
Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

76

A FAUST ARCHITECTURE FOR THE ESP32 MICROCONTROLLER

Romain Michon,a,b Daniel Overholt,c Stéphane Letz,a Yann Orlarey,a Dominique Fober,a and Catinca Dumitrascua

a GRAME – Centre National de Création Musicale, Lyon, France
b Center for Computer Research in Music and Acoustics, Stanford University, USA

c Aalborg University Copenhagen, Denmark
michon@grame.fr

ABSTRACT

This paper introduces faust2esp32, a tool to gener-
ate digital signal processing engines for the ESP32 mi-
crocontroller family. It can target both the C++ and the
Arduino ESP32 programming environment and it supports
a wide range of audio codecs, making it compatible with
most ESP32-based prototyping boards. After demonstrat-
ing how to use faust2esp32 and providing technical
details about its implementation, we evaluate its perfor-
mances and we present the FAUST Gramophone which is
a programmable instrument taking advantage of this tech-
nology. Finally, future plans around embedded systems for
real-time audio processing and FAUST are presented.

1. INTRODUCTION

For a long time, embedded Linux systems such as the
Raspberry Pi 1 (RPI) or the Beagle Bone 2 were the only
embedded platforms for real-time audio Digital Signal Pro-
cessing (DSP) accessible to members of the music technol-
ogy community without a programming background [1].
The Operating System (OS) running on this kind of plat-
form makes the on-board implementation of audio pro-
cessing algorithms through high-level graphical patching
environments such as PureData [2] possible. Specialized
Linux distributions targeting this type of application such
as Satellite CCRMA [3] were developed in that context.
However, the ease of use provided by the OS – Linux,
for instance – comes at the cost of simplicity and effi-
ciency, both in terms of hardware and software. Addition-
ally, since embedded Linux systems are typically used by
the music technology community to create musical instru-
ments, art installations, etc., [4] the lack of a proper audio
input/output and of Analog to Digital Converters (ADCs)
for sensors are often compensated by the use of external
hardware (e.g., USB audio interface, USB microcontroller

1 https://www.raspberrypi.org/ All URLs presented in
this paper were verified on April 24, 2020.

2 https://beagleboard.org/bone

Copyright: c© 2020 Romain Michon, Daniel Overholt, Stéphane 

Letz, Yann Orlarey, Dominique Fober, and Catinca Dumitrascu. 

This is an open-access article distributed under the terms of the 

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original 

author and source are credited.

like the Arduino, etc.), significantly increasing the cost and
complexity of such setups.

These issues were addressed by the BELA 3 [5, 6] for a
subset of the Beagle Bone boards, or the Elk 4 for the RPI.
These systems take the form of sister boards/hats provid-
ing high-quality audio inputs and outputs (audio codec) as
well as sensor analog inputs from a single standpoint. They
also run audio DSP tasks outside of the OS, which trans-
lates into a faster access to the audio inputs and outputs for
a reduced audio latency. The overall design of such sys-
tems remains quite complex though for what they’re actu-
ally used for and their price is relatively high (>$150).

On the other hand, microcontrollers offer a promising
lightweight, efficient, and cheap platform for real-time au-
dio DSP applications. While microcontrollers were pri-
marily designed for data/sensor acquisition and basic pro-
cessing, new generations such as the ARM Cortex-M 5

provide extended computational power and memory. This
combines with the fact that an increasing number of mi-
crocontrollers host a Floating Point Unit (FPU), greatly
simplifying the implementation of DSP algorithms. The
Teensy microcontroller family 6 played a pioneering role
in this field by distributing an Audio Shield 7 (which is es-
sentially a breakout board for an audio codec) and provid-
ing an “audio library 8 ” for high-level audio DSP program-
ming. The Teensy 3.6 and 4.0 (180MHz and 600MHz, re-
spectively), when combined with the Audio Shield provide
a powerful platform for real-time audio applications (70
sine waves can be ran in real-time on the 3.6 and up to 600
on the 4.0) [7].

