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Abstract—This paper presents a method to estimate parame-
ters of a 3-phase line segment using PMU data. The novelty of this
method is that it is capable of giving accurate estimates even in
the presence of non-calibrated instrument transformers at both
ends of the line whose ratio and phase correction coefficients
are unknown. To do so, this method adds extra parameters in
the regression model. These added parameters account for the
errors present in the non-calibrated instrument transformers. In
case the instrument transformers are calibrated at one end of the
line, then the correction coefficients at the other end could also
be estimated. The presented method does not require reversal
of current flow direction in the line as a necessary condition.
Results from simulated and laboratory experiments are presented
to show the efficacy of the method. A discussion about analyzing
the obtained results is also presented.

Index Terms—Distribution Grid Monitoring, Line Parameter
Estimation, PMU, Power System Instrumentation

I. INTRODUCTION AND BACKGROUND

Accurate estimates of line parameters could be useful in im-
proving the performance of power system monitoring, protec-
tion and control applications including dynamic line rating [1],
accurate relay settings and fault location [2]. Traditionally, the
line parameters (resistance (R) reactance (X) and susceptance
(B) have been calculated using the standard formulas utilizing
the available information and assumptions on the physical
attributes of the line segment like line lengths, conductor
dimension and tower geometry [3]. These methods are static
in nature as the used specifications are considered constant
while the line parameters could change based on ambient
temperature and loading levels. In the recent past, methods
have been presented that utilize PMU and SCADA data to
estimate the line parameters [2], [3]. These methods estimate
line parameters utilizing voltage and current phasors at both
ends of the line segment and could give frequent parameter
estimates [3], [4].

As mentioned in [4], factors like unbalanced loading levels
and some independence in the loading of the 3 phases are
the necessary conditions for convergence of the algorithm.
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However after successful convergence, the accuracy of the line
parameter estimates is of great importance.

The accuracy is a qualitative characteristics which is made
up of components trueness and precision. Quantitive estimates
of trueness and precision are given by bias and standard
deviation respectively [5]. Combining the bias and standard de-
viation gives us the uncertainty associated with the estimated
parameters. This uncertainty in the line parameter estimates
is dependent on the quality of PMU (synchrophasor) data.
However, synchrophasor data in-turn depends on the accuracy
of the overall instrumentation channel feeding voltage and
current signals to the PMUs [6]. For example, small random
measurement errors at CTs (Current Transformer) and VTs
(Voltage Transformer) and PMU’s voltage and current pha-
sors would contribute towards high standard deviation in the
parameter estimates. While, the ratio and phase errors in the
non-calibrated CTs and VTs would contribute towards a bias
in the parameter estimates.

This paper shows the drawbacks in old method of overlook-
ing these bias errors and how it effects the overall accuracy of
the line parameters estimates. Then, a new method is proposed
to eliminate these drawbacks and to estimate accurate line
parameters without any prior information about the class
or calibration of CTs and VTs at both ends of the line.
The proposed method adds some extra parameters in the
regression model which account for the bias errors present
in the non-calibrated instrument transformers. The novelty
of this method is that it gives highly-accurate estimates of
3-phase line parameters even in presence of non-calibrated
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Fig. 1. Nominal Pi model for a medium length medium voltage line



instrument transformers at both ends. In the past, methods have
been proposed to estimate the line parameters and correction
coefficients for CT VT errors [7]. However, these methods
were confined to single phase. The mutual components of
impedance and susceptance were ignored and hence the total
number of unknowns are reduced significantly. However, in
case of unbalance and independence in 3-phase loading levels,
these methods would not be applicable for three phase systems.

The remainder of this paper is arranged as follows. Section
II discusses the old method and the drawbacks with it to
estimate line parameters. Section III presents the proposed
method to overcome these drawbacks in a 3-phase system.
Section IV presents the results and compares the results ob-
tained from simulation and laboratory based tests. Conclusions
are presented in Section V.

II. OVERVIEW OF EXISTING METHOD

In previous approaches for 3-phase line segments, unknown
line parameters are estimated using multiple linear regression
based estimation. Based on the assumed line model shown
in Fig. 1, and basic equations (1) and (2), multiple real
and imaginary equations are formulated using the measured
voltage and current signals and unknown line parameters Zabc
and Babc.

