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ABSTRACT

Speech sound disorders (SSD) are characterized by a per-
son’s difficulty (or inability) in producing specific sounds
or pronouncing certain words correctly. In this project
we are dealing with SSD that appear during the develop-
ment of speech; these are diagnosed by phonologists us-
ing specific protocols and comparing a child’s utterance
of a specific word with a reference pronunciation. In or-
der to help them to detect and speed up diagnosis we pro-
pose a classifier based on dissimilarity profiles built out of
DTW-aligned MFCCgrams. Unlike usual classifiers based
on statistical audio features, this method preserves the tem-
poral sequence of the audio recordings, which usually have
different durations. We compare the proposed method with
two other SSD classifiers previously used for the same task,
one based on the Earth Mover’s Distance, and another that
uses a relative DTW embedding (minDTW). We present
results showing that the proposed method compares favor-
ably with respect to the competitors on a dataset used for
SSD diagnosis in children speaking Brazilian Portuguese.

1. INTRODUCTION

Speech sound disorders (SSD) are usually noticed during
the development of speech when children fail to use certain
sounds by the expected age, or use them improperly, and
in adults as results of either speech disorders not treated in
early ages or traumatic brain injuries. Children with SSD
may have difficulties in auditory perception, phonological
representation and/or production of speech sounds. This
difficulty can interfere with an individual’s communication
abilities and may affect academic and professional perfor-
mance [1].

One of the challenges for speech and language patholo-
gists is the screening phase, where the professional needs
to apply a test and then evaluate each word that the patient
produces; usually this evaluation is carried out by several
experts, and a majority vote criterion is adopted. This is by
far the most time-consuming phase of the diagnosis pro-
cess. The focus of this paper is to present a method that
classifies speech sound recordings according to whether
the patient appears to have pronounced the word correctly
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or not, so that the speech and language pathologists can
reduce the time spent in diagnosis and proceed earlier to
treatment.

The problem of automatic speech sound disorder classi-
fication has been studied for over a decade, using classi-
cal machine learning tools and considering specific SSDs
such as dysarthria/stuttered speech [2–5] and phoneme re-
placement [5]. Two approaches to the speech classifica-
tion problems that are closely related to the present work
combine MFCC features respectively with the EMD (Earth
Mover’s distance [6]) and the MinDTW distance [5]. EMD
was originally proposed by Rubner et al. [7] to solve image
retrieval problems and was used in [6] for speaker identi-
fication. EMD was intuitively defined as a measure of ef-
fort in transporting mass (i.e. density) from one probability
distribution to another. MinDTW [5] on the other hand is
a classifier based on Dynamic Time Warping (DTW) that
handles audio recordings with different time durations and
considers their temporal sequence through DTW-aligned
MFCCgrams. Their accumulated dissimilarity measure is
then embedded in a relative distance space for testing perti-
nence to the reference class. MinDTW has been shown [5]
to perform better than both HMM and Vector Quantiza-
tion with Bag-of-Words on the UA-Speech Database [8],
which is one of the largest databases available for disor-
dered speech.

In this work we propose a new classifier based on a rep-
resentation using dissimilarity profiles built from a query
MFCCgram that is time-aligned (using DTW) against MFC-
Cgrams within the reference class (i.e. the recordings of
typical utterances with no diagnosed SSD). The motivation
is to provide the classifier with an interpretable temporal
representation that allows phonologists to visualize how
utterances evolve in time with respect to their adherence
to typical utterances of the same word, which is especially
useful in the case of phoneme replacements. We compare
the results of this classifier with the two previously men-
tioned classifiers based on the EMD and the MinDTW dis-
tances.

The structure of the paper is as follows. Section 2 presents
the database used in the experimental part of this paper.
Section 3 formalizes the proposed method and strategy for
automatic SSD classification. In section 4 we present and
discuss the results of the experiment. Conclusions and fu-
ture work are presented in Section 5.
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2. DATABASE

The database used in the experimental section was pro-
vided by the Department of Physical Therapy, Speech, Lan-
guage and Hearing Sciences, and Occupational Therapy, of
the School of Medicine at the University of São Paulo. It
was created in order to allow studies of speech sound dis-
orders in Brazilian Portuguese in adults and children [9].

