

A DATA ENGINEER’S GUIDE TO

SEMANTIC MODELLING
Written by Ilaria Maresi

June 2020

 

A data engineer’s guide to semantic modelling

About the author

Ilaria Maresi has been a Data Engineer at The Hyve since
November 2018. A mathematician by training, Ilaria has always
been fascinated by research at the intersection of biology,
mathematics and engineering. This multidisciplinary interest
brought her to The Hyve, where she has been developing
semantic models and knowledge graphs for the company’s
pharmaceutical clients. She believes in using linked data to
make a positive impact in healthcare and drug discovery, and
hopes to show you in this guide just how awesome linked data
can be.

Welcome to semantic modelling

Hi! And welcome to this guide on semantic modelling. Let me first explain the origin of this
guide. For me, learning about semantic modelling involved more websites than I can
count, a few dozen videos, a book, an in-person course, an online course and more than a
few extremely patient people. There was never one definite resource where I could quickly
look something up and I often forgot where I had seen or read something. More
importantly, I found many of the resources to be extremely technical, geared towards a
more experienced audience, while others were too wishy-washy. I decided to collect the
most useful lessons in one place and to explain what I had learned in simpler terms that
made sense to me. That’s how this guide was born.

What does it cover? We start off with the basics: what is a semantic model and why should
you consider building one. In Chapter 2 we delve into the technical basics, i.e. the
Resource Description Framework, Uniform Resource Identifiers, ontologies and more. In
Chapter 3 we put what we’ve learned into practice and discuss how to build your first
semantic model. Chapter 4 covers how to query the model you’ve just built.

Throughout this document you will find links to resources I found useful in my learning
process, which are often more detailed and go deeper into the technical side of things. In
the Appendix you can find more learning resources and a list of abbreviations.

And with that, I leave you to your reading and modelling. Enjoy, good luck, and have fun!  

2

http://www.thehyve.nl
http://www.thehyve.nl

A data engineer’s guide to semantic modelling

Table of content

About the author 2

Welcome to semantic modelling 2

CHAPTER 1: A NOT-SO-BRIEF INTRODUCTION 5

What is a semantic model? 5 ...

Why should I want to build one? 5 ...

A semantic Led Zeppelin 6 ..

CHAPTER 2: SEMANTIC MODEL BASICS 8

Understanding RDF 8 ...

Almost everything needs a URI 9 ...

RDFS 17 ...

OWL 19 ..

Do not reinvent the ontology wheel 21 ...

What is an ontology? 22 ..

Reusing existing ontologies 22 ..

CHAPTER 3: BUILDING A SEMANTIC MODEL 24

RDF syntax 24 ..

Turtle 24 ...

Semantic models and ontology builders 27 ...

Protégé 27 ...

Building the model – a step-by-step guide 28 ..

Step 1: Determine the domain and scope (a.k.a use cases) 29 ...

Step 2: Determine important concepts in the model 30 ..

Step 3: Reuse ontologies 30 ...

Step 4: Define classes, class hierarchy and properties 30 ..

Step 5: Define constraints 31 ..

SHACL 31 ..

3

A data engineer’s guide to semantic modelling

Visualising your semantic model 34 ...

CHAPTER 4: QUERYING A SEMANTIC MODEL 36

SPARQL 36 ...

DISTINCT 39 ..

OPTIONAL 40 ...

UNION 41 ..

FILTER 42 ...

VALUES 43 ...

ORDER BY 44 ..

LIMIT 45 ...

GRAPH 45 ..

Beginning your semantic modelling journey 47

Acknowledgements 48

References 49

Appendix 50

4

A data engineer’s guide to semantic modelling

CHAPTER 1: A NOT-SO-BRIEF INTRODUCTION

What is a semantic model? 

Ironically, definitions tend to vary, though it is generally agreed that:

 1

Essentially, we use semantic models to impart meaning to our data by making it explicit
what the data represents, i.e. the concepts, and the relationships between these
concepts. It is imperative that the meaning is understood by both humans and machines.
Imparting meaning to a human is easy, or relatively easy I should say, in that we can use
figures and words to describe whatever it is we want to model. Imparting meaning to a
computer takes a bit more thought. Enter semantic models.

Why should I want to build one?

Giving our data a context is important. Take for instance the word jaguar: are you talking
about Jaguar the car or jaguar the animal? Are you talking about the band The Beatles or a
group of insects? How do I know you’re talking about “Black Dog” the song by Led
Zeppelin and not describing a dark-furred canine friend? Of course, as humans, we are
able to understand the true meaning given the context of the information. If I tell you: ‘I
ride my Jaguar to work’ then you assume I’m probably not roaming around the streets of 2

Utrecht on a giant cat. But maybe I do. Who knows. And that is exactly the point – data by
itself, without context, isn’t always clear. So let’s use semantic models to give meaning to
our data, and avoid any potential confusion.

 Semantic Modeling: Automatically building semantic descriptions of sources. (n.d.). Retrieved April 30, 2020, from 1

https://usc-isi-i2.github.io/semantic-modeling/

 Unfortunately, the author does not actually own a Jaguar.2

5

“Semantic models of data sources represent the implicit meaning of the data by
specifying the concepts and the relationships within the data.”

A data engineer’s guide to semantic modelling

A semantic Led Zeppelin

The best way to explain semantic models is through example, so let’s build a very small
model representing a band of interest. Figure 1 depicts a few concepts relating to Led
Zeppelin and the relationships between these concepts. We see that Led Zeppelin is a
band, who recorded an album called “Led Zeppelin IV” that was released on 8th
November 1971. One track on the album is “Black Dog”. Jimmy Page, who is a person, is a
member of the band. Of course, this is only a partial picture of all the data we could use to
describe this band, its members and its music.

Semantic models can also be used to order information into a hierarchy. For example,
albums and songs are both pieces of creative work and therefore fall under the
overarching concept Creative Work. Creative Work could also include things such as Book,
Movie or Sculpture.

Most of the relationships in the model in Fig. 1 are connected by a solid arrow, except for
“is a”, which has a dashed arrow. This is because ”is a” represents a special type of
relationship, namely: RDF:type. Don’t sweat this for the moment; this will be explained in
Chapter 2 when we learn about Resource Description Framework (RDF).

6

A data engineer’s guide to semantic modelling

Fig. 1: A diagram showing the band Led Zeppelin and one of their albums “Led Zeppelin IV”, released
8th November 1971. One track on the album is “Black Dog”. Concepts are marked by rectangles and

circles, and the predicates in between are denoted with arrows. Dashed arrows are reserved for the “a”
relationship, short for RDF:type.