ISabc = IRabc +
Babc

2

(
V Sabc + V Rabc

)
(1)

V Sabc = V Rabc + Zabc

(
IRabc +

Babc
2

V Rabc

)
(2)

Where, superscript S/R denotes the sending and receiving
end of the line and subscript ABC denote the 3-phase system.
Zabc and Babc are the three phase impedance and shunt
susceptance of the line. The real and imaginary terms of (1)
and (2) are separated into a set of 12 equations. The separated
real and imaginary equations represent a linear system with
measured output and input data. These equations are then
solved in linear least square sense to estimate the unknown
Zabc and Babc parameters. The set of linear equations with n
parameters can be written as:

zi = h1iθ1 + h2iθ2 + ...+ hniθn + εi (3)

where, zi is the measured quantity, hji is the value of known
variables and θj are the line parameters to be estimated.
εi is the error term calculated as the difference between
the measured quantity and the linear equation formed by
parameters and independent variables. In matrix form, the
whole system of linear equations can be written as:

Z = HΘ + E (4)

where, Z is the measurement vector and Θ is the parameters
vector. H is the relation matrix formed of independent vari-
ables (which are also measurements in this case).

The estimates for parameter θ is given by the equation:

Θ =
covariance(Z,H)

variance(H)
(5)

In matrix form, the same can be represented as:

Θ = (HTH)−1HTZ (6)

To get an optimal estimate from linear regression, it is
assumed that:

a Zero mean random error. n × 1 error vector (residuals)
has a distribution with zero mean such that E[εi] = 0.

b No heteroscedasticity. All the diagonal elements of the
covariance matrix of the errors E[εε′] are equal to σ2

that is E[ε2i ] = σ2.
c No correlation. The off-diagonal elements of the covari-

ance matrix of the errors E[εε′] are all equal to 0.
d Normality. The error vector is normally distributed.
e Constant parameter. The elements of the parameter vector

Θ are fixed.
Assumptions a, b, c and d can be summarized in matrix

notation as:
ε = N(0, σ2I) (7)

The precision part of uncertainty in parameter estimates
is due to the random measurement errors and causes higher
standard deviation of the estimates. It can be quantified as
the confidence interval (CI). Estimating the trueness of the
parameter estimates is tricky, because generally there is no
known true value of the parameters. Bias in the estimates
which is the measure of trueness depends on the validity of the
assumptions made while solving the linear regression problem.
If all the assumptions hold true then it is an indication that
the linear model relating the vector Z and matrix H using
the parameter vector Θ is correct. If the residuals adheres to
the assumptions above, then this would suggest that the bias
part of the estimation uncertainty is low. At the same time,
if the standard deviation of the expected parameters is low as
well, then the total uncertainty would be low. However, if the
residuals do not adhere to the assumptions, then it suggests
a fundamental error in the assumed process model or data
acquisition and the estimates can be rejected even when the
estimated CI is very narrow. The same approach is utilized in
this paper to assess the model and estimation results.

In real field measurements each of these assumptions might
not hold true. Apart from the random measurement errors, field
CTs and VTs have a steady bias error in their measurement due
to the inherent ratio and phase errors of different magnitudes.
The elements forming the independent and dependent elements
for the system of equations (as shown in (3)) are real and
imaginary parts of 3-phase current and voltage phasors. The
presence of any ratio and phase errors in the measurement
chain would make the difference between actual and measured
quantities depend on the magnitude of ratio and phase errors
in a non-linear sense. Thus if we use the same process model
as in the old methods to link the output and the input measure-
ments then the error vector would not be normally distributed
and the expected value of errors might also be non zero. This
would mean that the model of the linear equations does not
explain the relationship between the measured dependent and
independent variables. This would result in bias in parameter



estimates. The following section presents the proposed method
to overcome this problem.