While tools such as the Teensy Audio Library or libpd [8]
allow for the programming of DSP algorithms at a high-
level, they are limited to their built-in/pre-implemented
DSP objects (e.g., filters, oscillators, etc.) and custom el-
ements must be written in C++. In 2019, we introduced
faust2teensy [7] which is a command-line tool that
can be used to generate custom objects for the Teensy au-
dio library using the FAUST programming language [9].
FAUST 9 is a functional Domain Specific Language (DSL)
for real-time audio DSP that can target a wide range of

3 https://bela.io/
4 https://elk.audio/
5 https://developer.arm.com/ip-products/

processors/cortex-m
6 https://www.pjrc.com/teensy/
7 https://www.pjrc.com/store/teensy3_audio.html
8 https://www.pjrc.com/teensy/td_libs_Audio.

html
9 https://faust.grame.fr



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

77

platforms (e.g., Linux, macOS, Windows, Android, iOS,
embedded systems, etc.) and standards (e.g., audio plug-
ins, standalone applications, externals, etc.). While FAUST
can easily add various features to generated objects such as
polyphony for synthesizers, MIDI and OSC (Open Sound
Control) support, etc., faust2teensy only provides ba-
sic functionalities because of the limited amount of mem-
ory available on the Teensy – i.e.,:

• control of the parameters of a FAUST DSP object
(e.g., declared using UI elements such as hslider,
nentry, etc.),

• stereo audio input and output.

FAUST-generated objects for the Teensy Audio Li-
brary can be combined with built-in objects, playing
to the strengths of both approaches. Since its release,
faust2teensy has been used for teaching (e.g., Mu-
sic 250a – Physical Interaction Design for Music, 10 the
Embedded DSP With Faust Workshop 11 at Stanford Uni-
versity, Low Latency Embedded DSP for New Musical In-
struments at Aalborg University Copenhagen, etc.) and as
a basis for many projects.

While the Teensy gained a special status in the makers
community in recent years because of its power, reliability,
and affordability, the ESP32 microcontroller 12 has been
increasingly used as well, offering a solid alternative to the
Teensy for real-time audio processing applications.

In this paper, we introduce faust2esp32, a tool to
generate DSP engines for the ESP32 microcontroller with
FAUST. After giving an overview of this type of board, we
demonstrate how faust2esp32 can be used to gener-
ate DSP objects and we provide technical details about the
implementation of this system. We then evaluate its per-
formance and present the FAUST Gramophone which is a
programmable instrument based on the platform. Finally,
we give future directions for this type of work.

2. THE ESP32

The ESP32 is a series of low-cost, low-power embedded
systems with integrated WiFi, Bluetooth, and microcon-
troller distributed by Espressif Systems. It is based on
a 32 bits dual core Tensilica Xtensa LX6 microprocessor
operating at 240MHz. It provides 520 KiB of internal
RAM, but almost all ESP32-based boards host an exter-
nal SRAM module expanding its memory. The main asset
of the ESP32 is its cost since basic ESP32-based boards
can be found for less than $3.

The ESP32 is used at the heart of a wide range of more
specialized boards targeting specific applications such as
real-time audio processing (see Figure 1). In particular, a
series of development boards to prototype smart speakers
(e.g., Google Home, Amazon Alexa, etc.) have been avail-
able for about a year now and are particularly well suited

10 https://ccrma.stanford.edu/courses/
250a-winter-2020/

11 https://ccrma.stanford.edu/workshops/
faust-embedded-19/

12 https://www.espressif.com/en/products/
hardware/esp32/overview

Figure 1. ESP32-based audio Processing boards (the
TTGO TAudio on the left and the AI-Thinker Audio Dev
Kit on the right).

