geodiversitas 2020-42-13

The hyaenodonts (Mammalia) from the French locality of Aumelas (Hérault), with possible new representatives from the late Ypresian

Floréal SOLÉ, Bernard MARANDAT & Fabrice LIHOREAU

art. 42 (13) — Published on 4 June 2020 www.geodiversitas.com PUBLCATIONS SCIENTIFIQUES

DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR: Bruno David, Président du Muséum national d'Histoire naturelle

RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF: Didier Merle

ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Emmanuel Côtez (geodiv@mnhn.fr)

MISE EN PAGE / PAGE LAYOUT: Emmanuel Côtez

COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD: Christine Argot (Muséum national d'Histoire naturelle, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (Sorbonne Université, Paris, retraité) Gaël Clément (Muséum national d'Histoire naturelle, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (Muséum national d'Histoire naturelle, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (Muséum national d'Histoire naturelle, Paris) Sevket Sen (Muséum national d'Histoire naturelle, Paris, retraité) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres, retraité)

COUVERTURE / COVER: Made from the Figures of the article.

Geodiversitas est indexé dans / Geodiversitas is indexed in:

- Science Citation Index Expanded (SciSearch®)
- ISI Alerting Services®
- Current Contents® / Physical, Chemical, and Earth Sciences®

Geodiversitas est distribué en version électronique par / Geodiversitas is distributed electronically by: – BioOne® (http://www.bioone.org)

Les articles ainsi que les nouveautés nomenclaturales publiés dans *Geodiversitas* sont référencés par / Articles and nomenclatural novelties published in Geodiversitas are referenced by: – ZooBank® (http://zoobank.org)

Geodiversitas est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris Geodiversitas is a fast track journal published by the Museum Science Press, Paris

Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publish:

Adansonia, Zoosystema, Anthropozoologica, European Journal of Taxonomy, Naturae, Cryptogamie sous-sections Algologie, Bryologie, Mycologie. Diffusion – Publications scientifiques Muséum national d'Histoire naturelle CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France) Tél.: 33 (0)1 40 79 48 05 / Fax: 33 (0)1 40 79 38 40

diff.pub@mnhn.fr / http://sciencepress.mnhn.fr

© Publications scientifiques du Muséum national d'Histoire naturelle, Paris, 2020 ISSN (imprimé / print): 1280-9659/ ISSN (électronique / electronic): 1638-9395

⁻ Scopus®

The hyaenodonts (Mammalia) from the French locality of Aumelas (Hérault), with possible new representatives from the late Ypresian

Floréal SOLÉ

D.O. Earth and History of Life, Royal Belgian Institute of Natural Sciences, rue Vautier 29, B-1000 Brussels (Belgium)

Bernard MARANDAT Fabrice LIHOREAU

Institut des Sciences de l'Évolution de Montpellier, Univ. Montpellier CNRS IRD EPHE, Montpellier (France)

Submitted on 31 December 2018 | accepted on 3 September 2019 | published on 4 June 2020

urn:lsid:zoobank.org:pub:52D33BB7-2713-4F9D-AACF-3FAA90FDB31F

Solé F., Marandat B. & Lihoreau F. 2020. — The hyaenodonts (Mammalia) from the French locality of Aumelas (Hérault), with possible new representatives from the late Ypresian, *in* Bonis L. de & Werdelin L. (eds), Memorial to Stéphane Peigné: Carnivores (Hyaenodonta and Carnivora) of the Cenozoic. *Geodiversitas* 42 (13): 185-214. https://doi.org/10.5252/ geodiversitas2020v42a13. http://geodiversitas.com/42/13

ABSTRACT

We describe the carnivorous mammals from the Eocene French locality of Aumelas (Hérault, France). All the carnivores that have been recovered from the fossiliferous locality belong to the Hyaenodonta, a group that was very diverse during the Eocene of Europe. Three new species are described. *Matthodon peignei* n. sp. is intermediate in size between *M. menui* (Rich, 1971) and *M. tritens* Lange-Badré & Haubold, 1990. This is the first known occurrence of this genus in southwestern Europe. *Oxyaenoides aumelasiensis* n. sp. is distinct from other *Oxyaenoides* Matthes, 1967 species by its smaller size (15% smaller than *O. bicuspidens* Matthes, 1967). A third new species is proposed from Aumelas: *Leonhardtina meridianum* n. sp. The hyaenodonts from Aumelas appear to be morphologically similar to hyaenodonts from late Ypresian to early Lutetian of the northwestern Europe (European mammal reference level MP10 and MP11). These new species are incorporated into a phylogenetic analysis and are resolved within the clade Hyaenodontoidea. Our analysis interestingly recovered the Prionogalidae and *Thereutherium* as members of the Hyainailourinae. Based on the carnivorous faunal analysis, Aumelas is likely close to the Ypresian/Lutetian transition. However, because the hyaenodonts display unusual sizes that could result from provincialism, dates for Aumelas based on only these taxa should be treated cautiously, and will require confirmation based on a broader faunal analysis.

KEY WORDS Europe, Carnivores, Paleogene, Endemism, Tethys, new species.

RÉSUMÉ

Les hyénodontes (Mammalia) de la localité française d'Aumelas (Hérault), de possibles nouveaux représentants de l'Yprésien tardif.

Nous décrivons les mammifères carnassiers de la localité française d'Aumelas (Hérault, France). Tous les fossiles découverts dans cette localité appartiennent au Hyaenodonta, un groupe de carnassiers très diversifié en Europe durant l'Éocène. Trois nouvelles espèces sont reconnues. Matthodon peignei n. sp. est morphologiquement similaire aux deux espèces précédemment référées à ce genre - M. menui (Rich, 1971) and *M. tritens* Lange-Badré & Haubold, 1990 - mais elle est intermédiaire en taille. Ceci est la première occurrence de ce genre particulier dans le sud-ouest de l'Europe. Oxyaenoides aumelasiensis n. sp. se distingue des autres espèces d'Oxyaenoides Matthes, 1967 par une plus petite taille (15 % par rapport à O. bicuspidens Matthes, 1967, la plus petite espèce du genre). La troisième espèce appartient au genre Leonhardtina Matthes, 1952: L. meridianum n. sp. Les hyénodontes d'Aumelas sont morphologiquement proches des hyénodontes connus à l'Yprésien tardif et au début du Lutétien (niveaux repères MP10 et MP11) dans le nord-ouest de l'Europe. Ces nouvelles espèces ont été incluses au sein d'une analyse phylogénétique des hyaenodontes ; il ressort qu'elles appartiennent au clade des Hyaenodontoidea. Cette analyse phylogénétique se distingue des précédentes en ce qu'elle conduit à envisager les Prionogalidae comme des membres des Hyainailourinae. Sur la base de la faune carnivore, un âge proche de la transition Yprésien/Lutétien pour les fossiles d'Aumelas apparaît possible, contrairement à ce qui avait été proposé jusqu'à présent. Cependant, étant donné que les hyénodontes d'Aumelas présentent des tailles inhabituelles, dues vraisemblablement à du provincialisme, la datation de la localité sur la seule base des hyénodontes demeure incertaine et demande confirmation.

MOTS CLÉS Europe, carnivores, Paléogène, endémisme, Téthys, espèces nouvelles.

INTRODUCTION

The fossil locality of Aumelas was discovered 20 km west of Montpellier (Hérault, France) by Mr. Gabinaud and was first reported by Hartenberger (1963). The first mammals described from this locality were Propalaeotherium sp. (cf. parvulum) and Lophiodon isselensis. These identifications were revised by Sudre (1980) and Rémy et al. (2016). Other mammals, notably the adapid primate Anchomomys aff. gaillardi (Hartenberger et al. 1969; later considered as A. cf. gaillardi by Godinot 1988) and the artiodactyl Dichobune robertiana (Sudre 1988; Sudre & Ginsburg 1993), suggested the locality was slightly older than Lissieu (France), or could be correlated to La Défense or Bouxwiller (France), and thus possibly be close to the MP13 reference-level (late Lutetian) (BiochroM'97 1997). The faunal list of Aumelas is being developed and is currently composed of crocodilians (Martin 2016), chelonians (Hervet 2004) and at least 19 mammalian taxa (marsupials, bats, rodents, lipothyphlan, primates, artiodactyls and perissodactyls; see Crochet 1979; Sudre 1980, 1988; Godinot 1988; Escarguel 1999; Maitre et al. 2006, 2008; Maitre 2014; Rémy et al. 2016, 2019).

This study is a contribution to a larger effort to review and revise the Aumelas fauna based on the collections at the University of Montpellier and new materials collected over the last decade. Sudre (1980) mentions that the first identification of the carnivorous mammals from Aumelas (Proviverrinae indet) was made by B. Lange-Badré. No carnivoraform has been discovered at Aumelas. We here describe three new hyaenodonts based on unpublished fossils from Aumelas. Comparisons with recently published material of Hyaenodonta (Solé *et al.* 2014a, 2015a) and the addition of this material to a recent phylogeny (Borths & Stevens 2019) allows us to assess the previously proposed age of Aumelas. These new materials also permit us to compare the composition of carnivorous faunas at different European Eocene localities

MATERIAL AND METHODS

FOSSIL SPECIMENS

The fossils described herein are all from the locality of Aumelas (Hérault, France). Fossil collecting at Aumelas began in 1960 and has continued under the auspices of a team from the University of Montpellier. The fossils are removed from the matrix using acid preparation, an effort lead by one of us (B.M.), with additional preparation at the Royal Belgian Institute of Natural Sciences. The fossils are deposited in the collection of the University of Montpellier under the acronym UM-AUMXXX.

DENTAL NOMENCLATURE AND MEASUREMENTS

The nomenclature of the teeth follows the dental terminology of Szalay (1969). The measurements (length × width in mm) follow Gingerich & Deutsch (1989).

TAXONOMY

Solé & Mennecart (2019) and Dubied *et al.* (2019) modified the Borths & Stevens (2017c) matrix. Their phylogenetic study refuted the monophyly of "Proviverrinae" *sensu* Solé (2013), resolving "proviverrines" as part of the hyaenodontine stem lineage. Because their results agree with those of Borths *et al.* (2016), they proposed to consider the Proviverrinae as a clade that includes the last common ancestor of *Proviverra* and *Parvagula*. They thus applied the name Hyaenodontoidea to the clade that includes the last common ancestor of *Proviverra* and *Hyaenodon*. This resolves Hyaenodontidae and Proviverrinae within Hyaenodontoidea.

However, the combination here presented of the Solé & Mennecart (2019) matrix, with the one published by Borths & Stevens (2019), results in the exclusion of *Parvagula* from the Proviverrinae. Therefore, we here consider that Proviverrinae includes the following hyaenodont genera: *Proviverra, Morlodon, Allopterodon*, and *Lesmesodon*. This analysis also results in the exclusion of *Parvagula* from the Hyaenodontoidea.

Authorships of taxa are indicated in the Appendix 8.

Phylogenetic analysis

We did not build a new character-taxon matrix but we combined the matrices published by Solé & Mennecart (2019), Dubied et al. (2019), and Borths & Stevens (2019). However, we have some disagreements with the coding of some European hyaenodonts in the character-taxon matrix created by Borths & Stevens (2017c, 2019). We thus decided to modify this matrix in order to reflect our observations (Appendix 1). It is worth noting that the Borths & Stevens (2019) matrix does not include the following taxa, which were however included in the Borths & Stevens (2017c) matrix: Thereutherium thylacodes, Pakakali rukwaensis, and the prionogalids Namasector soriae and Prionogale breviceps. We added these taxa into our matrix. We also added the new taxa described herein: Matthodon peignei n. sp., Oxyaenoides aumelasiensis n. sp., and Leonhardtina meridianum n. sp. Moreover, as in Solé & Mennecart (2019), three European hyaenodont OTUs (Operational Taxonomic Unit) Matthodon menui, Prodissopsalis eocaenicus, and the genus Paracynohyaenodon have been included in the matrix. The resulting character-taxon matrix includes 156 characters (Appendix 2) and 103 OTUs (Appendix 3). We also corrected the numerical ages used for the European hyaenodonts (Appendix 4).

The character-taxon matrix was assembled in Winclada (Nixon 2002). As in Borths & Stevens (2017c, 2019), nineteen multistate characters were treated as ordered, and all characters were treated as equally weighted. Phylogenetic analysis was performed using the Bayesian 'tip-dating' phylogenetic methods described by Beck & Lee (2014) and applied to hyaenodonts by Borths et al. (2016). This method simultaneously estimates branch length, rate, phylogeny and support for clades recovered in the analysis, a common approach for paleontological systematic analysis (e.g., Beck & Lee 2014; Dembo et al. 2015; Borths et al. 2016; Gorscak & O'Connor 2016; Lund et al. 2016; Turner et al. 2017). Bayesian 'tip-dating' analyses were performed in MrBayes (Ronquist et al. 2012). MrBayes formatted nexus files with all analytical parameters are included in the Appendix 5. Appendix 6 can be used to visualize the results (e.g., age estimates, rate of change) with FigTree.

BODY MASS

The body mass of each new species is estimated based on the methodology provided by Morlo (1999). The equation is

 $Log^{10}(P) = [3.5104 \times Log^{10}((\Sigma M)/3)] - 2.3469$ where P is the estimated body mass (in grams) and ΣM the sum of the length of the three lower molars (in mm). All the values are available in Appendix 7.

ABBREVIATIONS

ABBREVIATI	ONS
MNHN.F	Muséum national d'Histoire naturelle, Paris, Palae-
	ontology collections;
RZ	collection from Rouzilhac, Aude, France;
UM	Université de Montpellier, France;
UM-AUM	Material from locality of Aumelas, Hérault, France
	deposited in the UM;
L	length;
n	number of specimens;
OR	observed range;
W	width.

SYSTEMATICS

Order HYAENODONTA Van Valen, 1967 Family HYAENODONTIDAE Leidy, 1869

Genus Matthodon Lange-Badré & Haubold, 1990

TYPE SPECIES. — Matthodon tritens Lange-Badré & Haubold, 1990.

OTHER SPECIES. — *Matthodon menui* (Rich, 1971); *Matthodon peignei* n. sp.

Matthodon peignei n. sp. (Fig. 1)

urn:lsid:zoobank.org:act:F79F2003-3B67-466B-AA9E-03F94442912F

HOLOTYPE. — UM-AUM694, left mandible with p2-m3 and the alveoli for the canine and p1.

ETYMOLOGY. — Dedicated to the memory of Dr. S. Peigné (1972-2017), who described numerous carnivorous mammals from the Paleogene and Neogene of Eurasia and Africa.

REFERRED SPECIMENS. — UM-AUM268, left mandible with m2 and m3.

HORIZON AND AGE. — Lacustrine limestone of Montpellier, proposed as Lutetian in age in previous study but here considered possibly late Ypresian/early Lutetian in age

TYPE LOCALITY. — Aumelas, Hérault, France.

DIAGNOSIS. — *Matthodon peignei* n. sp. is intermediate both metrically and morphologically between *Matthodon menui* and *Matthodon tritens*: *M. peignei* n. sp. differs from *M. menui* by having longer premolars and molars and from *M. tritens* by having mesiodistally shorter premolars and molars. *Matthodon peignei* n. sp. differs from *M. tritens* by having less developed paraconids on p2, p3 and p4; the larger and more individualized metaconid on the molars; the longer talonid on the m1 and m2; and by shorter molars (4% for the m1, 8% for the m2 and m3), and longer p2 and p4 (respectively 9% and 5%). *Matthodon peignei* n. sp. differs from *M. menui* and *M. tritens* by the relative larger size of the p2, and narrower premolars.

MEASUREMENTS. — Table 1.

Locus		n	OR	Mean
С	L	1	14.4	-
	W	1	11.46	-
p1	L	1	6.06	-
	W	1	4.76	-
p2	L	1	9.32	-
	W	1	5.66	-
р3	L	1	9.67	-
	W	1	5.92	-
p4	L	1	11.81	-
-	W	1	6.85	-
m1	L	1	11.59	-
	W	1	6.22	-
m2	L	2	12.56-12.89	12.75
	W	2	7.33-8.14	7.74
m3	L	2	12.31-13.00	12.66
	W	2	7.88-8.26	8.07
MD		1	26.27	_

TABLE 1. — Measurements (in mm) of *Matthodon peignei* n. sp. from Aumelas (MP10-MP11?). Body mass (c. 14.95 kg) estimated after Morlo (1999).

DESCRIPTION

UM-AUM 694 is almost a complete mandible that bears well-preserved teeth, except the i3, canine and p1, which are represented by their alveoli (Fig. 1A-C). The mandible is deep (26.3 mm below the m1). Two mental foramina are present: the first one opens below the posterior root of p2, while the second is present below the anterior root of p4. The masseteric fossa is very deep. A deep fossa for insertion of the temporal muscle is present along the anterior margin of the crest. The angular process is curved sharply dorsally and is relatively wide. The mandibular condyle is robust, and is mediolaterally wide.

The presence of an incisor (possibly the i3) is indicated by its tiny alveolus in front of the canine. The canine is buccolingually wide. The canine, premolars and molars are very close together. The p1 is single-rooted. The teeth display crenulated enamel. The p2 is simple with only the hypoconid present on the talonid. A small fold indicates the position of the paraconid. The p3 is mesiodistally longer and buccolingually wider than the p2. It differs by the presence of a paraconid, and by having three cuspids on the talonid: the larger corresponds to the hypoconid, while the other two are situated in the position of the entoconid. The p4 is more symmetrical in lateral view than the p3. The paraconid is much more developed. On the talonid, two cuspids are present: the hypoconid and the entoconid, which form a postfossid.

