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Abstract 
This paper explores the application of quantitative methods to study the effect of various factors 
on phonetic word duration in ten languages. Data on most of these languages were collected in 
fieldwork aiming at documenting spontaneous speech in mostly endangered languages, to be used 
for multiple purposes, including the preservation of cultural heritage and community work. Here 



 
 

 2 

we show the feasibility of studying processes of online acceleration and deceleration of speech 
across languages using such data, which have not been considered for this purpose before. Our 
results show that it is possible to detect a consistent effect of higher frequency of words leading to 
faster articulation even in the relatively small language documentation corpora used here. We also 
show that nouns tend to be pronounced more slowly than verbs when other factors are controlled 
for. Comparison of the effects of these and other factors shows that some of them are difficult to 
capture with the current data and methods, including potential effects of cross-linguistic 
differences in morphological complexity. In general, this paper argues for widening the cross-
linguistic scope of phonetic and psycholinguistic research by including the wealth of language 
documentation data that has recently become available. 
 
 
1. Introduction1 
Speakers of all languages modulate their speech rate by pronouncing some words faster and others 
more slowly. Such variation can be studied by measuring the phonetic duration of words in seconds 
while controlling for a word’s length (measured as, e.g., the number of its phonological segments). 
Well-known determinants of faster vs. slower pronunciation are a word’s frequency, with high 
frequency leading to faster pronunciation, and its position in the utterance, with words in final 
position being pronounced more slowly. The relative strength and interaction of such factors are 
of theoretical interest for two reasons: First, they inform models of speech production (e.g., Bell 
et al. 2009; Jaeger & Buz 2017), and secondly, they shed light on processes of historical language 
change, since fast pronunciation over time leads to contracted and eventually to phonologically 
short word forms (e.g., Ernestus 2014; Sóskuthy & Hay 2017). However, most research on 
phonetic word duration is based on data from an exceedingly small number of well-studied 
languages, and systematic comparisons between different languages are even rarer. This is 
problematic because we know that languages vary enormously on all levels (Evans & Levinson 
2009), and it is therefore unclear to what extent findings from individual languages generalize to 
others (Norcliffe, Harris & Jaeger 2015).  
 In this paper, we advance the cross-linguistic comparison of determinants of word duration 
by investigating the duration of content words (nouns and verbs) across a set of spoken language 
corpora from ten typologically, areally, and culturally diverse languages. We refer to this type of 
data here as “language documentation corpora” in the sense that they were collected through 
linguistic fieldwork in the respective speech communities with the aim of achieving a multimedia 
documentation of spontaneously spoken language that can be used for multiple purposes 
(Himmelmann 1998). Seven of the corpora used here were collected in the context of recent 
language documentation projects, aiming at a comprehensive documentation of language use in 
the respective communities (Baure, Bora, Chintang, Even, Hoocąk, Nǁng, and Texistepec) and one 
in the context of a large-scale study on contact-induced language change (Sakha). In order to better 
connect to the existing body of research on word duration in major languages, we add to this set 
parts of well-known and well-studied spoken corpora of Dutch and English (Figure 1), which can 
 
1 FS and JS wrote the paper, with input and additions from all authors; JS carried out the statistical analyses; all authors 
collected and annotated data (see Table 1 and Section 2.1 for details). The research of FS and JS was supported by a 
grant from the Volkswagen Foundation’s Dokumentation Bedrohter Sprachen (DoBeS) program (89 550). FS and BP 
are grateful to the LABEX ASLAN (ANR-10-LABX-0081) of Université de Lyon for its financial support within the 
program "Investissements d'Avenir" (ANR-11-IDEX-0007) of the French government operated by the National 
Research Agency (ANR). SW’s research was supported by JPICH/NWO and a subsidy of the Russian Government to 
support the Programme of Competitive Development of Kazan Federal University 
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likewise be regarded as language documentation corpora in the broad sense of the term applied 
here. 
 The set of corpora investigated here are different from those used in previous studies on 
word duration (e.g., Yuan, Liberman & Cieri 2006; Bell et al. 2009; Ernestus 2014; Sóskuthy & 
Hay 2017) primarily in two respects: First, their contents are not closely controlled for, with some 
containing only traditional narratives (Texistepec), some only personal narratives (Sakha), some 
only conversation (English and Dutch), and the others various combinations of these. Second, they 
differ from those used in previous studies in terms of size: They range from about 18,000 to about 
56,000 words – a typical size for corpora collected in fieldwork on underdescribed and 
underresourced languages. In contrast, previous studies relied on corpora of hundreds of 
thousands, sometimes several millions or even billions of words, especially for counting word 
frequencies and calculating related measures as determinants of word duration. 
 Durational characteristics of speech are determined by a complex set of factors, some of 
them language-specific (Fletcher 2010). In addition to the duration of words, as studied here, 
previous research has also focused on phone and syllable durations and their mutual dependencies. 
Measurements of syllable and phone durations have been carried out in corpus phonetic studies on 
a range of languages with the aim of characterizing languages as a whole as belonging to distinct 
rhythmic types (Ramus, Nespor & Mehler 2000). Measures for this purpose include the standard 
deviation of the duration of vocalic (ΔV) and consonantal (ΔC) intervals, the percentage to which 
speech is vocalic (%V) (Ramus & Mehler 1999) and the pairwise variability index (PVI) (Grabe 
& Low 2002), a measure of the degree to which adjacent syllables or vocalic/consonantal intervals 
contrast in duration. This research revealed that languages systematically differ with respect to 
durational contrasts between syllables, as well as between consonantal and vocalic segments of 
the syllables. Results of such measurements have also been used to investigate whether languages 
tend to approximate rhythmic isochrony for syllable durations or inter-stress interval durations 
(Pike 1945; Abercrombie 1967), but this classification remains contested (Bertinetto & Bertini 
2008; Arvaniti 2012; Nolan & Jeon 2014). A different approach to characterizing speech rhythm 
is to extract rhythmic patterns directly from the speech signal by techniques like the decomposition 
of the amplitude envelope (Tilsen & Arvaniti 2013; Gibbon & Li 2019). Dependencies between 
phone, syllable, and word durations have been found primarily in terms of shortening due to an 
increased number of phones in a syllable, or due to an increased number of syllables in a word 
(Trouvain 2004: 36), a phenomenon known as “polysyllabic shortening” (Lehiste 1972). While 
the current study does not address durational characteristics of units below the word level (phones 
or syllables), some of its results, especially the different temporal behavior of nouns and verbs, 
could help to fill gaps in these paradigms. 
 In the current paper, we pursue three descriptive goals aiming at new theoretical insights. 
First, we ask whether a consistent effect of higher word frequency leading to faster pronunciation 
of nouns and verbs can be observed in typical language-documentation data. This is by no means 
evident, as the previous literature stresses the need for big data to reliably detect such effects (e.g., 
Brysbaert & New 2009: 980; Liberman 2019: 15.2). Second, we hypothesize that word class will 
have an effect on word duration, specifically that nouns will be articulated more slowly than verbs, 
following up on earlier results on speech rate in time windows preceding nouns and verbs (Seifart 
et al. 2018). Third, we provide a comparison of the direction and magnitude of the effect of six 
factors potentially influencing word duration in each of our ten languages: In addition to (i) word 
frequency and (ii) word class, these are four factors that are included in our analyses as control 
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factors, namely (iii) word length (in phones), (iv) morphological complexity, (v) word position in 
an utterance, and (vi) the local speech rate in the utterance surrounding the target word.  
 Furthermore, this study aims to advance methodologies of studying determinants of word 
duration in language documentation corpora. Therefore, considerable space is devoted to 
discussing methodological choices and results of statistical analyses, also regarding our control 
factors, in particular morphological complexity and word position, in order to identify directions 
for future research on these factors in language documentation data. This is also one reason why, 
in the current study, we do not use alternative data beyond our core set of language documentation 
corpora, even where they would be available, e.g. for English, Dutch, and, to some extent, Sakha 
and Chintang. For the same reason, we focus our analyses on annotations that documentary 
linguists typically supply when creating multi-purpose linguistic resources (orthographic 
transcriptions, translations, time alignment of utterances, morphological segmentation and 
annotation, and part-of-speech tags) and disregard factors that would require extensive additional 
manual annotation, such as accentual lengthening. The relevant computational tools (R scripts) 
used in this study as well as data preparation and analysis logs are accessible at 
https://github.com/janstrunk/DeterminantsofWordDuration.   
  
<Figure 1> 
 
 This paper proceeds as follows: In section 2 we introduce the languages and the corpora 
investigated here and describe the data preprocessing procedures we applied. Section 3 describes 
the methods used in the statistical analyses and how the factors that potentially influence word 
duration were defined, including discussion of issues arising from the particularities of our data 
when compared to previous studies. Section 4 presents and discusses our results, and section 5 
concludes this study. 
 