7

A data engineer’s guide to semantic modelling

CHAPTER 2: SEMANTIC MODEL BASICS

Now, while I admit it’s fun to make pretty diagrams, it’s not very useful if computers aren’t
able to interpret them. So how can a computer extract any meaning from such a Led
Zeppelin diagram without serious text-mining efforts? For this, let me I will introduce the
first “tool” of this guide: RDF .3

Understanding RDF

The Resource Description Framework is, much as the name suggests, a framework for 4

describing data. In an RDF data model you make statements about data in the form of
triples. Such triples are composed of a subject and object, with a predicate linking them.
An RDF graph is a collection of these triples, where the graph’s objects and subjects form
nodes.

Fig. 2: An RDF triple.

The direction of the predicate is important! Let’s take a simple (albeit nerdy) example to
understand this:

 Not all semantic models need to be developed using RDF, but this guide will focus on RDF as the primary modelling 3

resource.

 “Resource Description Framework (RDF): Concepts and Abstract Syntax.” Edited by Graham Klyne et al., Resource 4

Description Framework (RDF): Concepts and Abstract Syntax, W3C, 10 Feb. 2004, www.w3.org/TR/rdf-concepts/.

8

https://www.w3.org/TR/rdf-concepts/

A data engineer’s guide to semantic modelling

Fig. 3: Directionality matters in RDF triples. Defining reverse relationships is possible, but not always
necessary.

We will see later, when we cover the Web Ontology Language (OWL), that there is a simple
way to define the “opposite” property using the inverseOf relationship. Although it’s not
strictly necessary to define reverse properties.

There are 3 different kinds of nodes that can exist in your RDF graph:

• Resources: A concept that you want to describe (e.g. the rectangles in Fig. 1). All
resources must have a unique identifier.

• Literals: These are values such as strings, numbers and dates (e.g. the circle in Fig. 1)

• Blank nodes: A blank node is a resource without a unique identifier. More on this in
Chapter 2.

Almost everything needs a URI

All resources and predicates need to have a machine-readable unique identifier. Why
does uniqueness matter? Well, if, for example, we are making a graph of employees of a
large organisation there might be several people with the same name. Aside from giving
everyone a nickname, how do we ensure that James White in Accounting is not confused
with James White from the Tax Office or James White who delivers the mail? The answer is
simple: use Uniform Resource Identifiers (URIs)!

9

A data engineer’s guide to semantic modelling

 5

URIs are kind of similar to URLs in that they often follow the familiar https scheme. URIs can
either be hierarchical or opaque. Without resolving it, an opaque URI will not encode any
information; the suffix is usually a randomly generated string of characters. Hierarchical
URIs instead contain some level of information. They could encode the location of a
resource, i.e. where it exists in the hierarchy of the model or share information regarding
the context of a resource. For example, these are two URIs describing the same resource:

• Hierarchical: <http://mycompany.com/people/JediDepartment/LukeSkywalker>

• Opaque: <http://mycompany.com/AE04801>.

The hierarchical URI is human readable. From this example we can infer that Luke
Skywalker works for My Company in the Jedi Department. The opaque URI also refers to
Luke Skywalker but now I am not able to infer that information. Opaque URIs are great to
ensure privacy. They also require less upkeep, because if something changes about the
resource, say Luke Skywalker were to change to the Retired Jedi Department, then there is
no need to update the opaque URI. Even though hierarchical URIs do require updating,
they are more human-friendly and thus may be easier to use.

What constitutes a good URI? Properties of sound URIs can be found on the European
Bioinformatics Institute (EBI)’s page on good practice for URIs . In short they are: 6

• Globally unique: One URI should never refer to two different concepts at the same
time, even ones that may seem equivalent.

• Persistent: A URI should continue to resolve for the foreseeable future. The URI
should survive website re-engineering exercises, for example.

 https://en.wikipedia.org/wiki/Uniform_Resource_Identifier5

 Embl-Ebi. “Good Practice for URIs.” EBI, European Bioinformatics Institute, www.ebi.ac.uk/rdf/documentation/6

good_practice_uri/.

10

“A Uniform Resource Identifier (URI) is a string of characters that unambiguously
identifies a particular resource. To guarantee uniformity, all URIs follow a predefined
set of syntax rules.”

https://www.ebi.ac.uk/rdf/documentation/good_practice_uri/

A data engineer’s guide to semantic modelling

• Stable: A URI should never be re-used for different things between data releases,
even if the original is deleted.

• Resolvable (dereferenceable): This simply means: when a user clicks on a URI in their
browser, we want them to be redirected to a suitable document.

Let’s revisit our beloved rock band from before and assign some URIs. The easiest is to
begin with one statement and “translate” it to URIs.

<Led Zeppelin> <has member> <Jimmy Page>.

Before, for Luke Skywalker, I made up some nonsense URIs. If you actually tried resolving
the links you would see they both result in a ‘404 Page Not Found’. However, the last step
in the guidelines for good URIs states they should be resolvable and redirect to a
document with information relating to that resource. It turns out that for a lot of concepts
this already exists. A great example is Wikidata , a knowledge base of structured computer 7

and human readable data. Using Wikidata we assign a URI to all three parts of this triple
(subject, predicate, object)

<https://www.wikidata.org/wiki/Q2331> <https://www.wikidata.org/wiki/Property:P527>
<https://www.wikidata.org/wiki/Q165467>

which we can visualize as:

 https://www.wikidata.org/wiki/Wikidata:Main_Page7

11

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Q2331
https://www.wikidata.org/wiki/Property:P527
https://www.wikidata.org/wiki/Q165467

A data engineer’s guide to semantic modelling

Fig 4: Assigning URIs to a triple from the diagram in Fig. 1. Note that the property ‘has member’ in
Wikidata is actually ‘has part’.

If you resolve any of these URIs you get redirected to a page with information on the
resource.

12

A data engineer’s guide to semantic modelling

Fig. 5: Wikidata page on Led Zeppelin . Statements are the predicates, with the object of the triples on 8

the right-hand side.

 https://www.wikidata.org/wiki/Q23318

13

A data engineer’s guide to semantic modelling

This process of assigning a URI to a resource should be applied to the entire graph.
However, writing out full URIs quickly becomes tiresome. To alleviate this we use prefixes.
We define a prefix in the following manner:

For example for the Wikidata namespace this would read:

@prefix wd: <https://www.wikidata.org/wiki/> .

Now, when we reference a Wikidata URI we simply use “wd:”. Revisiting Fig. 4 with prefixes
yields:

14

https://www.wikidata.org/wiki/

A data engineer’s guide to semantic modelling

Fig. 6: Using prefixes to represent the same data as in Fig. 4. Prefixes are stated at the top. Wikidata has a
slightly different URI for properties and thus has been defined separately as “wdp”.

