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ABSTRACT

The need for high-quality time-scale modification of au-
dio is increasing, as media streaming services are provid-
ing new related functionalities to their users. The main
goal of a time-stretching method is to preserve the pitch
and the subjective quality of the different components of
the audio signal, namely transients, noise, and tonal com-
ponents. Many solutions have been proposed throughout
the years, with various results depending on the kind of
processed audio input. This paper introduces an evalua-
tion method for audio time-scaling algorithms based on a
recent fuzzy time-frequency decomposition, which reveals
the energy of the tonal, transient, and noise components in
the original and stretched sounds. From the energy curves,
typical impairments, such as transient smearing and the
loss of tonality, can be observed. This analysis approach
is compared with the subjective preferences of different
techniques. This leads to suggestions for possible improve-
ments of future algorithms. The ultimate goal is having an
objective evaluation method which matches the subjective
quality assessment.

1. INTRODUCTION

Time-scale modification (TSM) is the process of chang-
ing the duration or the playback speed of a sound without
affecting its frequency content, i.e. its pitch, timbre, loud-
ness and brightness [1–3]. TSM allows, for example, to
increase or reduce the speed of a speech signal so that the
talker seems to be speaking faster or slower, respectively.
If an audio signal is simply played at a different speed,
i.e. its sample rate is changed, the spectral characteristics
are deemed to be altered because the sound formants are
moved. This results in an audio output with lower per-
ceived pitch for a slowed-down input or with higher pitch
for an input that is sped up. Hence, TSM methods are
applied to avoid this phenomenon, retaining the original
spectral characteristics of the sound.

TSM has been long used in music, to alter audio signals
in an artistic way or to sync recorded sounds during mix-
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ing [4]. Time-scaling is applied when slow motion is in-
volved [5] or when media content has to be conformed to
a given time slot, as it often happens in TV or radio broad-
casting [2]. Lately, streaming services are allowing users
to change the video playback speed during reproduction,
audio-books are offering “speed reading” functions, and
the chance of slowing down words is often requested when
learning a new language [6].

Classic time-domain methods for TSM, such as SOLA
[7], WSOLA [8], and PSOLA [9] perform well for quasi-
harmonic signals, but introduce phase jump artifacts when
applied to polyphonic signals and are prone to transient
misplacing, skipping or duplication. Following techniques
based on the phase vocoder [10, 11] proved useful for sig-
nals which can be represented as a sum of slowly varying
sinusoids, but also highlighted typical time-scaling arti-
facts, such as phasiness [12] and transient smearing [3,13].

Novel techniques aimed at improving the phase vocoder
by separating the tonal component of the audio input from
the transients either before or during the processing [14].
Damskägg and Välimäki [15] have introduced a modified
phase vocoder using a fuzzy classification of the spectral
bins in tonal, transient, and noise components. Průša and
Holighaus [16] proposed a method for phase correction
based on phase gradient estimation that does not require
explicit peak picking and tracking. Sharma et al. [17] de-
veloped a mel-scale based time-varying sinusoidal model
for perceptually improved TSM. Recently, Roma et al. [18]
presented a technique for time stretching involving non-
negative matrix factorization, while Roberts and Paliwal
[19] proposed a novel fuzzy epoch-synchronous overlap-
add method to enhance time-scaling of speech signals.

An effective TSM algorithm should be able to preserve
the quality of the tonal, transient, and noise components
of the sound after the time scaling [20–23]. In this paper,
the fuzzy classification proposed in [15] is implemented to
investigate the energy curves of the spectral components
of audio samples scaled with multiple techniques, compar-
ing them against the energy curves of the original, non-
scaled input. Under the strong hypothesis that perfect time
stretching involves conservation of energy for tones, tran-
sients, and noise, the aforementioned techniques are eval-
uated, suggesting where improvements would be required.