III. IMPROVED METHOD

The new algorithm presented in this paper eliminates the
bottleneck of unknown correction coefficients for CTs and
VTs while estimating line parameters. The idea is to add more
parameters which would explain the measurement errors in the
CTs and VTs. Using the correction coefficients at both ends,
(1) and (2) for a 3-phase system are written in the following
form:

CiS ∗ IS − CiR ∗ IR =
B

2

(
CvS ∗ V S + CvR ∗ V R

)
(8)

CvS∗V S−CvR∗V R = Z

(
CiR ∗ IR +

B

2
CvR ∗ V R

)
(9)

where, CiS , CiR, CvS , CvR are the three phase correction
coefficients for the ratio and phase errors of CTs and VTs
at both ends of the line. These correction coefficients could
be represented in the form |M |ejφ, where M is coefficient for
ratio error and φ is the phase error.

Equations (8) and (9) are the difference equations of mea-
sured voltage and current phasors represented separately in
real and imaginary parts. These equations can be are rewritten
using a new set of Adjusted Correction Coefficients.

IS − Ci ∗ IR =
B

2

(
V S + Cv ∗ V R

)
(10)

V S − Cv ∗ V R = Z

(
Ci ∗ IR +

B

2
Cv ∗ V R

)
(11)

where, Ci and Cv are the adjusted coefficients. These adjusted
coefficients are assumed to be the net effect of individual
correction coefficients at each end when applied in the left
hand side of the (8) and (9). For example,

CvS ∗ V S − CvR ∗ V R = V S − Cv ∗ V R (12)

The new equations (10) and (11) are representation of (8) and
(9) assuming that the measurements at one end of the line (the
sending end in this case) are error free. The measurements of
the receiving ends are corrected using the adjusted correction
coefficients. The mutual susceptance was ignored and only self
susceptance was estimated. Overall 21 parameters needed to
be estimated:
• Adjusted CTs correction coefficients: [Cia, Cib, Cic].
• Adjusted VTs correction coefficients : [Cva, Cvb, Cvc].
• self susceptance: [baa, bbb, bcc].
• Self and mutual resistance: [raa, rab, rac, rbb, rbc, rcc].
• Self and mutual reactance: [xaa, xab, xac, xbb, xbc, xcc].
This method could be used to calibrate the CTs and VTs

using one calibrated end as reference. Hence if the CTs and
VTs on the one side of the line are calibrated and their
correction coefficients are known, then the estimated values
of the adjusted correction coefficients would be the correction
coefficients for the CTs and VTs of the other end of the line.

From here, the parameter estimation process was divided in
two parts. Equation (10) was written as two separate equations
for real and imaginary parts. This was done for all the three
phases resulting in six equations. All the measured data was
arranged according to these six equations forming a set of
over-determined system of linear equations. Parameters Cv,
Ci and B for all phases were estimated using the analytical
solution given by (6). Now, these estimated parameters were
substituted in (11) and the remaining parameters of Z matrix
(Rabc and Xabc) were estimated. The next section presents the
results and comparison with the previous method.

IV. RESULTS AND COMPARISON

First, both the old and the proposed algorithms were tested
in simulation mode. A 20 kV, 10 km cable was simulated. A
power flow profile based on random walk was subjected on to
the lines. As per [4], the power flow variation in each phase
was kept independent of each other. Even though here we
knew the exact values of the parameters of simulated 3-phase
cables, in the real field measurements, we only have a rough
estimate about their range. In the simulation based tests, ini-
tially the obtained results were analyzed based on the analysis
of the residuals. If the residual vector seems to satisfactorily
pass the tests to check the assumptions mentioned earlier, then
we look further to the CI for expected parameters. In the end
we give an error percentage which is the percentage difference
between the actual parameters and its expected values.

In the simulation based tests, all the other operating and
measurement conditions were kept same for the purpose of fair
comparison. The number of samples collected, the variance in
the power flow process and the noise levels in the measurement
process were kept same across all the tests. The random
measurement noise errors by CTs and VTs are assumed to
be averaged and filtered out by the sampling and phasor
estimation process of the PMUs [8]. Random errors in PMU
phasor estimates were assumed to be 0.1% in magnitude and
0.05◦ in phase. Steady state linear Kalman filter was used to
filter out the PMU measurements before feeding them to the
algorithm. The Kalman filter assumes a pseudo-steady state
linear system model with the state transition matrix being n×n
identity matrix where n is the number of states (3-ph voltage
and current magnitude and phase values in this case). The
process noise covariance is unknown and is initialized to a
very high value. It is updated after a set window length based
upon the covariance in the system states in recent history.
Measurement noise covariance matrix is a diagonal matrix
with known measurement error variance as its elements.