2. Data 
 
2.1. Corpus characteristics 
The sample of languages studied here is a convenience sample, which, however, represents broad 
genealogical and areal diversity. Eight of the corpora were compiled during fieldwork carried out 
by the authors in small speech communities, which have at most very recent writing traditions, and 
who speak minority, and often endangered, languages. As already mentioned, some of these 
corpora were compiled as part of larger language documentation collections, which also include 
documentation of cultural practices, ethnobotanical knowledge, etc. Others were compiled as text 
collections in the context of other research projects. The data selected for the current study consist 
mostly of monological texts, most typically traditional narratives, “indigenous texts” (Haig, 
Schnell & Wegener 2011), and personal narratives (a genre sometimes also called “autobiographic 
narrative” or “life stories”).  
 The Baure corpus was collected in the village of Baures, in Bolivian Amazonia, first as part 
of a PhD project by Swintha Danielsen (2003–2007) and later in the context of the DoBeS Baure 
documentation project (financed by the Volkswagen foundation from 2008 until 2013), together 
with the linguists Femmy Admiraal and Lena Terhart and the anthropologist Franziska Riedel (see 
http://dobes.mpi.nl/projects/baure/project/). Baure is a Southern Arawakan language with only 10 
speakers alive today, with some additional semi-speakers, who are currently very active in the 
revitalization of the language. Most of the longer texts in the corpus are traditional narratives, 
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while some are conversations. Transcription and further analysis of the data was carried out by the 
linguists of the project. The corpus is in ELAN format (https://tla.mpi.nl/tools/tla-tools/elan/) and 
offers transcriptions and translations into Spanish and English and glosses created with the 
Toolbox software (https://software.sil.org/toolbox/). The data used in the current study have been 
corrected and further annotated by Swintha Danielsen, who is a fluent speaker of the language and 
still continues working with the speakers, compiling data and publishing Baure materials. 
 The Bora corpus was collected between 2004 and 2008 by Frank Seifart in Bora communities 
in Northwestern Peru in the context of a documentation project that covered a total of four 
neighboring languages (http://dobes.mpi.nl/projects/center/). Bora is a Boran language still spoken 
by a few hundred adults in small communities in the Amazonian regions of Peru and Colombia, 
who practice small-scale horticulture and retain some traditional practices. Bora is still acquired 
by some children, although the community as a whole is shifting towards local Spanish. The corpus 
used here includes traditional narratives as well as personal narratives, such as retellings of events 
when speakers fell in the jungle (originally elicited to study spatial orientation of gestures). The 
data were transcribed and translated into Spanish mostly by native speaker assistants and 
morphologically analyzed using the Toolbox software by other assistants under the supervision of 
Frank Seifart. The original data are archived at The Language Archive 
(https://hdl.handle.net/1839/1ae788f0-6777-462c-bb20-b2fdb77f6491).  
 The Chintang corpus (http://clrp.uzh.ch) was collected between 2004 and 2009 by an 
interdisciplinary team led by Balthasar Bickel. Chintang is a Sino-Tibetan language from the 
Kiranti group spoken in the southern foothills of the Nepalese Himalayas. The data mostly consists 
of conversational data across all ages (Stoll et al. 2015) but also covers many other genres, 
including retellings of a stimulus film widely used in linguistics, the Pear Story (Chafe 1980). The 
recordings were transcribed by native speakers and glossed and analyzed by student assistants 
from the community and universities in Nepal and Germany. For present purposes, we analyzed a 
small subcorpus of adult speech in two variants: one including retellings of the Pear Story and one 
excluding these (Section 3.3.2).  
 The Even corpus represents the Lamunkhin dialect and was collected in the village Sebjan-
Küöl in central Yakutia between 2008 and 2010. Data collection was undertaken first for a project 
on the role of language contact in Even dialect diversification that was initiated by Brigitte 
Pakendorf in the now-obsolete Max Planck Research Group on Comparative Population 
Linguistics and later continued in the framework of a DoBeS project 
(http://dobes.mpi.nl/projects/even/). Even is a dialectally diverse Northern Tungusic language 
spoken in numerous small communities of erstwhile nomadic hunters and reindeer breeders 
scattered over a vast area of northeastern Siberia. Although most dialects are by now moribund, 
the Lamunkhin dialect is still viable, with some children acquiring it as their home language; 
overall, there are probably 250-300 speakers of this dialect. However, it is under intense contact 
pressure from the dominant indigenous language of the region, the Turkic language Sakha (Yakut). 
The recordings were for the most part undertaken by Brigitte Pakendorf, with some being provided 
by Natalia Aralova, and they were transcribed by native speakers, with transfer to Toolbox or later 
to ELAN by the linguists. The morpheme analysis was done mostly by Brigitte Pakendorf, with 
some texts glossed by Natalia Aralova and/or student assistants in the DoBeS project, and 
additional annotation work by Evgeniya Zhivotova. The data included in this study largely 
comprise autobiographical narratives and anecdotes, with a few fairy tales, descriptions of 
traditions, and four Pear Stories included as well. While most recordings are monologues, with 
only the linguist(s) present, some were more interactive. 
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 The Hoocąk corpus was collected between 2004 and 2013 in Wisconsin, USA. Hoocąk is a 
highly endangered Siouan language still spoken by less than 100 speakers over the age of 70. All 
data was transcribed with the help of native speakers and later analyzed manually in Toolbox and 
ELAN by Iren Hartmann and a few student assistants under her supervision. The corpus consists 
mostly of personal narratives, but also includes a few instructive and interactive texts. 
 The Nǁng corpus was collected between 2007 and 2011 in the Northern Cape province of 
South Africa. Nǁng belongs to the ǃUi branch of the Tuu family. Once it was spoken in a wide area 
in South Africa’s Gordonia district. As of 2020, Nǁng is a moribund language spoken by three 
elderly speakers. The collected corpus contains recordings from eight speakers. The data were 
collected primarily for the language documentation project “A text documentation of Nǀuu” 
(funded by the Endangered Language Documentation Programme (ELDP)) by Tom Güldemann, 
Martina Ernszt, Sven Siegmund, and Alena Witzlack-Makarevich. The corpus contains personal 
and traditional narratives, discussions of day-to-day issues, as well as procedural texts. For the 
present paper Alena Witzlack-Makarevich selected a subset of the data and extended the project's 
annotations. 

The Sakha corpus was collected by Brigitte Pakendorf in 2002 and 2003 in the framework 
of a project aiming at elucidating the extent of Evenki contact influence on Sakha. Recordings 
focused on elderly speakers with little use of standardized Sakha and little or no knowledge of 
Russian living in mainly rural settlements in four different districts of the autonomous Republic 
Sakha (Yakutia) in Northeast Siberia (for details cf. Pakendorf 2007a: 61–64). Sakha is a divergent 
Turkic language spoken by some 450,000 people who still practise horse and cattle pastoralism 
supplemented by hunting and fishing. The language is relatively healthy, especially in rural areas, 
although a tendency of shift towards Russian can be detected when comparing the census data of 
2002 with those of 2010. During most of the recordings at least one further native speaker of Sakha 
was present. The data were transcribed by native speakers and at a later stage transferred to 
Toolbox and glossed by Brigitte Pakendorf. The transcriptions were time-aligned with the audio 
files in ELAN for the purposes of this project by Evgeniya Zhivotova. 
 The Texistepec corpus is a set of folktales collected by Søren Wichmann in 1993 from a 
single speaker, Tomás López Florentino, of the language variously known as Texistepec Popoluca, 
Texistepequeño or, in the autodenomination, Wää Oot (‘good word’). Lexical and grammatical 
aspects of the language were studied with another speaker, Carmen Román Telésforo, who also 
sometimes helped with the interpretation of the texts of Tomás López. The fieldwork was initially 
undertaken as part of a survey of Mixe-Zoquean languages and was not intended to be extensive, 
but Søren Wichmann took the opportunity of undertaking some salvage work when he met Tomás 
López and Carmen Román and realized their great potential as collaborators. The work, carried 
out over five months during 1993-1998, mainly resulted in a published text collection (Wichmann 
1996), dictionary (Wichmann 2002), and a contribution to a series of filled linguistic 
questionnaires (Wichmann 2007). In the meantime, the language has even fewer speakers. The 
text collection includes the texts analyzed in the present paper, and is also publicly available as 
sound files in the Archive of the Indigenous Languages of the Americas (www.ailla.utexas.org). 
 The corpus of English we use is a subset of the Switchboard corpus of two-sided telephone 
conversations among English speakers from various parts of the US  (Godfrey & Holiman 1993). 
This corpus was created in the early 1990s and has since been further annotated by many 
subsequent research projects and used in hundreds of studies including many on word durations. 
The data were collected by establishing telephone calls between volunteers who did not know each 
other and prompting them to discuss one out of a range of topics, such as gardening or college 
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education. For the purpose of the current study, we selected a set of 47 sessions, to arrive at a 
corpus size for English that is roughly comparable to that of the other languages. This subset 
includes discussions on a broad variety of 31 topics, one of which was discussed five times (public 
education), one three times (recycling) and the rest once or twice (e.g., auto repair, music, vacation, 
or sports).  
 The Dutch corpus we use consists of a subsection of the Corpus Gesproken Nederlands 
(CGN) (CGN-consortium, Language and Speech Nijmegen & ELIS Gent 2003). From this 
collection, we selected a corpus that is comparable in size, composition and annotation to those of 
the other languages. Specifically, we selected 17 sessions that document speech from the 
Netherlands (i.e. excluding Flanders), on the one hand, and that corresponds to spontaneous 
conversations (rather than read speech or similar). Furthermore, we only selected sessions that 
include reliable phonetic transcription and word alignments as well as syntactic annotation. Four 
of these sessions document face-to-face interviews of teachers and 13 sessions document 
spontaneous face-to-face dialogues. 
 
<Table 1> 
 
2.2. Phones, syllables, morphs, and words in our data 
All data were transcribed, translated, morphologically analyzed (except for Dutch), and annotated 
with part-of-speech tags by language experts. The transcriptions apply practical orthographies, 
most of which are in use in the language communities and which are all close to a phonological 
transcription, with the exception of English and to some extent Dutch. (The Sakha and Even data 
are represented in Latinate orthographies that are transliterated from the Cyrillic script in use in 
the communities.) We use the number of orthographic characters as a proxy for the number of 
phones – realizations of phonological segments – as a basic unit in our analyses, as explained in 
detail in section 3.4.1. Our data are not annotated for syllables, and therefore we do not use 
syllables as a unit in our analyses. We indirectly control for polysyllabic shortening by including 
word length (in number of phones) as a factor in our analyses (see section 3.4.1).  
 The segmentation of our data into morphs – realizations of morphemes – is based on 
segmental morphemes throughout, i.e. it disregards suprasegmental marking, such as tonal 
morphemes, and cumulative exponence, i.e. a situation where different categories, e.g. number and 
case, are expressed by a single, indivisible marker. The languages in our sample differ widely in 
their degree of morphological complexity (i.e., in the number of morphs per word), ranging from 
an almost isolating language like Nǁng with on average 1.14 morphs per word to morphologically 
complex languages like Even or Bora with on average 1.91 and 2.21 morphs per word, respectively 
(see Table 3 for details). Section 3.3.3 discusses how such differences in morphological 
complexity affect frequential properties of words in the context of the current study. In the 
orthographic conventions used in our data, word units approximate prosodic words by typically 
representing clitics as affixes and writing compounds as one word. While there may be differences 
across corpora in the treatment of clitics and compounds as separate words, the same word 
segmentation was used for deriving relevant measures within each language, in particular 
regarding word durations, word length, and morphological complexity. For examples, see the 
complete lists of words extracted from the corpora and used in our study in Appendix A. 
 