The subset of the database used in the current experiment
was manually prepared (i.e. segmented and labeled) in or-
der to allow batch processing for automatic training and
classification. It is composed of 200 recordings of two Por-
tuguese words widely used in SSD diagnosis in children,
the words sapo (pronounced ['sapu], meaning frog) and
chave (pronounced ['Savi], meaning key). These recordings
were obtained during the master’s study of the fourth au-
thor 1 . Participants were 21 children aged 5 thru 11, with
no familial or personal history of diagnosed or suspected
auditory, otologic or neurological disorder or injuries, and
no previous speech-language interventions.

The recordings are tagged according to whether they dis-
play any form of SSD, based on their score on the Phonol-
ogy Proof of Child Language Test – Percentage of Conso-
nants Correct (ABFW–PCC) [10], which is the officially
adopted protocol for diagnosing SSD in Brazilian Portu-
guese. For each of the two words used in the experimental
part of this paper, 60% were labeled as reference record-
ings (typical utterances, no SSD) and 40% as presenting
some form of SSD.

We acknowledge that the dataset used in the current ex-
periment is smaller than other databases used for SSD clas-
sification, such as the UA-Speech [8] (60 recordings of
765 words by 20 participants). Our main interest is to ex-
plore the feasibility of using our representation and classi-
fier in the screening phase of diagnosis, in close collabo-
ration with phonologists that apply the ABFW-PCC proto-
col in the Brazilian Portuguese language. The judgement,
by phonologists, of the adequacy of the dissimilarity pro-
files in representing specificities of the SSDs considered,
requires some level of acquaintance with the recordings
and its patients. This has led us to consider the database
available at the School of Medicine of the University of
São Paulo, whose recordings were unfortunately still lack-
ing segmentation and labeling. This requirement led us to
restrict the number of words, while ensuring that the num-
ber of recordings for each word was comparable to that
of the UA-Speech database (which has 60 recordings per
word – we used 100).

3. TADPC AND ITS COMPETITORS

3.1 Time-Aligned Dissimilarity Profile Classifier

The motivation for the method here proposed, called Time-
Aligned Dissimilarity Profile Classifier (TADPC), is to pro-
duce a unified comparative measure of a given recording
with respect to the whole set of reference recordings (i.e.

1 Research protocol 276/13 approved by the ethics committee at the
School of Medicine of the University of São Paulo. Terms of in-
formed consent were signed by participants’ parents, and all data was
anonymized.

typical, non-SSD utterances of the same word). For each
given recording X (which may be marked as with or with-
out SSD), it builds a dissimilarity profile based on DTW
time-aligned comparisons of X with each reference record-
ing. These profiles are then summarized into a single time-
aligned dissimilarity profile, which serves as basis for train-
ing the classifier. Figure 1 represents the steps of the pro-
posed method to produce the Time-Aligned Dissimilarity
Profile (TADP) of X, a process which is detailed in the se-
quel.

In the first step, recordings are represented by MFCC-
grams, obtained using segments of 2048 audio samples
with 75% overlap and 12 mel-frequency cepstral coeffi-
cients. Each reference recording Y is then time-aligned to
X using DTW [11], and a temporal profile is created based
on the dissimilarity values over the optimal alignment path
identified by the Viterbi algorithm within the DTW matrix.
These profiles use as time axis the indices referring to the
recording X, so that they can all be superimposed within a
unified time span corresponding to the duration of X.