After filtering the phasor estimates, the data is used in es-
timation algorithm. To examine the results, the residuals were
checked for the assumptions of normality and homoscedastic-
ity. To test normality for large data set, the best way is to apply
a more visual approach and do a QQ-plot to see if the residual
looks normal enough. A QQ-plot displays the quantiles of
the data under test versus the expected quantile values of
a normal distribution [9]. In this case, if the distribution of
residual is normal, then the plotted residuals in the QQ-plot



appears linear. Visual tests can also be done to check for
homoscedasticity and see that the variance of the residuals do
not vary at different measurement values. The same approach
was adopted for the following tests.

Another method to check normality is using the Shapiro-
Wilk test and homoscedasticity is using the Engle’s ARCH
test. These test are only reliable for smaller sample size.
Predefined MATLAB function were used to perform these tests
[10], [11]. For this the data can be randomly re-sampled
with replacement into a number of equal size data sets. Each
of these data sets are then used as input to the parameter
estimation. The parameters from the data set whose residual
clears these tests with highest probability (given by p-value)
are accepted. After reducing the number of samples by re-
sampling data from a big sample size, the new smaller samples
are more likely to appear normally distributed than the original
set. One more point to keep in mind is that due to lower
number of samples, the standard deviation and hence the
uncertainty associated with the parameter estimates increases
and the CI to becomes wider.

In real-field scenario a narrow CI caused by large sample
size makes the estimates highly precise. The accuracy of the
estimates is characterized by both trueness and precision and
high precision does not necessary mean trueness of the pa-
rameter estimates. That is, high precision does not necessarily
mean that there is little difference between the estimates and
their unknown true values. Hence, with a large sample size,
the narrow CIs of the estimated parameters could be highly
misleading about the accuracy of the estimates. It can be the
case that the CI of an estimate is very narrow indicating a
precise estimate but the estimate actually is totally wrong due
to the wrong model assumption or error in measurements.

If residuals from none of the data sets satisfy the criteria for
normality and homoscedasticity then it is an indication that
the model and the measurements do not explain the system
correctly. In that case, we must either do re-measurements or
change the equation model. Simulation and lab tests done to
show the results of the proposed method and compare it with
the old method are presented below.

A. Test 1: Simulation with known correction coefficients

Properties of class 0.2 CTs and VTs were used in this
test. It was assumed that the CTs and VTs are calibrated and
correction coefficients of all them were known. The older and
the new proposed method were applied to the filtered PMU
data. The number of distinct samples for each measurement
was same. The analysis for results obtained is presented below.

First the residuals are analyzed. Visual analysis tests using
the QQ-plot suggested that the residuals of both methods were
normal and no heteroscedasticity was found. The QQ-plot for
both the tests are shown in Fig. 2. The plotted residuals for
both the methods in this case are linear and on the expected
line for a normal distribution. This suggests that the result
from both methods would not have any significant bias and
the CI would be a reliable measure of overall accuracy.
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Fig. 2. Test 1: QQ plot of residuals for both the methods

Next, estimates were assessed based on the CI. The lower
and upper limits of the CI around the estimated parameters
have been calculated considering the parameters have a normal
distribution. The significance level (α) was kept 0.05. In the
old method, in case when the estimates of susceptance (B) is
required then the linear equations are arranged in such a man-
ner that the parameters estimated are the elements of admit-
tance (siemens) instead of impedance (ohms). The impedance
parameters were achieved after inverting the admittance ma-
trix. Thus, the confidence interval of the admittance parameters
cannot be used as the CI for impedance parameters. Also the
parameters differ from each other in order of magnitudes. So
to simplify the result analysis and comparison process, the
confidence intervals range are mentioned as the percentage
deviation from the expected value of the parameters. The
results from Test 1 are presented in Tables I-IV.