This paper is structured as follows. In Section 2, the fuzzy
classification described in [15] is briefly summarized. In
Section 3, energy curves for the different spectral compo-
nents are derived, leading to the evaluation method pro-
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Figure 1: Relationship between individual fuzzy member-
ship functions and tonalness Rs [15]. Transientness Rt

is the opposite of tonalness whereas noisiness Rn peaks
when the other two components become equal.

posed in Section 4 to compare performances of recent TSM
techniques. Finally, a simple objective evaluation score is
tested and some reflections and suggestions are discussed
in Section 5.

2. FUZZY CLASSIFICATION OF SPECTRAL BINS

A fuzzy classification allows spectral bins to be described
by their simultaneous contribution to tones, transients, and
noise in a time-frequency representation of the signal [15].
Consider the Short–Time Fourier Transform (STFT):

X(m, k) =

N/2∑
n=−N/2

x(n+mHa) w(n) e−jωkn (1)

where x(n) is the input signal, w(n) is the analysis win-
dow, m is the frame index, k is the spectral bin, Ha is the
analysis hop size,N is the frame length in samples, and ωk

is the normalized central frequency of the kth spectral bin.
Tones appear as time-direction flat lines in the spectro-

gram; conversely, transients appear as frequency-direction
flat lines. Tonal and transient spectrograms are computed
using median filters [15, 24], which highlight the desired
component and suppress the opposite one:

Xs(m, k) =

median
[
|X(m− Lt

2
+ 1, k)|, ..., |X(m+

Lt

2
, k)|

] (2)

Xt(m, k) =

median
[
|X(m, k − Lf

2
+ 1)|, ..., |X(m, k +

Lf

2
)|
] (3)

whereLt andLf are the lengths (in samples) of the median
filters in time and frequency directions, respectively.

The median-filtered STFTs are then used to compute tonal-
ness Rs, transientness Rt, and noisiness Rn for each bin:

Rs(m, k) =
Xs(m, k)

Xs(m, k) +Xt(m, k)
, (4)

Rt(m, k) = 1−Rs(m, k), (5)

and

Rn(m, k) = 1− |Rs(m, k)−Rt(m, k)|. (6)

The relationship between the three spectral components is
visualized in Fig. 1 as a function of tonalness Rs.

3. DERIVATION OF ENERGY CURVES

Membership functions Rs, Rt, and Rn can be used as soft
masks for the STFT of an audio signal to individually eval-
uate the behavior of the three spectral components:

Xi(m, k) = X(m, k) Ri(m, k), i = s, t, n. (7)

The decomposition does not allow for perfect reconstruc-
tion as it is, i.e.:

Rs(m, k) +Rt(m, k) +Rn(m, k) 6= 1, (8)

and thus:

Xs(m, k) +Xt(m, k) +Xn(m, k) 6= X(m, k). (9)

A temporal energy curve for each component can now by
easily computed:

EXi
(m) =

∑
k

|Xi(m, k)|2 i = s, t, n. (10)

Each curve reflects the spectral behavior of the associated
component: the tonal curve resembles a slowly varying
event, while the transient curve presents quick energy bursts
interspersed by gaps of low energy.

The following step is to confront an input signal x(n)
with its time-scaled version y(n) by means of their en-
ergy curves EXi

and EYi
. However, this comparison is not

straightforward.

3.1 Time-axis interpolation

The time-scaled output has a different time axis with re-
spect to the original signal. The amount of stretching (or
compression) performed by a TSM algorithm is defined by
the TSM factor α, which is usually related to the ratio be-
tween the analysis hop size and the synthesis hop size used
for the processing.

The same number of time points (on different scales) for
the energy curves of both the input and the output is needed
for the comparison, so it is necessary to interpolate the in-
put energy curves by a factor α. If α is a fractional number
that can be represented as α = L/M , where L and M are
integers, the curves can be first interpolated by a factor L
and then decimated by a factor M .

Furthermore, the input and output tracks need to be syn-
chronized if some delay has been introduced during the
time-scaling process. This is simply achieved by finding
the first point of maximum in the cross-correlation func-
tion.
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(a) Tonal component.