The second step corresponds to unifying these profiles
into a single Time-Aligned Dissimilarity Profile (TADP).
This is done by considering a parameter α ∈ [0, 1] that rep-
resents a percentile for the dissimilarity values within each
time frame. Specifically, each dissimilarity profile PY ob-
tained from the comparison of X and reference recording
Y defines a dissimilarity PY (i) on each frame i. Consid-
ering for each frame i the set

D(i) = {PY (i) | ∀ reference recordings Y } (1)

we define xi as the α percentile of D(i). This defines a
unified profile (x1, . . . , xn) for X , called TADP, that cor-
respond to a time-varying statistic reflecting all individual
dissimilarity profiles PY . Figure 2 presents an example of
the unified TAPD obtained from the set of profiles in Fig-
ure 1 using an 80% percentile. The actual value of this
percentile is chosen during the training phase in order to
optimize the F-measure of the resulting classifier when ap-
plied to the known training data.

Finally, from the resulting TADP (x1, . . . , xn) of X we
take the average dissimilarity

TADPDistance(X) =
1

N

N∑
i=1

xi (2)

as a distance-like measure of pertinence of X to the ref-
erence class. The rationale is that MFCCgrams of refer-
ence recordings are not so different from one another af-
ter time-alignment, and so the dissimilarity values tend to
be low overall, producing a low TADPDistance. On the
other hand, recordings with some form of SSD will pro-
duce dissimilarity spikes in phonemes which do not corre-
spond to the typical utterances in reference recordings, and
these would increase the TADPDistance.

A classifier is then obtained by choosing the threshold
for the TADPDistance that optimizes the F-measure for
classification within the training set. Specifically, we per-
form a binary search within a range [µl, µh] where µl is the
minimum TADPDistance for recordings displaying speech
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Figure 1. Dissimilarity profiles for a given recording X against all reference recordings.

Figure 2. Time-Aligned Dissimilarity Profile of X based
on an 80% percentile from the profiles in Figure 1.

sound disorders and µh is the maximum TADPDistance
for reference recordings. If the TADPDistance values cor-
responding to both classes do not overlap, in other words
if µl > µh, then we define the threshold simply as µl+µh

2 .
This resulting method is called Time-Aligned Dissimilar-
ity Profile Classifier (TADPC).

3.2 Classifier based on the Earth Mover’s Distance

The classifier based on the Earth Mover’s Distance (EMD)
is built from the same dissimilarity values appearing in
the optimal Viterbi path within the DTW matrix, but it
compares the probability density functions (pdfs) of these
dissimilarity values. The probability density functions re-
move the temporal aspects of the dissimilarity profiles while
still allowing the distinctions of profiles with unusually
high dissimilarity values, as would correspond to record-
ings of disturbed speech, in comparison to profiles obtained
from other non-disturbed recordings.

In order to establish a pdf corresponding to the refer-
ence (non-SSD) recordings, we align each pair of reference
recordings using DTW, and collect the dissimilarity values
appearing in the optimal Viterbi path within the DTW ma-

trix. These dissimilarity values are expected to be lower
than the ones appearing in comparisons of atypical (SSD)
utterances and typical (non-SSD) recordings, so the result-
ing pdf will have most of its mass concentrated in the low
region.

Figure 3. Probability density functions for dissimilarity
values of reference recordings (green), a recording without
SSD (blue), and a recording with SSD (orange), used by
the EMD classifier.

For each given recording X, a pdf of dissimilarity values
is obtained in a similar way: X is compared to all reference
recordings using DTW, and the values appearing in the op-
timal Viterbi path within the DTW matrix define the pdf
corresponding to X. This pdf is expected to be closer (with
respect to EMD) to the pdf of the reference class if X is a
typical utterance, and somewhat different when X is atyp-
ical (i.e. with SSD). Figure 3 shows an example of three
pdfs, one for the whole set of reference recordings (green),
another for a given recording without any SSDs (blue) and
a third one for a given recording with some form of SSD
(orange).

A pertinence value for a given recording X is then defined
by the EMD between X and the pdf of the reference record-
ings. Based on these EMD values we may obtain a thresh-
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old to separate the classes using a strategy similar to the
one defined for the TADPC. During training, an optimized
threshold is sought after so that the classifier achieves the
highest F-measure within the training set.