Now let’s do this for the entire graph. In Fig. 7 five prefixes are defined. Most of the URIs
originate from Wikidata but there are a few rogue prefixes in there, such as schema, rdf
and rdfs. Schema.org is used for the relationship ‘records’, which in Schema is actually 9

called ‘album’. Why is Wikidata not used here? Strangely enough Wikidata doesn’t have a
property linking an artist with an album, but rather uses a reverse property called
‘performer’ linking an album with an artist. What about RDF and RDFS? These are basic
RDF vocabularies and are commonly used in RDF graphs.

 https://schema.org9

15

https://schema.org

A data engineer’s guide to semantic modelling

Fig. 7: Using URIs to represent the whole of Fig. 1.

16

A data engineer’s guide to semantic modelling

A note about blank nodes (because not everything needs a URI):

Blank nodes are resources which don’t have a URI or literal. This sounds illegal but it’s
actually allowed within RDF. It’s not that the URI is unknown but rather that the resource is
anonymous. Blank nodes can be used when you don’t know much about the resource
(which may pose a challenge when creating a URI), when you want to represent complex
features of a resource without naming it (think of an address with street, number, city, etc.),
or when you want to protect someone's privacy . 10

RDFS

RDFS stands for RDF Schema, you can read more about it here . Essentially, RDFS is a 11

data-modelling vocabulary, which is used to model data expressed in RDF. RDFS includes
a range of properties and other mechanisms for describing groups of related resources
and the relationships between these resources. But first, let’s introduce the idea of a class:

• Resources may be divided into groups called classes. The members of a class are
known as instances of the class. Classes and instances are identified by URIs and may
be described using RDF properties. The rdf:type5 property may be used to state that a
resource is an instance of a class. Classes can also have subclasses. All instances of a
subclass are also instances of the class.

• Properties are relationships between resources, linking subjects to objects.

We can use RDFS to define classes. For example:

• rdfs:Class – used to define a resource as a class. For example, in Fig. 7 everything is
an rdfs:Class, except for the release date.

• rdfs:Literal – used to define a resource as a literal value, i.e. strings or integers. For
example, the release date. Note that rdfs:Literal is a class and as an instance of the
more generic rdfs:Class.

 “Blank Node.” Wikipedia, Wikimedia Foundation, 1 Jan. 2020, en.wikipedia.org/wiki/Blank_node.10

 “RDF Schema 1.1.” Edited by Dan Brickley et al., RDF Schema 1.1, W3C, 25 Feb. 2014, www.w3.org/TR/rdf-schema/.11

17

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/

A data engineer’s guide to semantic modelling

When we go back to the example of our rock band, we see that the colour scheme in
Figures 1 and 7 has a purpose: coloured rectangles represent a rdfs:Class and a blue
circle for rdfs:Literal. Instances are represented with green rectangles, and their classes
are yellow rectangles. For example, Led Zeppelin is an instance of a Band, and Jimmy Page
is an instance of a Person.

RDFS also allows us to define properties, which are a rdf:Property. We can define sub-
properties of rdf:Property using rdfs:subPropertyOf. There is a special and often used
property, rdf:type, which is used to state that a resource is an instance of a class. This
property is often abbreviated to a.

Using rdfs:domain and rdfs:range we specify the subject and object of a property,
respectively. For example:

<hasMember> a rdf:Property .

<hasMember> rdfs:domain <Band> .

<hasMember> rdfs:range <Person> .

This set of triples states that <hasMember> is a property that has Band as its subject and
Person as its object. Again, we make use of prefixes (rdf and rdfs) in these triples.

Properties can also be used to establish a hierarchy. Namely, classes can be subclasses of
other classes, and the property rdfs:subClassOf is used for this. Instances of a subclass are
also instances of the class. For example, an instance of Album is also an instance of
Creative Work, because Album is a subclass of Creative Work.

Modelling data in semantic models is not always straightforward. For example, if we want
to add genre information to our model we could break down Album into subclasses, such
as ClassicalAlbum, RockAlbum, PopAlbum, etc. – but we could also impart the genre
through a ‘genre’ property with album as the subject, or we could make ClassicalAlbum an
instance of Album, rather than a subclass. Confused yet? In truth, any of these options
would be correct. What matters is developing a model that satisfies your use cases.

RDFS makes data machine-readable but we still want it to be human-readable. For this
there are two properties in RDFS: rdfs:label and rdfs:comment. Rdfs:label is used to give

18

A data engineer’s guide to semantic modelling

a human-readable name to the resource, which is especially useful for opaque URIs.
Rdfs:comment adds a description to a resource. The object of both of these properties is a
string. E.g:

<hasMember> rdfs:label “has member” .

<hasMember> rdfs:comment “Property relating a band to one of its band members” .

Adding comments to classes and properties is important! It’s just like commenting on your
code: it seems redundant in the moment but will prove super useful some while down the
line when you, or someone else, needs to interpret the cryptic RDF you wrote.

OWL

RDFS is a great way to structure data. As we saw in the last section, with RDFS we can
define what type our resource is (class or literal), if it’s an instance of another resource, if it
has any subclasses or if it is a subclass itself. But there is more to data than structure. There
is also meaning. And now it turns out this guide to RDF doubles as a guide to life.

Just like RDFS gives structure, OWL gives meaning. Unfortunately, OWL has absolutely
nothing to do with actual owls. But I will provide a photo of an adorable baby owl because
it seemed somewhat relevant and mostly I wanted to.

Fig. 8: An owl. Of the non-OWL variety. © Megan Lorenz.

19

A data engineer’s guide to semantic modelling

Web Ontology Language (or rearranged into its cute acronym OWL) is a vocabulary 12

extension of RDF, and thus is also expressed in triples. It’s mainly used as markup for
ontologies, which for all intents and purposes are very similar to the semantic models
outlined in this guide.

OWL, like RDFS, also defines classes (namely owl:Class), properties and instances. But in
contrast to RDFS, OWL is a far richer and stricter vocabulary. You may be asking, if OWL
covers most of RDFS and is a far more descriptive vocabulary, why even bother with RDFS
at all? Well, sometimes using OWL is overkill. Like do you really need to take that 12-week
in-person French course for your upcoming holiday in Paris or would it just suffice to do
some Duolingo? OWL is a stricter vocabulary and if what you’re building is small, then
RDFS may be sufficient.

The added bonus of OWL is that it supports and integrates elements of RDF. For example,
in OWL you can still use properties such as rdf:type, rdfs:range and rdfs:subPropertyOf.

In addition, OWL defines a whole host of its own properties. These properties are much
more detailed than the generic RDFS ones. Some of these properties can be used to
impose constraints, such as owl:allValuesFrom, which define an allowed class or data
range.

<hasParent> owl:allValuesFrom <Human> .

OWL also supports describing data in terms of set operations. For example, owl:unionOf
is used to indicate that the class, for example Fruit, includes the individuals from both
Sweet Fruit and Non-Sweet Fruit. The subject of an owl:unionOf triple can also be a blank
node.