Board Features
LilyGO 4MB PSRAM, motion sensors,

TTGO-TAudio audio in/out (codec WM8978),
battery management,

speaker amplifier
AI-Thinker 8MB PSRAM, audio in/out
ESP32-A1S (codec AC101), speaker

amplifier
Espressif 4MB PSRAM, audio in/out

ESP32-LyraT (codec ES8388), battery
management, speaker amplifier

Espressif 8MB PSRAM, audio in
ESP32-LyraT (codec ES8311), battery

Mini management, speaker amplifier

Table 1. Examples of ESP32-based boards for real-time
audio signal processing.

for embedded musical instrument design by providing au-
dio inputs and outputs as well as additional RAM required
to implement algorithms with a large memory footprints
such as echos, reverbs, etc. Table 1 gives a few examples
of such boards and of their corresponding features.

While ESP32 boards can be used bare-metal (without
an OS), the most convenient and effective way to pro-
gram them is FreeRTOS 13 which is a low-level real-time
OS system kernel for embedded devices. It is accessi-
ble through a C++/MakeFile environment built on top of
a Python tool-chain to communicate with the board. The
ESP32 can also be programmed through the Arduino envi-
ronment/IDE. FreeRTOS’ scheduler/task manager is very
convenient in the context of real-time audio DSP applica-
tions.

Espressif also recently released a series of ESP32-based
boards hosting a Digital Signal Processors (DSP) such
as the ESP32-LyraTD-DSPG, the ESP32-LyraTD-SYNA,
and the ESP32-LyraTD-MSC 14 which are not yet sup-
ported by FAUST (see §6).

13 https://www.freertos.org/
14 https://www.espressif.com/en/products/

hardware/development-boards



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

78

3. USING FAUST2ESP32

3.1 Generating DSP Engines

faust2esp32 is a command line tool that can be used
to generate ready-to-use C++ DSP engines from a FAUST
program. Given a simple FAUST program such as:

import("stdfaust.lib");
f = nentry("freq",440,50,2000,0.01);
g = nentry("gain",1,0,1,0.01);
t = button("gate");
process = os.sawtooth(f)*g*t;

which just implements a band-limited sawtooth oscillator
whose frequency (freq) and gain (gain) can be con-
trolled. Additionally, the gate parameter allows us here
to turn it on and off.

Running:

faust2esp32 -lib FaustObject.dsp

will produce a package containing two C++ files:
FaustObject.cpp and FaustObject.h which can
be imported into a C++ or an Arduino ESP32 project. In
both cases, FaustObject.h should be included at the
beginning of the main program:

#include "FaustObject.h"

The corresponding FAUST DSP object can be instantiated
with:

FaustObject* faustObject = new
FaustObject(48000,8);

where 48000 is the sampling rate and 8 the block size. Any
value can be chosen for these parameters as the long as the
hardware can handle it. Note that block size has very little
impact on hardware performances (see Table 2).

Audio computing can be started by calling the start
method:

faustObject->start();

Audio computing is taking place in its own high-priority
thread (FreeRTOS task). Audio samples are retrieved from
and transmitted to the audio codec of the board using I2S.
This implies that the audio codec must be configured be-
fore using a driver.
faust2esp32 comes with a series of drivers support-

ing some audio codecs such as the Wolfson WM8978 or
the X-Powers AC101. These can be integrated to the gen-
erated package using the -wm8978 and the -ac101 op-
tions (respectively) when calling faust2esp32. Since
functionalities differ between audio codecs, they are not
presented here and we advise you to refer to their corre-
sponding documentation.

The parameters of the FAUST DSP object (i.e., freq,
gain, and gate here) can be updated at any time by
calling the setParamValue() method which takes the
name of the parameter and its corresponding value as ar-
guments. E.g.:

faustObject->
setParamValue("freq",1000);

will set the frequency of the generated sawtooth wave to
1000 Hz.

This procedure works both in the Arduino and native
ESP32 C++ environments.

3.2 MIDI Support

MIDI support can be easily added to the generated
DSP engine by using the -midi option when call-
ing faust2esp32. MIDI events are received directly
from the corresponding UART (Universal Asynchronous
Receiver-Transmitter) serial interface on the ESP32 (see
§4). Standard FAUST MIDI metadata 15 can be used as
well to configure the MIDI behavior of the DSP engine.