3.3 Classifier based on MinDTW

MinDTW [5] defines a distance from any given record-
ing X to the class of all reference recordings, by consid-
ering the reference recording Y closest to X with respect
to their DTW distances, as illustrated in Figure 4. Ap-
plying this definition to the classes of typical and atypical
utterances, a classifier may be obtained by choosing an op-
timal threshold for the corresponding MinDTW values as
was done for the EMD and TADP classifiers. In [5] this
method was compared to two other well-known methods,
HMM [12] and Vector Quantization with Bag-of-Words
(VQ+BoW) [13], and MinDTW achieved an F-measure
of 95% on the UA-Speech database [8], against 83% for
HMM and 81% for VQ+BoW.

Figure 4. Binary classification using relative DTW embed-
ding (MinDTW). Reproduced from [5].

Compared to TADPC, MinDTW uses only the accumu-
lated dissimilarity expressed by the DTW distance, and es-
tablishes the pertinence of a given recording X by compar-
ing X to a single reference recording Y (the one with mini-
mum DTW distance), which acts as a proxy to the class of
all reference recordings. TADPC compares with and gen-
eralizes MinDTW by combining all dissimilarity curves
obtained from the DTW-alignment of X to each reference
recording, which are time-aligned and unified as described
in Section 3.1. Rather than simply replacing the “Min” in
MinDTW by some other statistic (mean/maximum/median),
the representation TADP aim to attain as much a global
perspective as possible on the relationship between the query
and the reference class, by preserving both statistical inser-
tion of dissimilarity values (via percentiles) as well as the
temporal evolution of this insertion.

4. EXPERIMENTAL METHODOLOGY AND
RESULTS

In this section we discuss the experimental methodology
employed to compare the results of TADPC against the
EMD and MinDTW classifiers described in Section 3.2.
To evaluate the classifiers a K-fold cross-validation was
used (with K = 5) in order to produce F-measure val-
ues. Two summarization strategies were used: a global F-
measure [14] calculated from the accumulated amounts of
true positives (TP), false positives (FP), and false negatives
(FN) over all folds k = 1, . . . ,K according to

Fglobal =

2 ·
∑
k

TP [k]

2 ·
∑
k

TP [k] +
∑
k

FP [k] +
∑
k

FN [k]

(3)
and also the mean and standard deviation of the F-measures
of individual folds. The global F-measure, denoted here by
F-Global, is considered to minimize the bias in comparison
with other F-measure summarization strategies [14]. The
mean/std format, denoted here by F-Normal, represent a
Gaussian model of the valuesK individual F-measures, al-
lowing statistical tests to be performed in order to compare
the performance of the methods.

Table 1 presents the global F-measure and mean/std of
F-measures of individual folds for each classifier and each
word. It is noticeable that the classifier based on the Earth
Mover’s Distance obtained the lowest F-measure for both
words. One possible reason for the EMD classifier’s worse
performance is the fact that the probability density func-
tions of dissimilarity values disregard the temporal sequence
of the recordings.

In order to compare the performances of the remaining
methods, we applied a paired (repeated samples) t-test to
the individual F-measures obtained in the K folds of the
cross-validation using SciPy ttest_rel function. Based
on these tests, the only statistically significant differences
are that both TADPC and HausdorffDTW performed better
than MinDTW for the word “chave” (p� 0.01).