<Fruit> owl:unionOf (<SweetFruit> <NonSweetFruit) .

We can also use OWL to define inverse relationships. Remember the Darth Vader and Luke
example? Using owl:inverseOf it’s possible to state that hasSon is the inverse of
hasFather, i.e.

 Bechhofer, Sean, et al. “OWL Web Ontology Language Reference.” OWL Web Ontology Language Reference, W3C, 10 12

Feb. 2004, www.w3.org/TR/owl-ref/.

20

https://www.w3.org/TR/owl-ref/

A data engineer’s guide to semantic modelling

<hasSon> owl:inverseOf <hasFather> .

We will not explore OWL in full. However, there are two more noteworthy properties which
relate to equivalency. The first property, owl:sameAs, can be used to state that two
individuals are the same. For example,

<BillClinton> owl:sameAs <WilliamJeffersonClinton> .

The second, owl:equivalentClass, states the equivalence of two classes. E.g.,

<USPresident> owl:equivalentClass <PrincipalResidentOfWhiteHouse> .

Saying two things are equivalent may seem a bit redundant but it’s actually a key
advantage of OWL. Using these statements you can now easily reference external models
or ontologies. For example, you can state that the Al Pacino on Wikidata is the same as the
Al Pacino on IMDB (not that that is the most important thing you could possibly be doing
with your OWL time).

Another important thing to note that in OWL it’s possible to define two different types of
properties:

• Object properties link individuals to individuals (e.g. <hasMember>)

• Datatype properties link individuals to data values (e.g. <releaseDate>)

Do not reinvent the ontology wheel

In the first section of this chapter we touched upon ways to define URIs for our resources
using existing knowledge bases, like Wikidata, and existing vocabularies, like schema.org.
In actuality, there are hundreds, if not thousands, of knowledge representations out there.
In many cases, experts have taken the time to identify the major concepts in their fields,
define them, and then qualify the relationships between them. These knowledge
representations are often known as ontologies.

21

A data engineer’s guide to semantic modelling

What is an ontology?

An ontology is a number of things. To best understand an ontology as a whole let’s start
with looking at some of its parts:

• A dictionary, which is a collection of terms and their definitions (just like a trusty
Merriam Webster).

• A taxonomy, which is used to create hierarchy (just like a classification of the animal
kingdom).

• A thesaurus, for describing some basic relationships between terms, mostly by just
specifying that two terms are related. For example, Actor is related to Academy
Award.

And now, finally, there is the ontology. An ontology provides all that a dictionary,
taxonomy and thesaurus do but the relationships between concepts are better qualified.
For example, Actor wins Academy Award.

For the purpose of this guide, ontologies are essentially equivalent to semantic models
and you can think of them interchangeably.

Reusing existing ontologies

From pharmaceuticals to movies, there is an ontology for (almost) everything. A significant
amount of expert time and effort has gone into developing subject-specific ontologies and
it’s to everyone’s benefit to reuse them. There are various tools that can be used to explore
existing ontologies.

• BioPortal: for biology-related ontologies

• Linked Open Vocabularies (LOV): for more general ontologies

And here is a non-exhaustive list of vocabularies/ontologies/knowledge bases that I have
found useful in my experience:

• DCAT: to describe datasets and data catalogs

• PROV-O: for provenance information

22

http://bioportal.bioontology.org
https://www.w3.org/TR
https://www.w3.org/TR/prov-o/

A data engineer’s guide to semantic modelling

• Wikidata: for general information, although it includes a good deal of scientific
information

• Schema.org: for general information (check bioschemas for biological information)

• SKOS: for knowledge representation

• Dublin Core Metadata Initiative (DCMI): for metadata

• Friend of a Friend (FOAF): to describe people and organizations, and relations
between them

• XSD: to describe data type values

• BioAssay Ontology (BAO): to describe biological assays

• EDAM: comprehensive ontology for various topics in bioinformatics

Make sure that the ontology you choose has been updated at least in the last year, ideally
in the last 6 months. This prevents you from using obsolete ontologies.

23

http://wikidata.org
https://schema.org
https://www.w3.org/2004/02/skos/
https://www.dublincore.org
http://xmlns.com/foaf/spec/
http://www.w3.org/2001/XMLSchema
http://bioportal.bioontology.org/ontologies/BAO
http://bioportal.bioontology.org/ontologies/BAO/?p=classes
http://edamontology.org/page

A data engineer’s guide to semantic modelling

CHAPTER 3: BUILDING A SEMANTIC MODEL

Enough theory! It’s time to get our hands dirty. This chapter is dedicated to building a
semantic model from scratch. Before we delve into the five steps of modelling, I want to
introduce two topics that are going to be very relevant while we model. First: we need to
discuss how we’re going to write the RDF, i.e. what syntax are we going to settle on. And
second: let’s look at some tools to help you in your model-building mission.

RDF syntax

RDF triples can be expressed in more than one way. How you write the triples depends on
the syntax used. The most common syntaxes are: N-Triples, Turtle, JSON-LD and RDF/XML.
This guide has been written, and will be continued to be written, in Turtle. Turtle is
abbreviated to TTL , which ironically also stands for Time To Live, and yes, I kid you not: 13

we are yet again on the topic of animals and life. Who knew this guide would be so
insightful?

Turtle

Let’s take some time to delve into the syntax of TTL. We’ve already taken a brief look at the
use of prefixes in triples. We can use prefixes for any resource, be it a relationship, class or
instance. Prefixes just allow us to specify the namespace of that resource without having to
write it out every single time.

To explain the ins and outs of TTL I will be borrowing an example from the TTL resource on
w3. This time, I wrote the triples in my text editor of choice: Visual Studio Code. Follow the
list of steps below to see how classes and relationships are created to describe two
resources, Green Goblin and Spiderman:

 Beckett, David, et al. “RDF 1.1 Turtle.” RDF 1.1 Turtle, W3C, 25 Feb. 2014, www.w3.org/TR/turtle/.13

24

https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/

A data engineer’s guide to semantic modelling

• Lines 1-5: Specify prefixes. The start to any good TTL file is defining prefixes. In lines
2-5 we see some of our usual suspects like rdf, rdfs and foaf, and a new vocabulary
‘rel’. There is also a special kind of prefix declared in line 1: @base. The base prefix
serves as the base URI and any term within angled brackets ‘<’ and ‘>’ belongs to that
namespace. Note that each line must be terminated with a whitespace and a period ‘.’.