It was established that as there were no ratio and phase
errors in the CTs and VTs and the parameters estimates would
be free from bias errors. Hence, the precision of the estimates
given by the CI would suggest the overall accuracy. From the
Tables I-III, it can be inferred that the estimates of resistance
and reactance seems more accurate as they have a narrow CIs
meaning low uncertainty. The estimates for susceptance have
wide CIs in both the methods. This can be explained for the
fact that the lines being only 10 km long have very small
charging current and there is not enough difference between
the currents at the both end. So in presence of measurement

TABLE I
TEST 1: COMPARISON OF CIS FOR REAL PART OF SELF-ADMITTANCE

PARAMETERS FOR OLD METHOD AND SELF-RESISTANCE PARAMETERS
FOR PROPOSED METHOD

Confidence Interval Width
Phase A Phase B Phase C

Old Method ±0.58% ±0.53% ±0.3%

Proposed Method ±1.01% ±1.37% ±1.11%



TABLE II
TEST 1: COMPARISON OF CIS FOR IMAGINARY PART OF

SELF-ADMITTANCE PARAMETERS FOR OLD METHOD AND
SELF-REACTANCE PARAMETERS FOR PROPOSED METHOD

Confidence Interval Width
Phase A Phase B Phase C

Old Method ±0.43% ±0.41% ±0.27%

Proposed Method ±1.53% ±2.03% ±1.63%

TABLE III
TEST 1: COMPARISON OF CIS FOR SELF-SUSCEPTANCE PARAMETERS

Confidence Interval Width
Phase A Phase B Phase C

Old Method ±38.61% ±39.01% ±38.49%

Proposed Method ±55.36% ±32.99% ±45.17%

noise, the power and variance of the current difference signals
is insufficient for precise identification of B parameters. It can
be shown that for longer lines and similar noise conditions
and power flow, the accuracy of estimates for B and R and X
would be better. Similarly application on data from short lines
in similar conditions would result in less precise estimates.
More information about the effects of varying different factors
can be found out in [1].

The calculated percentage errors for various parameters are
shown in Table IV. The R and X estimates were expected
to be more accurate than the B estimates. The results are
showing that the new method works similar to the older one
especially for R and X estimates. The CI even though small
is bigger than the error percentage. For B estimate, even
though the CI for both methods were of same magnitude, the
accuracy of older method was better when compared to the
proposed method. But this can only be confirmed when we
have an accurate value as a reference. Now the next test shows
the effect of unknown calibration coefficients (not-calibrated
CTs/VTs) on the parameter estimates.

B. Test 2: Simulation with unknown correction coefficients

Properties of class 1.0 CTs and VTs are used and it was
assumed that that they are not calibrated. That means the
correction coefficients are not known and the actual ratio and
phase errors could be anywhere in the range given by the class.

TABLE IV
TEST1: ERROR WHEN COMPARED TO THE ACTUAL PARAMETERS

Parameters Phase A Phase B Phase C

R 0.58% 0.62% 0.25%

Old Method X 0.07% 1.36% 0.48%

B 5.14% 5.21% 5.17%

R 1.37% 0.84% 0.81%

Proposed Method X 1.15% 1.32% 0.27%

B 5.20% 1.96% 26.48%

-5 0 5

Standard Normal Quantiles

-15

-10

-5

0

5

10

15

Q
u
a
n
ti
le

s
 o

f 
In

p
u
t 
S

a
m

p
le

Old Method

-5 0 5

Standard Normal Quantiles

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Q
u
a
n
ti
le

s
 o

f 
In

p
u
t 
S

a
m

p
le

Proposed Method

Fig. 3. Test 2: QQ plot of residuals for both the methods

The same power flow profile was used and current and voltage
signals were recorded and filtered. The data were fed to both
the algorithms and line parameters were estimated. The QQ-
plots for residuals for both the methods are plotted in Fig.
3.

The left plot shows the residuals from the old method and
the points are not linear along the line of normal distribution.
This suggests that the residuals of the old method are not
normal in this case when the correction coefficients of the
CTs and VTs are unknown. On the other hand, the residuals
from the proposed method seem fairly linear along the line of
normal distribution suggesting normality. This means the result
from the old method would be biased and the CI would not
be reliable as a measure of accuracy. To verify our inference
about the results accuracy and reliability of the CIs, the results
are presented in Tables V-VIII.