2.3. Time alignment  
To study phonetic word durations, we require exact identification of word start and end times in 
the audio signals. The Dutch and English data we used were already time-aligned with audio 
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signals, providing us with such measurements. The eight documentation corpora were segmented 
into “annotation units” during transcription, which were time-aligned with audio, mostly for 
practical purposes, e.g., to display transcription and translations in the manner of subtitles. Such 
“annotation units” roughly correspond to utterances (and will be referred to as such in the 
remainder of this paper), but their size and the definition of their boundaries vary between the 
languages used here. While for some languages (like Texistepec), annotation units usually 
comprise only one clause, for others (e.g. Bora), such units are usually longer and might be better 
characterized as paragraphs (see Table 1 for average annotation unit lengths per language). Within 
these manually time-aligned annotation units, data were time-aligned at the phoneme level using 
the (Web)MAUS software (Kisler, Reichel & Schiel 2017), as described in Strunk et al. (2014; for 
similar approaches, see Sóskuthy & Hay 2017; Babinski et al. 2019). The word start and end times 
derived from WebMAUS’ output were then manually checked and noticeable errors were 
corrected by listening through the sessions once or twice. 
 
2.4. Data selection for current study 
The initial data set contains a total of 318,431 words (Table 1). To optimally study the various 
factors that potentially affect word duration, we reduced this data set to a smaller set in a number 
of steps (Table 2). We first excluded all disfluent words, such as filled pauses like uh or uhm, false 
starts, and unclear words, i.e. words that could not be identified during transcription. We then 
excluded all words belonging to word classes other than the major content word classes nouns and 
verbs, and – among these – ambiguous words containing both a nominal and a verbal root. 
 
<Table 2> 
 
Only retaining nouns and verbs means that we excluded all function words, such as adpositions, 
auxiliaries, or pronouns. There are various reasons to exclude these from a study on word 
durations. First, previous research has shown that the durations of content words are affected 
differently than those of function words by some factors, most importantly, word frequency: While 
the duration of content words was significantly affected by word frequency in a study by Bell et 
al. (2009: 104), this was not the case for function words. Excluding function words is furthermore 
in line with other recent studies on word frequency and predictability in English, such as Seyfarth 
(2014: 143) and Sóskuthy & Hay (2017: 301), which also exclusively focus on content words. 
Another reason for retaining only nouns and verbs is that we can only compare word classes that 
can reliably be identified cross-linguistically. This is arguably the case for nouns and verbs 
(Haspelmath 2001; Kemmerer 2014; cf. also Seifart et al. 2018), while other word classes, 
including function words as well as, e.g., adverbs and adjectives are much more difficult to define 
cross-linguistically. Finally, note that when comparing a set of typologically very diverse 
languages, we cannot expect them to use comparable numbers and kinds of functional elements, 
especially since there are large differences in morphology between the languages in our sample 
(see Table 3, below). Accordingly, Himmelmann et al. (2018) report large differences between 
languages in the average number of words per intonation unit due to these differences in the use 
and nonuse of morphosyntactically independent function words. For instance, adverbial meanings 
might be expressed by adverbs in some languages, but by verbal inflection in others. The data set 
resulting from these reduction steps consists of 132,691 noun and verb tokens that were used to 
create frequency lists for the ten languages (further discussed in section 3.3.2).  
 For our study of word durations, we limit the analyses to the 100 most frequent word types 
(both nouns and verbs) in each language (details of this procedure will be discussed in section 
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3.3.2). For the purpose of identifying the 100 most frequent words (see Appendix A), word types 
are ranked according to their absolute frequencies in decreasing order. In order to resolve ties, we 
used document frequency as a second sorting level, that is, words that occurred in a higher number 
of different texts in a language/corpus were ranked higher than words of the same frequency that 
occurred in fewer different texts. Remaining ties were then arbitrarily resolved by the order of 
appearance of a word type in the corpus. 
 Limiting the analyses to the 100 most frequent word types has five advantages: First, it 
allows us to focus the statistical analysis on word types with (relatively) reliable frequency 
estimates. Second, the size of the data sets is comparable across languages. Third, it keeps the 
amount of analyzed data manageable, so that data can be manually checked (e.g. for peculiarities 
in word lists, see below). Fourth, this procedure also reduces the problem of violating the 
assumption of statistical independence between cases in regression modeling (cf. Bell et al. 2009: 
99) because it makes it less likely to pick multiple words from one and the same utterance, whose 
durations might influence each other or at least be due to the same overall speech rate within this 
one utterance. Finally, cutting off the long tails of the frequency distributions allows fitting models 
with standard normality assumptions. Following the above procedure, on average, 0.74 word 
tokens were sampled from each utterance in our corpus, which contain an average number of 6.12 
words per utterance, so that cases where multiple words were picked from one and the same 
utterance are relatively rare. From these 100-word lists, we further manually removed potential 
candidates for auxiliary-like elements (that is, functional verbs) that had been annotated as verbs 
in the corpora (e.g. copular or modal verbs) using blacklists. In addition, we also manually 
removed proper names. If a word was manually removed, then the 101st most frequent word was 
included to complete the 100-word list and so on. Appendix A provides the resulting final 100-
word lists for each language, including information on word type, gloss, word class, different 
measures of frequency, as well as the mean word duration and word articulation rate for each word 
type. Appendix B provides tables of the word types that were manually excluded for each 
language, such as auxiliary-like elements or proper names. Manual inspection of the 100-word list 
for Chintang also led us to create a variant, reduced version of the corpus of this language, called 
“Chintang (no pear stories)”, as explained in section 3.3.1.  
 The final data sets for each language that were used in our analysis (last column of Table 2) 
basically comprise all tokens of the 100 most frequent word types in that language, with the 
additional constraint, however, that all one-word utterances were excluded because we expect 
irregular behavior with respect to utterance-final lengthening and because we can avoid arbitrarily 
defining our independent variable word position as either zero or one for all one-word utterances 
(cf. section 3.4.3.).  
 
3. Methods 
 
3.1. Statistical modeling  
Prior to modelling, i.e. carrying out multivariate statistical analyses, we plotted our data and 
inspected it for simple correlations between word duration and word frequency (results are 
reported in section 4.1). We then built linear mixed-effects models to study the effects of word 
frequency and word class, and to compare the effects of a total of six factors (each explained in 
more detail in sections 3.3-3.4), while controlling for the remaining factors, respectively, and also 
taking random variation between speakers and texts into account. These models were built using 
the statistical software R, in particular the lme4 library (Bates et al. 2015; R Core Team 2018; cf. 
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also Sóskuthy & Hay 2017). Since our main goal is a comparison of word frequency effects and 
other effects across different languages, we need to make sure that the results from all languages 
are comparable. We therefore carried out parallel statistical analyses of our ten individual corpora, 
keeping the set of explanatory variables and the model structure as constant as possible.2 We also 
refrained from model selection procedures within each language because these make the results 
more difficult to compare across languages (cf. also Sóskuthy & Hay 2017: 307). We also decided 
not to make models more complex by including possible interactions between independent 
variables. The structure of the statistical model applied to each of our ten languages is given in (1) 
using the formula notation of R (where the tilde separates the dependent variable to the left from 
the independent variables to the right, a plus sign separates the individual independent variables, 
and terms having the structure “(1|…)” are random effects). The dependent variable as well as the 
fixed and random factors (and the fact that we log-transformed some of them following common 
practice in the literature) will be explained in more detail in the following sections. 
  
(1) log(word duration) ∼ log(relative frequency) + word class + word length + number of 

morphs + position + log(local speech rate) + (1|speaker) + (1|text) 
 
 We use three kinds of statistical results to assess the effect of a given factor in a given 
language, and to compare these across languages: 
1) We establish whether a given factor has a statistically significant effect on word durations in a 

given language or not using likelihood-ratio tests comparing a statistical model including this 
factor with one omitting it. The results are given in the form of a χ² test including the resulting 
p-value in Tables 4-5. 

2) The strength of individual factors can also be compared among each other by looking at the 
standardized β coefficients. These express the effect of an explanatory variable on the 
dependent variable in terms of standard deviations (a measure that abstracts away from 
different units, such as the number of morphs or phones per second used to measure speech 
rate), that is, they answer the question by how many standard deviations the dependent variable 
is increased or decreased by increasing the explanatory variable in question by one standard 
deviation. This standardization enables the identification of the most important factors 

 
2 An alternative to carrying out ten separate analyses would have been to build one large model that includes language 
as a fixed or random factor and possible interactions between the factor language and the other explanatory variables. 
However, there are two reasons for using separate but parallel models, i.e. for the approach adopted here: First, the 
strength and direction of the effects of the various factors in such a large model involving complex interactions would 
be much harder to interpret. Second, the exact meaning of the explanatory variables also varies slightly from language 
to language. Take as an example the explanatory variable word length: Due to differences in orthographic systems, a 
word length of five phones may represent slightly different average word lengths in actual phonological segments in 
different languages if one language’s orthography uses more digraphs or trigraphs than that of another language. 
Likewise, since our corpora for the ten individual languages differ somewhat in size, word frequencies in the different 
corpora are again not completely comparable. Such measures could be made more comparable, for example, by 
centering and scaling them (cf. also Seyfarth 2014; Sóskuthy & Hay 2017) within individual languages. However, we 
decided to deal with this by relying on ten parallel models and include variables without centering and scaling to allow 
for easier interpretation of the effects of the explanatory variables measured on their original scales (for example, in 
terms of the number of phones or morphs). Note, however, that we address comparability across languages by 
additionally providing standardized coefficients in the model summaries below and in Appendix D. These allow for a 
comparison between the strengths of the effects of the different variables in one model and the same variable across 
models.  
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influencing word duration within one language and also allows for a comparison of effect sizes 
and effect directions between languages. 