(b) Transient component.

(c) Noise component.

Figure 2: Comparison between the energy curves of the
fuzzy spectral components, α = 2, sample: cast-viol.

3.2 Weighting and normalization

The overall loudness of the time-strecthed audio output
may largely differ from the input loudness, depending on
the involved TSM technique. In order to suppress possi-
ble differences related to this matter during the evaluation
step, the output spectrograms Yi(m, k) can be A-weighted
and normalized to fit the range [−1, 1] prior to the fuzzy
classification process.

4. VISUAL EVALUATION OF TSM METHODS

A primary evaluation can be conducted by studying in-
put and output audio files from the listening test in [15],
namely samples drumsolo (a noisy solo of drums), vocals

(a) Multiple losses of tonality.

(b) Great loss of tonality.

Figure 3: Loss of tonality in PV after time-stretching.

(a short a cappella from Suzanne Vega’s “Tom’s Diner”),
cast-viol (a sequence of castanet sounds over a violin) and
techno (a short dance music sample).

The following analysis parameters are set: fs = 44.1 kHz,
Ha = 512 samples, Lt = 500 ms, Lf = 200 Hz and
α = 2. Using an Hamming window for the STFT, the
window length is N = 4096 samples (≈ 100 ms) for the
input and αN for the time-scaled output.

The hypothesis of conservation of the energy of the sep-
arate spectral components appears to be valid, as it can be
seen from Fig. 2. The energy curves for the original cast-
viol signal (OR, blue) are compared with the output energy
curves for the standard phase vocoder (PV, orange), the
fuzzy phase vocoder (FY, purple), and the popular com-
mercial algorithm Élastique (EL, yellow) [25]. All the
curves have been normalized with respect to the maximum
energy value of the non-decomposed input signal.

As expected, the curves clearly show how the standard
phase vocoder performs visibly worse than novel methods:
it heavily suffers from tonality loss (Fig. 3), transient du-
plication and smearing (Fig. 4a).

Another example of transient smearing can be seen in
Fig. 4b for the drumsolo sample, where FY fails to ac-
curately follow the offset of the first transient and conse-
quently misses the steep transition into the second tran-
sient. This is confirmed by listening to the time-stretched
track, where the smearing is clearly audible.

A further analysis of Fig. 2 also reveals that novel tech-
niques nicely follow the spectral behavior of tones and
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(a) Transient duplication in PV.

(b) Transient smearing in FY.

Figure 4: Typical transient artifacts emerging from the
comparison of the fuzzy energy curves.

transients of the input signal and that the noise component
gives an important contribution to the overall energy. It
is also peculiar how its spectral energy curves strongly re-
sembles the transient ones, hinting that transients in the
audio input probably have a strong noise component.

In order to have a better understanding of the TSM perfor-
mances, we can evaluate the energy deviation of the TSM
outputs with respect to the non-scaled input (Fig. 5), con-
sidering the energy curves for the non-decomposed tracks.
The goodness of EL is immediately visible, as its deviation
is almost always around 0 dB. FY appears to suffer from
a constant energy loss, but that might be a consequence
of a loudness mismatch between the input and the output
tracks. For this reason, energy deviation curves for each
fuzzy component can be normalized by matching the input
and output mean deviations:

∆Ei = LY,i − LX,i − (L̄Y,i − L̄X,i), (11)

where

LY,i = 10 log10(EYi),

L̄Y,i = mean[LY,i], i = s, t, n.

The normalized deviation curves for the cast-viol sample
are reported in Fig. 6. With this visual representation, FY
appears to be better overall for the aforementioned sample
with respect to EL, as reflected by the listening test con-
ducted in [15]. In particular, Fig. 6a shows that the tonal

Figure 5: Energy deviation with respect to the original in-
put, α = 2, sample: cast-viol.

component is quite well preserved, while Fig. 6b and 6c
show that, using FY, a lot of the transient energy appears
to be converted into noise energy after the time-stretching,
providing an explanation for the poor performances of FY
with transient-dominant sounds.