• Lines 7-9: Describe resource. We begin with Green Goblin. This is a resource in our
base namespace so we enclose it with angled brackets. Green Goblin’s URI in full is
<http://example.org/#green-goblin>. The following lines give some information on
Green Goblin, i.e. Green Goblin is an enemy of Spiderman, Green Goblin is a type of
Person, and Green Goblin’s name is – wait for it – Green Goblin. Strings are enclosed
with double quotes. Comments are added with the hash sign ‘#’. Very important to
note is that every triple must end with a whitespace and a period.

• It’s a bit repetitive to write <#green-goblin> for every triple, and this can get clunky
and time-consuming. The way around this is predicate lists. In predicate lists it’s
possible to group together statements on the same subject. Predicate-object
statements are separated by a semicolon ‘;’. Predicate lists must end with a whitespace
and period.

• Lines 11-14: Describe resource. We go on to describe Spiderman, which is also a
resource in the base namespace. In line 14 there are two objects to the foaf:name
predicate. One is the English name “Spiderman”, and the second is the Russian name.
Quoted literals are followed by a language tag, datatype IRI, or neither. Language
tags are preceded with a ‘@’ and then the language key.

25

http://example.org/

A data engineer’s guide to semantic modelling

In this further example on quoted literals, we use xsd to specify that “That Seventies Show”
is a string. Line 5 uses the xsd prefix to do this, line 6 uses the full URI of xsd and line 7 has
no specification. All these lines are equivalent. Line 8 shows the use of a language tag. We
can use xsd also to specify other data types like time, date and integer.

This is the full code for the Green Goblin and Spiderman example.

If you have written your RDF in one format and realise, for some reason, it needs to be in
another – don’t fret! A multitude of RDF converters are here to help. Try this one .14

 http://www.easyrdf.org/converter14

26

https://www.w3.org/2001/XMLSchema
http://www.easyrdf.org/converter

A data engineer’s guide to semantic modelling

Semantic models and ontology builders

In my opinion, there are two ways in which you can build a semantic model:

1. Write out triples in a text editor (either manually or automatically)

2. Use a tool that creates the triples for you

Personally, I prefer the former. Writing out triples gives me full control over the model and
– more importantly – I don’t waste time fighting with a tool’s UI. I admit that this may be my
own problem, so if there’s a tool you like and find it works for you then by all means forgo
the text editor. Writing triples in a text editor does not necessarily mean you have to write
them all out by hand (although I am not above doing this); you can automate triple
generation with the handy Python RDF package . 15

With regards to tools, the market is actually rather saturated. However, many of these are
not open-source and can be quite pricey. Protégé is a popular open-source tool that gets 16

the job done.

Protégé

Protégé is an ontology editor and framework builder developed by the Stanford Center for
Biomedical Informatics Research. There is both a web version and a desktop version.

Essentially, Protégé allows the user to add classes, object and datatype properties, and
individuals without having to write out triples. Classes can easily be subclassed in order to
create a hierarchy. Once you have created your ontology you can download it as an OWL
file, if needed with all the triples written out. This article is a great way to learn more 17

about Protégé and see it in action.

 https://rdflib.readthedocs.io/en/stable/15

 https://protege.stanford.edu16

 Jayawardana, Vindula. “Ontology Generation and Visualization with Protégé.” Medium, Medium, 5 Dec. 2017, 17

medium.com/%40vindulajayawardana/ontology-generation-and-visualization-with-
prot%C3%A9g%C3%A9-6df0af9955e0.

27

https://rdflib.readthedocs.io/en/stable/
https://protege.stanford.edu

A data engineer’s guide to semantic modelling

Building the model – a step-by-step guide

Now we’ve learned about RDF, classes and properties, syntaxes and tools. All of this is fine
and dandy but what entities do we actually include in our model? It’s easy to realise that
there is no limit to describing knowledge. You could infinitely branch out in different
directions, like an ever-expanding web. For example, I make a model that sets out
describing movies, which feature actors, who are people, and people are homo sapiens,
and homo sapiens discovered fire and fire is the rapid oxidation of a material in the
exothermic chemical process of combustion and now we are describing the entire
universe instead of just making a model that tells me in which movies I can see Brad Pitt
naked – I mean, in which movies I can see Brad Pitt act.

Our friends at Stanford not only developed Protégé but also published a very handy
Ontology Development 101 guide detailing how to build an ontology. In the guide they 18

outline 3 rules of ontology design. The first rule of ontology design is that you don’t talk
about ontology design . Just kidding. Here are the rules: 19

18

 Noy, Natalya F, and Deborah L McGuinness. “Ontology Development 101: A Guide to Creating Your First Ontology.” 18

Https://Protege.stanford.edu/, Stanford University, protege.stanford.edu/publications/ontology_development/
ontology101.pdf.

 That was the last Brad Pitt reference, I promise.19

28

There is no one correct way to model a domain— there are always viable
alternatives. The best solution almost always depends on the application that you

have in mind and the extensions that you anticipate.

Ontology development is necessarily an iterative process.

Concepts in the ontology should be close to objects (physical or logical) 
and relationships in your domain of interest. These are most likely to be nouns

(objects) or verbs (relationships) in sentences that describe your domain.

https://protege.stanford.edu/publications/ontology_development/ontology101.pdf

A data engineer’s guide to semantic modelling

The first rule is really about deciding what questions your model or ontology is going to
answer. Homing in on the use cases determines which classes and relationships need to
be included and in how much detail. As you start to develop and test your model, you will
see that revisions are inevitable, and often the final product is very different from the first
iteration. Hence, the second rule. Since your model is a model of reality, even if the reality
is data and systems, the entities in the model should reflect this reality as closely as
possible. There is no need to get unnecessarily abstract and philosophical if it is of no use
to the end-user.

Let’s go over some basic steps to get you started with your model. Again, these are taken
from the Ontology 101 guide.

Step 1: Determine the domain and scope (a.k.a use cases)

Let me harp on a little longer about use cases. Use cases are the driving force behind
model development. Without use cases, model development is a bit of a stab in the dark
and stabbing in the dark is always a bad idea. Useful questions to help you gather use
cases could be:

• What is the domain that the model should cover? (E.g. clinical trials, drug discovery,
genomics sequencing pipelines)

• What are the questions that the model needs to answer?

• What is the model going to be used for?

• Who is going to use it?

• Who is going to maintain the model? (E.g. data steward, data curation team)

• Where should the model live?

The second question, what questions the model needs to answer, is a rather important
one. These are considered (by the authors of Ontology 101) as the competency
questions and serve as the litmus test for the model.

29

A data engineer’s guide to semantic modelling

Say that you are building a model for a pharmaceutical client who is interested in
modelling their clinical trial processes. Some competency questions you could expect for
such a model are:

• Is clinical trial AAAB001 interventional or observational?

• Can a patient over the age of 65 be admitted to trial AAAB001?

• Can I see all the genomics data we have for this patient?

• What is the protocol for trials with drug AAAB?