3) Finally, we also estimate the strength of the effect of individual factors by calculating the 
contribution of an individual factor to the overall observed variation in word duration that our 
statistical models can explain (so-called R²). This is done by estimating the difference (or more 
precisely, percentage change) in the variance explained (technically known as ΔR2%) between 
a model which includes the factor in question and a model where it has been left out (following 
Aylett & Turk 2004: 44; Bell et al. 2009; Sóskuthy & Hay 2017: 308). We rely on proposals 
by Nakagawa & Schielzeth (2013) and by Johnson (2014), as implemented in the R library 
MuMIn (Bartoń 2018) in order to calculate the contribution of an explanatory variable to the 
variance explained by the fixed effects (marginal ΔR2(m)%) and to the variance explained by 
both fixed and random effects (conditional ΔR2(c)%) in our mixed-effects models. In addition, 
we also calculate how much of the explained variance can be uniquely attributed to the factor 
in question (the so-called semi-partial R2). Our calculation here is again based on Nakagawa 
& Schielzeth (2013) and Johnson (2014), using an implementation from the R library r2glmm 
(Jaeger 2017). The most informative of these three measures for our purposes is marginal 
ΔR2(m)% so that we only provide this measure in the summary table 5 below, while we list all 
three measures in the more detailed table 4 on the effect of word frequency and in Appendix 
D providing details on the individual mixed effects models. 

 
 
3.2. Dependent variable: word duration 
Word duration (measured in seconds) is the dependent variable in our statistical models. Following 
Bell et al. (2009) and Seyfarth (2014: 144), we use the logarithm of word duration (in our case, 
the natural logarithm) for two reasons: Firstly, log-transforming word duration makes its 
distribution slightly more normal. Secondly, we are interested in relative changes in duration rather 
than absolute ones (cf. Bell et al. 2009: 98): For instance, an increase in duration of 50 milliseconds 
is more substantial for a short word of 100 milliseconds than for a long word of 500 milliseconds. 
Note that after controlling for word length (see section 3.4.1), word duration will also be indicative 
of the relative duration of words compared to the average duration of words with the same number 
of phones and thus indirectly also of their articulation rate (measured in phones per second), which 
is also sometimes used as a variable in other studies. Recall that word durations in the current study 
were calculated based on automatically aligned and subsequently manually corrected word start 
and end times (see section 2.3).  
 
3.3 Predictor variables 
 
3.3.1 Word frequency 
Our first independent variable of theoretical interest is word frequency. Based on studies of word 
frequency and word duration in English (Whalen 1991; Gahl 2008; Bell et al. 2009; Seyfarth 2014, 
among others), it is expected that more frequent words will have a shorter duration on average than 
less frequent words. However, the question that the current study asks is whether such effects will 
be detectable in the kind of language documentation data used here. To keep results comparable 
across the languages in our sample, we count word frequencies only in the corpora included in our 
sample for all the languages (first column of Table 1), even if alternative corpora would have been 
available, as is the case for English and Dutch, and to some extent Sakha and Chintang (for studies 
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on acoustic reduction and frequency based on large corpora of English and Dutch see, e.g., 
Pluymaekers, Ernestus & Baayen 2005; Seyfarth 2014).    
 To obtain word frequency counts, we use identical word forms as a definitional criterion for 
word types whose frequencies are counted, following the literature on English (Seyfarth 2014; 
Sóskuthy & Hay 2017: 301). That is, we count, e.g., tokens of say separately from tokens of says. 
We additionally require two tokens of the same word type to have identical morphological 
segmentations and glosses to distinguish homographs like Bora iñe ‘this’ vs. iñe ‘moriche palm’. 
However, this latter requirement could not be applied to the Dutch corpus, for which no glosses or 
morphological segmentation are available, nor to the English corpus, for which no glosses are 
available, since these two corpora were not annotated with traditional morphological glossing used 
in language documentation projects. 
 Across languages with very different morphological systems, the frequential properties of 
words also differ. For instance, in polysynthetic languages, one will find many long word forms, 
of which even the most frequent have a low frequency compared to the frequencies of words in 
isolating languages. For example, in Chintang about 1,800 different verb forms for each verb are 
in regular use (Stoll et al. 2012), compared to just four in English (e.g., play, plays, played, 
playing). Because of such differences, in, e.g., the Baure corpus, four of the five most frequent 
word forms are forms of the verb say (see Appendix A). However, the differences in frequency 
between the most frequent words in, e.g., morphologically complex Bora compared to, e.g., 
morphologically simple English are not overwhelming in our data (see Appendix A). Therefore, 
in the current study, we apply the traditional word-form frequency measure, but take such 
differences into account in our interpretation of the results, and identify here as a question for 
future research whether, for morphologically complex languages, frequency counts should better 
be based on roots or (potentially derived) lemmas, rather than (inflected) word forms.  
 Since the corpora we used for the ten languages in our sample vary in size from about 18,000 
words for Baure to about 56,000 words for English (cf. Table 1), we normalized word frequency 
scores by using relative frequencies (calculated by language/corpus) instead of absolute 
frequencies.3 Following Bell et al. (2009), we log-transformed relative frequencies, since this leads 
to a somewhat more normal distribution of word frequencies; see also Seyfarth (2014) and 
Sóskuthy & Hay (2017), who, however, use log-transformed absolute frequencies. 
 As one strategy to avoid using unreliable frequency estimates especially for relatively rare 
words, we only analyze here the 100 most frequent word types (nouns and verbs) in each language.4 
These range in absolute frequency from 803 tokens (corresponding to a relative frequency of 
0.0143) for the most frequent word in English to 9 tokens (corresponding to a relative frequency 
of 0.0005) for the least frequent word in the 100-word-types list for Baure. However, even among 
these words, we can clearly observe effects of small corpus size and the necessarily limited 
representativeness of the speech they document. This becomes apparent when inspecting the 100 
most frequent word types in the complete corpus of Chintang (cf. Appendix A), which include 
such unusual items as ebhokad ‘avocado’, saikal ‘bicycle’ and heŋga ‘bamboo basket’ in 4th, 19th, 
 
3 Using frequency ranks instead of relative frequencies would have been another alternative (cf. also Bell et al. 2009: 
100). However, frequency ranks lose potentially important information about the ratio of different frequencies, for 
example, about how many times more frequent the most frequent word is compared to the second most frequent word. 
4 A different approach was taken in an earlier study on a similar data set (Seifart et al. 2018), which aimed to control 
for word frequency. In that study, word type was included as a random factor in statistical models since this captures 
all aspects of word type’s familiarity (and therefore its production and retrieval probabilities), including its frequency. 
In contrast, the approach in the current study is to explore the use of word frequency estimates on their own and to 
make explicit the methodological issues involved. 
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and 27th place, respectively. Their unexpectedly high frequency is due to the fact that 22 texts out 
of the 40 texts in the Chintang corpus are retellings of the Pear Story stimulus film (Chafe 1980), 
which involves the plucking of pears, identified as avocados by Chintang speakers, and a bicycle 
accident. As will be seen in section 4.2., results on word frequency effects in the Chintang corpus 
that includes the Pear Stories also clearly differ from the results for all the other nine languages.  
 We therefore created a second version of the Chintang corpus for our analyses from which 
we excluded all retellings of the Pear Story, called Chintang (no pear stories) in the following. 
This allows us to explore whether the fact that ordinarily less frequent words appear in the list of 
most frequent words due to corpus composition distorts our results on the effect of word frequency 
on word duration. The Chintang corpus (before the removal of the Pear Stories) was clearly the 
most skewed corpus in terms of contents, but - to a lesser extent - the top 100 word types in the 
other language documentation corpora also reflect the content of the included texts, and some of 
these lists appear rather different to typical lists of the top 100 word types derived from very large 
corpora available for English and other major languages (see Appendix A). This is particularly 
apparent in words that are attested in one individual text only (document frequency = 1) but that 
still make it onto the 100-most-frequent-word-types list because they are so frequent in that one 
text, and because there is an overall limited number of texts. This is why the words for ‘frog’, for 
example, are included in the Bora list (64th place) and the Hoocąk list (10th place, document 
frequency 2). 
 To evaluate our word frequency estimates, we plotted frequency ranks against absolute 
frequencies (in Appendix C). This confirms that word frequencies in the ten languages do indeed 
follow a typically Zipfian distribution (Zipf 1949), i.e. the most frequent word is about twice as 
frequent as the second most frequent word and about three times as frequent as the third most 
frequent word, etc. We take this as an indication of the validity of our word frequency measures. 
 Note that, in addition to unigram frequencies, that is, word frequencies proper, word 
durations are also known to be affected by a word’s (backward or forward) predictability in context 
(usually estimated using bigram or trigram language models). Predictability effects capture, for 
instance, the fact that the word board in across the board may be pronounced faster because it is 
very likely to occur in the context of across the. The recent literature on English in fact argues that 
predictability in context (conditional probability) is a better predictor than (unigram) frequency for 
reduction effects (Aylett & Turk 2004; Bell et al. 2009; Demberg et al. 2012; Seyfarth 2014; 
Sóskuthy & Hay 2017) and for other processing effects (McDonald & Shillcock 2001; Baayen 
2010; Piantadosi, Tily & Gibson 2011). Both Seyfarth (2014: 147–148) and Sóskuthy & Hay 
(2017: 305–306), for example, report mostly non-significant word frequency effects if word 
informativity (defined as a word’s average predictability in context) is also included in the same 
statistical models and discuss the effect of collinearity between word frequency and word 
predictability/informativity. However, frequency measures, as used in the current study, do capture 
predictability effects at least to some extent, for two reasons. Firstly, frequency and predictability 
measures have been shown to be highly correlated in various languages, despite detectable 
differences (Piantadosi, Tily & Gibson 2011); and secondly, in the subset of morphologically 
complex languages, word forms are highly contextualized and unigram frequency estimates 
capture this dependency to some extent.  
 
3.3.2 Word class 
Word class (nouns vs. verbs) is the second independent variable of theoretical interest in our study. 
Word class has not been widely studied as a factor relevant to phonetic word duration. However, 
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a study on a data set similar to the one used here (Seifart et al. 2018) found a robust effect of word 
class in that the mean articulation rate of words occurring in time windows just before nouns was 
slower compared to words occurring just before verbs. Earlier (preliminary) analyses had also 
found that verbs themselves were pronounced faster than nouns themselves (Seifart & Strunk 
2015). This is in line with the results reported in studies on predictability and word duration in 
English that did include word class/part-of-speech as a control variable, although they did not 
further interpret these results (like Seyfarth 2014: 145–146; Sóskuthy & Hay 2017: 305). Based 
on these earlier results, we predict that verbs in our data set will have a shorter duration compared 
to nouns when other factors are taken into account at the same time. 
  To study the effect of word class (nouns vs. verbs) on word duration, we use the word-class 
category of the lexical root contained in a word, as identified by language experts through manual 
annotation using language-specific criteria. Even though individual words may be nominalized or 
verbalized, in our data, this occurs in less than 5% of nouns and verbs, as manual inspection of 
about 10% of the corpora of each of the languages studied here revealed. Using the category of the 
lexical root also captures more closely the distinction between “object words” and “action words”, 
which is known to be more relevant to language processing than the syntactic surface categories 
of words (Vigliocco et al. 2011; Kemmerer 2014). 
 