The three molars display similar morphologies. The m3 is slightly mesiodistally shorter than the m2, but this is due to the reduction of the talonid. The paraconid is prominent and located mesially. The anterior keel is well developed. The metaconid is lower than the paraconid and almost completely fused with the protoconid. The latter is distinctly the highest cusp. The talonid is mesiodistally short and narrow. The postfossid is narrow and surrounded by three bulbous cusps: entoconid, hypoconid and hypoconulid; the entoconid being the tallest one. The m3 differs from m1 and m2 in having a much more reduced talonid in which the talonid cusps can-

 $\mathsf{TABLE}\ 2.$ — Mean width/length ratio of the p2, p3 and p4 respectively in the Matthodon species.

Species	p2	р3	p4
Matthodon menui	0.65 (OR: 0.63- 0.67, n=2)	0.66 (OR: 0.65- 0.67, n=2)	0.6 (OR: 0.57- 0.63, n=2)
Matthodon tritens	0.71 (OR: 0.69- 0.73, n = 4)	0.67 (OR: 0.54- 0.75, n = 5)	0.65 (OR: 0.59- 0.68, n = 4)
Matthodon peignei n. sp.	0.61	0.61	0.58
	(n=1)	(n=1)	(n=1)

not be distinguished. The precingulid is short (limited to the paraconid) but is very wide, notably on m3.

DISCUSSION

The new fossils share with *Matthodon* species the peculiar distal positions of the mental foramina (the first is inferior to the distal margin of p1 and the second is inferior to p4), the presence of a single-rooted p1, a closely packed toothrow, and the poorly developed metaconid on molars. All these features distinguish *Matthodon* from the European Ypresian and Lutetian hyaenodonts. UM-AUM694 is among the best preserved mandibles ever found for *Matthodon*.

The genus *Matthodon* is represented by two species: *Matthodon menui* from Chavot, Monthelon, Mancy, and Grauves (Ypresian, MP10; France) and *Matthodon tritens* from Geiseltal-Untere Unterkohle (Lutetian, MP11; Germany).

The fossils from Aumelas differ from those of the Lutetian species, *Matthodon tritens*, by having less developed paraconids on p2, p3 and p4; the larger and more individualized metaconid on the molars; the longer talonid on the m1 and m2; and by shorter molars (4% for the m1, 8% for the m2 and m3), and longer p2 and p4 (respectively 9% and 5%). These differences are reminiscent of the Ypresian species *Matthodon menui*.

The fossils from Aumelas, are distinct from those referred to *Matthodon menui* by having longer premolars and molars: the molars are 6% longer, the p2 9% longer, and the p3 and p4 4% longer. The mesio-distal diameter of the alveolus of the p1 is also distinctly longer than those measured for *M. menui*. As indicated above, the teeth from Aumelas are morphologically more similar to those of *M. menui* than to those of *M. tritens*.

The mean width/length ratio of the p2, p3 and p4 differentiates *Matthodon peignei* n. sp. from *M. menui* and *M. tritens* by having narrower premolars (Table 2).

The fossils from Aumelas appear intermediate both metrically and morphologically between Ypresian *M. menui* and Lutetian *M. tritens*. It differs from the two previously described taxa by the relatively large size of the p2. This feature is highly characteristic because the relative size of the p2, which decreases from *M. menui* to *M. tritens*, can be considered as an indication of the reduction of the anterior dentition (p1 and p2). The larger size of the p2 in UM/AUM 694 thus can be regarded as a primitive feature. The same observation can be made for the narrowness of the premolars.

Fig. 1. — Matthodon peignei n. sp. from Aumelas (MP10-MP11?): A-C, UM-AUM694 (Holotype), left mandible bearing the p2-m3 and the alveoli of the canine and p1; A, occlusal view; B, lingual view; C, labial view; D-F, UM-AUM268, left mandible bearing the m2 and m3; D, occlusal view; E, lingual view; F, labial view. Scale bars: 1 cm.

 $\begin{array}{l} {\sf TABLE 3.-Measurements (in mm) of Oxyaenoides aumelasiensis n. sp. from Aumelas (MP10-MP11?). *, based on roots and/or alveoli; Body mass (c. 4.24 kg) estimated after Morlo (1999). \end{array}$

Locus		n	OR	Mean
P3	L W	2 2	9.88-11.10 6.39-6.78	10.49 6.59
P4	L W	2 2	11.28-11.55 7.63-8.75	11.42 8.19
M1	L W	2 1	9.39-9.52 10.54	9.46
M2	L W	1 1	8.32 10.11	
p2	L W	1 1	5.88 2.31	-
m1	L W	1 1	8.71* 4.65*	
m2	L W	1 1	7.74* 5.16*	
m3	L W	1	9.24 5.37	
MD		1	16.68	-

Based on these comparisons the Aumelas specimen represents a new species of *Matthodon*, the first occurrence of the genus in the southwestern part of Europe.

Genus Oxyaenoides Matthes, 1967

TYPE SPECIES. — Oxyaenoides bicuspidens Matthes, 1967.

OTHER SPECIES. — Oxyaenoides schlosseri (Rütimeyer, 1891); Oxyaenoides lindgreni (Rich, 1971); Oxyaenoides aumelasiensis n. sp.

Oxyaenoides aumelasiensis n. sp. (Fig. 2)

urn:lsid:zoobank.org:act:AFFF7C27-FB65-49C0-A788-96352B214851

HOLOTYPE. — UM-AUM693, left mandible bearing m3, the anterior root and talonid of the m1, the posterior alveolus of the p4, and the alveoli of m2.

ETYMOLOGY. — Latin, from Aumelas (type locality).

REFERRED SPECIMENS. — UM-AUM686, right M2; UM-AUM692, combination of a left maxillary fragment bearing the P2-M1, a right maxillary fragment bearing the P3-P4, the protocone of the M1 and the alveoli of the P2; UM-AUM695, labial part of a M1.

HORIZON AND AGE. — Lacustrine limestone of Montpellier, proposed as Lutetian in age in previous study but here considered possibly late Ypresian/early Lutetian in age

TYPE LOCALITY. — Aumelas, Hérault, France.

DIAGNOSIS. — The species is 15% smaller than *O. bicuspidens* and 25% smaller than *O. bicuspidens* and *O. schlosseri*. It differs from *O. lindgreni* and *O. bicuspidens* by a more buccally aligned metastyle on molars. It differs from *O. bicuspidens* and *O. schlosseri* by a less retroflexed protoconid.

MEASUREMENTS. — Table 3.

DESCRIPTION

The P2 has a very small lingual fold that corresponds to an incipient parastyle. The metastyle is short and low (Fig. 2D, E). There is a small diastema between the P2 and P3 (Fig. 2F, G). The P3 and P4 are mesiodistally elongated. The P3 is characterized by the presence of a distinct parastyle and a strong metastyle. There is a large lingual bulge but no protocone. The P4 also displays a very large parastyle and metastyle; the latter is very tall. The protocone projects lingually and is mesiodistally narrow (Fig. 2D-G).

The two known molars have a very similar morphology (Fig. 2D, E, H, I). On M1, the parastyle is present and bulbous but is mesiodistally short and narrow. The metastyle is mesiodistally elongated. The paracone and metacone are partially fused; only the apexes are fully separated. The protocone is low. The protofossa is very mesiodistally short and narrow. The paraconule is present. The metaconule is absent. The M1 is morphologically identical to the M2 except that the parastyle is wider and the metastyle is less distally located.

The mandible is narrow. The masseteric fossa is deep. As in *Matthodon*, a deep fossa for insertion of the temporal muscle is present along the anterior margin of the coronoid crest. The latter is distally inclined and the angle between the coronoid crest and the body of the dentary is close to 120°.

UM/AUM693 is a fragment of a left mandible that bears the talonid of m1 and a complete m3 (Fig. 2A-C). The talonid of the m1 bears three distinct cusps (entoconid, hypoconid, and hypoconulid). The entoconid is lower than the hypoconulid, which is distally located, and lower than the hypoconid. Contrary to the m1, the m3 is complete. The paraconid is tall, long and well mesially located. There is no metaconid. The m3 is thus characterized by a cutting trigonid. The talonid is very mesiodistally short, low, and narrow with only one cusp (hypoconulid?) present. The precingulid is developed.

DISCUSSION

The fossils from Aumelas are characterized by a very cutting morphology (e.g., long metastyle on P4 and molars, absence of metaconid, long paracristid on m3). Only one hyaenodont genus known from the Ypresian and Lutetian of Europe has molars that are characterized by the absence of a metaconid, a hypercarnivorous feature: *Oxyaenoides* (MP10-?MP13) (Matthes 1967; Lange-Badré & Haubold 1990; Solé *et al.* 2014a). The teeth found at Aumelas share with *Oxyaenoides* mesiodistally short and narrow talonids bearing crestiform entoconids on molars. This genus is known both in northwestern (Matthes 1967; Lange-Badré & Haubold 1990; Solé *et al.* 2014a, 2015a) and southwestern Europe (Crochet *et al.* 1976).

Three species of Oxyaenoides are presently known: Oxyaenoides lindgreni from MP10 (Rich 1971; Solé et al. 2014a), Oxyaenoides bicuspidens from MP11 (Matthes

Fig. 2. — Oxyaenoides aumelasiensis n. sp. from Aumelas (MP10-MP11?): A-C, UM-AUM693 (Holotype), left mandible bearing m3, the anterior root and talonid of the m1, and the posterior alveolus of the p4, and the alveoli of m2; A, occlusal view; B, lingual view; C, labial view; D-G, UM-AUM692, combination of a left maxillary fragment bearing the P2-M1, a right maxillary fragment bearing the P3-P4, the protocone of the M1 and the alveoli of the P2; D, occlusal view of left maxillary; E, labial view of the left maxillary; F, occlusal view of the right maxillary; G, labial view of the right maxillary (reversed view); H-I, UM-AUM686, right M2; H, occlusal view; I, labial view. Scale bars: A-G, 1 cm; H, I, 50 mm.

TABLE 4 Measurements (in mm) of Leonhardtina meridianum n. sp. from Au-
melas and Rouzilhac (MP10-MP11?). Body mass (c. 843.29 g) of L. meridianum
n. sp. from Aumelas estimated after Morlo (1999).

		Leonhardtina meridianum n. sp.					
		from	Aumelas	from F	Rouzilhac		
Locus	5	n	OR	n	OR		
M2	L	1	4.96	0	_		
	W	1	6.07	0	-		
M3	L	1	2.91	0	-		
	W	1	5.49	0	-		
p2	L	0	-	1	6		
•	W	0	-	1	2.7		
р3	L	1	6.5	1	7		
•	W	1	3.19	1	3.2		
p4	L	1	5.39	1	5.4		
	W	1	2.51	1	2.7		
m1	L	1	4.95	0	-		
	W	1	2.94	0	-		
m2	L	1	5.49	0	-		
	W	1	3.21	0	-		
m3	L	1	5.78	1	5.9		
	W	1	3.67	1	4		
MD		1	10.48	1	10.68		

1967; Crochet *et al.* 1976; Lange-Badré & Haubold 1990) and *Oxyaenoides schlosseri* from ?MP13 (Rütimeyer 1891; Lange-Badré 1972; Solé *et al.* 2015a). The syntypes of *O. schlosseri* are from Egerkingen γ (Lange-Badré 1972), but the MP reference-level of this site (possibly MP13) is uncertain (BiochroM'97 1997), as is Aigues-Vives 2 where a mandible of *O. schlosseri* was discovered (Solé *et al.* 2015a).

The most striking feature of the fossils from Aumelas is their small size compared to other *Oxyaenoides* material. The teeth are 15% smaller than those of *O. lindgreni* and 25% smaller than those of *O. bicuspidens* and *O. schlosseri*. The size of the new taxon is actually almost equivalent to that of *Preregidens langebadrae* (Saint-Papoul; *c.* MP8+9).

Oxyaenoides aumelasiensis n. sp. differs from those of O. lindgreni and O. bicuspidens by a more buccally aligned metastyle on upper molars. It also differs from O. bicuspidens and O. schlosseri by a mesially oriented protoconid – this feature accommodates an elongate preprotocristid, a structure found on cutting molars. Oxyaenoides aumelasiensis n. sp. appears more primitive than northwestern species by having a buccally aligned metastyle on upper molars and the less retroflexed protoconid on molars.

To conclude, the fossils of *Oxyaenoides aumelasiensis* n. sp. share with the other *Oxyaenoides* species several features including: a reduced metaconid and reduced talonid morphology. However, based on the small size and distinctive features, we distinguish *O. aumelasiensis* n. sp. from previously described species of Oxyaenoides.

The fossils from Aumelas are important because they are the first to provide so much information on the morphology of the upper premolars of the genus *Oxyaenoides*. The fossils from Aumelas represent the smallest hypercarnivorous hyaenodont ever discovered in the Ypresian and Lutetian.

Genus Leonhardtina Matthes, 1952

TYPE SPECIES. — *Leonhardtina gracilis* Matthes, 1952.

OTHER SPECIES. — *Leonhardtina godinoti* Solé, Falconnet & Laurent, 2014; *Leonhardtina meridianum* n. sp.

Leonhardtina meridianum n. sp. (Fig. 3)

urn:lsid:zoobank.org:act:DA2667CF-BFAD-4CFD-AFE0-E9B1416140D2

HOLOTYPE. — UM-AUM54, right mandible bearing p3 to m3.

ETYMOLOGY. — *Meridianum* (Latin) means from the Midi, the south. In reference to the fact that the species is recorded only in the southern part of France.

REFERRED SPECIMENS FROM AUMELAS. — UM-AUM530, right maxillary fragment bearing M2 and M3.

OTHER REFERRED SPECIMENS. — MNHN.F.RZ142, right mandible bearing p2-p4 and m3.

HORIZON AND AGE. — Lacustrine limestone of Montpellier, proposed as Lutetian in age in previous study but here considered possibly late Ypresian/early Lutetian in age

TYPE LOCALITY. — Aumelas, Hérault, France.

OTHER LOCALITY. — Rouzilhac, Aude, France (Ypresian-Lutetian?; MP10b, Godinot *et al.* 2018)

DIAGNOSIS. — The new species is smaller than *Leonhardtina godinoti* (5% based on the length of the molars) and *Leonhardtina gracilis* (20%). It also differs from these species by a narrower postfossid on molars, and by relatively larger p3 relative to p4.

MEASUREMENTS. — Table 4.

DESCRIPTION

The upper teeth are represented by the M2 and M3 (Fig. 3A, B). The M2 is characterized by the separation of the paracone and metacone. These cusps appear to be of similar height. The parastyle is well-developed. The metastyle is long and mainly buccally aligned. The protocone is extended buccolingually and mesiodistally short. The protofossa is worn. The M3 is buccolingually elongated. The parastyle is long. Only the paracone is visible; the metacone-metaconule area is broken. The protocone is almost as tall as the paracone. A paraconule is discernable.

The mandible is deep (Fig. 3C, D). The coronoid crest is slightly distally inclined; the angle between the coronoid crest and the body of the dentary is close to 100°. As in the two other hyaenodonts from Aumelas, a deep fossa for the insertion of the temporal muscle is present along the anterior margin of the coronoid crest.

The p3 is elongated mesiodistally and is longer than the p4 (Table 4). The tooth is too damaged to describe its morphology (Fig. 3F-H). The p4 probably had a paraconid, but the anterior part of the tooth is too damaged to be sure. The protoconid is robust. The talonid is short in

Fig. 3. — *Leonhardtina meridianum* n. sp. from Aumelas (MP10-MP11?): **A**, **B**, UM-AUM530, right maxillary fragment bearing M2 and M3; **A**, occlusal view; **B**, labial view; **C-H**, UM-AUM54 (Holotype), right mandible bearing p3 to m3; **C**, lingual view; **D**, labial view; **E**, occlusal view; **F**, occlusal close-up; **G**, lingual close-up; **H**, labial close-up. Abbreviations: **me**, metacone; **pa**, paracone; **pr**, protocone. Scale bars: 1 cm.

length and bears two cusps: a hypoconid and a lingually located entoconid. The molars are similar in morphology except the m3 has a narrower and more mesiodistally elongated talonid than m1 and m2 (Fig. 3F-H). The three teeth have a sharply pointed and mesiodistally compressed trigonid. The paraconid is lingually located relative to the protoconid. The metaconid is buccolingually aligned with the protoconid. The apexes of the metaconid and paraconid are worn preventing comparison of cusp height; the paraconid was however probably shorter in height than the metaconid. The talonid is almost as wide as the trigonid. The postfossid is narrow. The three talonid cusps are well individualized and bulbous. The talonid is labially oriented relative to the horizontal ramus as in primitive hyaenodonts (e.g., Prototomus, Eoproviverra). The hypoconulid is slightly taller than the two other talonid cusps. The hypoconulid and entoconid are close together. On the molars, the three talonid cusps are well-defined. The precingulid seems to have been present as well as an incipient postcingulid, but this is uncertain due to taphonomic processes. No ectocingulid is present.

DISCUSSION

The fossils of *Leonhardtina meridianum* n. sp. described differ from those of *Matthodon* and *Oxyaenoides* by their smaller size; the p3 longer than the p4; the wide talonid on the molars; and the sharply pointed and mesiodistally compressed trigonid of the molars.

According to our phylogenetic analysis (see below), *Leonhardtina* is closely related to *Preregidens langebadrae*. This latter species is only represented by one mandible discovered at Saint-Papoul (MP8+9; France) (Solé *et al.* 2015a). *Preregidens* shares with *Leonhardtina* the presence of mesiodistally short trigonid and buccolingually narrow postfossid on molars. However, *Preregidens* differs from *L. gracilis* and *L. meridianum* n. sp. by having buccolingually narrower talonid on molars, the absence of postcingulid on molars, shorter talonid on m3, and possibly the p3 shorter than the p4 (the p3 is only represented by its alveoli on the sole known fossil of *Preregidens*). *Preregidens* also differs from *L. gracilis* by having a higher and sharper p4.