From the Tables V-VIII, we see that the effect of reduced

TABLE V
TEST 2: COMPARISON OF CIS FOR REAL PART OF SELF-ADMITTANCE

PARAMETERS FOR OLD METHOD AND SELF-RESISTANCE PARAMETERS
FOR PROPOSED METHOD

Confidence Interval Width
Phase A Phase B Phase C

Old Method ±0.74% ±1.49% ±0.88%

Proposed Method ±1.28% ±1.02% ±1.25%

TABLE VI
TEST 2: COMPARISON OF CIS FOR IMAGINARY PART OF

SELF-ADMITTANCE PARAMETERS FOR OLD METHOD AND
SELF-REACTANCE PARAMETERS FOR PROPOSED METHOD

Confidence Interval Width
Phase A Phase B Phase C

Old Method ±0.69% ±0.87% ±0.29%

Proposed Method ±2.19% ±1.62% ±1.93%



normality of residuals. In the old method, the residuals are
visibly not normal and as predicted, the accuracy of the
estimated parameters is not in accordance with the suggested
CI given by the algorithm. The CI for each parameter still
remains similar to the values obtained in Test 1. On the other
hand, when compared to the reference value of the parameters,
the percentage errors have increased multiple folds. This
means that the accurate parameters lie outside the confidence
intervals that too by a big margin.

In case of the proposed method, the QQ-plot on a visual
inspection still looks quite similar to the QQ-plot obtained for
Test 1. The CI and the actual percentage error have comparable
magnitude. This suggests that the proposed method reduces the
bias in parameters caused by ratio and phase errors in the CTs
and VTs. The high number of samples used in the algorithm
causes the CI to be narrow.

The other method of re-sampling the samples into 5 smaller
lengths to test normality and estimate parameters was also
tested. The sample set of independent and dependent measure-
ments were divided randomly and with replacement into 500
samples each. The residuals of each sample were analyzed
using Shapiro-Wilk test and the sample-set whose residuals
had the highest probability of being normally distributed was
chosen. The estimated results from the sample-set which
produced the residual vector that is most probable of being
normally distributed is presented in Tables IX and X. All the
sample sets produced residuals whose probability of being nor-
mally distributed was great than 10%. The highest probability
was of sample set 5 with a probability of 55.8%.

With a sample size reduced by a factor of 700 did not have
a drastic effect on actual accuracy for the estimates of R and
X . On the other hand, as expected the CI for all the parameters
became wider as expected. The next subsection presents a test
done in the university laboratory.

TABLE VII
TEST 2: COMPARISON OF CIS FOR SELF-SUSCEPTANCE PARAMETERS

Confidence Interval Width
Phase A Phase B Phase C

Old Method ±57.74% ±64.59% ±72.86%

Proposed Method ±46.73% ±41.73% ±58.73%

TABLE VIII
TEST 2: ESTIMATION ERROR USING ALL THE SAMPLES WHEN COMPARED

TO THE ACTUAL PARAMETERS

Parameters Phase A Phase B Phase C

R 13.86% 3.93% 10.78%

Old Method X 18.03% 2.23% 29.80%

B 223.60% 210.18% 195.93%

R 3.03% 0.71% 2.54%

Proposed Method X 8.63% 6.56% 0.1.75%

B 4.60% 22.96% 3.68%

TABLE IX
TEST 2: CIS FOR SELF-RESISTANCE, REACTANCE AND SUSCEPTANCE

PARAMETERS FOR PROPOSED METHOD USING 500 SAMPLES

Parameter Confidence Interval Width
Phase A Phase B Phase C

R ±5.71% ±7.46% ±5.53%

X ±8.94% ±12.40% ±9.29%

B ±270.03% ±752.10% ±4346%

TABLE X
TEST 2: ESTIMATION ERROR USING 500 SAMPLES WHEN COMPARED TO

THE ACTUAL PARAMETERS

Parameters Phase A Phase B Phase C

R 2.30% 1.37% 3.59%

Proposed Method X 5.48% 7.40% 3.42%

B 15.54% 124.52% 107.13%

C. Test 3: Laboratory tests with unknown correction coeffi-
cients

The power quality laboratory at the university has a 4-core
(3ph+1N) 70 mm2 Al cable feeding a flexible power source to
a number of modeled household connections via short 16 mm2

(3ph+1N) Cu cables. The new proposed method was tested
for its accuracy while estimating the impedance parameters
of combination of the big Al cable and the Cu cable till the
last household. The exact length of the main Al and smaller
Cu cables are unknown. To set a reference, the DC resistance
of the combined cable was measured at DC current levels
from 1 A to 10 A. The voltage drop was measured by two
multimeters at the start and the end of the cables. The reference
DC resistance between the two ends of the cable system was
0.0935 ohms.