3.4 Control variables 
 
3.4.1 Word length  
A word’s length in terms of number of phones obviously strongly influences its phonetic duration, 
and must therefore be controlled for when studying the effect of frequency and word class on word 
duration. We did this by including word length (the number of phones) as a baseline control 
variable in our models of word duration. The number (and kind) of phones contained in the lexical 
representation of word forms are expected to explain most of the variation in the duration of 
different words, since words containing more phones will naturally have a higher duration on 
average than words containing fewer phones.  
 As mentioned above (section 2.2), we use the number of orthographic characters as a proxy 
for the number of phones (cf. also Seyfarth 2014: 144–145). This is relatively unproblematic for 
the fieldwork corpora because these use orthographies that are close to phonological transcription. 
But even for languages with deep, historically grown orthographies, such as English and Dutch, it 
has been shown that the correlations between word length in orthographic characters and word 
length in phonological segments are extremely high (Piantadosi, Tily & Gibson 2011), justifying 
our approach also for these languages. However, since the languages in our sample do differ in the 
complexity of their orthographic systems and their propensity to use digraphs and trigraphs, the 
exact meaning of the variable word length in terms of the actual number of phones does differ 
slightly between languages, which is one more reason why we chose to build separate statistical 
models for the individual languages rather than one complex model covering all of them at the 
same time (see section 3.1.). 
 Table 3 gives an overview of the distribution of word lengths in the ten languages in our 
sample (in addition to their morphological complexity, cf. section 3.4.2). Since a log-
transformation does not lead to a more normal distribution of the variable word length, we follow 
Sóskuthy & Hay (2017) in using the raw number of phones rather than log-transforming it (cf. also 
Seyfarth 2014: 144–145). 
 



 
 

 15 

<Table 3> 
 
Note that the factor word length correlates with word frequency, due to the well-known fact that 
more frequent words tend to be shorter than less frequent words (Zipf 1935; Piantadosi, Tily & 
Gibson 2011). Note also that, in some recent studies on English (such as Seyfarth 2014; Sóskuthy 
& Hay 2017), word length in terms of number of phones (or orthographic length) is used as only 
one measurement among a number of related measures of word length. Among the commonly 
used additional measures are the number of syllables in a word and average syllable duration. 
Other recent studies attempt to predict a word’s expected duration based on its phonemic content 
(Tang & Bennett 2018) or to predict the expected duration of a word in the actual context it appears 
in by using a text-to-speech system (TTS) (Seyfarth 2014). As there are no trained text-to-speech 
systems for the languages in our corpus, except for Dutch and English, we cannot use this more 
sophisticated baseline control variable.5  
 Note that by including word length as a control factor, we also control, to some extent, for 
polysyllabic shortening, i.e. for the phenomenon that longer words are expected to be pronounced 
faster in terms of phones per second.  
 
3.4.2 Morphological complexity 
The second control variable in our model is morphological complexity, i.e. the number of morphs 
that a word form is composed of. The reason for including this control variable is that the additional 
effort of assembling a complex word might be reflected in slower pronunciation. Consider, for 
example, the perfectly normal and frequent Chintang verb form ma-u-tup-yokt-a-ŋ-nɨ-hẽ 
(NEGATIVE-3.SUBJECT-meet-NEGATIVE-PAST-1SG.OBJECT-PLURAL.SUBJECT-INDICATIVE.PAST) 
‘They did not meet me’. It is important to control for this given that the ten languages in our sample 
differ widely in their degree of overall morphological complexity (see Table 3). Recall that the 
Dutch corpus we use does not provide morphological segmentations of words and that therefore 
we omitted this variable from the analysis of the Dutch data. Since English is not particularly 
morphologically complex, this variable has typically not been included in studies on English word 
duration (for example, Bell et al. 2009; Seyfarth 2014; Sóskuthy & Hay 2017). Relevant studies 
so far report contradicting results on the effect of morphological complexity on word duration: 
Warner et al. (2006) report a null effect in an experimental study on Dutch which compared 
homophonous verb forms with and without a morphological boundary. But Plag et al. (2017) show 
that segments such as English word-final s are longer if they represent separate morphemes than 
non-morpheme counterparts.  
 One might think that because we focus here on the 100 most frequent word types in each 
language, morphological complexity might be less relevant for the following reason: These more 
frequent words might have a lower average morphological complexity and less variation in 
morphological complexity than less frequent words, which we exclude. However, note that we do 
include parts of speech that tend to be morphologically complex (nouns and, especially, verbs), 
while we exclude those that tend to be morphologically simple (function words, particles, etc.). At 
any rate, inspection of these sets of 100 word types (see Appendix A) clearly shows that they in 

 
5 We also worry that using predictions of word duration derived from a statistically trained text-to-speech system as a 
control variable (Demberg et al. 2012) may actually model variation in word duration as part of this baseline that is 
due to other, theoretically more interesting variables and thus lead to underestimating the importance of these 
theoretically more interesting variables because the TTS model has learned relevant regularities from its training 
corpus. 
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fact contain many morphologically complex words: They consists of about 1.5-2.0 morphs on 
average for most languages, except Nǁng with 1.16 morphs and English with 1.24 morphs. 
 
3.4.3 Word position 
Word duration is not only determined by properties of word forms, as captured by the factors 
discussed so far, but also by the position of a word (token) in an utterance, in particular with respect 
to the boundaries of prosodic units, such as intonation phrases and utterances. Utterance-final 
lengthening effects, and to a lesser extent utterance-initial lengthening effects, are well-
documented for English and other languages (Oller 1973; Klatt 1976; Yuan, Liberman & Cieri 
2006; Fletcher 2010). To control for word position effects across languages, we include the 
position of the target word in the utterance as another control factor (cf. also Aylett & Turk 2004: 
41; Sóskuthy & Hay 2017; a different approach is taken by Seyfarth 2014 who excludes all words 
adjacent to potential utterance boundaries). We normalize position by the length of the utterance 
so that it ranges from 0 (first word in the utterance) to 1 (last word in the utterance). The normalized 
position of the ith word (counting from 1) in an utterance containing n words is defined as (i − 
1)/(n − 1).  
 Utterances in the current study are defined as the annotation units that were set by language 
experts during the transcription of the data. Recall that their size and exact definition varies 
between the languages studied here (see section 2.3). In particular, longer annotation units may 
include more than one prosodic phrase, each of which potentially exhibits lengthening effects at 
its boundaries. Moreover, it is well known that final words (and within final words, final segments) 
are disproportionately strongly affected by such boundary-adjacent lengthening, while penultimate 
and antepenultimate words are not or hardly affected (Yuan, Liberman & Cieri 2006; Turk & 
Shattuck-Hufnagel 2007). Therefore, a word’s position in an utterance as coded in the current 
study is a rather coarse measure to capture boundary-adjacent lengthening. We chose this measure 
here in order to have a measure of position suitable for all data available for each language in the 
current study. A related study comparing the same languages specifically with respect to utterance-
final lengthening (Seifart et al. In press) chose to define word position more carefully by only 
considering comparisons among the final four words of utterances, at the expense of discarding 
more than 75% of the available data.  
 
3.4.4 Local speech rate 
A word may also be pronounced relatively quickly or slowly simply because it is embedded in an 
utterance with high or low overall speech rate. In order to control for this effect, we include local 
speech rate as a variable in our models of word duration, following Bell et al. (2009) and Seyfarth 
(2014), among others. We calculate local speech rate as the number of phones per second in the 
complete utterance that contains the target word, where, again, utterances are defined as annotation 
units set by language experts. In this calculation, we include (silent and filled) pauses when 
measuring the length of the utterance but exclude the target word itself by subtracting its length in 
phones from the overall number of phones in the utterance and its duration from the overall 
duration of the utterance. Unlike in the current study, in previous studies, (local) speech rate has 
usually been calculated based on syllables. For example, Seyfarth (2014: 144) used the number of 
syllables per second, while Sóskuthy & Hay (2017: 305) used the average syllable duration, that 
is, the inverse speech rate. However, the fieldwork corpora used here are not annotated for syllable 
boundaries, and therefore, we calculate speech rate in phones per second instead.  
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3.5. Random effects 
Speech rate modulations, including articulation speed, are well known to vary strongly between 
individual speakers (e.g., Johnson, Ladefoged & Lindau 1993; Jacewicz et al. 2009). To account 
for such variation, we include what is called a random effect or random intercept (as opposed to 
the fixed factors described in section 3.4) for speaker in our mixed-effects models. We deal with 
this variation in the form of a random effect, rather than as fixed effect (predictor or control) 
variable, because we are not interested here in sociolinguistic differences between speakers, and, 
accordingly, these have not been strategically sampled. Another source of variation are differences 
between individual texts and recordings included in the corpora used here and between the genres 
they represent (e.g., traditional narratives vs. conversation). Therefore we include another random 
effect for text in our ten mixed-effects models.6 The inclusion of both of these is a standard 
procedure in recent studies on word duration (e.g., Bell et al. 2009; Seyfarth 2014; Sóskuthy & 
Hay 2017).  
 As mentioned above (footnote 4), a previous study on a similar data set also included random 
effects for word type (Seifart et al. 2018), as an implicit way of controlling for word familiarity 
(including frequency), while in the current study, we attempt to study frequency effects more 
directly and therefore chose not to include a random effect of word type. Note also that some 
studies include both: for instance, Seyfarth (2014: 147) included both word frequency as a fixed 
effect and word type as a random effect in his mixed-effects models. However, this is potentially 
problematic since word frequencies can be considered as properties of word types, and thus 
including random effects for word type may actually model some of the variation in word duration 
that we would otherwise attribute to word frequency (as Seyfarth 2014: 147 himself notes). 
 