The p3 longer than the p4, the wide talonid on the molars, and the sharply pointed and mesiodistally compressed trigonid of the molars are features that characterize the small hyaenodonts *Leonhardtina*, *Proviverra*, *Lesmesodon*, and *Allopterodon*, which form a clade in Solé *et al.* (2014a, 2015a). This clade is not recovered in the recent analyses (e.g., Borths & Stevens 2017c, 2019) nor in the phylogenetic analysis we performed (Fig. 4).

Leonhardtina meridianum n. sp. differs from Proviverra, Lesmesodon and Allopterodon by having weakly developed labial cingulids on the p4 and the molars; the latter are indeed well-developed in the three European hyaenodontoid genera, notably Proviverra (Lange-Badré 1981; Morlo & Habersetzer 1999). Leonhardtina further differs from these genera by having more oblique cristid obliqua, and narrower talonids and postfossids on the molars. Some species of the genera *Cynohyaenodon*, *Paracynohyaenodon*, and *Quercytherium* are also close in size to *Leonhardtina*. However, these genera clearly differ from *Leonhardtina* by the p3 shorter than the p4 and a mesiodistally elongated trigonid on molars. These features also distinguish *Leonhardtina* from *Boritia*, a monospecific genus phylogenetically close to *Cynohyaenodon*, *Paracynohyaenodon*, and *Quercytherium*.

The weakly developed labial cingulids on the molars are also found in late Ypresian and early Lutetian genus *Leonhardtina*. This genus is represented by two species: *L. godinoti* from Grauves (Ypresian, MP10; Solé *et al.* 2014a) and *L. gracilis* from Geiseltal-Untere Mittelkohle and Geiseltal-Obere Mittelkohle (Lutetian, MP12-13; Matthes 1952; Lange-Badré & Haubold 1990). The fossils from Aumelas are smaller than other *Leonhardtina* species: 5% smaller than *L. godinoti* and 20% smaller than *L. gracilis*. The newly described fossils are 15-20% larger than those of *Proviverra typica*, which is found with *L. gracilis* in Geiseltal (Lange-Badré & Haubold 1990).

The new fossils also differ from the two species of *Leonhardtina* by having a relatively larger p3. The ratio of p3 length to p4 length equals 1.21 for *L. meridianum* n. sp. The ratio equals 1.04 in *L. godinoti* and 1.08 in *L. gracilis*. However, the ratio in *L. meridianum* n. sp. may be overestimated because the p3 and p4 are crushed, which probably results in lengthening the p3 measurement.

Godinot *et al.* (2018) described a mandible discovered in the locality of Rouzilhac (Aude, France; MP10b) that they referred to *Leonhardtina* cf. *gracilis*. The teeth preserved on the mandible are very close in size to those preserved on UM-AUM54 (Table 4). Moreover, the p4 and m3 are morphologically identical (e.g., talonid mesiodistally compressed on m3). Because of these similarities, we propose that MNHN.F.RZ142 and UM-AUM54 belong to the same taxon.

The p3 and p4 are better preserved on the fossil from Rouzilhac: the ratio p3 length/p4 length equals 1.3 in this specimen. This is consistent with *L. meridianum* n. sp. having a relatively large p3 compared to *L. godinoti* and in *L. gracilis*.

L. meridianum n. sp. differs from the other Leonhardtina species by having narrower talonids and postfossids and a more oblique cristid obliqua on the molars. The morphology of the talonids of the molars on UM-AUM54 are similar to the earliest European hyaenodonts such as Eoproviverra (Rians; Ypresian, c. MP7) and Parvagula (Palette, Fournes, Fordones; Ypresian, c. MP7) rather than Leonhardtina, Allopterodon or Proviverra.

The upper teeth (M2 and M3) are poorly preserved and not very diagnostic. However, they are morphologically similar to those of *Leonhardtina gracilis* in having a separated paracone and metacone; a buccally aligned metastyle; and a lingually elongated protocone.

To conclude, the *Leonhardtina* species found at Aumelas is smaller than the two *Leonhardtina* species known in northwestern Europe, and has the potentially primitive feature of a narrower talonid and postfossid on molars. However, *L. meridianum* n. sp. has the potentially derived feature of a relatively long p3.

Fig. 4. - Results of the phylogenetic analysis of Hyaenodonta character-taxon matrix. Results are visualized as an "all compact" (majority rule plus compatible groups) consensus tree. Major, named clades recovered or discussed in this analysis and recovered in other analyses are illustrated. In bold: new hyaenodonts species described herein.

PHYLOGENETIC ANALYSIS

The character-taxon matrix that forms the basis of the present analysis has been used – and improved – in several studies of hyaenodonts systematics (Borths *et al.* 2016; Borths & Seiffert 2017; Borths & Stevens 2017a, b, c, 2019; Solé & Mennecart 2019; Dubied *et al.* 2019). The analysis ("all compact" consensus tree; Fig. 4; Appendix 6) recovered all the clades found in the previous phylogenetic analyses.

The "all compact" consensus tree shows the monophyly of the Hyainailouroidea (Posterior Probability = 44%), the Hyainailouridae (PP = 46%), as well as that of the Teratodontinae (PP = 30%), Hyainailourinae (PP = 33%), and Apterodontinae (PP = 99%), three subfamilies of the Hyainailouroidea. These values are close to those found by Borths & Stevens (2019). The relationships among Hyainailouroidea have been extensively discussed by Borths *et al.* (2016), Borths & Seiffert (2017), and Borths & Stevens (2017a, b, 2019). The clades established by our analysis are similar to those found by Borths & Stevens (2019). However, numerous polytomies within the Hyainailourinae are present in the resulted tree of our analysis (Fig. 4), which was not the case in the previous published phylogenetic analyses.

The most dramatic difference with the previous phylogenetic studies is the presence of the enigmatic *Thereutherium* and of the prionogalids Namasector and Prionogale within the Hyainailourinae - the clade Prionogalidae+Thereutherium is supported by a PP of 57%, while the Prionogalidae is supported by a PP of 100%. This position differs from the results of Solé & Mennecart (2019): indeed, they were resolved as sister taxa of Hyaenodontinae by this analysis. A close relationship with Hyaenodontinae was also found by Borths & Stevens (2017c) when the characters were ordered. When the characters were unordered, the Prionogalidae (i.e., Namasector and Prionogale) were located within the Hyainailourinae, but *Thereutherium* was still closely related to the Hyaenodontinae (Borths & Stevens 2017c). Therefore the presence of both Prionogalidae and Thereutherium among the Hyainailourinae was unexpected.

This result questions the relationships of the Prionogalidae and Thereutherium, which highlights in addition the difficulty to understand the origin of these enigmatic hyaenodonts. Because the prionogalids have been only found in Africa (Schmidt-Kittler & Heizmann 1991; Morales et al. 2008; Borths & Stevens 2019), their presence among Hyainailourinae, which in all probability originated in Africa (Solé et al. 2014b, 2015b; Borths & Stevens 2019), is biogeographically logical. The case of *Thereutherium* is more complex, this small-bodied hypercarnivorous hyaenodont being only known in the Oligocene of Europe (Lange-Badré 1979). Based on the present topology, one can imagine that this hyaenodont dispersed from Africa into Europe in the earliest Oligocene. Such dispersal (i.e., from Africa to Europe in the early Oligocene) of a hyaenodont has been already proposed for Apterodon (Simons & Gingerich 1976; Lange-Badré & Böhme 2005; Grohé et al. 2012).

Some polytomies are also present at the nodes located closely to the Hyainailouroidea. A polytomy is also present close to the base of the Hyaenodonta: this node actually groups the Hyainailouridae and related taxa (e.g., *Galecyon* clade), the Hyaenodontoidea+*Parvagula*, and the Limno-cyoninae and related taxa (*Arfia*, *Prototomus*, and *Sinopa*).

Besides the position of Thereutherium and Prionogalidae within the Hyainailourinae, the second striking difference with the previous phylogenetic studies is the very basal position of the Moroccan hyaenodonts Lahimia and Boualitomus; only the European hyaenodont Eoproviverra is more basally located than these hyaenodonts. This position is surprising because these carnivorous mammals were generally found to be close to the Hyainailouroidea (Borths et al. 2016, Borths & Seiffert 2017; Borths & Stevens 2017a, b, c). However, one can remember that Lahimia and Boualitomus were more basally located in Borths & Stevens (2019) (i.e., before the split between the Hyaenodontidae and the Hyainailouroidea). The basal position of these two hyaenodont genera is interesting because the presence of Lahimia in the Paleocene of Morocco, has been notably used as an argument for an African origin of the Hyaenodonta by Solé et al. (2009) and Solé (2013); Gheerbrant (1995) and Gheerbrant et al. (2006) also proposed this hypothesis but before the discovery of *Lahimia*. This hypothesis has been notably criticized by Borths et al. (2016) and Borths & Stevens (2019). However, the issue of the geographic origin of the hyaenodonts is beyond the present research and should be analyzed only based on biogeographic analysis such as those performed by Borths et al. (2016) and Borths & Stevens (2019).

Contrary to the previous phylogenetic analyses (Borths & Seiffert 2017; Borths & Stevens 2017a,b,c), but similarly to Solé & Mennecart (2019), some of the "proviverrines" *sensu* Solé (2013) (i.e., *Proviverra, Lesmesodon*) are not located at the base of the hyaenodont clade, but are more deeply nested in the present phylogenetic tree. Therefore, our analysis is significant in that it recovers almost all the "proviverrine" taxa *sensu* Solé (2013) within the same clade except *Eoproviverra* (Fig. 4). In the present analysis *Eoproviverra* is the earliest-diverging hyaenodont (Fig. 4).

In the previous analyses (Borths *et al.* 2016; Borths & Seiffert 2017; Borths & Stevens 2017a, c), the Proviverrinae is a clade located at the base of the Hyaenodonta and generally included the European genera *Proviverra*, *Eoproviverra*, *Lesmesodon*, *Parvagula*, and *Morlodon*. This group also included *Allopterodon* in Borths *et al.* (2016), but this genus is closer to the Hyaenodontinae in the other analyses.

Comparably to the results of Solé & Mennecart (2019) and Dubied *et al.* (2019), we found a clade (PP = 55%) that gathers the European hyaenodont genera *Proviverra*, *Allopterodon*, *Lesmesodon*, and *Morlodon*. As discussed in Solé & Mennecart (2019), this clade partially corresponds to the concept of Proviverrinae of Borths *et al.* (2016). Borths *et al.* (2016) and Solé & Mennecart (2019) considered that the Proviverrinae is a clade that includes the common ancestor of *Proviverra* and *Parvagula*. However, in the present analysis, *Parvagula* is outside this clade and is the sister taxon to a clade that groups the Proviverrinae and Hyaenodontidae (Fig. 4). Therefore, we here propose that the Proviverrinae is a clade that includes the common ancestor of *Proviverra* and *Morlodon*. From the recent phylogenetic analyses, it seems that the content of the *Proviverrinae* is susceptible to vary in the future, but we think that this concept is useful and should be conserved.

As in Solé & Mennecart (2019) and Dubied *et al.* (2019), the clade Proviverrinae is not located at the base of the Hyaenodonta but is the sister clade of the Hyaenodontidae. This result supports the concept of Hyaenodontoidea proposed by Solé & Mennecart (2019) to designate the clade formed by the common ancestor of *Proviverra* and *Hyaenodon* (Fig. 4).

Among the Proviverrinae, the *Allopterodon* clade (*Allopterodon*, *Proviverra*, *Lesmesodon*) of Solé *et al.* 2014a is partially recovered (PP = 71%). Contrary to Solé & Mennecart (2019), the genera *Lesmesodon* and *Proviverra* are not sister taxa; the proviverrines *Allopterodon* and *Proviverra* are indeed more closely related (PP = 83%).

All the other "proviverrine" taxa sensu Solé (2013) are located among the Hyaenodontidae (PP = 41%), as most of the previous phylogenetic analyses (e.g., Borths et al. 2016; Borths & Stevens 2019; Solé & Mennecart 2019). In this clade, only the hyaenodontines (i.e., Propterodon and Hyaenodon) are not "proviverrine" taxa sensu Solé (2013). The Hyaenodontinae, which contains the genera Propterodon and Hyaenodon, is supported by a PP of 90% (Fig. 4). The genera Cynohyaenodon, Paracynohyaenodon, and Quercytherium form the Cynohyaenodon clade (according to Solé et al. 2014a) (PP = 95%); the genus *Cynohyaenodon* is not monophyletic (Fig. 4). This clade is closely related to *Leonhardtina* (PP = 30%). This – poorly supported – relationship was not found neither in Solé & Mennecart (2019) nor in Dubied et al. (2019). The new Leonhardtina species described herein is closely related to Leonhardtina gracilis (PP = 80%).

There is a clade (PP = 59%) that contains the Hyaenodontinae and the hyaenodontids *Eurotherium*, *Prodissopsalis*, *Matthodon*, and *Oxyaenoides*. *Eurotherium* and *Prodissopsalis* are closely related (PP = 100%) and constitute the most basal clade. One can note that the genus *Eurotherium* is not monophyletic: *E. theriodis* is closely related to *Prodissopsalis* (PP = 84%) (Fig. 4).

The other hyaenodontids are in a clade that has a PP of 89%. The next clade to diverge is *Matthodon* (PP = 79%) (Fig. 4). The new species, *M. peignei* n. sp., is closely related to *Matthodon menui* (PP = 94%). This supports the generic referral of the new hyaenodont from Aumelas to this genus. *Oxyaenoides* (PP = 85%) is the hyaenodontid genus most closely related to Hyaenodontinae. The new species, *O. aumelasiensis* n. sp. is closely related to *O. bicuspidens* (PP = 46%) (Fig. 4). As for *Leonhardtina* and *Matthodon*, the phylogenetic analyses confirm our observations based on dental material discovered at Aumelas. It is worth noting that the hyaenodontines, *Matthodon*, and *Oxyaenoides* dis-

play hypercarnivorous dentition characterized by the loss of the metaconid and reduction of the talonid, an adaptation that appeared several times among Hyaenodontinae (Borths *et al.* 2016).

Finally, one can note the presence of a clade (PP = 26%) that gathers the Limnocyoninae (PP = 99%), and the genera *Arfia*, *Prototomus*, and *Sinopa*. This clade is commonly recovered in the phylogenetic analyses that deal with the relationships within Hyaenodonta.

DISCUSSION

Implications of the hyaenodont fauna concerning the age of Aumelas

The carnivorous mammals from Aumelas are represented by three new species, representing three previously described genera – *Oxyaenoides, Leonhardtina*, and *Matthodon*. It is important to note that no carnivoran is known from this locality. This is not surprising because in localities close to the MP10, MP11 (except Messel, Germany, where two carnivorans are known; Springhorn 1980, 2000), MP12, MP13, and MP14 reference-levels, carnivorans are rarer and less diverse than the hyaenodonts.

If the number of carnivorous taxa is low, the morphological disparity shown by the fossils is high: *Matthodon* and *Oxy-aenoides* represent large (*Matthodon*: 15 kg) and medium-sized (*Oxyaenoides*: 4 kg) hypercarnivorous predators, while *Leonhardtina* represents a small – probably insectivorous – predator (843 g).

Specimens referred to Oxyaenoides have been discovered at several localities in southwestern Europe: Palassou (Crochet et al. 1976), Aigues-Vives 2 (Solé et al. 2015a), and Rouzilhac (Godinot et al. 2018). Leonhardtina was only recently discovered in the south of France (Leonhardtina cf. gracilis in Godinot et al. 2018 but Leonhardtina meridianum n. sp. herein). This is the first occurrence of Matthodon from the southwestern Europe, a genus that was previously only known from the northwest (Lange-Badré & Haubold 1990; Solé et al. 2014a). Oxyaenoides and Leonhardtina have been discovered together in the locality of Rouzilhac. The Leonhardtina species at Rouzilhac is similar to L. meridianum n. sp., but the Oxyaenoides species (O. bicuspidens) is larger than Oxyaenoides aumelasiensis n. sp. found at Aumelas and is closer in size to the Oxyaenoides species known from the northwestern Europe (Godinot et al. 2018).

The occurrence of these three hyaenodonts at Aumelas has interesting implications for relative age of the site. *Oxyaenoides* and *Leonhardtina* have long stratigraphic ranges: the former is known from localities close to the MP10, MP11 and ?MP13 reference-levels (Lange-Badré & Haubold 1990; Solé *et al.* 2014a, 2015a), while the latter is known from localities close to the MP10, MP12 and MP13 reference-levels (Lange-Badré & Haubold 1990; Solé *et al.* 2014a). The stratigraphic record of *Matthodon* is shorter, having only been reported from localities close to the MP10 and MP11 reference-levels (Lange-Badré & Haubold 1990; Solé *et al.* 2014a). Its particular ecology as a TABLE 5. — Hypothetical correlations between the two mammalian successions of the Northwestern and Southwestern European provinces during the Ypresian and earliest Lutetian, with indication of the hyaenodonts recorded for the Northwestern and Southwestern provinces localities. Correlations based on BiochroM'97 (1997) and Marandat *et al.* (2012). PE biozones are from Hooker (1996, 1998). In bold: localities and fossils described and discussed in the present article: *, taxa not recorded in the type-locality of the reference–level. Note: the age of Aumelas and Rouzilhac is uncertain as the two localities are considered to be close to MP10 and MP11 reference–levels with uncertainty (see text); they are here grouped in a MP10b level, intermediate in age between MP 10 and MP 11, as proposed by Godinot *et al.* (2018) for Rouzilhac. Authorships of taxa are indicated in the Appendix 8.