5. PROPOSED OBJECTIVE SCORING

A visual evaluation method for TSM techniques has been
described in the previous Section, but it may be of interest
to also produce a performance “score” for TSM algorithms
using the information and the knowledge provided by the
energy deviation curves. Ideally, the objective score should
closely match the subjective MOS (Mean Opinion Score)
that would result from a formal listening test.

A simple way of using the energy curves to synthesize
a final score is to compute the MSE (Mean Squared Error)
for every spectral component and then use linear regression
to model a relationship between the energy deviations and
the MOS given in [15]:

ei = mean[∆E2
i ] i = s, t, n. (12)

Different regression models have been generated, first us-
ing data from a single TSM factor (α = 1.5 and α = 2.0)
and then combining the datasets. Coefficients for each
model are reported in Table 1: as it can be seen, all the
models correctly try to set a bias b0 = 3 (the central value
in the MOS scale). The estimated objective evaluation
score Ŝ is finally obtained as:

Ŝ = b0 +
∑
i

biei i = s, t, n. (13)

Real MOS and estimated objective scores using the com-
bined model are reported in Table 2 for some samples and
different stretching factors and TSM algorithms: FY, EL
and HP 1 (Harmonic-Percussive Separation, [14]). The
best real and predicted scores are highlighted. The amount
of data available from the listening test in [15] is clearly not
enough to generate an accurate model and it is unlikely that
a linear function alone is entirely capable of describing the

1 Energy curves for Harmonic-Percussive separation were not dis-
played in Section 4 to avoid an overcrowded visualization.
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(a) Tonal component.

(b) Transient component.

(c) Noise component.

Figure 6: Energy deviation curves for the individual spec-
tral components, α = 2, sample: cast-viol.

relationship between the energy curves and the subjective
MOS.

6. CONCLUSION

In this paper, the application of energy curves for the tonal,
transient, and noise spectral components of sounds is pro-
posed to analyze time-scaled audio signals. The separate
components were extracted from the spectrogram of the
signal with median filters, operating separately in the time
and in the frequency directions. Typical impairments ap-
pearing in time-stretched audio could be clearly identified
from the energy curves by visual inspection, as demon-
strated by several example figures.

α = 1.5 α = 2.0 Combined
b0 2.957 2.787 2.996
bs −0.355 −0.013 −0.025
bt 0.034 −0.137 −0.111
bn 0.055 0.138 0.104

Table 1: LR coefficients for generated models.

Audio
Sample α

FY EL HP
True Pred True Pred True Pred

Drumsolo 1.5 2.3 2.7 3.2 2.8 3.5 3.0
2.0 1.8 2.7 2.5 2.6 2.4 2.7

Cast-viol 1.5 4.1 2.6 3.6 2.7 3.8 3.4
2.0 4.1 3.7 3.3 3.0 3.6 3.7

Vocals 1.5 3.4 2.7 2.9 2.8 3.5 2.9
2.0 3.1 2.8 2.7 2.8 3.3 3.0

Table 2: Real MOS scores (taken from [15]) and estimated
objective scores for some samples and different TSM al-
gorithms. The best results on each row are highlighted to
ease comparison.

Furthermore, this paper investigated the possible use of
the energy curves for objectively evaluating the sound qual-
ity of time-stretched signals. A linear regression model
was fit to available listening test data to predict mean opin-
ion scores using the three energy components. A regres-
sion model generated using the combined data of two dif-
ferent time-stretch factors gives a superior prediction in
comparison to models produced from a single stretch fac-
tor. The accuracy of the proposed prediction method is
still insufficient to replace the listening test. Further in-
vestigations, possibly including more listening tests, will
be required for devising an accurate objective evaluation
method for audio time-scale modification.
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