 
4. Results and discussion 
 
4.1. Simple correlations between word frequency and word duration  
To get a first impression of the effects of word frequency on word duration, we plotted frequency 
ranks for the 100 most frequent word types (nouns and verbs) on the x-axis against ranks of average 
word durations (as given in the tables in Appendix A) on the y-axis (Figure 2). We then calculated 
simple bivariate correlations (i.e. not controlling for word length or other factors) between word 
frequency ranks and mean word duration ranks using the Spearman rank correlation coefficient. 
As can be seen in Figure 2, the correlations between word frequency and word duration are 
negative in all languages except in Chintang. That is, a higher frequency is associated with a lower 
mean word duration, as expected, in nine out of ten languages. In the complete Chintang corpus, 
there is also a negative correlation, but it is very weak. In the reduced Chintang corpus (without 
the Pear Stories), there appears to be an unexpected, but even weaker positive correlation (more 
frequent words tend to have longer mean durations). 
 
<Figure 2> 
 
4.2. Frequency effects in linear mixed-effects models 

 
6 Since we do not further discuss random effects below, we also note here that in some of our corpora, one speaker 
usually only occurs in one text and one text usually contains utterances from only one or two speakers. In these cases, 
the random effects for speaker and text are so strongly correlated that only one of them turns out significant in the 
multivariate model (cf. Appendix D). 
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Our statistical analysis simultaneously assesses the effects of word frequency and the other factors 
introduced above using linear mixed-effects models for each of the ten languages (plus the reduced 
Chintang corpus without the Pear Stories) based on the model structure given in Formula (1) above. 
This procedure allows us to study the effect of frequency and word class, which we are most 
interested in, while controlling for the effects of the other variables (word length, morphological 
complexity, position, and local speech rate). Detailed results for fixed and random effects for these 
eleven models are provided in Appendix D. Before we turn to the discussion of word frequency, 
word class, and the other individual factors, we note here that the results summarized in Table 4 
show that the multivariate models for the ten languages (as a whole) are each able to explain a 
fairly large proportion of the variance in word duration, as indicated by the R2 values (in columns 
3 and 4 of Table 4): These range from 0.2977 to 0.5682 for conditional R2(c) (taking both fixed and 
random effects into account) and from 0.2328 to 0.5145 for marginal R2(m) (considering fixed 
effects only) (a model able to predict variation in word duration perfectly could attain a theoretical 
maximal R2 value of 1). The model for Hoocąk shows the best performance overall, while the two 
alternative models for Chintang explain the least amount of variance in word duration and, 
consistent with the lack of clear correlations for Chintang in Figure 2, they have the worst 
performance of all eleven models evaluated here. 

Table 4 also summarizes the effect of (log) word frequency on (log) word duration, which is 
additionally visualized in the form of effects plots in Figure 3. As Table 4 and Figure 3 show, there 
is a statistically significant negative effect of word frequency on word duration, i.e. the effect we 
expected, in seven out of our ten languages (Baure, Dutch, English, Even, Nǁng, Sakha, and 
Texistepec), confirming results from the simple bivariate correlations for these languages. 
According to the standardized β coefficients (which measure the influence of a predictor on the 
dependent variable in terms of standard deviations and can therefore be used to compare different 
predictors to each other and to compare one and the same predictor across different models), the 
effect of word frequency is strongest (in the negative direction) in English (β = -0.2858) followed 
closely by Sakha (β = -0.1927) and Dutch (β = -0.1866). Baure, Nǁng, Even, and Texistepec exhibit 
a slightly weaker but still comparable negative effect of word frequency on word duration, with β 
values of -0.1597 (Baure), -0.1414 (Nǁng), -0.1151 (Even), and -0.0959 (Texistepec), respectively. 
In one language, namely, Hoocąk, word frequency also has a small negative effect on word 
duration (β = -0.0118) but does not make a significant contribution to the model according to the 
likelihood ratio test.  

In Bora, the effect of word frequency is positive against the prediction but very small (β = 
0.0038) and word frequency is again not a significant predictor in the model according to the 
likelihood ratio test. It is surprising that there is no significant word frequency effect in the 
multivariate model for Bora given the strong correlation between frequency and duration (as 
plotted in Figure 2). However, additional testing showed that the correlation between the two 
predictors word length and word frequency is particularly strong for our Bora data set (including 
the 100 most frequent words, nouns and verbs only), compared to the other languages. This fact 
may perhaps make word frequency somewhat redundant in the multivariate model of word 
duration for Bora. 
  An even more surprising result is that word frequency has a significant positive effect on 
word duration for the entire corpus of Chintang (with a relatively small β coefficient of 0.0660) 
(cf. Figure 3). This result would suggest that in Chintang, more frequent words have longer 
durations, i.e. are pronounced more slowly than less frequent words, which goes against our 
expectation and is also at odds with the fact that the bivariate correlation between word frequency 
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and word duration was negative also for Chintang. However, recall that the frequency counts 
sampled from this Chintang corpus were heavily biased towards the idiosyncratic content of the 
Pear Stories and this results in high relative frequencies for otherwise uncommon words like 
avocado and bicycle. However, in the reduced Chintang corpus (without the Pear Stories), the 
effect is still in the unexpected positive direction (β = 0.0257). The likelihood ratio test indicates 
that word frequency does not make a significant contribution to predicting word durations, but we 
cannot exclude the possibility that this is an artefact of the reduced sample size. As noted above, 
Chintang is also exceptional with regard to the overall R2 achieved by our models: The marginal 
R2 value of 0.2328 for the entire Chintang corpus is the lowest of all ten languages in our sample, 
and the marginal R2 value of 0.2892 for the reduced Chintang corpus without the Pear Stories is 
only slightly better than the one for the complete Chintang corpus.   
 
<Table 4> <Figure 3> 
 
To further evaluate the importance and size of the effect of word frequency on word duration in 
our ten languages, we calculated several alternative measures of the amount of variance in word 
duration that the factor word frequency can explain (cf. columns 6 to 9 in Table 4), that is, the 
portion of the variance that is uniquely explained by the predictor word frequency in our models. 
While languages differ somewhat with regard to the amount of this variance, the values for 
marginal ΔR2(m) as well as for semi-partial R2 are generally in the same ballpark for those languages 
where word frequency has a significant negative effect: Percentage change in marginal R2 (ΔR2(m)) 
ranges from almost 20% in English (19.55%), 7.90% in Dutch, 5.84% in Baure, 5.72% in Sakha, 
3.94% in Nǁng, 3.20% in Even, to 1.64% in Texistepec, while semi-partial R2 values range from 
0.10 for English, followed by 0.05 for Dutch and Sakha, 0.03 for Nǁng, 0.02 for Baure and Even, 
to 0.01 for Texistepec (that is, values range from almost 20% of variation in word duration 
uniquely explained by word frequency in our English data to about 1% in our corpus of 
Texistepec). Values for ΔR2(m) and semi-partial R2 are negligible for Bora (ΔR2(m) = -0.02%, semi-
partial R² = 0, that is, the model actually improves after omitting word frequency) and Hoocąk 
(ΔR2(m) = 0.08, semi-partial R2 = 0), respectively, where the effect of word frequency is also not 
statistically significant according to likelihood ratio tests. The exceptional language Chintang, 
where the effect of word frequency is reversed, has intermediate values of 2.02% for ΔR2(m) and 
0.0049 for the semi-partial R2. While percentage changes of maximally around 20% (for English) 
in the variance explained by all fixed factors when the variable word frequency is added or 
removed (marginal ΔR2(m)) may not seem like a lot, it has to be kept in mind that we expect that 
most of the variation in word durations will already be explained by word length (that is, the 
number of phones in a word type). We take this up in section 4.4. 
 
4.3. Effects of word class on word duration 
The most important results regarding the effects of word class on word duration in our linear 
mixed-effects models are reported in Table 5 (β coefficients, ΔR2(m), and statistical significance 
based on likelihood ratio tests) and graphically represented in Figure 4 (detailed results are given 
in Appendix D). These show that in seven out of our ten languages, verbs have significantly shorter 
durations than nouns (Baure, both versions of Chintang, Dutch, English, Even, Sakha, and 
Texistepec). Word class is not a statistically significant predictor for word durations in Bora and 
Nǁng. Results on Hoocąk are exceptional in our sample in that verbs appear to have longer 
durations than nouns. This could possibly be due to word order: Additional testing showed that in 
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Hoocąk, even more so than in the other verb-final languages (like Even and Sakha), verbs are very 
often utterance-final, whereas nouns almost never occur in this position. Thus final lengthening 
would disproportionally affect verbs in this language. Interestingly, the effect of position in 
Hoocąk is also negative (that is, the later in an utterance a word occurs, the shorter it is, see Section 
4.4). It may thus be that the part-of-speech effect and the final lengthening effect cannot really be 
distinguished in the data for this language and therefore the effects of part-of-speech and position 
appear to be different than expected. 
 Note that results from our models on the factor word class do not mean that the absolute 
duration of verbs is shorter on average than the duration of nouns. Instead, the results show that 
word duration for verbs is shorter than that of nouns if the effects of word length and of 
morphological complexity (which are both usually higher for verbs than for nouns in the languages 
studied here) are accounted for. This procedure also accounts, in principle at least, for differences 
in word order, e.g. the fact that in verb-final languages, like Even, and Sakha, verbs would also be 
often affected by final lengthening. However, the potentially strong word position effects in 
Hoocąk still need to be appropriately dealt with in future research. 
 
4.4. Comparison of all six fixed factors in the linear mixed-effects models 
Results from our multivariate models on the comparison of the effects of all six fixed factors across 
the ten languages (frequency, word class, and the four control factors word length, morphological 
complexity, word position, and local speech rate) are also given in Table 5. Figure 4 shows the 
direction and strength of each of the six fixed effects in each language based on the standardized 
β coefficients. Recall that standardized β coefficients measure the effect a particular predictor has 
on the dependent variable in terms of standard deviations. This unitless measure allows for a 
comparison of effect sizes between different predictors (possibly originally measured using 
different scales and units of measurement) within and across models. Recall also that marginal 
ΔR2(m) values, as given in Table 5, measure the proportion of variance in word duration that the 
model is additionally able to predict when the fixed effect in question is added to the model. Both 
in Table 5 and Figure 4, we additionally provide significance stars based on likelihood ratio tests 
(cf. Appendix D for more details on the models for individual languages). 
 