One plausible explanation that would explain TADPC out-
performing MinDTW for the word “chave” relates to spe-
cific forms of SSD utterances that are found in these record-
ings, which are easier to distinguish with respect to most
reference recordings, even when there are a few (outlier)
reference recordings displaying overall lower dissimilarity
values with respect to this particular atypical (SSD) utter-
ance. See for instance Figure 5, where most profiles dis-
play high dissimilarity values between frames 5 and 18,
but the violet and green profiles remain entirely in the low
region. In these cases, MinDTW chooses as score the aver-
age dissimilarity of the (outlier) lower profile, mistaking it
for a typical reference utterance, whereas TADPC consid-
ers the worst profiles according to the percentile parameter
α. It should be noted that a classifier that only consid-
ered the worst profile had already been proposed in [5], the
HausdorffDTW classifier, but its performance was much
worse than MinDTW in the UA-Speech dataset.
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sapo (['sapu]) chave (['Savi])
F-GLOBAL (%) F-NORMAL(%) F-GLOBAL (%) F-NORMAL(%)

MinDTW 81.42 81.34 ± 0.07 75.18 75.16 ± 0.03
HausdorffDTW 80.7 80.62 ± 0.06 76.06 76.08 ± 0.02
EMD 76.78 76.33 ± 0.1 64.66 59.23 ± 0.25
TADPC 81.03 80.78 ± 0.05 76.26 76.13 ± 0.03

Table 1. Global F-measure and mean/std of F-measures of individual folds, for each classification method and word.

Figure 5. All dissimilarity profiles built from an atypical
(SSD) utterance of the word “chave”, with respect to all
typical reference recordings of the same word.

Figure 6. Same as Figure 5 but from another SSD patient.

On the other hand, upon a closer look of the dissimilarity
profiles produced by the atypical recordings of the word
“sapo”, the high dissimilarity values tend to concentrate in
the same intervals in all profiles (see e.g. Figure 7), and
so choosing a single curve (as MinDTW does) to compute
the score, or alternatively using a percentile-summarized
curve as TADPC does, makes less of a difference in the
classification results and thus in the final F-measures.

5. CONCLUSION

In this paper we introduced a classifier that uses dissimi-
larity values of MFCCgrams based on DTW-aligned pairs

Figure 7. All dissimilarity profiles built from an atypical
(SSD) utterances of the word “sapo”, with respect to all
typical reference recordings of the same word.

of recordings. By using the values of dissimilarity along
the optimal Viterbi path in the DTW matrices for all ref-
erence recordings, we built a classifier that not only pre-
serves the temporal sequence of the dissimilarity profiles
(as MinDTW does) but also takes into account variations
between utterances within the reference class. TADPC
was shown to compare favorably with respect to the EMD-
based and the MinDTW classifiers.

The experiment here presented was conducted within a
subset of a larger database, as an exploratory step to iden-
tify the potential of TADPC to outperform MinDTW in the
detection of SSDs in the Brazilian Portuguese language.
Extending the experiment to the whole database still de-
pends upon a reasonable amount of manual labor to pre-
process several hours of unsegmented recordings into files
containing individual words, nor clearly labeled as display-
ing some type of SSD (for many recordings the SSD tag
refers to the patient and not to the specific word, with po-
tential mislabeling).

A well-known issue with DTW-based methods is DTW’s
quadratic computational complexity. Nevertheless, its com-
plexity refers to the size of the recordings, which are short
utterances of individual words (40 to 50 frames here) in the
SSD classification setting, and not to the size of the dataset.
The main scalability issue appears when a query has to be
DTW-aligned to all reference recordings in the training set.
For large datasets, it is advisable to work with a small num-
ber of typical recordings for each word in order not allow
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Figure 8. Same as Figure 7 but from another SSD patient.

the fast computation of dissimilarity profiles.
Future work includes tackling challenges that appeared

when confronting MinDTW and TADPC for specific dis-
orders, as illustrated in Figures 5 and 7, which shed some
light into the variations within the very class of reference
recordings, and also exploring the Time-Aligned Dissimi-
larity Profiles as input for temporal localization (segmen-
tation) of the phonemes displaying variations with respect
to the reference pronunciation, in order to help phonology
professionals to refine the diagnosis and identify particular
subclasses of speech sound disorders.

Acknowledgments

The second author acknowledges having received financial
support from CNPq grant 307389/2019-7.