• Where are the clinical trials located that enrol the highest number of patients?

Based on such questions, the model will include information on clinical trials, such as the
type of trial, inclusion criteria, geographical location, and protocol, as well as patient
information and enrolment numbers. Additionally, patients need to be linked to a trial.

Step 2: Determine important concepts in the model

Based on the questions in step 1 it will become clear which concepts need to be included.
Some of these concepts will be classes and others might be properties or instances. From
the example above, some concepts could be clinical trial, patient, data, drug, location,
patient count.

Step 3: Reuse ontologies

We covered this topic in Chapter 2 but just to reiterate: where possible, include existing
ontologies. Search for ontologies that cover the domain being modelled and include
some important concepts from Step 2. You can reference ontologies in your triples by
making use of the ontology’s namespace or import the entire ontology if using a tool like
Protégé. Even if you don’t end up using an external ontology, looking at how things are
modelled elsewhere can help you get started on your own modelling.

Step 4: Define classes, class hierarchy and properties

This is where it gets fun! Start by defining some central classes, like clinical trial and patient.
Then we can start to attribute some properties to these classes, like clinical trial code,

30

A data engineer’s guide to semantic modelling

patient ID and location. Next we need to decide what type of properties these are. It makes
sense that clinical trial code and patient ID are datatype properties as their objects will be
literals. But location could be either a datatype or an object property. After all, the name of
a place could simply be a string but it could also be a resource with a URI. So which is
correct?

The rule of thumb I go by is to make something a class if I want to say something else
about it and/or if I want control the instances. Let’s break this down. If the location of the
clinical trial is the Erasmus University Medical Center in Rotterdam then I could encode this
simply as a string, i.e. “Erasmus University Medical Center”. But maybe I want to say that the
medical center is located in Rotterdam, The Netherlands. I can’t do this if it’s a string.
Furthermore, leaving the location as a literal may leave room for error. In some instances it
may be entered as “Erasmus MC” or “EUMC” or have a typo like “Eramus University
Medical Center”.

Carry on defining the contents of the model until it satisfies the use cases. At this point, test
the model against the use cases and iterate if needed.

Step 5: Define constraints

RDF on its own has no constraints. There’s nothing telling you what can or cannot be a
class, property or individual. And much like an unsupervised teenager home alone for the
weekend, you could end up (even accidentally) creating a total and utter mess. What we
need is a supervisor, who sets the rules for what can and can’t happen – enter SHACL.

SHACL

SHACL (pronounced “shackle”) stands for Shapes Constraint Language. SHACL is a 20

language for validating RDF graphs against a set of conditions. The conditions themselves
are expressed as RDF graphs, referred to as “shapes graphs”. The RDF graph that is being
validated is a “data graph”.

 Shapes Constraint Language (SHACL).” Edited by Holger Knublauch and Dimitris Kontokostas, Shapes Constraint 20

Language (SHACL), W3C, 20 July 2017, www.w3.org/TR/shacl/.

31

https://www.w3.org/TR/shacl/

A data engineer’s guide to semantic modelling

Let’s take the following data graph : 21

We want to apply the following conditions to our graph:

• An instance of ex:Person can have at most one value for the property ex:ssn (as you
can see Bob is in violation of this rule by having two SSNs), and this value is a literal
with the datatype xsd:string that matches a specified regular expression.

• An instance of ex:Person can have unlimited values for the property ex:worksFor,
and these values are URIs and instances of ex:Company.

• An instance of ex:Person cannot have values for any other property apart from
ex:ssn, ex:worksFor and rdf:type.

These conditions can be applied using the following SHACL constraints specified in this
shape graph:

 This example is taken from https://www.w3.org/TR/shacl/#dfn-shacl-instance21

32

https://www.w3.org/TR/shacl/

A data engineer’s guide to semantic modelling

• We first define a PersonShape class in the shapes graph. This class is what we call a
shape. The target of this shape is the Person class from the data graph.

• The next line introduces a blank node for the property shape. This constraint applies
to the property ex:ssn. The next three lines give the constraints for the property.
Namely: Person has maximum one ex:ssn property, which has datatype object of type
xsd:string. The pattern of the xsd:string is specified by the regex expression.

• A property shape is introduced for ex:worksFor on line 81. The object of the property
is ex:Company, and requires an IRI.

• sh:closed set to ‘true’ to close the shape.

• sh:ignoredProperties can include a list of properties that are also permitted in
addition to those explicitly enumerated via sh:property. Here the only one allowed is
rdf:type.

This was a very brief introduction to SHACL but should be enough to get you started on
writing your own SHACL validation.

33

A data engineer’s guide to semantic modelling

Visualising your semantic model

Regardless of how you have chosen to create your model, in the end you want to see what
you have made. My favourite visualisation tool is WebVOWL . 22

WebVOWL is a web application for the interactive visualisation of ontologies. It provides
graphical depictions for elements that are part of OWL, so in other words WebVOWL
works best with models that are rooted in OWL. Other vocabularies are not necessarily
recognised. To view your ontology, simply upload the OWL or TTL file (under the
‘Ontology’ tab). There is also a WebVOWL plugin that can be used for Protégé.

Fig. 9: Excerpt from WebVOWL. This is a visualisation of the FOAF ontology.

WebVOWL makes it easy to interactively explore an ontology. Clicking on resources in the
visualisation pulls up some information on the selection. In Figure 9 I have selected the
‘Person’ class and details on this class can be seen on the righthand side under the tab

 http://vowl.visualdataweb.org/webvowl.html22

34

http://vowl.visualdataweb.org/webvo

A data engineer’s guide to semantic modelling

‘Selection Details’. The blue text is actually hyperlinked with the URI of that resource, so
clicking on ‘Person’ redirects me to the FOAF vocabulary page.

Additionally, WebVOWL has numerous customisable options, such as the degree of
collapsing (a more collapsed view gives you only the higher classes in the ontology), the
distance between classes, and the possibility to pin classes to a particular spot (otherwise
they tend to bob around). My go-to options are to untick ‘Color externals’ and tick
‘Compact notation’ in the ‘Options’ tab. The untick is because it makes the graph look
nicer, and the tick is to get rid of the ‘External’ label on classes, which often causes
confusion.