<Table 5> 
 
As can be seen in Table 5 and Figure 4, the effects on word duration of the six factors studied here 
are similar across the ten languages in some respects, but also different in others. We compare 
their effects by discussing them one by one, starting with those whose effects are the most uniform 
across the ten languages, and then moving on to the ones where languages diverge. 
 The baseline control variable word length (in phones) uniformly leads to longer durations, 
as is of course expected. Its standardized β coefficients are all positive and also of roughly the 
same magnitude in all languages, with a range from 0.35 for English to 0.67 for Baure. It is also 
by far the most important predictor for word duration in all languages, with ΔR2(m) values ranging 
from 21.78% for English to 67.07% for Even. The β and ΔR2(m) values are always the highest for 
word length compared to the values for all other factors in a particular language. There seems to 
be a natural (though not perfect) correlation between the average word length of a language (cf. 
Table 3) and the strength of the effect of word length on word duration. For instance, Nǁng and 
English have relatively short words (3.45 phones per word on average for Nǁng and 3.70 for 
English) and correspondingly display relatively small effects of word length on word duration (β 



 
 

 21 

= 0.45 for Nǁng and β = 0.35 for English) compared to the other languages, whereas Bora and 
Hoocąk have longer words of 7.13 and 6.64 phones on average, respectively, and accordingly also 
exhibit a stronger effect of word length on word duration (β = 0.59 for Bora and β = 0.60 for 
Hoocąk). 
 The results for local speech rate are also consistent across languages. As expected, this 
control factor has a negative effect in all ten languages (including the reduced Chintang corpus 
without the Pear Stories) in that a higher local speech rate is associated with a shorter duration of 
the target word. Its effect size ranges from a standardized β coefficient of -0.08 and a ΔR2(m) value 
of 1.81% in Baure to a β value of -0.28 and a ΔR2(m) value of 26.61% for the reduced Chintang 
corpus.  
 Compared to other factors, the two predictor variables, word frequency and word class, also 
have relatively uniform effects on word durations in our data. As already discussed in sections 4.2-
4.3, seven languages display a significant effect in the expected direction for word frequency, with 
a statistically significant reversal in one, probably biased, version of the Chintang corpus. 
Likewise, seven language exhibit a significant word class effect in the expected direction, while 
results are reversed with regard to word class in the Hoocąk corpus, and statistically not significant 
in other corpora.  
 For the variable position of a word in an utterance, aimed primarily at capturing final 
lengthening, the results differ strongly between languages. Positions later in the utterance are 
associated with longer word durations – as expected – in five languages (Baure, Dutch, English, 
Nǁng, and Texistepec), as well as in the complete corpus of Chintang. But, unexpectedly, position 
later in a clause leads to statistically shorter durations in two languages (Even and Hoocąk). The 
effect of position is not statistically significant in Bora, the reduced Chintang corpus without the 
Pear Stories, and Sakha. Note that – unlike for frequency – the biased contents of the complete 
Chintang corpus should not distort results on final lengthening, so the lack of significance in the 
reduced version of the Chintang corpus is here likely due only to the reduced sample size. 
 Regarding the unexpected results for Even and Hoocąk, additional testing showed that these 
are actually the two languages in which verbs, as against nouns, occur most often in final position. 
As mentioned above, this may explain the unexpectedly long durations of words occurring toward 
the end of utterances in these corpora.  
 Note that a study on a similar data set that focused on the durations of the final four words 
of utterances only, (Seifart et al. In press), we found that in all ten languages studied here final 
words were significantly lengthened, with mixed results for prefinal positions. The mixed results 
of the current study thus appear to be at least partially due to the fact that, in the current study, we 
assigned a position value to every word in an utterance, while final lengthening primarily affects 
the last word in an utterance only. In addition, many of the annotation units in the language 
documentation corpora most probably include various (smaller) intonation phrases, which would 
only be detectable by additional prosodic annotation. These may each trigger final lengthening on 
words we here coded as medial. In line with this consideration, in the current study there is a 
tendency for effects of position to be strongest in languages in which the annotation units, which 
are used as proxies for utterances, are shortest (see Table 1) and that thus more closely approximate 
intonation phrases, e.g., Nǁng and Texistepec, while they are less clear in languages in which 
annotation units are longer, e.g., Bora.  
  The effect of the number of morphs in a word type on word duration differs the most across 
the ten languages in the current study. While there are statistically significant positive effects (more 
morphs result in longer word duration) in five languages (Chintang [both in the full and in the 
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reduced corpus], Even, Hoocąk, Nǁng, and Sakha), there are significant effects in the opposite 
direction (more morphs result in a shorter word duration) in three other languages (Bora, English, 
and Texistepec). There is no significant effect of morphological complexity in Baure. Recall that 
morphological complexity could not be tested for one language, Dutch, due to a lack of relevant 
morphological annotations. The effect of morphological complexity also generally seems to be 
weaker than the effect of other factors such as word frequency (except for Chintang and Hoocąk). 
There could be collinearity between word class and morphological complexity if verbs are much 
more complex morphologically than nouns in a language or vice versa. In such a case, the variables 
word class and number of morphs may perhaps compete for the same variance in word duration. 
The fact that three languages display an unexpected negative effect may thus indicate that the 
effect of morphological complexity on word duration is either strongly dependent on other, yet 
unknown factors (such as the distinction between inflection, derivation, and perhaps cliticization), 
or is not captured properly in our analysis. 
 
<Figure 4> 
 
5. Conclusion 
The first question we asked in this study was whether frequency effects on word durations are 
observable in the corpora extracted from language documentations studied here. We conclude that 
this is generally the case, as long as the frequency counts are not based on data sets that are heavily 
biased in terms of content, for example, by stemming in their majority from one experiment. The 
prospects are thus good for studying word frequency in necessarily relatively small language 
documentation corpora, which may include a variety of narrative texts of different genres, 
collected for a variety of purposes. In addition, our results provide evidence for reduction of 
frequent words in five languages (Baure, Even, Nǁng, Sakha, and Texistepec) in which word 
durations have never been studied before. 
 The second question we asked was whether nouns are pronounced more slowly than verbs 
across the languages studied here. We conclude that this is indeed overwhelmingly the case, both 
in terms of uniformity across languages and in terms of the strength of the effect. These results 
suggest that word class as a factor for the deceleration of articulation has not only been 
underestimated in previous studies on phonetic word duration, but also that in spontaneous speech, 
nouns appear to be articulated more slowly than verbs, while previous experimental studies have 
found the opposite (Szekely et al. 2005; Vigliocco et al. 2011). Our results on word class are in 
line with the general, but not exceptionless, cross-linguistic trend observed in another cross-
linguistic corpus study (Seifart et al. 2018) regarding articulation speed and pauses in time 
windows just preceding nouns and verbs. Both of these results can be attributed to the overall 
higher information load of nouns in discourse. This appears to outweigh increased processing costs 
of verbs because of their relative grammatical and semantic complexity, and their intrinsic 
dependencies with other elements in the clause, e.g., subjects and objects, which have been used 
to explain slower articulation of verbs in experimental studies (Szekely et al. 2005; Vigliocco et 
al. 2011). 
 The third aim of this study was a comparison of the effects of six factors on word duration, 
including four factors that were included as control factors in the analyses. Here, we conclude that 
across languages, word durations are uniformly most strongly affected by word length and by the 
speech rate in the surrounding context. The expected effects could thus be reliably replicated using 
the methods applied here and the data set used here. Compared to other factors, results for word 
frequency and word class (nouns vs. verbs) were also relatively clear, as just discussed. The results 
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for the remaining two factors, morphological complexity and word position, were more mixed 
across languages. It is reasonably clear that lack of prosodic annotation is the reason why word 
position did not yield clearer results in the current study. Regarding morphological complexity, 
more research, involving also more annotation work, is needed to understand how it affects word 
durations across diverse languages. Note that morphological complexity also plays an important 
role for the frequency estimates across languages in that the most frequent word forms in 
morphologically complex languages include more individual inflected word forms belonging to 
the same lemma, adding to the importance of a deeper understanding of this factor.  
 An additional aim of this study has been to identify key methodological issues for the 
exploitation of multi-purpose language documentation corpora for cross-linguistic research on the 
phonetic realization of words. The first thing to note here is that such research is nowadays greatly 
facilitated by automatic phoneme-level time alignment procedures, from which accurate word start 
and end times can be obtained. We showed that differences in composition across corpora in terms 
of, e.g., narratives vs. conversation, do not constitute an obstacle in principle for such studies. 
Regarding the relatively small size of the corpora, which is due to fieldwork projects having limited 
funding given the time and expertise needed to transcribe and annotate such data, we showed that, 
again, this does not in principle preclude such corpora for being used for such studies, even though 
non-significance in such datasets may in some cases be simply due to the reduced number of data 
points. We propose a number of techniques to deal with data sparsity, among them focusing on the 
100 most frequent word types for each language, which also allows for manual inspection of data. 
 In summary, the current study has shown the feasibility of applying advanced statistical 
methods to study word durations in language documentation corpora in order to obtain 
theoretically interesting results, and has identified methodological issues for the further 
development of such studies. This sets the stage for further explorations at the interface of 
documentary linguistics and quantitative approaches to widen the cross-linguistic scope of corpus 
phonetics (Liberman 2019) and related fields of inquiry. 
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Figure 1. Location of languages included in the study on an Equal Earth map projection, 
retaining the relative size of areas (Šavrič, Patterson & Jenny 2019) 
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Figure 2. Bivariate correlation between word frequency and average word duration based on 
Spearman’s nonparametric rank correlation coefficient. Plots are based on ranks of word frequency 
and duration. Correlation coefficients and test results are given beneath the strip titles where ρ 
indicates the direction and strength of the correlation, ranging from -1 to 1. Negative correlation 
coefficients indicate that higher word frequencies are associated with shorter average word 
durations. The p-values indicate whether the correlation coefficient is statistically significantly 
different from zero (i.e. no correlation) or not. Note that we here use ranks, and not relative 
frequency and duration as such, since rank correlation coefficients do not require that the data 
follow a normal distribution, which certainly is not the case for word frequencies (cf. Appendix 
C). Note that for sake of completeness, we report significance tests and p-values here, but we have 
strong reservations against interpreting these because they are based on simple correlations which 
cannot replace our actual statistical analyses (see Section 4.2). 
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Figure 3. Display of the effect of word frequency on word duration in the individual 
languages, derived from the eleven mixed-effects models using the R library effects by Fox 
(2003). Note: n.s. p ≥ 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Figure 4. Comparison of standardized β coefficients for all six fixed effects in the mixed-
effects models for the ten languages with significance stars based on likelihood ratio tests: n.s. 
p ≥ 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table 1. Languages represented in the current study, with reference to the code assigned by 
Glottolog (Hammarström, Forkel & Haspelmath 2018), where further information on the 

languages can be found, and some descriptive parameters for the corpora used here. Note: “Unit 
length” stands for average length of annotation units in words (see section 2.2.) 