Voltage waveforms are measured at two ends of the line
using two National Instruments voltage acquisition devices
based on cRIO-9038 chassis. The line current was measured
by a rogowsky coil. All the input channels of the cRIO chassis
were times synchronized with an accuracy of ± 200 ns. Since
the equivalent length of the cables is very small, the effect
of charging capacitance would not come into picture. It was
assumed that there would not be any measurable difference be-
tween the current at two ends and hence current measurement
was done only at one end and the current difference equation
(1) was ignored. Voltage and current phasors were calculated
using the synchronized waveforms. Only the voltage difference
equation (2) and hence (11) was used to make the system of
linear equations. The 3-phase voltage difference equation can
be written in matrix form as:

δVaδVb
δVc

 =

raa + jxaa rab + jxab rac + jxac
rab + jxab rbb + jxbb rbc + jxbc
rac + jxac rbc + jxbc rcc + jxcc

 ∗
IaIb
Ic


that is :

δVabc = Zabc ∗ Iabc (13)



Figure 4 gives a basic overview of the lab cable and
measurement set-up. At the source end, there is a flexible
and controllable voltage source and at the load end, there is
a controllable load bank. This set-up enables the testing of
the parameter estimation algorithm under various conditions
which affect the estimation accuracy such load unbalance,
power flow variance and at different signal to noise ratio. This
paper only presents the performance of the proposed method
in the presence of non-calibrated measurement sensors.

As it was mentioned before, the underlying model of the
system and the measurement describing the system are most
important to estimate the parameters. For this lab cable, it was
assumed that the
• Self-impedance of all the three phases and the return path

(neutral) is same.
• Self resistance of single core of the cable (all phases and

neutral) : rs.
• Self reactance of single core of the cable (all phases and

neutral) : xs.
• Mutual coupling between all the phases is the same : xm.
• Assuming low neutral current, the mutual coupling effect

of neutral current on other phases are ignored.
Also from point of view of the measurement model is that:
• Sending (source) side voltage, is measured with respect

to ground.
• Receiving (load) side voltage, is measured with respect

to neutral.
The voltage difference equation then can be written with

the help of above assumed rs, xs and xm parameters. The
current in neutral (In) is the summation of Ia, Ib and Ic.
These conditions make the voltage difference equations as:

δVa = Ia∗(2rs+2jxs)+Ib∗(rs+jxs+jxm)+Ic∗(rs+jxs+jxm) (14)

δVb = Ia∗(rs+jxs+jxm)+Ib∗(2rs+2jxs)+Ic∗(rs+jxs+jxm) (15)

δVc = Ia∗(rs+jxs+jxm)+Ib∗(rs+jxs+jxm)+Ic∗(2rs+2jxs) (16)

Using the equations (14)-(16), we can write the Zabc in the
form:

Z̃abc =

2rs + j2xs rs + jx̃m rs + jx̃m
rs + jx̃m 2rs + j2xs rs + jx̃m
rs + jx̃m rs + jx̃m 2rs + j2xs

 (17)

Where the effective mutual reactance in phasor form x̃m =
xs + xm. Comparing Z̃abc with Zabc matrix it can be seen
that:

++

+ +

+ +

Vran

Ia

Ib

Vrbn

Ic

Vrcn

In

A

B

C

Vf

R=0

50.0

Vsrc

Vsc

Vsb

Vsa Vra

Vrb

Vrc

Vn

load ph-A

load ph-C

load ph-B

rs+jx

rs+jx

rs+jx

rs+jx

Fig. 4. Lab cable and measurement set-up.
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Fig. 5. Test 3: QQ-plot of the residuals for lab test data

raa = rbb = rcc = 2rs
rab = rbc = rac = rs
xaa = xbb = xcc = 2xs and,
xab = xbc = xac = x̃m
So to for accurate construction of the impedance matrix in
phasor form (Zabc) the parameters required to be estimated
are: rs xs and x̃m.