It’s not great to upload sensitive information to the online version of WebVOWL, it is best
to install a local instance on your machine. The instructions for doing this can be found on
the WebVOWL main page under ‘Installation ’. 23

I love WebVOWL. Really, it’s great. But I should give a small disclaimer and say that, like
everything in life, it’s not perfect. For instance, do not try and upload ginormous ontologies
to webVOWL because this will make it painstakingly slow. Also, if your model is not rooted
in OWL you might freak out when you see what you have created, as it will look nothing
like what you envisioned. Furthermore, if your model is above a certain threshold of
resources it’s going to get messy. And lastly, and maybe the most annoying feature, every
time you reload an ontology, it redoes the layout. So if you have just memorised the
location of all classes and how to navigate between them, be prepared that in the
presentation you are just about to give everything will rearrange itself as a result of loading
the model on a different machine.

 http://vowl.visualdataweb.org/webvowl.html23

35

A data engineer’s guide to semantic modelling

CHAPTER 4: QUERYING A SEMANTIC MODEL

It’s not much use making a model if you can’t do anything with it (aside from admiring it). In
Chapter 3 we discussed use cases and the types of questions you ideally want your model
to answer. Now we’re going to learn how to ask our model these questions.

SPARQL

SPARQL (pronounced “sparkle”) is a recursive acronym for SPARQL Protocol and RDF 24

Query Language. SPARQL is to RDF what SQL is to relational databases. And in fact
SPARQL is similar to SQL. If you know a bit about SQL then learning SPARQL is easy peasy
lemon squeezy. If you don’t know any SQL – don’t get discouraged! SPARQL isn’t all that
difficult.

As the name suggests, we can use SPARQL to query RDF. Querying is done by creating
statements in the form of triples. The example below shows a query on the data to find all
albums for a given band (you guessed it: Led Zeppelin).

Data:

Led Zeppelin (wd:Q2331) has 2 albums, namely wd:Q201940 and Q209539.

 SPARQL Query Language for RDF.” Edited by Eric Prud'hommeaux and Andy Seaborne, SPARQL Query Language for 24

RDF, W3C, 15 Jan. 2008, www.w3.org/TR/rdf-sparql-query/

36

https://www.w3.org/TR/rdf-

A data engineer’s guide to semantic modelling

Query:

The query consists of two parts: the SELECT clause identifies the variables to appear in the
query results (i.e. album_name), and the WHERE clause provides the basic pattern to
match against the data. The pattern in this example is a single triple with the variable
album_name in the object position . 25

The result will be a column called album_name with two entries: wd:Q201940 and
wd:Q209539.

We can also use SPARQL to query based on literal matching.

Data:

These triples refer to the Led Zeppelin album nicknamed Led Zeppelin IV . If I want to find 26

all albums with the nickname “Led Zeppelin IV”, I can do so in the following query:

 https://www.w3.org/TR/rdf-sparql-query/25

 After a somewhat critical response to their previous album, Led Zeppelin decided to release their fourth album 26

untitled. Inside the sleeve there are four symbols representing each band member. The album came to be known as Led
Zeppelin IV but also went by other names like Four Symbols.

37

A data engineer’s guide to semantic modelling

Query:

I use SELECT to identify the variable that will appear in the results (i.e. album) and the
WHERE statement encloses the pattern I’m looking to find in the data. The result of the
query will be one column named album with one entry, namely wd:Q201940.

These are very basic queries in SPARQL. This Stardog tutorial is a good guide to get
started on more elaborate queries.

Oftentimes knowledge bases and other similar resources will have a SPARQL endpoint
which can be used to query the data. Wikidata has such an endpoint called the Wikidata
Query Service. Under the ‘Examples’ tab you can find some example queries, but you can
also make some yourself and run them to see what you get. If you hover over any
predicate, object or subject a small information box (see Fig. 10) will appear, which is very
useful given the opacity of Wikidata’s URIs.

Fig. 10: Information box for wdt:P699 showing human readable information for the property, i.e. name
and description.

38

https://www.stardog.com/tutorials/sparql/

A data engineer’s guide to semantic modelling

Let’s cover some useful SPARQL query forms and modifiers. These are taken from the W3
page on SPARQL24.

DISTINCT

Eliminates duplicate solutions.

Data:

Query:

Result:

39

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/

A data engineer’s guide to semantic modelling

You may be wondering about the odd-looking subjects in these triples. What on earth is
“_:x”? It’s a blank node! We’ve discussed blank nodes a bit but they can be confusing.
Check out the example below from this Wikipedia entry: 27

Such a blank node is useful in two ways: first of all, we don’t have to explicitly name this
resource, and secondly, we make sure to protect the privacy of the individual.

OPTIONAL

A graph pattern in a query returns only those results that match the pattern. Statements
that are OPTIONAL are returned if present but not excluded otherwise.

Query:

Result:

 “Blank Node.” Wikipedia, Wikimedia Foundation, 1 Jan. 2020, en.wikipedia.org/wiki/Blank_node.27

40

https://en.wikipedia.org/wiki/Blank

A data engineer’s guide to semantic modelling

UNION

UNION concatenates results of two queries in the WHERE statement. Unlike OPTIONAL
which returns the results in separate columns, UNION merges the result into a single
column.

Data:

Query:

Result:

41

A data engineer’s guide to semantic modelling

FILTER

Restrict solutions to those for which the filter expression evaluates to TRUE. FILTER can be
used on strings or on numeric expressions.

Data:

Query to restrict values of strings. Regex can be used to match expressions but this is not
necessary. A query with FILTER (?title “SPARQL Tutorial”) would yield the same result.

Query:

Result:

42

A data engineer’s guide to semantic modelling

Query to restrict based on arithmetic expression. This query selects only books that have
a price lower than 30.5.

Query:

Result:

VALUES

VALUES is a new feature in SPARQL 1.1. It’s similar to FILTER in that it’s used to restrict
results based on a condition.

Query:

Result:

43

A data engineer’s guide to semantic modelling

ORDER BY

Establish an order to the result, e.g. descending alphabetical. Results can also be ordered
based on numeric values, datetimes or booleans.

Data:

Query:

44

A data engineer’s guide to semantic modelling

LIMIT

Cap the number of solutions displayed in the results. Useful for large datasets to improve
query time.

Query:

Result:

GRAPH

Our RDF triples don’t need to exist in a single graph. In fact, we can easily have a collection
of named graphs on which we want to query. If we want to limit the query to one of these
named graphs we can use the GRAPH keyword.

For this example half the data (i.e. “SPARQL Tutorial” and “The Semantic Web”) exists on a
named graph that has the following URI: http://examplebooks.org/semanticBooks/.

45

http://examplebooks.org/semanticBooks/

A data engineer’s guide to semantic modelling

Query:

Result:

The best way to familiarise yourself with SPARQL is to try out these different keywords
yourself. A good place to start is the Wikidata Query Service.

46

A data engineer’s guide to semantic modelling

Beginning your semantic modelling journey

Well, congratulations! That was the 4th and final chapter of this guide. Although the guide
may be at its end, your journey into semantic modelling is far from over. Maybe, for some,
it has just begun.

Learning the theory is a great place to start, and I’m honored you chose this guide as one
of your resources, but the best way to learn is by putting theory into practice. A note of
advice: when you decide to build a model, try to build it together with a team. Since
modelling is so subjective, it’s always a great idea to bring together a group of diverse
thinkers.