3.3 Polyphony

FAUST synthesizers declaring the freq, gain, and gate
parameters (such as the one presented at the beginning
of §3.1) can be automatically turned into polyphonic
synths by using the -nvoices option when calling
faust2esp32. Hence,

faust2esp32 -lib -midi -nvoices 12
FaustObject.dsp

will produce a polyphonic synth with MIDI support with
a maximum number of twelve voices of polyphony. Stan-
dard FAUST polyphony metadata 16 can be used to further
configure the behavior of this feature.

4. IMPLEMENTATION

Unlike the Teensy, the ESP32 doesn’t provide a high-level
audio library, so we had to implement almost everything
from scratch here.

Audio DSP is running in its own high-priority FreeRTOS
task (see Figure 2) on the first core. Control-rate computa-
tions (like MIDI, sensor, etc.) happen in a separate task on
the second core of the ESP32.

External events are handled in an asynchronous manner,
hence their timestamp is not taken in account. The gen-
erated C++ code hosts the DSP compute method which
samples the values of all controllers at the beginning of
the code, and use the same values during the entire audio
block. Thus, only the most recent values are used.

This simple model may have to be improved with more
sophisticated queue-based event handling code, if we want
to ensure all events are taken in account (which is manda-
tory in some cases like MIDI clock-based synchronization,
for instance).

External PSRAM can be integrated to the heap to make
it available to the audio DSP object. This can be config-
ured from the ESP32 project settings (typically accessible
by running make menuconfig). Audio samples are re-
ceived and sent to the audio codec using I2S through the
corresponding ESP32 API. 17 The I2S configuration has to

15 https://faust.grame.fr/doc/manual/index.html#
midi-and-polyphony-support

16 https://faust.grame.fr/doc/manual/index.html#
midi-polyphony-support

17 https://docs.espressif.com/projects/esp-idf/
en/latest/api-reference/peripherals/i2s.html



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

79

Faust Compilation

C++ DSP Object

Faust Program

ESP32 Faust Architecture
(With Potential MIDI & 

Polyphony Support)

DSP engine (.h and .cpp files)

Audio Codec Driver
(.h and .cpp files)

faust2esp32 (computer)

Audio Codec

Audio Codec Config

I2C

Audio DSP Compute

UART MIDI

MIDI Parser

DSP Params Control

I2S I2S

Faust DSP Engine on the ESP32

External PSRAM

Audio Task/Thread

Figure 2. Overview of the implementation of faust2esp32. Thick continuous frames on the left represent objects
generated by faust2esp32 on the user’s computer. Empty arrows on the left link the various steps in generating the
DSP engine. Full arrows on the right represent streams computed in real-time.

match that of the audio codec. The audio codec is config-
ured through I2C using the corresponding driver provided
as part of the package generated by faust2esp32. Only
a few audio codecs are currently supported (see §3).

MIDI events are received through the corresponding
UART interface and are parsed using jdksmidi, 18 then
transmitted to the Faust MIDI handling code with a
esp32_midi glue class.

The general implementation of faust2esp32 is sim-
ilar to most other FAUST architectures and is based on
a script (i.e., BASH) taking care of assembling the var-
ious constituent elements of the generated DSP engine.
faust2esp32 is now fully integrated to the main FAUST
distribution. 19

5. EVALUATION

Running DSP code on microcontrollers presents two main
advantages compared to using a more general board and
operating system:

• very small buffer size (i.e., 8 samples) can be used,
minimizing latency;

• the OS is minimal and is usually more real-time ro-
bust, diminishing the risk for audio glitches to hap-
pen.