ELMA	Ма	Biozone	MP	Reference- locality	Northwestern Province	Southwestern Province	Hyaenodonts from Northwestern Province	Hyaenodonts from Southwestern Province
Robiacian	-	-	14	Egerkingen α+β	Le Guépelle Geiseltal Oberkohle	Lissieu Issel	Prodissopsalis eocaenicus; Eurotherium theriodis; Allopterodon torvidus; Proviverra typica; Cynohyaenodon trux; C. ruetimeyeri	Prodissopsalis eocaenicus; Eurotherium theriodis
əltalian	44	-	13	Geiseltal- Obere Mittelkohle	?Egerkingen γ La Défense Bouxwiller	?Aigues- Vives 2	Prodissopsalis eocaenicus; Leonhardtina gracilis; Proviverra typica; Cynohyaenodon trux; Allopterodon torvidus*; Oxyaenoides schlosseri*; Eurotherium theriodis*; Alienetherium buxwilleri*; Praecodens acutus*; Cartierodon egerkingensis*	cf. Oxyaenoides schlosseri*; Proviverra typica.*; Oxyaenoides schlosseri*; Eurotherium theriodis*,
Geise	-	-	12	Geiseltal- Untere Mittelkohle	_	-	Prodissopsalis eocaenicus; Leonhardtina gracilis; Proviverra typica; Cynohyaenodon trux	-
	47-48	-	11	Geiseltal- Untere Unterkohle	Messel	Palassou	Oxyaenoides bicuspidens; Matthodon tritens; Eurotherium matthesi; Lesmesodon edingeri*; L. behnkeae*	Oxyaenoides bicuspidens;
uvian	-	-	10b	-	_	?Rouzilhac ?Aumelas	-	Oxyaenoides bicuspidens; Oxyaenoides aumelasiensis n. sp.*; Leonhardtina meridianum n. sp.*; Matthodon peignei n. sp.*
Gra	-	-	10a	Grauves	Cuis, Chavot, Mancy, Monthelon	-	Oxyaenoides lindgreni*; Matthodon menui; Protoproviverra palaeonictides*; Leonhardtina godinoti	_
	-	PE V	8+9	Avenay	_	Saint–Papoul/ La Borie	Morlodon vellerei;	Boritia duffaudi*; Preregidens langebadrae*
	_	PE IV	8+9	_	Mutigny	_	Minimovellentodon russelli*	_
strian	55.12	PE III	8+9	_	Abbey Wood	-	Prototomus minimus; Prototomus girardoti;	_
Neus	-	PE II	-	_	Soissons	Rians, Palette, Fournes, Fordones	Prototomus girardoti	Eoproviverra eisenmanni*; Parvagula palulae*; Galecyon gallus*
	55.8	PEI	7	Dormaal	Le Quesnoy	-	Arfia gingerichi; Prototomus minimus; Prototomus girardoti; Galecyon morloi	-

possible bone-cracking predator (Solé *et al.* 2014a) might be related to its short stratigraphic distribution, but only further studies on the ecology of the Eocene carnivorous mammals could validate this hypothesis. The locality of Aumelas has generally been considered close to the MP13 reference-level. This hypothesis is consistent with the range of *Oxyaenoides* and *Leonhardtina*, but conflicts with the range of *Matthodon* (Table 5). The

FIG. 5. – Values of the Ln (body mass) of mesonychids, oxyaenids, and hyaenodonts ("Proviverrinae" sensu Solé (2013), "Sinopinae", "Arfiinae", Hyaenodontinae, and Hyainailourinae) from MP7 to MP19 with particular attention on hyaenodonts from Aumelas. Aumelas is here represented to be close to the MP11 referencelevel. Abbreviations: **ELMA**, European Land Mammal Ages; **EMP**, Mammal Palaeogene. Values are available at Appendix 6.

only reference-levels that could include all three genera are the MP10 and MP11. The genera are known from Paris Basin localities close to the MP10 and around MP11 in the Geiseltal area. *Oxyaenoides* and *Matthodon* are both recorded in Geiseltal-Untere Unterkohle (MP11) (Table 5), but not *Leonhardtina*, which is only known in Geiseltal-Untere Mittelkohle (MP12) and Geiseltal-Obere Mittelkohle (MP11) in the Geiseltal area. Because this genus is known in MP10 localities, it may have been present around MP11 in Geiseltal. It is interesting that only large and middle-sized hyaenodonts are known from Geiseltal-Untere Unterkohle.

The specimens referred to *Oxyaenoides*, *Matthodon*, and *Leonhardtina* from Aumelas are distinctive enough from specimens discovered in the northwestern Europe that we designated three new species at Aumelas. These species each possess relatively primitive characters with respect to other younger species in the genus; however, they present also probable derived features.

The presence of a species of *Matthodon* as well as the primitive features of the new *Matthodon*, *Oxyaenoides*, and *Leonhardtina* species at Aumelas suggests an age close to the MP10 and MP11 reference-levels (maybe closer to MP10 reference-level) rather than the MP13 age previously proposed based on other mammalian groups (BiochroM'97 1997).

The evolution of European hyaenodonts

The new topology of the phylogenetic tree (close relationship between the Proviverrinae and Hyaenodontidae) supports the hypothesis of Solé *et al.* (2014a) that the hyaenodonts had a radiation in Europe around the Ypresian/Lutetian transition (see Solé *et al.* 2014a for an extensive description of this radiation during the Eocene of Europe). Therefore, it is interesting to look at the evolution of the ecology of the European hyaenodonts.

The body mass of extinct carnivorous mammals is important for understanding their ecological "guild" (*sensu* Root 1967). Reconstructing the body mass of extinct carnivores also facilitates examination of larger evolutionary trends. Following Solé *et al.* (2014a, 2015a), we estimated the body mass of the new hyaenodonts found at Aumelas and compared them to those of other European hyaenodonts in a chronostratigraphic context (Fig. 5). The body masses of the new hyaenodonts fit with the general pattern observed in European hyaenodonts, which shows a body mass increase through the Ypresian and Lutetian (see also Solé & Mennecart 2019).

We specially focused on the hyaenodonts recorded from the MP10, MP11 and MP12 reference-levels (Fig. 6). The body mass of *Oxyaenoides aumelasiensis* n. sp. (4.2 kg) is smaller than its relatives found in the northwestern Europe, as discussed above: 9.7 kg for *O. lindgreni*; 14.2 kg for *O. bicuspidens* and 16.9 kg for *O. schlosseri*. The body mass of *O. bicuspidens* recorded

FIG. 6. — Comparison of the range of body masses (in LN) of the hyaenodonts from Aumelas with those recorded from the MP10 (Cuis, Grauves, Monthelon, Mancy), MP11 (Geiseltal-Untere Unterohle) and MP12 (Geiseltal- Untere Mittelkohle) reference-levels in a chronostratigraphic context. Two hypotheses are shown: **Hypothesis 1**, Aumelas is close to MP10 reference-level (Presian); **Hypothesis 2**, Aumelas is close to MP11 reference-level (Lutetian). The hypothesis 1 is based on the primitive features displayed by the fossils from Aumelas; the hypothesis 2 is based on the intermediate size of *Matthodon peignei* n. sp. between *Matthodon menui* (MP10) and *Matthodon tritens* (MP11). Note: the range of body masses provided for the MP10 level combines the data available from Grauves (reference-locality), Cuis, Chavot, Mancy, and Monthelon. Authorships of taxa are indicated in the Appendix 8.

at Rouzilhac is 14.1 kg. Because the three other Oxyaenoides species have been reconstructed as hypercarnivorous predators (Morlo 1999; Solé et al. 2014a, 2015a), and O. aumelasiensis n. sp. is part of this genus, it likely was also a hypercarnivorous mammal. However, because of the difference in body mass, O. aumelasiensis n. sp. likely had a different ecological role than the three other Oxyaenoides species. Compared to the faunas recorded in MP10-MP12 localities, O. aumelasiensis n. sp. is close in size to the hyaenodont species Eurotherium matthesi recorded in Geiseltal-Untere Unterkohle (MP11) (Fig. 6). E. matthesi is reconstructed as a hypercarnivorous mammal (Morlo 1999) with an estimated body mass close to 6.5 kg. Therefore, it seems possible that in southwestern Europe, the genus Oxyaenoides filled two distinct ecological niches: the one it occupied in northwestern Europe (i.e., as a large hypercarnivorous predator as evidenced at Rouzilhac), but also the one occupied by *Eurotherium* (i.e., as a fox-sized meat-eating predator).

Matthodon peignei n. sp. has a body mass (c. 15 kg) close to that of the MP10 and MP 11 Matthodon species recorded in northwestern Europe. Matthodon may have been a durophagous hyaenodont, based on the size of its premolars (see Solé et al. 2014a, but see Morlo 1999 for a different opinion). Because the new species is close in size and morphology to the northwestern species, these species likely belonged to the same guild: large meat/bone eater – it is important to note that 'large' herein is relative to the overall body mass of the carnivorous mammals from the Ypresian and Lutetian and does not correspond to the concept of 'large' carnivores in the physiological sense of Carbone et al. (2007). Finally, the Leonhardtina species (c. 850 g) filled the same ecological niche in northwestern and southwestern Europe (i.e., small meat/ non-vertebrate eater). Therefore, only O. aumelasiensis n. sp. is occupying unexpected niche-space among the hyaenodonts from the southwestern and northwestern Europe.

The hyaenodont specimens from Aumelas suggest mammalian predator faunas in northwestern and southwestern Europe were homogeneous at the genus level around the Ypresian/Lutetian transition. This differs from the biogeographic generic diversity of faunas during the early Ypresian described by Marandat (1997) and Marandat *et al.* (2012) (see Solé *et al.* 2014a, 2015a for a discussion concerning the case of Hyaenodonta).

The overall bodymass disparity of the hyaenodonts is similar between the two European areas (Fig. 6); in contrast, the mesonychids have different body masses between the two European areas (the southern mesonychids have twice the body mass of the northern mesonychids; see Solé *et al.* 2018). Furthermore, the case of *Oxyaenoides* shows that the ecological niches occupied by this genus were probably different between the northwestern and southwestern Europe.

These two observations indicate that the European carnivorous faunas were probably not ecologically identical despite an homogeneity at the genus level. However, it is worth keeping in mind that the evolution of carnivorous communities during the Paleogene of Europe has not been comprehensively analyzed.

CONCLUSION

Three new carnivorous mammals referred to Hyaenodonta are now known from Aumelas. They provide information on the radiation of the hyaenodonts in Europe around the Ypresian/ Lutetian transition, when specialized ecomorphotypes – like hypercarnivorous *Oxyaenoides* and the durophageous *Matthodon* (Solé *et al.* 2014a) – appeared.

This new material demonstrates that the northwestern and southwestern European faunas were homogenous (i.e., presence of the same genera in the two areas), in contrast to the faunas in the early Ypresian (Marandat 1997; Marandat *et al.* 2012). However, minor differences in the composition of the carnivore fauna (i.e., ecological niches occupied by *Oxyaenoides*) are intriguing and must be investigated in the future. The presence of these hyaenodonts, especially *Matthodon*, supports a reclassification of Aumelas as close to Ypresian/ Lutetian boundary rather than close to the MP13 referencelevel (middle Lutetian). This stratigraphic hypothesis requires further research on the rest of the fauna preserved at Aumelas.

Acknowledgements

We kindly thank L. de Bonis and L. Werdelin for initiating this memorial in tribute to S. Peigné. We would also like to express our warmest regards for Stéphane and his family. We are grateful to our retired colleagues of the ISEM lab that have explored the locality of Aumelas since the 1960s (Hartenberger J.-L., Sudre J., Sigé B.[†], Vianey-Liaud M., Crochet J.-Y.) and to our close collaborator Rémy J. We also thank Adnet S., Jiquel S., Charruault A.-L. and the promotion of master 2 of paleontology of the University of Montpellier for the more recent excavation (2008-2009). We thank N. Vallée Gillette (RBINS) for the pictures and preparation of the fossils, and J. Cilis (RBINS) for the SEM pictures. We thank L. Werdelin (Editor), M. Borths, and one anonymous reviewer for their constructive comments that improved this article, as well as the quality of the English of the manuscript. The MNHN gives access to the collections in the framework of the RECOLNAT national Research Infrastructure. This work was supported by project Brain Pionnier BR/175/PI/ CARNAGES of the Federal Science Policy Office of Belgium and is part of an ISEM-UM structured program for the revision of mammalian fauna from the Paleogene of Montpellier led by Lihoreau F. and Tabuce R.

REFERENCES

- BASTL K., NAGEL D. & PEIGNÉ S. 2014. Milk tooth morphology of small-sized Hyaenodon (Hyaenodontidae, Mammalia) from the European Oligocene – evidence of a Hyaenodon lineage in Europe. *Palaeontographica, Abt A: Palaeozoology, Stratigraphy*, 303: 61-84. https://doi.org/10.1127/pala/303/2014/61
- BECK R. M. D. & LEE M. S. Y. 2014. Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals. *Proceedings of the Royal Society B* 281(1793): 20141278. https://doi.org/10.1098/rspb.2014.1278
- BIOCHROM'97 (collective) 1997. Synthèses et tableaux de corrélations, *in* AGUILAR J.-P., LEGENDRE S. & MICHAUX J. (eds), Actes du Congrès BiochroM'97. Mémoires et Travaux de l'EPHE, Institut de Montpellier: 769-805.
- BORTHS M. R. & SEIFFERT E. R. 2017. Craniodental and humeral morphology of a new species of *Masrasector* (Teratodontinae, Hyaenodonta, Placentalia) from the late Eocene of Egypt and locomotor diversity in hyaenodonts. *PLoS ONE* 12 (4): e0173527. https://doi.org/10.1371/journal.pone.0173527
- BORTHS M. R. & STEVENS N. J. 2017a. The first hyaenodont from the late Oligocene Nsungwe Formation of Tanzania: paleoecological insights into the Paleogene-Neogene carnivore transition. *PLoS ONE* 12 (10): e0185301. https://doi.org/10.1371/ journal.pone.0185301
- BORTHS M. R. & STEVENS N. J. 2017b. Deciduous and dental eruption of Hyainailouroidea (Hyaenodonta, Placentalia, Mammalia). *Palaeontologia Electronica* 20.3.55A: 1-34. https://doi. org/10.26879/776

- BORTHS M. R. & STEVENS N. J. 2017c. Taxonomic affinities of the enigmatic *Prionogale breviceps*, early Miocene, Kenya. *Historical Biology*: 1-10. https://doi.org/10.1080/08912963.2 017.1393075
- BORTHS M. R. & STEVENS N. J. 2019. Simbakubwa kutokaafrika, gen. et sp. nov. (Hyainailourinae, Hyaenodonta, 'Creodonta,' Mammalia), a gigantic carnivore from the earliest Miocene of Kenya. Journal of Vertebrate Paleontology. https://doi.org/10.10 80/02724634.2019.1570222
- BORTHS M. R., HOLROYD P. A. & SEIFFERT E. R. 2016. Hyainailourinae and Teratodontinae cranial material from the late Eocene of Egypt and the application of parsimony and Bayesian methods to the phylogeny and biogeography of Hyaenodonta (Placentalia, Mammalia). *PeerJ* 4: e2639. https://doi.org/10.7717/peerj.2639
- CARBONE C., TEACHER A. & ROWCLIFFE J. M. 2007. The costs of carnivory. *Plos Biology 5*: e22. https://doi.org/10.1371/journal.pbio.0050022
- CROCHET J.-Y. 1979. Diversité systématique des didelphidés (Marsupiala) européens tertiaires. *Geobios* 11: 365-378. https:// doi.org/10.1016/S0016-6995(79)80117-5
- CROCHET J.-Y. 1991. À propos de quelques Créodontes proviverrinés de l'Eocène supérieur du Sud de la France. *Neues Jahrbuch für Geologie und Paläontologie Abhandlungen* 182: 99-115. https:// doi.org/10.1127/njgpa/182/1991/99
- CROCHET B., CROUZEL F. & LANGE-BADRÉ B. 1976. Conséquences de la découverte du genre Oxyaenoides Matthes, sur la datation du Poudingue de Palassou. Comptes rendus hebdomadaires de l'Académie des sciences, Série D 282: 1597-1600. https://gallica. bnf.fr/ark:/12148/bpt6k54844424/f27.item
- CROCHET J.-Y., GODINOT M., HARTENBERGER J.-L., RÉMY J. A., SIGÉ B. & SUDRE J. 1988. — Découverte dans le bassin de Saint-Martin-de-Londres (Hérault, Sud de la France) d'un gisement à vertébrés continentaux d'âge éocène moyen. *Courier Forschungsinstitut Senckenberg* 107: 419-434.
- DEMBO M., MATZKE N. J., MOOERS A. Ø. & COLLARD M. 2015. Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin drelationships. *Proceedings of the Royal Society B* 282 (1218): 20150943. https://doi.org/10.1098/ rspb.2015.0943
- DUBIED M., SOLÉ F. & MENNECART B. 2019. The cranium of Provierra typica (Mammalia, Hyaenodonta) and its impact on hyaenodont phylogeny and endocranial evolution. *Palaeontology* 62 (6) 983-1001. https://doi.org/10.1111/pala.12437
- EGI N., HOLROYD P. A., TSUBAMOTO T., SOE A. N., TAKAI M. & CIOCHON R. L. 2005. Proviverrine hyaenodontids (Creodonta: Mammalia) from the Eocene of Myanmar and a phylogenetic analysis of the proviverrines from the para-Tethys area. *Journal of Systematic Palaeontology* 3: 337-358. https://doi.org/10.1017/S1477201905001707
- ESCARGUEL G. 1999. Les rongeurs de l'Éocène inférieur et moyen d'Europe occidentale. Systématique, phylogénie, biochronologie et paléobiogéographie des niveaux-repères MP 7 à MP 14. *Palaeovertebrata* 28: 89-351.
- ESCARGUEL G., MARANDAT B. & LEGENDRE S. 1997. Sur l'âge numérique des faunes de mammifères du Paléogène d'Europe occidentale, en particulier celles de l'Éocène inférieur et moyen, *in* AGUILAR J.-P., LEGENDRE S. & MICHAUX J. (eds), Actes du Congrès BiochroM'97. Mémoires et Travaux de l'EPHE, Institut de Montpellier: 443-460.
- GHEERBRANT E. 1995. Les mammifères paléocènes du Bassin d'Ouarzazate (Maroc) III. Adapisoriculidae et autres mammifères (Carnivora, ?Creodonta, Condylarthra, ?Ungulata et incertae sedis). *Palaeontographica, Abteilung A* 237: 39-132. https://halmnhn.archives-ouvertes.fr/mnhn-01456292
- GHEERBRANT E., IAROCHENE M., AMAGHZAZ M. & BOUYA B. 2006. — Early African hyaenodontid mammals and their bearing on the origin of the Creodonta. *Geological Magazine* 134: 475-489. https://doi.org/10.1017/S0016756806002032