Semantic modelling doesn’t necessarily need to start and end with a semantic model. For
instance, semantic models are the starting point for building knowledge graphs, acting as
the graph’s semantic backbone. And that’s pretty cool because knowledge graphs are
everywhere, sometimes on a huge scale. You know, when you Google your favorite actor
and that infobox appears on the right hand side of your search giving you a short bio, their
height, spouse, etc.? That’s made possible thanks to Google’s knowledge base, humbly
named ‘The Knowledge Graph’. But applications of knowledge graphs extend far beyond
Hollywood – thank goodness – spanning from healthcare to finance to real-estate to the
arts and beyond. In fact there’s so much I would like to say on knowledge graphs that it
may warrant another guide…

Anyway, after 40-odd pages, I think it’s time to part ways. Thank you for taking the time to
read this guide, however much of it you may have read. I hope I leave you a little bit more
knowledgeable on the semantic modelling universe and, most importantly, I hope you feel
even the tiniest bit excited about linked data. After all, we don’t need more data. We need
more meaningful data.

47

A data engineer’s guide to semantic modelling

Acknowledgements

Thank you to The Hyve for the continued opportunity to learn about, implement and
explore the world of linked data and for this opportunity to share my experience on paper.
An especially big thank you to all my wonderful colleagues, both past and present, who
have toiled away on many semantic models with me, and from whom I always learn
something new.

And thank you to Anca Boon for her help in editing this document and tying it together
from beginning to end.

If you find this guide useful, if you have additional content, or if you have a question,
please let me know by sending an email to SemanticModels@thehyve.nl.  

48

http://www.thehyve.nl
mailto:SemanticModels@thehyve.nl

A data engineer’s guide to semantic modelling

References

Bechhofer, Sean, et al. “OWL Web Ontology Language Reference.” OWL Web Ontology
Language Reference, W3C, 10 Feb. 2004, www.w3.org/TR/owl-ref/.

Beckett, David, et al. “RDF 1.1 Turtle.” RDF 1.1 Turtle, W3C, 25 Feb. 2014, www.w3.org/TR/
turtle/.

“Introducing Linked Data And The Semantic Web.” Linked Data Tools, http://
www.linkeddatatools.com/semantic-web-basics.

Noy, Natalya F, and Deborah L McGuinness. “Ontology Development 101: A Guide to
Creating Your First Ontology.” https://Protege.stanford.edu/, Stanford University,
protege.stanford.edu/publications/ontology_development/ontology101.pdf.

“Resource Description Framework (RDF): Concepts and Abstract Syntax.” Edited by
Graham Klyne et al., Resource Description Framework (RDF): Concepts and Abstract Syntax,
W3C, 10 Feb. 2004, www.w3.org/TR/rdf-concepts/.

“RDF Schema 1.1.” Edited by Dan Brickley et al., RDF Schema 1.1, W3C, 25 Feb. 2014,
www.w3.org/TR/rdf-schema/.

“Shapes Constraint Language (SHACL).” Edited by Holger Knublauch and Dimitris
Kontokostas, Shapes Constraint Language (SHACL), W3C, 20 July 2017, www.w3.org/TR/
shacl/.

Sirin, E. (n.d.). Learn SPARQL - Tutorial: Stardog. Retrieved from https://www.stardog.com/
tutorials/sparql/

Jayawardana, Vindula. “Ontology Generation and Visualization with Protégé.” Medium,
Medium, 5 Dec. 2017, medium.com/%40vindulajayawardana/ontology-generation-and-
visualization-with-prot%C3%A9g%C3%A9-6df0af9955e0.

49

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/
http://www.linkeddatatools.com/semantic-web-basics
http://www.linkeddatatools.com/semantic-web-basics
https://Protege.stanford.edu/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/shacl/
http://www.w3.org/TR/shacl/
https://www.stardog.com/tutorials/sparql/
https://www.stardog.com/tutorials/sparql/
http://medium.com/%40vindulajayawardana/ontology-generation-and-visualization-with-prot%C3%A9g%C3%A9-6df0af9955e0
http://medium.com/%40vindulajayawardana/ontology-generation-and-visualization-with-prot%C3%A9g%C3%A9-6df0af9955e0
http://medium.com/%40vindulajayawardana/ontology-generation-and-visualization-with-prot%C3%A9g%C3%A9-6df0af9955e0

A data engineer’s guide to semantic modelling

Appendix

Abbreviations and acronyms

• RDF: Resource Description Framework

• RDFS: Resource Description Framework Schema

• TTL: Turtle

• URI: Uniform Resource Identifier

• OWL: Web Ontology Language

• SHACL: Shapes Constraint Language

• SPARQL: SPARQL Protocol and RDF Query Language

Further reading and learning

Some useful resources for those starting out with RDF and linked data:

• Linked Data Tools 5-part course: http://www.linkeddatatools.com/semantic-web-basics

• Semantic Web Technologies course from Dr. Harald Sack: https://open.hpi.de/courses/
semanticweb

• Apache Jena’s Ontology documentation: https://jena.apache.org/documentation/
ontology/

• Ontotext GraphDB Fundamentals: www.ontotext.com/knowledgehub/fundamentals/
graphdb-fundamentals/.

50

http://www.linkeddatatools.com/semantic-web-basics
https://open.hpi.de/courses/semanticweb
https://open.hpi.de/courses/semanticweb
https://jena.apache.org/documentation/ontology/
https://jena.apache.org/documentation/ontology/
http://www.ontotext.com/knowledgehub/fundamentals/graphdb-fundamentals/
http://www.ontotext.com/knowledgehub/fundamentals/graphdb-fundamentals/

	CHAPTER 1: A NOT-SO-BRIEF INTRODUCTION
	What is a semantic model?
	Why should I want to build one?
	A semantic Led Zeppelin
	CHAPTER 2: SEMANTIC MODEL BASICS
	Understanding RDF
	Almost everything needs a URI
	RDFS
	OWL

	Do not reinvent the ontology wheel
	What is an ontology?
	Reusing existing ontologies

	CHAPTER 3: BUILDING A SEMANTIC MODEL
	RDF syntax
	Turtle

	Semantic models and ontology builders
	Protégé

	Building the model – a step-by-step guide
	Step 1: Determine the domain and scope (a.k.a use cases)
	Step 2: Determine important concepts in the model
	Step 3: Reuse ontologies
	Step 4: Define classes, class hierarchy and properties
	Step 5: Define constraints
	SHACL

	Visualising your semantic model
	CHAPTER 4: QUERYING A SEMANTIC MODEL
	SPARQL
	DISTINCT
	OPTIONAL
	UNION
	FILTER
	VALUES
	ORDER BY
	LIMIT
	GRAPH

