended Range Arctic Sea Ice Forecast with
Convolutional Long-Short Term Memory Networks.
Monthly Weather Review. Submitted.
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Background

« Weather forecast with deep learning
- Numerical (model) weather forecast is expensive!

- Convolutional Long-Short Term Memory (ConvLSTM)
Is good at tackling spatio-temporal sequence
forecasting problem!

Xingjian, S., Z. Chen, 731 H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, 2015: Convolutional lstm
network: A machine learning approach for precipitation nowcasting. Advances in neural information

processing systems, 802-810.
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Deep learning and process understanding
for data-driven Earth system science

Markus Reichstein®*¥, Gustau Camps-Valls®, Bjorn Stevens®, Martin Jung', Joachim Denzler™®, Nuno Carvalhais'® & Prabhat’
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Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., &
Carvalhais, N. (2019). Deep learning and process understanding for
data-driven Earth system science. Nature, 566(7743), 195-204.



Research questions

- Can we improve the Arctic sea ice forecast at weather

time scales with deep learning techniques (ConvLSTM)?

- Can we quantify the contribution of each predictor to

the sea ice forecast with deep neural networks?

- |s the physical consistency preserved by the deep

neural networks during forecast? Can we unbox this

blackbox?

netherlands S50 center



Configuration 5

o Arctic seaice forecast

- Sea ice forecast at weather (weekly) time scales in the
Barents Sea

- Improve the forecast of sea ice with ConvLSTM

- Atmospheric (SIC, SLP, T2M, Z500, Z850, Sflux, UV10m)
and oceanic (OHC) fields from reanalysis products are

used in this study
B D
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Configuration

« Weather forecast with ConvLSTM

- Mathematical expression of ConvLSTM

ir =0 Wyixx; +Wpyixhy 1 +Weioc, 1+ bj)

fr — G(Wlf * X + Wh_}" * f?f_l -+ Hﬁlf OCi_1 T b}x) /

c; = froc,_1+iotanh(Wyexx; + Wy xh,_1 +b.)

O — G(Ww;r Xt +Wpoxhy_1 +Wey o +by) \

hy = o; otanh(c;)

With i_t the input gate, f_t the forget gate, c_t the cell state, o_t the output gate, h_t the hidden state, W
the weight matrix, x the input, b the bias, o0 the convolutional operation, * the element-wise product,
sigma the sigmoid function and tanh the hyperbolic tangent function.



Configuration

Convolutional LSTM

LSTM Cell
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Configuration

o Setup of ConvLSTM

- Hyperparameter tuning

Table S1. A brief summary of hyperparameter tuning of ConvLSTM

Method RMSE (km?) / 1%
Hyperparameter

Learning Rate | # Stacked Layers Filter Size Epoch week
ConvlSTM 0.02 3 3 1500 54.01
0.01 3 3 1500 51.11
0.001 3 3 1500 56.79
0.005 3 3 1500 51.39
0.01 3 3 1000 54.22
0.01 3 3 2000 51.10
0.01 5 3 1500 56.93
0.01 7 3 1500 56.99
0.01 3 5 1500 56.89
0.01 3 7 1500 59.09
Climatology 137.91
Persistence 50.17

(# Stacked layers are the number of ConvLSTM layers, the sea ice forecast with ConvLSTM is based on

SIC and OHC.)
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« Deep Learning with ConvLSTM

- Many-to-One prediction
(train model with time series and output next step)

- Forecasts with ConvLSTM are evaluated against climatology,
persistence and a generalized linear model with a logit link

1979-2009 (training) 2013-2016 (testing)

2009-2012 (cross-validate)

During training

Training data (input)

| Testing data

Lead time dependent prediction #

I Forecast



Results 10

e Seaice forecast with ConvLSTM
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- Lead time dependent constrained forecast X
(using multiple fields to forecast SIC)
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RMSE of (a) the constrained forecast of SIC with a lead time up to 6 weeks and (b) the constrained forecast of SIC for the first week in
each month with ConvLSTM using different predictors against persistence, climatology and the baseline statistical model. The unitis
square kilometer per grid cell.



Results 11

e Seaice forecast with ConvLSTM

- MAE of constrained forecast
with SIC and OHC
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Results

Sea ice forecast with ConvLSTM

- Accuracy score of constrained
forecast with SIC and OHC

Accu_convlstm — Accu_persist

Correct predictions

Accuracy = —
All predictions

Difference of the accuracy score of the
constrained forecast of SIC for the first
week in each month between ConvLSTM
and persistence. The SIC forecast with
ConvLSTM uses SIC and OHC fields.

| | | | 1
—-0.10-0.08-0.06-0.04-0.02 0.00 0.02 0.04 0.06 0.08 0.10
A\ Accuracy




Results 13

1st mode 2nd mode 3rd mode

e Seaice forecast with ConvLSTM (a) ‘_ (b)

- Physical consistency of
operational forecast with SIC
and OHC (using multiple fields
to forecast SIC and all the other (d)
input fields)

Training

Testing

(9) : (h) (1)

Covariance map of SIC and OHC for the (a, d,
g) first, (b, e, h) second and (c, f, i) third SVD
modes in (a, b, ¢) training (d, e, f) testing and
(g, h, i) forecast data for the first week. The
SVD was performed on the covariance matrix |

1 I 1 |
-0.20-0.18-0.16-0.14-0.12-0.10-0.08-0.06-0.04-0.02 0.00
SIC

Forecast
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14

Sea ice forecast with ConvLSTM

- Physical consistency of

operational forecast with SIC
and Z500

Covariance map of SIC and Z500 for the (a, d,
g) first, (b, e, h) second and (c, f, i) third SVD
modes in (a, b, ¢) training (d, e, f) testing and
(g, h, i) forecast data for the first week. The
SVD was performed on the covariance matrix
of normalized SIC and Z500.

(a)

Training

(d)

Testing

(9)

Forecast

(b)

(e)

-0.20-0.18-0.16-0.14-0.12-0.10-0.08-0.06—-0.04-0.02 0.00
DL

2Nnd mode

(f)

3rd mode




Bring home messages

- Weather forecast with ConvLSTM
-> Complex non-linear weather forecast tasks (temporal-spatial sequence

prediction) can be tackled by ConvLSTM

- Sensitivity tests with ConvLSTM
-> Predictability with certain predictors can be evaluated using ConvLSTM
-> Energy balance related fields have strong impact on the predictability of {

sea ice

- Physical consistency

-> Depending on the input fields, physical consistency between input/

\
h’{;&

fields can be preserved during forecast with ConvLSTM. \\/
1)
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