- GINGERICH P. D. & DEUTSCH H. A. 1989. Systematics and evolution of early Eocene Hyaenodontidae (Mammalia, Creodonta) in the Clark Fork Basin, Wyoming. *Contributions from the Museum of Paleontology, University of Michigan* 27: 327-391. http://hdl.handle.net/2027.42/48535
- GODINOT M. 1988. Les Primates adapides de Bouxwiller (Éocene Moyen, Alsace) et leur apport a la compréhension de la faune de Messel et à l'évolution des Anchomomyini. *Courier Forschungsinstitut Senckenberg* 10: 383-407.
- GODINOT M., LABARRÈRE H.-P., ERFURT J., FRANZEN J. L., LANGE-BADRÉ B., LAPPARENT DE BROIN DE F. & VIDALENC D. 2018. — Un nouveau gisement à vertébrés éocènes, Rouzilhac (MP 10-11), dans la série molassique d'Issel (Aude, France). *Revue de Paléobiologie* 37: 141-333.
- GORSCAK E. & O'CONNOR P. M. 2016. Time-calibrated models support congruency between Cretaceous continental rifting and titanosaurian evolutionary history. *Biology Letters* 12 (4) : 20151047. https://doi.org/10.1098/rsbl.2015.1047
- GROHÉ C., MORLO M., CHAIMANEE Y., BLONDEL C., COSTER P., VALENTIN X., SALEM M., BILAL A. A., JAEGER J.-J. & BRUNET M. 2012. — New Apterodontinae (Hyaenodontida) from the Eocene Locality of Dur At-Talah (Libya): Systematic, Paleoecological and Phylogenetical Implications. *PLoS ONE* 7(11): e49054. https:// doi.org/10.1371/journal.pone.0049054
- HARTENBERGER J.-L. 1963. Un gisement de la zone de Mammifères d'Issel (Eocène moyen) dans les calcaires lacustres d'Aumelas (Hérault). *Comptes-rendus sommaires de la Société géologique de France* 9: 321-322.
- HARTENBERGER J. L., SIGÉ B. & SUDRE J. 1969. Les gisements de vertébrés de la région montpelliéraine. 1. Gisements éocènes. Bulletin du Bureau de Recherches géologiques et minières 2: 7-18.
- HERVET S. 2004. Systématique du groupe « Palaeochelys sensu lato-Mauremys» (Chelonii, Testudinoidea) du Tertiaire d'Europe occidentale: principaux résultats. Annales de Paléontologie 90: 13-78. https://doi.org/10.1016/j.annpal.2003.12.002
- HOLLIDAY J. A. & STEPPAN S. J. 2004. Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity. *Paleobiology* 30: 108-128. http://doi.org/b5j2gg
- HOOKER J. J. 1996. Mammalian biostratigraphy across the Paleocene-Eocene boundary in the Paris, London and Belgian basins, *in* KNOX R. W. & DUNAY R. E. (eds), *Correlation of the Early Paleogene in Northwest Europe*. Geological Society, Special Publication. Vol. 101. The Alden Press, Osney Mead, Oxford: 205-218. https://doi.org/10.1144/GSL.SP.1996.101.01.23
- HOOKER J. J. 1998. Mammalian faunal change across the Paleocene-Eocene transition in Europe, *in* AUBRY M.-P., LUCAS S.
 G. & BERGGREN W. A. (eds), *Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records*. Columbia University Press, New York: 419-441.
- LANGE-BADRÉ B. 1972. À propos de l'origine des Hyaenodon européens. Comptes rendus hebdomadaires des Séances de l'Académie des sciences, série D 275: 2215-2217. https://gallica. bnf.fr/ark:/12148/bpt6k6306767c
- LANGE-BADRÉ B. 1979. Les Créodontes (Mammalia) d'Europe occidentale de l'Éocène supérieur à l'Oligocène supérieur. Muséum national d'Histoire naturelle, Paris: 1-249 (Mémoires du Muséum national d'Histoire naturelle, Sér. C – Sciences de la Terre ; 42).
- LANGE-BADRÉ B. 1981. Les créodontes (Mammalia) de Bouxwiller (Bas-Rhin). *Annales de Paléontologie* 67: 21-35.
- LANGE-BADRÉ B. & HAUBOLD H. 1990. Les créodontes (mammifères) du gisement de Geiseltal (Eocène moyen, RDA). *Geobios* 23: 607-637. https://doi.org/10.1016/0016-6995(90)80028-E
- LANGE-BADRÉ B. & BÖHME M. 2005. Apterodon intermedius, sp. nov., un nouveau mammifère créodonte européen de Espehain (MP22, Allemagne). Annales de Paléontologie 91: 311-328. https://doi.org/10.1016/j.annpal.2005.08.001
- LEIDY J. 1869. The extinct Mammalian fauna of Dakota and Nebraska. Including an account of some allied forms from other

localities, together with a synopsis of the mammalian remains of North America. *Journal of the Academy of Natural Sciences of Philadelphia, Second Series,* 7: 1-472. https://www.biodiversitylibrary.org/page/35884661

- LUND E. K., O⁵CONNOR P. M., LOEWEN M. A. & JINNAH Z. A. 2016. A new centrosaurine ceratopsid, *Machairoceratops cronusi* gen et sp. nov., from the Upper Sand Member of the Wahweap Formation (Middle Campanian), Southern Utah. *PLoS ONE* 11 (5): e0154403. https://doi.org/10.1371/journal.pone.0154403
- MAITRE É., ESCARGUEL G. & SIGÉ B. 2006. Amphilemuridae (Lipotyphla, Mammalia) éocènes d'Europe occidentale: nouvelles données taxonomiques. *Comptes rendus Palevol* 5: 813-820. https://doi.org/10.1016/j.crpv.2006.01.005
- MAITRE É., ESCARGUEL G. & SIGE B. 2008. Amphilemuridae éocènes d'Europe occidentale – Nouvelles données, formes affines, systématique et phylogénie. *Palaeontographica Abteilung A* 283: 35-82. https://doi.org/10.1127/pala/283/2008/35
- MAITRE É. 2014. Western European middle Eocene to early Oligocene Chiroptera: systematics, phylogeny and palaeoecology based on new material from the Quercy (France). Swiss Journal of Palaeontology 133: 141-242. https://doi.org/10.1007/s13358-014-0069-3
- MARANDAT B. 1997. La disparité des faunes mammaliennes du niveau MP7 (Éocène inférieur) des domaines péri-mésogéens et nordique. Investigation d'un provincialisme intra-européen. Newsletters on Stratigraphy 35: 63-82. https://doi.org/10.1127/ nos/35/1997/63
- MARANDAT B., ADNET S., MARIVAUX L., MARTINEZ A., VIANEY-LIAUD M. & TABUCE R. 2012. — A new mammalian fauna from the earliest Eocene (Ilerdian) of the Corbières (Southern France): palaeobiogeographical implications. *Swiss Journal of Geosciences* 105: 417-434. https://doi.org/10.1007/s00015-012-0113-5
- MARTIN J. E. 2016. New material of the ziphodont mesoeucrocodylian Iberosuchus from the Eocene of Languedoc, southern France. *Annales de Paléontologie* 102: 135-144. https://doi. org/10.1016/j.annpal.2016.05.002
- MATTHES H. W. 1952. Die Creodontier aus der mitteleozänen Braunkohle des Geiseltales. *Hallesches Jahrbuch für Mitteldeutsche Erdgeschichte* 1: 201-240.
- MATTHES H. W. 1967. Erstmaliger Nachweis eines Vertreters der Oxyaeninae Trouessart 1885 (Creodonta) in Europa. *Geologie Jahrbuch* 16: 452-456.
- MORALES J., PICKFORD M. & SALESA M. 2008. Creodonta and Carnivora from the early Miocene of the northern Spergebiet, Namibia. *Memoir of the Geological Survey of Namibia* 20: 291-310.
- MORLO M. 1999. Niche structure and evolution in creodont (Mammalia) faunas of the European and North American Eocene. *Geobios* 32: 297-305. https://doi.org/10.1016/S0016-6995(99)80043-6
- MORLO M. & HABERSETZER J. 1999. The Hyaenodontidae (Creodonta, Mammalia) from the lower Middle Eocene (MP 11) of Messel (Germany) with special remarks on new x-ray methods. *Courier Forschungsinstitut Senckenberg* 216: 31-73.
- NIXON K. C. 2002. WinClada (BETA), version 1.00.08. Published by the author, Ithaca, New York.
- POLLY P. D. 1996. The skeleton of *Gazinocyon vulpeculus* gen. et comb. nov. and the cladistic relationships of Hyaenodontidae (Eutheria, Mammalia). *Journal of Vertebrate Paleontology* 16: 303-319. https://doi.org/10.1080/02724634.1996.10011318
- RÉMY J. A., KRASOVEC G. & MARANDAT B. 2016. A new species of *Propalaeotherium* (Palaeotheriidae, Perissodactyla, Mammalia) from the Middle Eocene locality of Aumelas (Hérault, France). *Palaeovertebrata* 40 (2): e1. https://doi.org/10.18563/pv.40.2.e1
- RÉMY J. A., KRASOVEC G., LOPEZ E., MARANDAT B. & LIHOREAU F. 2019. — The Palaeotheriidae (Equoidea, Perissodactyla, Mammalia) from the Eocene fauna of Aumelas (Hérault department, France). *Geodiversitas* 41: 525-585. https://doi.org/10.5252/ geodiversitas2019v41a13. http://geodiversitas.com/41/13

- RICH T. H. 1971. Deltatheridia, Carnivora, and Condylarthra (Mammalia) of the early Eocene, Paris Basin, France. University of California Publications in Geological Sciences 88: 1-72.
- RONQUIST F., TESLENKO M., VAN DER MARK P., AYRES D. L., DARLING A., HÖHNA S., LARGET B., LIU L., SUCHARD M. A. & HUELSEN-BECK J. P. 2012. — MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* 61: 539-542. https://doi.org/10.1093/sysbio/sys029.
- ROOT R. B. 1967. The niche exploitation pattern of the Blue gray Gnatcatcher. *Ecological Monographs* 37: 317-350. https:// doi.org/10.2307/1942327
- RÜTIMEYER L. 1891. Die Eocäne Säugethier-Welt von Egerkingen. Abhandlungen der Schweizerischen Palaeontologischen Gesellschaft 18: 1-153. https://doi.org/10.5962/bhl.title.158813
- SCHMIDT-KITTLER N. & HEIZMANN P. J. 1991. Prionogale breviceps n. gen. n. sp.: evidence of an unknown major clade of eutherians in the lower Miocene of East Africa. Münchner Geowissenschaftliche Abhandlungen Reihe A: Geologie und Paläontologie 19: 5-16.
- SIMONS E. L. & GINGERICH P. D. 1976. A new species of *Apterodon* (Mammalia, Creodonta) from the Upper Eocene Qasr el-Sagha Formation of Egypt. *Postilla* 168: 1-9.
- SOLÉ F. 2013. New proviverrine genus from the early Eocene of Europe and the first phylogeny of late Palaeocene-middle Eocene hyaenodontidans (Mammalia). *Journal of Systematic Palaeontol*ogy 11: 375-398. https://doi.org/10.1080.14772019.686927
- SOLE F. & MENNECART B. 2019. A large hyaenodont from the Lutetian of Switzerland expands the body mass range of the European mammalian predators during the Eocene. Acta Palaeontologica Polonica 64: 275-290. https://doi.org/10.4202/ app.00581.2018
- SOLÉ F., GHEERBRANT E., AMAGHZAZ M. & BOUYA B. 2009. Further evidence of the African antiquity of hyaenodontid ("Creodonta", Mammalia) evolution. *Zoological Journal of the Linnean Society* 156: 827-846. https://doi.org/10.1111/j.1096-3642.2008.00501.x
- SOLÉ F., FALCONNET J. & LAURENT Y. 2014a. New proviverrines (Hyaenodontida) from the early Eocene of Europe; phylogeny and ecological evolution of the Proviverrinae. *Zoological Journal of the Linnean Society* 171: 878-917. https://doi.org/10.1111/zoj.12155
- SOLÉ F., LHUILLIER J., ADACI M., BENSALAH M., MAHBOUBI M. & TABUCE R. 2014b. — The hyaenodontidans from the Gour Lazib area (?early Eocene, Algeria): implications concerning the systematics and the origin of the Hyainailourinae and Teratodontinae. *Journal of Systematic Palaeontology* 12: 303-322. https://doi.org /10.1080/14772019.2013.795196
- SOLÉ F., FALCONNET J. & VIDALENC D. 2015a. New fossil Hyaenodonta (Mammalia, Placentalia) from the Ypresian and Lutetian of France and the evolution of the Proviverrinae in southern Europe. *Palaeontology* 58: 1049-1072. https://doi. org/10.1111/pala.12198

- SOLÉ F., AMSON E., BORTHS M. R., VIDALENC D., MORLO M. & BASTL K. 2015b. A new large hyainailourine from the Bartonian of Europe and its bearings on the evolution and ecology of massive hyaenodonts (Mammalia). *PLoS ONE* 10: e141941. https://doi.org/10.1371/journal.pone.0135698.
- SOLÉ F., GODINOT M., LAURENT Y., GALOYER A. & SMITH T. 2018. — The European Mesonychid Mammals: Phylogeny, Ecology, Biogeography, and Biochronology. *Journal of Mammalian Evolution* 25: 339-379. https://doi.org/10.1007/ s10914-016-9371-8
- SPRINGHORN R. 1980. Paroodectes feisti, der erste Miacide (Carnivora, Mammalia) aus dem Mittel-Eozän von Messel. Paläontologische Zeitschrift 54: 171-198. https://doi.org/10.1007/BF02985887
- SPRINGHORN R. 2000. Messelogale, eine neue Raubtiergattung aus dem Mitteleozän von Messel (Deutschland). Paläontologische Zeitschrift 74: 425-439. https://doi.org/10.1007/BF02988110
- SUDRE J. 1980. Aumelasia gabineaudi n.g. n.sp. nouveau Dichobunidae (Artiodactyla, Mammalia) du gisement d'Aumelas (Hérault) d'âge Lutétien terminal. Palaeovertebrata, Mémoire jubilaire R. Lavocat: 197-211.
- SUDRE J. 1988. Apport à la connaissance du Dichobune robertiana Gervais, 1848-1852 (Mammalia, Artiodactyla) du Lutétien : considération sur l'évolution des Dichobunidés. Courier Forschungsinstitut Senckenberg 107: 409-418.
- SUDRE J. & GINSBURG L. 1993. La faune de mammifères de La Défense (calcaire grossier ; Lutétien supérieur) à Puteaux près Paris ; artiodactyles et Lophiodon parisiense Gervais, 1848-1852. Bulletin du Muséum national d'Histoire naturelle, section C, 4ème série 15: 155-181. https://www.biodiversitylibrary.org/ page/55857311
- SZALAY F. S. 1969. Mixodectidae, Microsyopidae, and the insectivore-primate transition. Bulletin of the American Museum of Natural History 140: 193-330. http://hdl.handle.net/2246/1130
- TURNER A. H., PRITCHARD A. C. & MATZKE N. J. 2017. Empirical and Bayesian approaches to fossil-only divergence times: a study across three reptile clades. *PLoS ONE* 12 (10): e0169885. https://doi.org/10.1371/journal.pone.0169885
- VANDENBERGHE N., HILGEN F. J. & SPEIJER R. P. 2012. The Paleogene period, *in The Geologic Time Scale 2012*. Elsevier Publ. Co., Amsterdam: 855-921.
- VAN VALEN L. 1965. Some european Proviverrini (Mammalia, Deltatheridia). *Palaeontology* 844: 638-665. http://www.biodiversitylibrary.org/page/49741787
- WERDELIN L. & COTE S. M. 2010. Prionogalidae (Mammalia *Incertae Sedis*), *in* WERDELIN L. & SANDERS W. J. (eds), Cenozoic mammals of Africa. University of California Press, Berkeley: 567, 568.
- ZACK S. P. 2011. New species of the rare early Eocene creodont Galecyon and the radiation of the early Hyaenodontidae. Journal of Paleontology 85: 315-336. https://doi.org/10.1666/10-093.1

Submitted on 31 December 2018; accepted on 3 September 2019; published on 4 June 2020. APPENDIX 1. — List of the modifications to the matrix of Borths & Stevens (2019). Character, previous coding \rightarrow new coding.