5.1 Performance

The ESP32 offers plenty of computational power to run
most “standard” DSP algorithms. Table 2 presents a com-
parison of the performance in terms of processing power
of the ESP32 with other microcontrollers supported by
FAUST. The ESP32 used for these tests was a WROVER-B

18 https://github.com/jdkoftinoff/jdksmidi
19 https://github.com/grame-cncm/faust

Block Size ESP32 Teensy 3.6 Teensy 4.0
8 143 75 611

128 145 73 620
256 145 74 621

Table 2. Maximum number of FAUST sine waves ran in
parallel on various boards for different block sizes.

on a LyliGO TTGO-TAudio board. All tests were carried
out at a sampling rate of 48KHz with the following FAUST
program implementing a series of sine wave oscillators in
parallel:

import("stdfaust.lib");
N = 600;
tablesize = 16384;
time = (+(1)˜_) - 1;
sinwaveform(tablesize) =

time*(2.0*ma.PI)/tablesize : sin;
decimal(n) = n - floor(n);
phasor(tablesize,freq) =

freq/ma.SR : (+ : decimal)˜_ :

*(tablesize) : int;
osc(freq) =

rdtable(tablesize,
sinwaveform(tablesize),
phasor(tablesize,freq));

process = par(i,N,osc(50+i));

Each oscillator is using a 214 samples-long table read di-
rectly from memory (the sin function is only called dur-
ing initialization). The table is read using a phasor which
corresponds to one multiply, one add, one subtract, and one
call of the math floor function.

As expected, the ESP32 clearly outperforms the Teensy



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

80

Figure 3. The FAUST Gramophone.

3.6, but it is much less powerful than the Teensy 4.0 (which
runs at 600MHz).

Since most ESP32-based boards host an external PSRAM
module, running DSP algorithms with a large memory
footprints is not an issue in most cases on the ESP32 when
it can be problematic on most Teensy boards. For example,
while dm.zita_light 20 (which is a feedback delay
network reverb that can be found in the FAUST libraries)
can’t be ran on any Teensy board without making some
modifications to the algorithm, the LyliGO TTGO-TAudio
can “digest” it without any issue.

5.2 Use Case: the Gramophone

The Gramophone (see Figure 3) is a programmable mu-
sical instrument designed as part of the Amstramgrame
project, 21 which is currently in its pilot phase. Amstram-
grame aims at teaching physics and math through program-
ming exercises with the Gramophone. The Amstramgrame
website hosts pedagogical content as well as code exam-
ples that can be run directly in the FAUST Web IDE. FAUST
programs prototyped in the web can then be exported to the
Gramophone directly from the Amstramgrame website.

The Gramophone is based on a LilyGO TTGO-TAudio
board which hosts a single 9-DoF sensor (comprising
an accelerometer, a gyroscope, and a magnetometer), a
lithium battery manager, an audio codec, etc. Additional
sensors (e.g., photoresistor, potentiometers, buttons, etc.)
are mounted on the body of the Gramophone. The Gramo-
phone can be powered by a lithium battery directly con-
nected to the board. The speaker of the instrument is di-
rectly connected to the built-in amplifier of the TTGO-
TAudio’s audio codec.

The Gramophone can be entirely programmed in FAUST
without writing a single line of C++ or Arduino code. The
-gramophone option can be used for that when call-
ing faust2esp32. The built-in motion sensors (a full
9-axis IMU, Inertial Measurement Unit) can be mapped
using the standard FAUST metadata system, 22 and trans-

20 https://faust.grame.fr/doc/libraries#dm.zita_
light

21 https://www.amstramgrame.fr
22 https://faust.grame.fr/doc/manual#

sensors-control-metadatas

mitted to the FAUST DSP using the Esp32SensorUI
class. Gramophone-specific FAUST metadata were created
as well to access the instrument’s built-in sensors (i.e., po-
tentiometers, buttons, etc.) and transmitted to the FAUST
DSP using the Esp32ControlUI class.

Multiple FAUST programs can be installed in the
Gramophone using the -multi option when calling
faust2esp32, by following a specific coding conven-
tion in the DSP source code to describe them all in a sin-
gle file. FAUST programs can then be selected using an
encoder mounted on the body of the instrument. To save
memory, only a single DSP is active at one point, so the
old one is deleted before a new one is instantiated.

For less than $40 (all parts included), the ESP32 through
the TTGO-TAudio board allowed us to make a fully em-
bedded programmable instrument with more than seven
hours of battery life that can run most existing FAUST pro-
grams. We believe that this would not have been possible
with any other board/type of system.