6. REFERENCES

[1] J. McCormack, S. McLeod, L. McAllister, and
L. J. Harrison, “A systematic review of the
association between childhood speech impairment
and participation across the lifespan,” International
Journal of Speech-Language Pathology, vol. 11,
no. 2, pp. 155–170, 2009. [Online]. Available:
https://doi.org/10.1080/17549500802676859

[2] K. Ravikumar, R. Rajagopal, and H. Nagaraj, “An ap-
proach for objective assessment of stuttered speech us-
ing mfcc features,” ICGST International Journal on
Digital Signal Processing, DSP, vol. 9, pp. 19–24, 01
2009.

[3] M. Wisniewski, W. Kuniszyk-Józkowiak, E. Smolka,
and W. Suszynski, “Automatic detection of prolonged
fricative phonemes with the hidden markov models ap-
proach,” Journal of Medical Informatics & Technolo-
gies, vol. 11, 01 2007.

[4] L. S. Chee, O. C. Ai, M. Hariharan, and S. Yaacob,
“Mfcc based recognition of repetitions and prolonga-
tions in stuttered speech using k-nn and lda,” in 2009

IEEE Student Conference on Research and Develop-
ment (SCOReD), Nov 2009, pp. 146–149.

[5] M. Queiroz and G. J. Yoshimura, “Relative DTW Em-
bedding for Binary Classification of Audio Data,” in
In: Proceedings of the 15th Sound and Music Comput-
ing Conference (SMC 2018), Limassol, Cyprus, 2008,
pp. 279–286.

[6] S. Kuroiwa, S. Tsuge, M. Kita, and F. Ren,
“Speaker identification method using earth mover’s
distance for CCC speaker recognition evaluation
2006,” in International Journal of Computational
Linguistics & Chinese Language Processing, Volume
12, Number 3, September 2007: Special Issue on
Invited Papers from ISCSLP 2006, Sep. 2007, pp.
239–254. [Online]. Available: https://www.aclweb.
org/anthology/O07-5001

[7] Y. Rubner, L. J. Guibas, and C. Tomasi, “The
earth mover’s distance, multi-dimensional scaling, and
color-based image retrieval,” in Proceedings of the
ARPA image understanding workshop, vol. 661, 1997,
p. 668.

[8] H. Kim, M. Hasegawa-Johnson, A. Perlman, J. Gun-
derson, K. W. T. Huang, and S. Frame, “Dysarthric
speech database for universal access research,” in Pro-
ceedings of Interspeech, Brisbane. Australia, 2008, pp.
1741–1744.

[9] D. Francisco and H. Wertzner, “Differences between
the production of [s] and [S] in the speech of adults,
typically developing children, and children with speech
sound disorders: An ultrasound study,” Clinical lin-
guistics & phonetics, vol. 31, pp. 1–16, 01 2017.

[10] L. D. Shriberg and J. Kwiatkowski, “Phonological dis-
orders i: A diagnostic classification system,” Journal
of Speech and Hearing Disorders, vol. 47, no. 3, pp.
226–241, 1982.

[11] H. Sakoe and S. Chiba, “Dynamic programming al-
gorithm optimization for spoken word recognition,” in
IEEE Transactions on Acoustics, Speech, and Signal
Processing, 1978, pp. 43 – 49 Volume: 26, Issue: 1,
Feb 1978.

[12] M. Gales and S. Young, “The application of hidden
markov models in speech recognition,” Signal Process-
ing, vol. 1, no. 3, pp. 195–304, 2007.

[13] S. Pancoast and M. Akbacak, “Bag-of-audio-words ap-
proach for multimedia event classification,” in Thir-
teenth Annual Conference of the International Speech
Communication Association, pp. 2105–2108.

[14] G. Forman and M. Scholz, “Apples-to-apples in cross-
validation studies: Pitfalls in classifier performance
measurement,” in SIGKDD Explor. Newsl., 2010, pp.
49–57, Volume 12, Issue 1.