Allopterodon torvidus	Morlodon vellerei
$14: 1 \rightarrow 0$	$11: 0 \to 1$
16: $0 \rightarrow 1$	$16: 0 \to 1$
25: 0 → 1	$21: 0 \rightarrow 1$
$64 \cdot 2 \rightarrow 0$	$26: 0 \rightarrow 1$
	$42: 0 \rightarrow 1$
Boritia duffaudi	$45: 0 \rightarrow 1$
$15: 0 \rightarrow 1$	$78: 0 \rightarrow ?$
21.0 1	$70:0 \rightarrow 2$
$31:1 \rightarrow 0$	$8/1.0 \rightarrow 1$
36.0×1	03.1×0
50.071)].170
Cynohyaenodon cayluxi	Oxyaenoides bicuspidens
$26: 0 \rightarrow 1$	$10: 1 \rightarrow 0$
84: $0 \rightarrow 1$	60: 1 → 0
87: $1 \rightarrow 2$	
$105: 1 \rightarrow 0$	Oxvaenoides lindøreni
	36: 0 → 1
Cunahwaenadan trux	$100: X \rightarrow ?$
87·1 → 2	$104: X \rightarrow ?$
$105.1 \rightarrow 0$	$107. X \rightarrow 2$
103.170	10/. A 7 :
Eurotherium matthesi	Parvagula palulae
$31: 1 \rightarrow 0$	42: ? → 0
57: 1 → 0	
58: 1 → 0	Preregidens langebadrae
93: $1 \rightarrow 0$	$11: 0 \to 1$
94: $1 \rightarrow 0$	28: $0 \rightarrow 2$
	31: 1 \rightarrow 0
Furotherium theriodis	$36: 0 \rightarrow 1$
$7:? \rightarrow 1$	
$18 \cdot 1 \rightarrow 0$	Proviverra typica
$31:1 \rightarrow 0$	$11: 0 \rightarrow 1$
$57:1 \rightarrow 0$	$16:0 \rightarrow 1$
$58.1 \ge 0$	$21 \cdot 0 \rightarrow 1$
02.1×0	$21.0 \neq 1$ 26.0 > 1
$93.1 \neq 0$	20.071
94: 1 → 0	$44: 0 \rightarrow 1$
Calaman manlai	$102: 0 \rightarrow 2$
Galecyon morion	$103: 1 \rightarrow 0$
Characters 19 to 29 are coded ? because no P_4 is known for	
this species (see Zack 2011)	Quercytherium simplicidens
т. I. I I.	$36: 0 \rightarrow 1$
Leonhardtina gracilis	$39: 0 \rightarrow 2$
$21: 0 \rightarrow 1$	$60: 1 \rightarrow 0$
$43: 1 \to 0$	93: $1 \rightarrow 0$
	94: 1 → 0
<i>Lesmesodon</i> spp.	114: $0 \rightarrow 1$
$42: 0 \rightarrow 1$	
	Quercytherium tenebrosum
Matthodon tritens	36: 0 → 1
57: 1 → 0	93: 1 → 0
$60: 1 \to 0$	94: 1 → 0

APPENDIX 2. - Descriptions of characters and character states used in the phylogenetic analysis.

The characters are from Borths & Stevens (2019) without modification.

LOWER DENTITION

Deciduous Lower Dentition

- 1. dP3 paraconid height: paraconid indistinct (0); paraconid present lower than talonid (1);paraconid present and taller than talonid (2).
- dP3 protostylid between protoconid and talonid: present (0); absent (1). (New Character relative to Borths & Stevens 2017c).
- 3. dP4 paraconid height: lower than half protoconid height (0); half protoconid height or taller (1).
- dP4 metaconid height: lower than half paraconid height (0); half paraconid height or taller (1); metaconid absent (2). (compare with Bastl *et al.* 2014: character 12).
- 5. dP4 talonid basin cusps: Entoconid and hypoconid present (0); Only hypoconid present (1). (compare with Bastl *et al.* 2014: character 13).
- 6. dP4 talonid length proportion: More than ¹/₃ length of entire tooth (0); less than ¹/₃ length of entire tooth (1).

Adult Lower Dentition

- 7. First mental foramen position: inferior to P1 (0); inferior to P2 (1). (Solé *et al.* 2014b: character 0).
- 8. Second mental foramen position: inferior to P3 (0); inferior to P4 (1). (Solé *et al.* 2014b: character 1).
- 9. P1: present (0); absent (1). (Solé *et al.* 2014b: character 2).
- P1 root number: two roots (0); one root (1). (Polly 1996: character 13; Zack 2011: character 2; Solé *et al.* 2014b: character 2).
- 11. P2 talonid mesiodistal length: absent to short (0); elongate with distinct inflection separating postprotocristid from talonid (1). (modified Polly 1996: character 3; Egi *et al.* 2005: character 34; Solé *et al.* 2014b: character 5).
- 12. P2 to P3 relative mesiodistal length: P2 shorter than P3 (0); P2 as long or longer than P3 (1). (Egi *et al.* 2005: character 29; Solé *et al.* 2014b: character 6).
- 13. P3 inclination: perpendicular to horizontal ramus, tooth forms isosceles triangle in buccal view (0); tooth inclines distally, preprotocristid mesially convex (1).
- 14. P3 buccolingual width relative to mesiodistal length: width 33% of length (0); width 50% of length (1); width more than 50% of length (2).
- 15. P3 paraconid morphology: absent or small (0); developed with distinct postparacristid (1). (modified Polly 1996: character 6; Egi *et al.* 2005: character 35; Solé *et al.* 2014b: character 7).
- P3 talonid mesiodistal length: short, cusp-like (0); long, distinct inflection separating postprotocristid from talonid (1). (modified Polly 1996: character 4; Egi *et al.* 2005: character 37; Solé *et al.* 2014b: character 8).
- 17. P3 entoconid: absent (0); present (1). (Solé *et al.* 2014b: character 9).

- 18. P3 to P4 relative mesiodistal length: P3 shorter than P4 (0); P3 as long or longer than P4 (1). (Egi *et al.* 2005: character 31; Solé *et al.* 2014b: character 10).
- 19. P4 inclination: perpendicular to horizontal ramus, tooth forms isosceles triangle in buccal view (0); tooth inclines distally, preprotocristid mesially convex (1).
- 20. P4 orientation: talonid and protoconid aligned with horizontal ramus (0); talonid and protoconid at oblique angle to horizontal ramus (1). (New Character relative to Borths & Stevens 2017c).
- 21. P4 paraconid morphology: present but poorly developed (0); paraconid well-developed (1); paraconid indistinct to absent (2). (modified Polly 1996: character 7; Solé *et al.* 2014b: character 11).
- 22. P4 metaconid: absent (0); present, usually weakly developed or ridge-like (1). (modified Solé *et al.* 2014b: character 12).
- 23. P4 entoconid: absent (0); present (1). (Solé *et al.* 2014b: character 14).
- 24. P4 hypoconulid: present and distinct (0); absent or indistinct from entoconid (1). (New Character relative to Borths & Stevens 2017c).
- 25. P4 hypoconid height: short, less than 33% of protoconid height (0); tall, more than 33% protoconid height (1). (modified Solé *et al.* 2014b: character 16).
- 26. P4 talonid basin: buccolingually compressed and shallow (0); buccolingually wide and deep (1); absent (2).
- 27. P4 precingulid and postcingulid: absent (0); present (1). (modified Solé *et al.* 2014b: character 18).
- 28. P4 relative height: mesiodistally longer than height (0); mesiodistally shorter than height (1); mesiodistal length and height subequal (2).
- 29. P4 height relative to molars: shorter than all molars (0); taller than M1 only (1); taller than M2 (2).
- 30. P5 presence: present (0); absent (1).
- 31. M1 and M2 entoconid morphology: well developed or bulbous (0); crestiform with visible apex (1); undifferentiated entocristid (2). (modified Zack 2011: charcter 23; Solé *et al.* 2014b: character 27).
- 32. M1 and M2 talonid depth: deep (0); shallow (1). (modified Zack 2011: character 25; Solé *et al.* 2014b: character 29).
- 33. M2 entocristid in lingual view: parallels hypocristid (0); present, stops before metaconid (lower than hypocristid) (1); weak ridge or absent (2).
- 34. M3 entocristid: parallels hypocristid (0); present, stops before metaconid (lower than hypocristid) (1); weak ridge or absent (2).
- 35. M1 and M2 talonid buccolingual width: narrow, less than 80% width of trigonid (0); wide, greater than 80% trigonid (1). (modified Solé *et al.* 2014b: character 28).
- 36. M1 mesiodistal length relative to M2: M1 length subequal or longer than M2 (0); M1 length less than M2 (1). (modified Zack 2011: character 26; Solé *et al.* 2014b: character 31).

- 37. M1 relative to M2 mesiodistal length: M1 greater than or equal to M2 trigonid length (0); M1 greater than M2 paraconid length (1); M1 equal to or shorter than M2 paraconid length (2). (New Character relative to Borths & Stevens 2017c).
- M1–M3 trigonid height relative to talonid: trigonid tall on all molars, talonid less than 50% of trigonid height (0); trigonid low on all molars, talonid more than 50% of trigonid height (1); trigonid low on M1 and M2 (2). (modified Solé *et al.* 2014b: character 32).
- 39. M3 postprotocristid distal trend in buccal view: slopes mesial to distal (0); perpendicular to alveolus (1); slopes distal to mesial (overhangs talonid) (2).
- 40. M2 cristid obliqua orientation relative to mesiodistal axis: lingual to buccal trend (0); parallel to mesiodistal axis (1); buccal to lingual trend (2). (compare to Zack 2011: character 21).
- 41. M2 and M3 paraconid position relative to protoconid, angle defined relative to mesiodistal axis of mandible: directly mesial to protoconid,15 degrees (0); slightly lingual paraconid, 15.1 to 45 degree angle (1); strong lingual position, 45.1 to 60 degrees (2). Ordered.
- 42. M3 postparacristid mesial to distal trend: steep slope to preprotocristid ("V" shaped acute angle) (0); shallow slope to preprotocristid (forms right angle with preprotocristid) (1); forms obtuse angle with preprotocristid (2). *Ordered.*
- 43. M2 and M3 paraconid height relative to protoconid: paraconid significantly shorter than protoconid (0); paraconid slightly shorter than protoconid (1); paraconid and protoconid subequal in height (2).
- 44. M3 talonid buccolingual width in lingual view: postparacristid shorter than premetacristid (0); postparacristid subequal to premetacristid (1); postparacristid longer than premetacristid (2).
- 45. M3 postparacristid length to preprotocristid in buccal view (carnassial blade proportions): postparacristid much shorter than preprotocristid (30%) (0); postparacristid half length of preprotocristid (1); postparacristid more than half preprotocristid length (2); subequal lengths (3).
- 46. M2 and M3 metaconid expression: connate and connects to paraconid base (0); connate, separated from paraconid (1); fold or ridge (2); absent (3). *Ordered.*
- 47. M1 metaconid: taller than paraconid (0); subequal to paraconid (1); shorter than paraconid or absent (2). *Ordered* (compare to Polly 1996: character 18).
- 48. M2 metaconid: taller than paraconid (0); subequal to paraconid (1); shorter than paraconid or absent (2). *Ordered* (compare to Polly 1996: character 18).
- 49. M3 metaconid: taller than paraconid (0); subequal to paraconid (1); shorter than paraconid or absent (2). *Ordered* (compare to Polly 1996: character 19).
- 50. M2 mesiodistal length to M3 length: M2 shorter than M3 (0); M2 subequal to M3 (1); M2 longer than M3

(2); M3 absent (3). *Ordered* (compare to Zack 2011: character 30).

- 51. M2 talonid mesiodistal length (% of total mesiodistal length): >40% (0); 40% to 30% (1); 29% to 21% (2); <20% (3). *Ordered.*
- 52. M3 talonid mesiodistal length (% of total mesiodistal length): >40% (0); 40% to 30% (1); 29% to 21% (2); <20% (3). *Ordered.*
- 53. M3 talonid: present, bears hypoconid and hypoconulid (0); present, only one distinct cusp (1); absent (2). Ordered.
- 54. M2 buccal talonid margin: steep slope distal to mesial (0); shallow slope distal to mesial (1); parallel to alveolus (2); slopes mesial to distal (3). *Ordered.*
- 55. M3 buccal talonid margin angle from highest point to lowest: steep slope distal to mesial (0); shallow slope distal to mesial (1); parallel to alveolus (2); slopes mesial to distal (3). *Ordered.*
- 56. M1–M3 ectocingulid: weakly expressed to absent (0); distinct (1). (modified Solé *et al.* 2014b: character 34)
- 57. M1–M3 postcingulid: absent (0); present (1). (modified Solé *et al.* 2014b: character 35).
- 58. M1–M3 ectocingulid to postcingulid connection: separated (0); fused (1). (modified Solé *et al.* 2014b: character 36).
- 59. M3 talonid buccolingual width relative to M2 talonid width: equal (0); narrower (1).
- 60. Mandible inflection anterior to angular process (Solé *et al.* 2015b): present (0); absent (1).
- 61. Angular process morphology: distinct process with medial inflection (0); gently curved process in line with mandibular corpus (1); ventral inflection (2).
- 62. Mandibular condyle position: superior to M3 alveolus (0); directly distal to M3 alveolus (1); inferior to M3 alveolus (2).
- 63. Coronoid process shape: tall, anterior and posterior slopes similar (0); tall, posterior slope concave (1); low, rounded (2).
- 64. Anterior coronoid angle relative to horizontal ramus: near vertical, 90 to 100 degrees (0); slight posterior inclination, 100 to 110 degrees (1); strong posterior inclination, greater than 110 degrees (2).
- 65. Masseteric fossa depth: deeply excavated with strong anterior angle, inferior margin welldefined (0); rounded anterior margin, little inferior definition (1); deep fossa but poorly defined inferior margin (2).

Upper Dentition

- Deciduous Upper Dentition
- 66. dP3 parastyle mesiodistal length: more than half metastyle length (0); less than half metastyle length (1).
- 67. dP3 metacone-paracone fusion: metacone distinct cusp (premetacrista slopes to metacone apex; See *Pterodon dasyuroides*) (0); metacone fused to paracone (premetacrista subhorizontal; See *Apterodon*) (1).

- 68. dP3 paracone morphology: pre- and postparacrista similar in slope (apex isosceles triangle inbuccal view) (0); preparacrista distally inclined (apex closer to right triangle in buccal view) (1).
- 69. dP3 metastyle notch: Small inflection between postmetacrista and metastyle (0); deep notch between postmetacrista and metastyle (1).
- 70. dP3 Protocone prominence: mesiodistal length shorter than buccolingual width (narrow) (0); mesiodistal length equal to or longer than buccolingual width (wide) (1). (modified from Bastl *et al.* 2014: character 2).
- 71. dP3 lingual cingulum: present (distinct lingual connection between parastyle and protocone) (0); absent (faint or no connection between parastyle and protocone) (1). (modified from Bastl *et al.* 2014: character 4).
- 72. dP4 main cusp height: paracone taller than metacone (0); Paracone subequal to metacone (1); Paracone shorter than metacone (2). *Ordered* (Modified from Bastl *et al.* 2014: character 6).
- 73. dP4 protocone orientation: Protocone projects mesially to parastyle margin (0); Protocone projects lingually and does not align with parastyle (1).
- 74. dP4 ectoflexus: Deep and distinct inflection between metacone and metastyle (0); Indistinct or shallow inflection between metacone and metastyle (1).

Adult Upper Dentition

- 75. Upper incisor count: 3 or more (0); 2 or fewer (1).
- 76. Lateral-most upper incisor: incisiform, similar to mesial incisor (0); caniniform (1).
- 77. Upper canine alveolar cross-section: distally tapers with mesiodistal axis more than 20% buccolingual axis (0); rounded with mesiodistal axis less than 20% buccolingual axis (1). (New Character relative to Borths & Stevens 2017c).
- 78. P3 lobe of the protocone or protocone alveolus: absent (0); present but small and alveolus merged lingual alveoli (1); protocone well-developed, individuated and alveolus distinct from lingual alveoli (2). (modified Polly 1996: character 9; Egi *et al.* 2005: character 4; Solé *et al.* 2014b: character 39; modified relative to Borths & Stevens 2017c).
- 79. P3 root number: two roots (0); three roots (1). (Solé *et al.* 2014b: character 40).
- 80. P3 contact with P4 parastyle: P3 contacts or aligned with P4 parastyle (0); P3 framed by P4 parastyle (1).
- 81. P4 parastyle: distinct (0); very reduced to absent (1). (modified Egi *et al.* 2005: character 8; Zack 2011: character 34; Solé *et al.* 2014b: character 41).
- 82. P4 protocone alignment: transversely aligned with paracone (0); mesially shifted relative to paracone (1). (Zack 2011: character 36; Solé *et al.* 2014b: character 42).
- 83. P4 protocone morphology: bulbous and distinct from paracone (0); weak separation from paracone, shelf to cingulum-like (1). (modified Polly 1996: character 10; Egi *et al.* 2005: character 6/7; Solé *et al.* 2014b: character 43).