 
  

Language Corpus 

Language Glottocode Family Word 
order 

Spea-
kers Texts Words Unit 

length Reference 

Baure baur1253 Arawakan VSO 12 37 17 563 4.06 Danielsen et al. (2009) 
Bora bora1263 Boran SOV 46 37 28 679 7.21 Seifart (2009) 
Chintang chhi1245 Sino-Tibetan SOV 74 40 37 731 4.18 Bickel et al. (2011) 
Dutch dutc1256 Indo-

European 
SOV 42 17 39 448 6.87 CGN-consortium 

(2003) English stan1293 Indo-
European 

SVO 80 47 56 136 8.09 Godfrey & Holiman 
(1993) Even lamu1253 Tungusic SOV 32 67 37 394 7.73 Pakendorf et al. (2010) 

Hoocąk hoch1243 Siouan SOV 28 62 23 176 7.89 Hartmann (2013) 
Nǁng nuuu1241 ǃUi-Taa SVO 7 33 25 850 3.32 Güldemann et al. 

(2011) Sakha yaku1245 Turkic SOV 25 16 31 139 7.93 Pakendorf (2007b) 
Texistepec texi1237 Mixe-

Zoquean 
VSO 1 6 21 315 3.90 Wichmann (1996) 

total/mean    347 362 318 431 6.12  
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Table 2. Data selection and final data sets per language (number of word tokens) 

language all 
words no disfluencies nouns and 

verbs only 

no ambiguous 
words (data set 
for word lists) 

100 most 
frequent word 

types 

word types 
manually 
excluded 

no one-word 
utterances 

(final data set) 
Baure 17 563 17 046 7 917 7 843 2 189 1 993 1 924 
Bora 28 679 28 086 14 176 14 175 3 128 2 869 2 863 
Chintang 37 731 36 916 15 242 15 239 2 959 2 816 2 734 
Dutch 39 448 37 650 10 724 10 724 5 278 2 696 2 694 
English 56 136 54 678 18 654 18 651 10 433 6 139 6 136 
Even 37 394 34 340 18 299 18 299 4 393 3 602 3 582 
Hoocąk 23 176 22 573 10 454 10 321 2 129 2 021 2 017 
Nǁng 25 850 24 795 12 143 12 143 6 010 6 010 5 706 
Sakha 31 139 29 972 16 581 16 581 4 422 3 354 3 347 
Texistepec 21 315 21 202 8 858 8 715 3 160 2 788 2 738 
Total 318 431 307 258 133 048 132 691 44 101 34 288 33 741 
Chintang 
(no pear 
stories) 20 097 20 097 8 172 8 169 1 441 1 303 1 292 
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Table 3. Mean word length and morphological complexity per language 
(based on the complete corpora and words of all categories, corresponding to 
the word counts in the column all words in Table 2). Note that the Dutch 
corpus does not provide information about the morphological segmentation of 
words.  

 
 word length in phones word length in morphs 
         
Language mean std. dev. median  mean std. dev. median  

        
Baure 5.73 3.20 5 1.86 1.25 1  
Bora 7.13 3.48 7 2.21 1.10 2  
Chintang 5.14 2.65 5 1.81 1.27 1  
Dutch 3.85 2.32 3 n/a n/a n/a  
English 3.70 2.03 3 1.09 0.32 1  

Even 5.79 2.78 5 1.91 1.05 2  
Hoocąk 6.64 3.20 6 1.71 1.04 1  
Nǁng 3.45 1.83 3 1.14 0.36 1  
Texistepec 5.77 2.84 5 1.68 0.82 1  
Sakha 5.14 2.56 4 1.81 0.98 2    
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Table 4. Summary of the word frequency effect on word duration based on the multivariate 
models. Statistical significance is calculated according to likelihood ratio tests (cf. the last four 
columns). Columns two to four give the number of observations per language as well as the overall 
portion of variation in word duration that the complete multivariate model is able to explain based 
on the fixed effects only (so-called marginal R2(m)) and fixed and random effects combined (so-
called conditional R2(c)). Columns five and six provide information about the effect of word 
frequency in terms of this factor’s coefficient (in the original scale), its standardized β coefficient. 
Columns seven to nine provide the percentage change in marginal and conditional variation 
explained (R2) if the word frequency factor is omitted from the model (ΔR2(m)% and ΔR2(c)%) and, 
finally, the semi-partial correlation between word frequency and word duration (s.-p. R2), that is, 
the amount of variation in word duration that can be uniquely attributed to the factor word 
frequency (also considering the other independent variables in the model at the same time). 
  

Language n R2(m) R2(c) coefficient β ΔR2(m)% ΔR2(c)% s.-p. R2 χ2 df p  
Baure 1 924 0.3239 0.3552 -0.0681 -0.1597 5.8441 1.3303 0.0244 46.96 1 <0.001 *** 
Bora 2 863 0.3556 0.4108 0.0020 0.0038 -0.0213 -0.0273 0.0000 0.05 1 0.826 n.s. 
Chintang 2 734 0.2328 0.2977 0.0390 0.0660 2.0194 1.1119 0.0049 13.88 1 <0.001 *** 
Chintang 
(no pear stories) 1 292 0.2892 0.3297 0.0167 0.0257 0.2284 -0.0190 0.0008 1.09 1 0.296 n.s. 
Dutch 2 694 0.4100 0.4650 -0.1079 -0.1866 7.9001 6.6115 0.0505 149.92 1 <0.001 *** 
English 6 136 0.3801 0.4133 -0.1197 -0.2858 19.5514 16.3843 0.1045 688.26 1 <0.001 *** 
Even 3 582 0.3711 0.4225 -0.0404 -0.1151 3.2049 2.7168 0.0189 70.85 1 <0.001 *** 
Hoocąk 2 017 0.5145 0.5682 -0.0094 -0.0118 0.0851 0.0040 0.0003 0.62 1 0.430 n.s. 
Nǁng 5 706 0.3745 0.4333 -0.0857 -0.1414 3.9417 3.8114 0.0268 164.99 1 <0.001 *** 
Sakha 3 347 0.4773 0.5037 -0.0774 -0.1927 5.7201 5.7505 0.0503 178.64 1 <0.001 *** 
Texistepec 2 738 0.4313 0.4394 -0.0635 -0.0959 1.6365 1.3517 0.0124 34.36 1 <0.001 *** 
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Table 5. Comparison of the direction and strength of the fixed effects in the models for the ten 
individual languages based on standardized β coefficients and percentage change in marginal 
R2 when leaving out the fixed effect in question. Levels of statistical significance based on 
likelihood ratio tests comparing models with and without the fixed effect in question: n.s. p ≥ 
0.05, * p < 0.05, ** p < 0.01, *** p < 0.001. 

 
 
   

 
 
 
  

 word frequency (log) word class = verb (vs. noun) word length 
 β ΔR2(m)%  β ΔR2(m)%  β ΔR2(m)%  
Baure -0.1597 5.8441 *** -0.2136 5.9740 *** 0.6737 34.4366 *** 
Bora 0.0038 -0.0213 n.s. -0.0026 -0.0151 n.s. 0.5923 38.0563 *** 
Chintang 0.0660 2.0194 *** -0.1475 5.1095 *** 0.4399 56.2432 *** 
Chintang (no pear stories) 0.0257 0.2284 n.s. -0.1495 4.1954 *** 0.4206 43.3012 *** 
Dutch -0.1866 7.9001 *** -0.0775 1.9876 *** 0.4297 41.8685 *** 

English -0.2858 19.5514 *** -0.1837 7.4276 *** 0.3514 21.7815 *** 
Even -0.1151 3.2049 *** -0.1296 2.8687 *** 0.5572 67.0652 *** 
Hoocąk -0.0118 0.0851 n.s. 0.0553 0.7170 *** 0.6026 44.8522 *** 
Nǁng -0.1414 3.9417 *** -0.0045 -0.0080 n.s. 0.4544 37.8865 *** 
Sakha -0.1927 5.7201 *** -0.0631 0.5802 *** 0.5218 29.5126 *** 
Texistepec -0.0959 1.6365 *** -0.2066 4.9379 *** 0.5303 36.9072 *** 
    
 number of morphs position local speech rate (log) 
 β ΔR2(m)%  β ΔR2(m)%  β ΔR2(m)%  
Baure 0.0250 -0.1241 n.s. 0.0893 1.8783 *** -0.0898 1.8094 *** 
Bora -0.0801 0.4307 ** -0.0190 0.0519 n.s. -0.2021 12.3645 *** 
Chintang 0.1140 2.7733 *** 0.1116 4.7834 *** -0.1729 12.7666 *** 
Chintang (no pear stories) 0.1385 2.9264 *** -0.0469 0.8022 n.s. -0.2817 26.6149 *** 
Dutch    0.1693 7.5910 *** -0.1342 7.6702 *** 

English -0.0481 0.4548 *** 0.1436 4.9897 *** -0.1236 5.2302 *** 
Even 0.0786 0.8280 *** -0.0337 0.1680 * -0.1967 13.2355 *** 
Hoocąk 0.1070 1.5440 *** -0.0431 0.4938 ** -0.1945 8.0100 *** 
Nǁng 0.0885 1.5692 *** 0.2073 11.7731 *** -0.1252 6.5637 *** 
Sakha 0.0631 0.4411 *** -0.0208 0.0944 n.s. -0.1400 5.5948 *** 
Texistepec -0.0799 0.5960 *** 0.1195 3.0774 *** -0.0995 2.2384 *** 
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