Without any information of present bias in the measurement
sensors, the two methods were utilized for estimation of
parameters of the cable system. No data re-sampling was done
and the whole sample size was utilized. The QQ-plots of
the residuals of the two tests are presented in Figure 5. The
left side plot from the old method indicates that there is an
unaccounted bias error present in the measurement system. It
suggests that the results obtained from the old method would
be less accurate than the results from the proposed method.
The results in terms of expected values of the parameters and
the CI (% of the mean value) are presented in the Table XI.

The Z̃abc matrix can composed with the estimated
parameters using (17).

Z̃abc =

0.190 + j0.0216 0.095 + j.0124 0.095 + j.0124

0.095 + j0.0124 0.190 + j.0216 0.095 + j.0124

0.095 + j0.0124 0.095 + j.0124 0.190 + j.0216


In sequence components it cab be written as,

Z̃012 =

0.380 + j0.046

0.095 + j0.009

0.095 + j0.009



TABLE XI
TEST 3: EXPECTED VALUE OF PARAMETERS FOR TOTAL NUMBER OF

SAMPLES USING BOTH METHODS

Method rs (ohms) xs (ohms) x̃m (ohms)

Old 0.0966 0.0117 0.0120

Proposed 0.0951 0.0108 0.0124



The positive sequence resistance is quite close to the ref-
erence value measured by the DC measurement system. Also
the fact that the zero sequence impedance is about 4 times
the positive sequence impedance (especially for the resistance
estimate) suggests also that the estimates are supporting the
cable model assumed. The 3-phase 4-wire system with neutral
as a return path it is known that,

Z0seq = Zphase + 3 ∗ Zneutral (18)

And in this case, Zphase = Zneutral
The robustness of the proposed algorithm can also be

supported by some extra tests done on manipulated lab mea-
surements. Lab tests data was manipulated by adding bias in
measured voltage signals at both ends. Three tests were done
by adding a random bias to each phase of the voltage signals
at both the ends. The maximum bias in terms of percentage of
the original signals were 0.1%, 0.5% and 1.0%. The proposed
method was applied to a randomly with-repetition sampled
500 samples. Residuals from all the sample-sets passed the
normality tests and the best results were chosen based on
the probability of normality of the residuals. The expected
estimates and their respective CIs are mentioned in the Table
XII.

TABLE XII
TEST 3: ESTIMATES AND CIS FOR SELF AND MUTUAL COMPONENTS OF

Z̃abc USING PROPOSED METHOD WITH 500 SAMPLES

raa/rbb/rcc xaa/xbb/xcc xab/xac/xbc
max bias mean CI % mean CI % mean CI %

0.1 % 0.1875 ±1.82 0.0193 ±17.88 0.0126 ±10.57

0.5 % 0.1890 ±1.80 0.0214 ±16.95 0.0124 ±11.39

1.0 % 0.1867 ±1.64 0.0216 ±16.42 0.0129 ±11.39

From the above results it was shown that the proposed
method is robust in presence of bias errors. The estimates
and the CIs did not vary a lot even in presence of increasing
bias errors. In presence of the same bias, the old method could
not clear the test for normality. With only 500 samples, the
estimates from the old method had a very wide CI suggesting
that the estimates were unreliable.

V. CONCLUSION

The paper presents a new method for estimating the line
parameters R, X and B. In conditions where the correction co-
efficients of CTs and VTs are unknown, the proposed method
can estimate self and mutual components of resistance and
inductive reactance along with self susceptance with a better
accuracy when compared to the generally applied old method.
One drawback is that it can’t estimate the mutual components
of the line susceptance B. This method is also suitable for
making real time estimates of the line parameters. Validation
of the parameter estimates by analyzing the residuals was
discussed and shown in detail. The results were also analyzed
with the point of view of bias and standard deviation. In the
end results from a laboratory test to estimate the parameter

of a cable system was presented. It was again shown that the
proposed method was able to achieve more reliable and precise
estimates in the presence of bias errors. This means that the
proposed method is better suited for real-field 3-phase line
parameter estimation where the correction coefficient of the
instrument transformers is not known.
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