- 84. P4 metastylar blade (=postmetacrista): short (0); elongate (1). (modified Egi *et al.* 2005: character 9; Zack 2011: character 35; Solé *et al.* 2014b: character 45).
- 85. P4 metastyle contact with M1: P4 metastyle braced buccally by M1 parastyle (0); P4 metastyle contacts mesial aspect of M1 parastyle (1).
- 86. M1 and M2 metastyle blade curvature: straight with carnassial notch (0); postmetacrista arcuate, no carnassial notch (1). (Zack 2011: character 42; Solé *et al.* 2014b: character 46).
- M1 and M2 metastyle blade length: short, carnassial blade shorter than postmetacrista (0); intermediate, subequal to slightly longer than postmetacrista (1); elongate, greater than 1.5xlength of postmetacrista (2). Ordered (Egi et al. 2005: character 21; Solé et al. 2014b: character 47).
- 88. M1 and M2 metastyle robusticity (length divided by width): robust or 1.0 or greater (0); moderate or between 0.71 and 0.99 (1); gracile or 0.70 or less (2). (New Character relative to Borths & Stevens 2017c).
- 89. M1 postmetacrista to metastyle angle: Angle less than 130 degrees (0); Angle between 131 and 144 degrees (1); Angle greater than 145 degrees (2).
- 90. M1 mesiodistal length relative to M2: M1 subequal or longer than M2 (0); M1 shorter than M2 (1). (modified Solé *et al.* 2014b: character 50).
- 91. M1 and M2 premetaconule crista: present (0); absent (1). (modified Solé *et al.* 2014b: character 51).
- 92. M1 and M2 conules: metaconule and paraconule present (0); only paraconule present (1); metaconule and paraconule absent (2) (modified Solé *et al.* 2014b: character 53).
- 93. M1 and M2 precingulum and postcingulum: absent (0); present (1). (modified from Polly 1996: character 20; Egi *et al.* 2005: character 26; Solé *et al.* 2014b: character 54).
- 94. M1 and M2 precingulum and postcingulum connection: separated (0); fused lingually (1). (Solé *et al.* 2014b: character 55).
- 95. M1 and M2 protocone morphology: Triangular, mesial and distal margins angled (0); parallel mesial and distal margins (1). (modified Egi *et al.* 2005: character 14).
- 96. M1 protocone position relative to paracone and metacone: centered (0); directly lingual to the parastyle (1); mesial to the parastyle (2). *Ordered* (modified Egi *et al.* 2005: character 15; Solé *et al.* 2014b: character 56; State 2 added to Borths & Stevens 2017c).
- 97. M1 protocone lingual projection, measured as the ratio of the protocone buccolingual length divided by the length of the bases of the paracone and metacone: long, ratio greater than 0.9 (0); intermediate, ratio between 0.9 and 0.61 (1); short, ratio less than 0.6 (2).
- 98. M1 and M2 metacone mesiodistal length relative to paracone: shorter (0); subequal (1); longer (2). (modified Egi *et al.* 2005: character 12).
- 99. M1 and M2 metacone coronal cross section: circular (0); ovoid, slightly compressed buccolingually (1); ellipsoid, strong buccolingual compression (2).

- 100. M2 paracone compression: conical, rounded base (0); ovoid (slight buccolingual compression) (1); ellipsoid (strong buccolingual compression) (2).
- 101. M1 and M2 paracone and metacone separation: separated to base (0); fused between base and half of height (1); almost completely fused (2). *Ordered* (modified Polly 1996: character 28; Egi *et al.* 2005: character 10; Zack 2011: character 40).
- 102. M1 and M2 paracone height: paracone taller than metacone (0); paracone as tall as metacone (1); paracone shorter than metacone (2). *Ordered* (modified Egi *et al.* 2005: character 11; Zack 2011: character 41; Solé *et al.* 2014b: character 48).
- 103. M1 and M2 protocone height: shorter than paracone/ metacone separation (0); same height as paracone/metacone separation (1); subequal to paracone/metacone apices (2). (compare to Zack 2011: character 49).
- 104. M2 parastyle: absent (0); present and shelf-like (1); present, single distinct cusp (2); present multiple distinct cusps (3). (modified from Egi *et al.* 2005: character 19 and Borths & Stevens 2017c).
- 105. M1 parastyle compared to M2: M1 parastyle relatively shorter than M2 parastyle (0); parastyle on M1 and M2 similar (1).
- 106. M1 and M2 buccal cingulum: absent (0); weak ridge along metastyle base (1); prominent shelf forms shallow basin between metastyle and cingulum (2). (modified Egi *et al.* 2005: characters 16/17).
- 107. M2 ectoflexus: strong, strong indentation (0); weak, slight curve (1); absent, straight (2). (modified Egi *et al.* 2005: character 18).
- 108. Ectoflexus depth on M1 and M2: M1 ectoflexus shallower than M2 (0); same relative depth between M1 and M2 (1); M2 lacks metastyle (no ectoflexus) (2). Ordered (compare to Zack 2011: character 52).
- 109. M3 metacone: present (0); absent (1). (modified Polly 1996: character 15; Zack 2011: character 53; Solé *et al.* 2014b: character 58).

Cranial characters

- 110. Nuchal crest morphology: medial to lateral trend from apex to mastoid (0); dorsolateral margin tapers medially with thin connection to exoccipital (1); lateral margins trend medially, very weak ridge connects to exoccipital (2). *Ordered* (modified Polly 1996: character 35).
- 111. Facial wing of the lacrimal: extensive (larger than orbit diameter) (0); moderate (slightly longer than orbit diameter) (1); reduced (shorter than orbit diameter) (2). (modified Polly 1996: character 36).
- 112. Foramen rotundum size: slightly larger than foramen ovale (0); much larger than foramen ovale (1). (Polly 1996: character 39).
- 113. Palatal rugosity or torus at distal margin of palate: well-expressed (0); smooth (1).

- 114. Zygomatic arch contact: short contact between zygomatic and squamosal (0); extensive contact between zygomatic and squamosal (1).
- 115. Superior squamosal morphology: superior and inferior margins parallel (0); torsion along superior margin (1).
- 116. Foramen ovale orientation: anterior orientation (0); palatal orientation (1).
- 117. Exoccipital condyle position: tall, lateral placement around foramen magnum (0); ventral placement around foramen magnum (1).
- 118. Notch between occipital condyles: ring-like with no rostral excavation (0); rounded indentation with condyles meeting medially below foramen magnum (1); deep excavation with occipital "processes" following notch (2).
- 119. Postmandibular process: vertical orientation (0); strong anterior curvature (1).
- 120. Posterior orbital process: present, strong expression (0); present, weak with frontal "peaked" (1); absent (2).
- 121. Frontal furrow: absent or indistinct (0); present and well-defined (1).
- 122. Palatine and pterygoid medial contact: parallel posterior to palatine torus (0); palatines trend medially or partially fuse (1); fused entire extent of palatines (2).
- 123. Pterygoid size: broad, ventral projection anteriorly extensive (0); short anterior extent, trends medially (1).
- 124. Frontoparietal suture in dorsal view: steep constriction (0); gentle curvature (1).
- 125. Lateral expansion of the mastoid process (Solé *et al.* 2015b): projects to midpoint of mandibular fossa (0); projects beyond mandibular fossa (1).
- 126. Mastoid/paroccipital process: short tubercle (0); well-defined, prong-like process (1).
- 127. Process at maxilla/jugal suture (Solé *et al.* 2015b): present (0); absent (1).
- 128. Squamosal constriction in dorsal view: present, squamosal does not extend laterally (0); absent, squamosal expanded laterally (1).
- 129. Squamosal ventral projection: same transverse plane as petrosal (0); ventral to petrosal (1).
- 130. Posterior braincase: broad lateral expansion (0); narrow (1).
- 131. Subarcuate fossa morphology (Polly 1996): cup-shaped (see *Pterodon*) (0); shallow and horseshoe-shaped (see *Hyaenodon*) (1).
- 132. Bridge of the stylomastoid foramen primitivum: absent or slender (0); robust (1); roofed over with secondary stylomastoid foramen (2). (Polly 1996: character 40)
- 133. Mastoid sinus lateral to foramen stylomastoid primitivum: absent (0); present (1). (Polly 1996: character 41).
- 134. Ridge of bone dividing posterior petrosal sinus from foramen stylomastoid primitivum (Polly 1996): present (0); reduced to absent (1). (Polly 1996: character 42)
- 135. Posterior petrosal sinus: absent (0); small (1); greatly inflated (2). (Polly 1996; character 43).

APPENDIX 2. - Continuation.

Postcrania

Humerus

- 136. Humerus cross-section above brachial flange: triangular (0); rounded (1). (Polly 1996: character 44).
- 137. Brachial flange expression: medium (0); enlarged (1); reduced (2). (Polly 1996: character 47).
- 138. Entepicondylar foramen: present, rounded (0); present, elongate (1); absent (2).
- 139. Medial epicondyle: large (bulbous) (0); reduced (elongate) (1).
- 140. Capitulum morphology: rounded, clearly separated (0); cylindrical (1).
- 141. Greater tubercle of the humerus: prominent, taller than humeral head (0); subequal to height of humeral head (1).

Ulna

- 142. Proximal trochlear notch orientation: lateral position on shaft (0); medial position on shaft (1).
- 143. Radial notch orientation: curved and faces laterally (0); flattened and faces anteriorly (1). (Polly 1996: character 47).
- 144. Olecranon process length: longer than trochlear notch (0); subequal or shorter than trochlear notch (1).
- 145. Olecranon process orientation: projects medially (0); projects ventrally (1).

Femur

146. Third trochanter of femur: large (0); small (1). (modified Polly 1996: character 50).

Astragalus

- 147. Astragalar foramen: large (0); reduced (0). (Polly 1996: character 51).
- 148. Astragalar condyles divided by: shallow depression (0); well-defined fossa or groove (1).
- 149. Astragalar condyle orientation: oblique relative to astragalar neck (0); parallel to astragalar neck (1).
- 150. Astragalar head relative to condyles: horizontal orientation (0); slight vertical orientation (1). (Polly 1996: character 53).
- 151. Sustentacular facet connection to astraglar head: clearly separated from astragalar head (0); grades into articulation of astragalar head (1).
- 152. Sustentacular facet position on astragalar neck: plantar astragalar neck (0); medial astragalar neck (1).

Calcaneum

- 153. Peroneal tubercle: distinct and separated from cuboid facet (0); part of a flange that grades to cuboid facet (1).
- 154. Cuboid facet inclination: perpendicular to calcaneal neck (0); plantar inclination (1).
- 155. Calcaneal neck trend: dorsal and plantar margins parallel (0); tapers proximally to calcaneal tuberosity (1).
- 156. Astragalar facet angle: oblique orientation to calcaneal neck (0); parallels calcaneal neck (1). (modified Polly 1996: character 58).

APPENDIX 3. - List of all the taxa and specimens added to the matrix of Borths & Stevens (2017c, 2019), along with information on age and locality data.

Matthodon menui

Formation: Sables à Unios et Térédines *sensu stricto*; Locality: Chavot, Monthelon, Cuis, Mancy and Grauves; Geological Age: MP10;

Absolute Age: 51-48.6 Ma;

Country: France;

Citation: Solé et al. 2014a;

Specimens observed: MNHN.F.1939-586 (Holotype), left mandible with M_3 and roots of M_2 and distal root of M_1 ; MNHN.F.Cui14838, LP₄; MNHN.F.CHO14799, right mandible with canine, P₂ to M₂, and alveolus of P₁; T.S. 914, right maxillary with P³ and P⁴; T.S. 374, right mandible with complete P₂-P₄, and M₃, fragmentary M₁ and M₂, and alveolus of P₁; MNHN.F.Ma14832, RP₄; MNHN.F.L-68-GR, left mandible with M₁ and alveoli of P₂ to P₄ and M₂; MNHN.F.L-58-Ma, RM².

Paracynohyaenodon magnus

Formation: Quercy; Locality: Robiac and Le Bretou;

Geological Age: MP16;

Absolute Age: 51-48.6 Ma;

Country: France;

Specimens observed: BRT 939 (Holotype), right maxillary bearing P⁴ to M²; RBN 5434, maxillaries bearing right P¹ to P⁴, and alveoli of the canines and left P¹ to P³; Rbn-NM 1018, right P⁴; right mandible bearing M₁ to M₃; LAV 1310, left maxillary bearing P³ to M²; LAV 1312, left maxillary bearing M² and M³; BRT 936, right mandible bearing P₂ to M₂; RBN 5434, right mandible bearing the canine, and P₁ to P₄ and left mandible bearing M₂ and M₃; LAV 1314, right mandible bearing P₄ to M₂; Citation: Lange-Badré 1979; Crochet 1991.

Paracynohyaenodon schlosseri

Formation: Quercy;

Locality: Robiac, Le Bretou, Lavergne, La Bouffie, Les Pradigues, Les Clapiès;

Geological Age: MP16-MP17a;

Absolute Age: 40-33.9 Ma;

Country: France;

Specimens observed: Qu B 393 (Holotype), right mandible bearing M_1 to M_3 ; LAV 1310, left maxillary bearing P^3 to M^2 ; LAV 1312, left maxillary bearing M^2 and M^3 ; Ma Pq 60, right mandible bearing P_1 to M_3 ; MNHN.F.QU8539, right mandible bearing P_4 and M_1 ; PLV 117, left mandible bearing P_3 to M_2 ;

Citation: Lange-Badré 1979; Crochet 1991.

Matthodon peignei n. sp.

Formation: Lacustrine limestone of Montpellier, proposed as Lutetian in age in previous study but here questioned as late Ypresian/early Lutetian in age; Locality: Aumelas, Hérault, France; Geological Age: MP10-MP11? Absolute Age: 51-40.4 Ma; Country: France;

Specimens observed: UM-AUM694, left mandible bearing the p2-m3 and the alveoli of the canine and p1; UM-AUM268, left mandible bearing the m2 and m3.

Oxyaenoides aumelasiensis n. sp.

Formation: Lacustrine limestone of Montpellier, proposed as Lutetian in age in previous study but here questioned as late Ypresian/early Lutetian in age;

Locality: Aumelas, Hérault, France;

Geological Age: MP10-MP11?

Absolute Age: 51-40.4 Ma;

Country: France;

Specimens observed: UM-AUM693, left mandible bearing m3, the anterior root and talonid of the m1, and the posterior alveolus of the p4, and the alveoli of m2; UM-AUM686, right M2; UM-AUM692, combination of a left maxillary fragment bearing the P2-M1, a right maxillary fragment bearing the P3-P4, the protocone of the M1 and the alveoli of the P2; UM-AUM695, labial part of a M1.

Leonhardtina meridianum n. sp.

Formation: Lacustrine limestone of Montpellier, proposed as Lutetian in age in previous study but here questioned as late Ypresian/early Lutetian in age;

Localities: Aumelas, Hérault, France; Rouzilhac, Aude, France; Geological Age: MP10-MP11?

Absolute Age: 51-40.4 Ma;

Country: France;

Specimens observed: UM-AUM54, right mandible bearing p3 to m3; UM-AUM530, right maxillary fragment bearing M2 and M3; MNHN.F.RZ142, right mandible bearing p2-p4 and m3.

Prodissopsalis eocaenicus

Formation: Karst fillings in an aberrant siderolitic facies Locality: Geiseltal-Untere-Mittelkohle, Geiseltal-Obere Mittelkohle, Egerkingen γ;

Geological Age: MP12-MP13? (possibly MP14);

Absolute Age: 48.6-40.4 Ma;

Countries: Germany, Switzerland;

Specimens observed: Leo III-394; skull bearing the right P1-P4 and M1-M3, left P3-P4 and M1-M3, and the alveoli of the I2, I3, and canines; XXXV-327, left mandible bearing canine, p3-p4 and m1-m3; XXXVI-255, right mandible bearing p3-p4 and m1-m3.

Citation: Van Valen 1965 ; Lange-Badré & Haubold 1990.

APPENDIX 4. - Stratigraphic range (MP levels) of the European hyaenodonts and numerical ages for the MP levels.

RANGE (MP LEVEL) OF THE EUROPEAN HYAENODONTS

NUMERICAL AGES FOR EACH MP LEVEL

Numerical ages were extracted from Escarguel *et al.* (1997) and Vandenberghe *et al.* (2012).

Allopterodon torvidus	MP13-MP14
Apterodon gaudryi	Rupelian
Arfia gingerichi	MP7
Boritia duffaudi	MP8+9
Cynohyaenodon cayluxi	MP16-MP17a
Čynohyaenodon trux	MP12-MP14
Eoproviverra eisenmanni	MP7
Eurotherium matthesi	MP11
Eurotherium theriodis	MP13-MP14
Galecyon morloi	MP7
Hyaenodon exiguus	MP22-MP30
Hyaenodon minor	MP17a-MP18
Kerberos langebadreae	MP16
Leonhardtina gracilis	MP12-MP13
Leonhardtina meridianum n. sp	MP10-MP11
Lesmesodon spp	MP11
Matthodon tritens	MP11
Matthodon menui	MP10
Matthodon peignei n. sp	MP10-MP11
Morlodon vellerei	MP8+9-MP10
Oxyaenoides aumelasiensis n. sp	MP10-MP11
Oxyaenoides bicuspidens	MP11
Oxyaenoides lindgreni	MP10
Paracynohyaenodon spp	MP16-MP17a
Paroxyaena spp	MP16-MP17b
Parvagula palulae	MP7
Preregidens langebadrae	MP8+9
Prodissopsalis eocaenicus	MP12-MP14
Prototomus minimus	MP7-MP8+9
Proviverra typica	MP12-MP14
Pterodon dasyuroides	MP18-MP20
Quercytherium simplicidens	MP17a-MP18
Quercytherium tenebrosum	MP16-MP17a
Thereutherium thylacodes	MP23-MP26

MP	Start	End	ICS stages
30	23.2	23.03	Chattian
29	23.9	23.2	Chattian
28	24.6	23.9	Chattian
27	25.4	24.6	Chattian
26	27.3	25.4	Chattian
25	28.8	27.3	Chattian-Rupelian
24	30	28.8	Lutetian
23	30.9	30	Rupelian
22	32.5	30.9	Rupelian
21	33.9	32.5	Priabonian
20	34	33.9	Priabonian
19	35	34	Priabonian
18	37	35	Priabonian
17b	37.5	37	Priabonian
17a	37.8	37.5	Priabonian
16	40	37.8	Bartonian
15	41.2	40	Lutetian
14	43.5	41.2	Lutetian
13	44.9	43.5	Lutetian
12	46.3	44.9	Lutetian
11	47.8	46.3	Lutetian
10	50.8	47.8	Ypresian
8+9	55.2	50.8	Ypresian
7	56	55.2	Ypresian
6	57.2	56	Thanetian

APPENDIX 5. — Input file for the Bayesian phylogenetic analysis, formatted for MrBayes.

http://sciencepress.mnhn.fr/sites/default/files/documents/en/g2020v42a13_appendix_5.txt

This file is the input code used to perform the analysis that includes 19 ordered characters (listed after "ctype ordered" near the end of the file). It also lists all parameters input into MrBayes, including clock rate, burn-in period, and number of replications. The file can be used directly to run the analysis in MrBayes. With the MrBayes window open, type in the command "execute", type a quotation ("), then drag the tip-dating analysis file, close with a second quotation mark ("); you should see "MrBayes > execute"location_on_ the_computer_with_file_name" on the MrBayes window. Then push the "enter" button to perform the analysis.