6. FUTURE DIRECTIONS

6.1 Around the ESP32

The ESP32 FAUST support could be extended in many
ways. In particular, since the ESP32 provides built-in WiFi
support, we hope to be able to improve the existing archi-
tecture by enabling OSC support.

Finally, we’d like to develop architectures for the ESP32
DSP boards that have been recently introduced by Espres-
sif such as the LyraTD-DSPG, the LyraTD-SYNA, and the
LyraTD-MSC. Since they are based on floating-point DSPs
this should be pretty straight forward.

6.2 Towards More Advanced FAUST Architectures for
Embedded Processing

We recently started investigating the idea to use FAUST
to program more advanced systems such as GPUs and
FPGAs. The latter is particularly challenging because it
is usually programmed at an extremely low-level using
hardware description languages such as VHDL or Verilog.
While we managed to program Xilinx FPGAs from FAUST
through C++ using HLS (High Level Synthesis), 23 this so-
lution remains relatively heavy and slow and we hope to
be able to generated VHDL code directly from FAUST for
real-time DSP applications.

In parallel to that, we’ve been working on a RPI bare-
metal FAUST architecture for low-latency applications.
While we have a working prototype, many issues remain
to be solved so we’d like to keep working on that in the
future.

7. CONCLUSIONS

We believe that FAUST greatly simplifies the programming
of embedded systems for real-time audio DSP applications
by providing a high-level environment with hundreds of
pre-implemented functions/algorithms. Systems such as

23 https://faust.grame.fr/syfala



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

81

the EP32 are currently revolutionizing the field of music
technology by providing a comprehensive platform for mu-
sical instrument design/audio processing at a very low cost.
Moreover, their simplified architecture (bare-metal or close
to bare-metal) make them more stable and reliable than
OS-based systems. We hope that in a near future, Domain-
Specific Languages such as FAUST will make all types of
embedded/specialized systems such as FPGAs accessible
to makers, hobbyist, and members of the music technol-
ogy community.

8. REFERENCES

[1] E. Berdahl, “How to make embedded acoustic instru-
ments.” in Proceedings of the New Interfaces for Mu-
sical Expression Conference (NIME-14), London, UK,
2014.

[2] M. Puckette, “Pure data: another integrated computer
music environment,” in Proceedings of the Second
Intercollege Computer Music Concerts, Tachikawa,
Japan, 1996.

[3] E. Berdahl and W. Ju, “Satellite CCRMA: A musical
interaction and sound synthesis platform.” in Proceed-
ings of the New Interfaces for Musical Expression Con-
ference (NIME-11), Oslo, Norway, 2011.

[4] S. Jordà, “Digital lutherie crafting musical comput-
ers for new musics’ performance and improvisa-
tion,” Ph.D. dissertation, Universitat Pompeu Fabra,
Barcelona, Spain, 2005.

[5] G. Moro, A. Bin, R. H. Jack, C. Heinrichs, A. P.
McPherson et al., “Making high-performance embed-
ded instruments with bela and pure data,” in Proceed-
ings of the International Conference of Live Interfaces,
Brighton, UK, 2016.

[6] A. McPherson, “Bela: An embedded platform for low-
latency feedback control of sound,” The Journal of the
Acoustical Society of America, vol. 141, no. 5, pp.
3618–3618, 2017.

[7] R. Michon, Y. Orlarey, S. Letz, and D. Fober, “Real
time audio digital signal processing with Faust and the
Teensy,” in Proceedings of the Sound and Music Com-
puting Conference (SMC-19), Malaga, Spain, 2019.

[8] P. Brinkmann, P. Kirn, R. Lawler, C. McCormick,
M. Roth, and H.-C. Steiner, “Embedding PureData
with libpd,” in Proceedings of the Pure Data Conven-
tion, Weinmar, Germany, 2011.

[9] Y. Orlarey, S. Letz, and D. Fober, New Computational
Paradigms for Computer Music. Paris, France: De-
latour, 2009, ch. “Faust: an Efficient Functional Ap-
proach to DSP Programming”.