APPENDIX 6. - 'Allcompat' summary tree formatted for FigTree.

http://sciencepress.mnhn.fr/sites/default/files/documents/en/g2020v42a13_appendix_6.txt

The following method follows the one proposed by Borths & Stevens (2017c: supplementary file 3).

This file contains the tree and all summary tree statistics output as part of the summary tree file inferred from the analysis performed in MrBayes. You can open the file directly in the tree-viewing software FigTree to open the tree.

To adjust the age estimates to an absolute timescale rather than an internal hyaenodont timescale, subtract the age (mean or median) listed for the fixed taxon (*Pakakali*) from 25 (the fixed age used for *Pakakali*) and add the result to each age. For example, to calculate the median date of the divergence of *Prionogale* from *Namasector*: calculate the difference between the fixed age of *Pakakali* (25 Ma) from the age of *Pakakali* on the tree (13.61 Ma) which is 11.39 Ma. Add 11.39 Ma to the age of the node that unites Prionogalidae (12.82 + 11.39) to get the estimated, absolute divergence date between *Prionogale* and *Namasector* (24.21 Ma).

To calculate evolutionary rate of change select "ratelgrBrlens_mean" or "ratelgrBrlens_median." These display the relative rate of evolutionary change for the tree. To convert the relative evolutionary rate into absolute evolutionary rate (% change/site/Ma), multiply the "ratelgrBrlens" value by the mean or median clockrate ouput in the .pstat file from MrBayes. In the case of the ordered analysis, the median clockrate is 0.007547 and the mean clockrate is 0.01022. Multiply the "ratelgrBrlens" by the clockrate value then multiply by 100 to express absolute % change/site/Ma. For example, to calculate the median % change/site/Ma for the branch supporting Prionogalidae: $1.14 \times 0.007547 \times 100 = 0.86$ % change/site/Ma.

Taxa 1Taxa 3SpeciesBodymassEnFADHyaenodontaProviverrinaeAlienetherium buxwilleri5.555008.61250337113HyaenodontaProviverrinaeAlienetherium buxwilleri5.555008.61250337113HyaenodontaProviverrinaeAllopterodon bulbosus0.737306.59304453417bHyaenodontaProviverrinaeAllopterodon torvidus0.585806.36302810413HyaenodontaProviverrinaeAllopterodon torvidus0.585806.36302810413HyaenodontaProviverrinaeBoritia duffaudi2.5825807.3963352947HyaenodontaProviverrinaeBoritia duffaudi2.582865010.2629087213HyaenodontaProviverrinaeCartierodon egerkingensis28.652865010.2629087213HyaenodontaProviverrinaeCynohyaenodon blainvillei0.444406.08677472719HyaenodontaProviverrinaeCynohyaenodon cayluxi1.7317307.45587668716HyaenodontaProviverrinaeCynohyaenodon lautricensis330008.00636756816HyaenodontaProviverrinaeCynohyaenodon lautricensis330008.00636756816	LAD mp 13 19 14 7 9 13 19 17a 16 14 14 10 6 10
HyaenodontaProviverrinaeAlienetherium buxwilleri5.555008.61250337113HyaenodontaProviverrinaeAllopterodon bulbosus0.737306.59304453417bHyaenodontaProviverrinaeAllopterodon minor2.121007.64969262416HyaenodontaProviverrinaeAllopterodon torvidus0.585806.36302810413HyaenodontaProviverrinaeAllopterodon torvidus0.585806.36302810413HyaenodontaArfia gingerichi1.6316307.3963352947HyaenodontaProviverrinaeBoritia duffaudi2.5825807.8555446788HyaenodontaProviverrinaeCartierodon egerkingensis28.652865010.2629087213HyaenodontaProviverrinaeCynohyaenodon blainvillei0.444406.08677472719HyaenodontaProviverrinaeCynohyaenodon cayluxi1.7317307.45587668716HyaenodontaProviverrinaeCynohyaenodon cayluxi330008.00636756816HyaenodontaProviverrinaeCynohyaenodon cayluxi1.8907.54433210814	13 19 14 7 9 13 19 17a 16 14 10 6 10
HyaenodontaProviverrinaeAllopterodon bulbosus0.737306.59304453417bHyaenodontaProviverrinaeAllopterodon minor2.121007.64969262416HyaenodontaProviverrinaeAllopterodon torvidus0.585806.36302810413HyaenodontaArfia gingerichi1.6316307.3963352947HyaenodontaProviverrinaeBoritia duffaudi2.5825807.8555446788HyaenodontaProviverrinaeCartierodon egerkingensis28.652865010.2629087213HyaenodontaProviverrinaeCynohyaenodon blainvillei0.444406.08677472719HyaenodontaProviverrinaeCynohyaenodon cayluxi1.7317307.45587668716HyaenodontaProviverrinaeCynohyaenodon lautricensis330008.00636756816	19 19 14 7 9 13 19 17a 16 14 14 10 6
HyaenodontaProviverrinaeAllopterodon minor2.121007.64969262416HyaenodontaProviverrinaeAllopterodon torvidus0.585806.36302810413HyaenodontaArfia gingerichi1.6316307.3963352947HyaenodontaProviverrinaeBoritia duffaudi2.5825807.8555446788HyaenodontaProviverrinaeCartierodon egerkingensis28.652865010.2629087213HyaenodontaProviverrinaeCynohyaenodon blainvillei0.444406.08677472719HyaenodontaProviverrinaeCynohyaenodon cayluxi1.7317307.45587668716HyaenodontaProviverrinaeCynohyaenodon lautricensis330008.00636756816	19 14 7 9 13 19 17a 16 14 14 10 6
HyaenodontaProviverrinaeAllopterodon torvidus0.585806.36302810413HyaenodontaArfiinaeArfia gingerichi1.6316307.3963352947HyaenodontaProviverrinaeBoritia duffaudi2.5825807.8555446788HyaenodontaProviverrinaeCartierodon egerkingensis28.652865010.2629087213HyaenodontaProviverrinaeCynohyaenodon blainvillei0.444406.08677472719HyaenodontaProviverrinaeCynohyaenodon cayluxi1.7317307.45587668716HyaenodontaProviverrinaeCynohyaenodon lautricensis330008.00636756816HyaenodontaProviverrinaeCynohyaenodon nutricensis330008.00636756816	14 7 9 13 19 17a 16 14 14 10 6
HyaenodontaArfia gingerichi1.6316307.3963352947HyaenodontaProviverrinaeBoritia duffaudi2.5825807.8555446788HyaenodontaProviverrinaeCartierodon egerkingensis28.652865010.2629087213HyaenodontaProviverrinaeCynohyaenodon blainvillei0.444406.08677472719HyaenodontaProviverrinaeCynohyaenodon cayluxi1.7317307.45587668716HyaenodontaProviverrinaeCynohyaenodon lautricensis330008.00636756816HyaenodontaProviverrinaeCynohyaenodon nutricensis330008.00636756816	7 9 13 19 17a 16 14 14 10 6
HyaenodontaProviverrinaeBoritia duffaudi2.5825807.8555446788HyaenodontaProviverrinaeCartierodon egerkingensis28.652865010.2629087213HyaenodontaProviverrinaeCynohyaenodon blainvillei0.444406.08677472719HyaenodontaProviverrinaeCynohyaenodon cayluxi1.7317307.45587668716HyaenodontaProviverrinaeCynohyaenodon lautricensis330008.00636756816HyaenodontaProviverrinaeCynohyaenodon nutricensis330008.00636756816	9 13 19 17a 16 14 14 10 6 10
HyaenodontaProviverrinaeCartierodon egerkingensis28.652865010.2629087213HyaenodontaProviverrinaeCynohyaenodon blainvillei0.444406.08677472719HyaenodontaProviverrinaeCynohyaenodon cayluxi1.7317307.45587668716HyaenodontaProviverrinaeCynohyaenodon lautricensis330008.00636756816HyaenodontaProviverrinaeCynohyaenodon nutricensis330008.00636756816	13 19 17a 16 14 14 10 6 10
HyaenodontaProviverrinaeCynohyaenodon blainvillei0.444406.08677472719HyaenodontaProviverrinaeCynohyaenodon cayluxi1.7317307.45587668716HyaenodontaProviverrinaeCynohyaenodon lautricensis330008.00636756816HyaenodontaProviverrinaeCynohyaenodon nutricensis330008.00636756816	19 17a 16 14 14 10 6 10
HyaenodontaProviverrinaeCynohyaenodon cayluxi1.7317307.45587668716HyaenodontaProviverrinaeCynohyaenodon lautricensis330008.00636756816HyaenodontaProviverrinaeCynohyaenodon rutimeveri1.8918907.54433210814	17a 16 14 14 10 6
Hyaenodonta Proviverrinae Cynohyaenodon lautricensis 3 3000 8.00636/568 16 Hyaenodonta Proviverrinae Cynohyaenodon rutimeveri 1.89 1.890 7.544332108 14	16 14 14 10 6
Hyaenodonta Proviverrinae Cynobyaenodon rutimeveri 1.89 1890 7.544332108 14	14 14 10 6
	14 10 6 10
Hyaenodonta Proviverniae Cynonyaenodon trux 1.17 1170 7.064759028 12	10 6 10
Mesonychia Mesonychidae Dissacus biayaci 39.08 39080 10.57336611 10	10
Mesonychia Mesonychidae Dissacus europaeus 9.25 9250 9.1323/8831 0	
Mesonychia Mesonychidae Dissadus III/0/1 10.69 10690 5.75447/01 10	10
Mesonychia Mesonychidae Dissacus progressus 50.59 50590 10.94550757 10 Masonychia Mesonychidae Dissacus rodratovitatiori 12.14 10240 9.482416202 8	10
Mesonychia Mesonychidae Dissacus rasianioubatien 15.14 15.14 3.4654.102.92 o Masonychia Mesonychidae Dissacus rasianioubatien 9.01 0014 9.106.724.10 7	9
Nesonychia Mesonychidae Dissatus folgielae 5.01 5014 5.10073415 7 Hvaenodnata Proviverinae Foroviverina eisenmanni 0.05 50 3.01203005 7	7
Hyaenodonta Provverinae Euproviena eserinarii 0.05 50 5.51225005 /	11
Hyaenodonta Provverinae Eurotherium thariodis 6.88 6880 883627001 13	1/
Hyaenodonta Fromerinae Calerono rallus 0.77 770 6.646300515 7	7
Hyaenodonta Sinopinae Galecyon gando 0.6 600 6.396090655 7	7
Hydenodonta Hydenodontinae Hydenodon brachyrhynchus 17.06 17060 9.744491821 17	23
Hyaenodonta Hyaenodontinae Hyaenodon gervaisi 50.36 50.360 10.82695249 17b	29
Hyaenodonta Hyaenodontinae Hyaenodon beberti 30,53 30530 10,32646509 17b	19
Hyaenodonta Hyaenodontinae Hyaenodon minor 7.65 7650 8.942460927 17a	18
Hyaenodonta Hyaenodontinae Hyaenodon requieni 38.3 38300 10.55320518 17a	20
Hyaenodonta Hyaenodontinae Hyaenodon rossignoli 4.48 4480 8.407378325 18	19
Hyaenodonta Hyainailourinae Kerberos langebadreae 87.69 87690 11.38156315 16	16
Hyaenodonta Proviverrinae Leonhardtina godinoti 0.99 990 6.897704943 10	10
Hyaenodonta Proviverrinae Leonhardtina meridianum n. sp. 0.84 840 6.733401892 10	10
HyaenodontaProviverrinaeLeonhardtina gracilis1.7317307.45587668712	13
HyaenodontaProviverrinaeLesmesodon behnkeae8.3183109.02521488811	11
HyaenodontaProviverrinaeLesmesodon edingeri2.2122107.70074779511	11
HyaenodontaProviverrinaeMatthodon menui12.31123109.41816721910	10
Hyaenodonta Proviverrinae Matthodon peignei n. sp. 15.75 15750 9.664595644 10	10
Hyaenodonta Proviverrinae Matthodon tritens 19.15 19150 9.860057995 11	11
Hyaenodonta Proviverrinae Minimovellentodon russelli 1.18 1180 7.073269717 8	9
Hyaenodonta Proviverrinae Morlodon vellerei 2.25 2250 7.718685495 8	10
Oxyaenidae Oxyaeninae Oxyaena gulo 12.3 12300 9.417354541 8	9
Oxyaenidae Oxyaeninae Oxyaena woutersi 6.48 6480 8.776475789 7	10
Hyaenodonta Proviverninae Oxyaenoides aurelasiensis n. sp. 4.24 4240 8.352318348 10	10
Hydenodonta Proviverinae Oxydenoides bioderios 14,19 14,19 9,50029277 11	10
Hydenodonta Provverniae Oxydenoides intogreni 9.71 9710 5.10051301 10	10
Tydenouchia Provverniae Oxydenouces schlossen 10.55 10550 5.750642475 15 Maconychia Meconychidae Dachycaen of aracilis 38.08 38080 10.57080207 8	0
Mesonychia Mesonychidae Pachyaeria ci grafina 50.50 50500 10.5700057 0 Masonychia Mesonychidae Pachyaeria ci ossifrana 74.80 74.80 11.2237565 8	q
Mesonychia Mesonychidae Pachyaena digantea 162.44 162440 11.99806398 8	g
Hydengolnata Provincia Pagnovagnica (guintou 1021+1 1021+0 110000000 0 1011+1 1021+0 110000000 0 1011+1 1021+0	18
Oxygenidae Ambloctinge Palaeonictis gigantea 12.04 12040 9.395989719 7	9
Hyaenodonta Proviverinae Paracynohia giganod 3, 3, 5, 3, 850, 8, 255828427, 16	16
Hydenodonta Proviverinae Paracynohydenodon schlosseri 2,97 2970 7,996317232 16	17a
Hyaenodonta Hyainailourinae Parapterodon lostangensis 103.62 103620 11.54848564 19	19
Hyaenodonta Hyainailourinae Paroxyaena galliae 52.78 52780 10.87388761 16	17b
Hyaenodonta Proviverrinae Parvaoula palulae 0.06 60 4.094344562 7	7
Hyaenodonta Proviverrinae Praecodens acutus 1.09 1090 6.993932975 13	13
Hyaenodonta Proviverrinae Preregidens langebadrae 3.53 3530 8.16905315 8	9
Hyaenodonta Proviverrinae Prodissopsalis eocaenicus 18.02 18020 9.799237531 12	14
Hyaenodonta Proviverrinae Protoproviverra palaeonictides 0.91 910 6.8134446 10	10
HyaenodontaSinopinaePrototomus girardoti0.454506.1092475837	9
Hyaenodonta Sinopinae <i>Prototomus minimus</i> 0.24 240 5.480638923 7	9
HyaenodontaProviverrinaeProviverra typica0.424206.04025471112	13
Hyaenodonta Hyainailourinae Pterodon dasyuroides 51.56 51560 10.85050146 18	20
HyaenodontaProviverrinaeQuercytherium simplicidens3.1231208.04558828117a	18
HyaenodontaProviverrinaeQuercytherium tenebrosum2.8928907.96901178116	17a

APPENDIX 7. - Estimations of the body mass of selected hyaenodonts, oxyaenids, and mesonychids.

Alienetherium buxwilleri Lange-Badré, 1981 Allopterodon Ginsburg, 1978 Allopterodon bulbosus (Lange-Badré, 1979) Allopterodon minor (Filhol, 1877) Allopterodon torvidus (Van Valen, 1965) Anchomomys Stehlin, 1916 Apterodon gaudryi Fischer, 1880 Apterodon intermedius Lange-Badré & Böhme, 2005 Arfia gingerichi Smith & Smith, 2001 Aumelasia gabineaudi Sudre, 1980 Boritia duffaudi Solé, Falconnet & Laurent, 2014 Cartierodon egerkingensis Solé & Mennecart, 2019 Cynohyaenodon Filhol, 1873 Cynohyaenodon blainvillei Brunet, 1977 Cynohyaenodon cayluxi Filhol, 1873 Cynohyaenodon lautricensis Lange-Badré, 1978 Cynohyaenodon rutimeyeri Van Valen, 1965 Cynohyaenodon trux Van Valen, 1965 Dichobune robertiana Gervais, 1848 Dissacus blayaci Stehlin, 1926 Dissacus europaeus Lemoine, 1891 Dissacus filholi (Lemoine, 1891) Dissacus progressus Crusafont Pairó & Golpe-Posse, 1968 Dissacus raslanloubatieri Solé, Godinot, Laurent, Galoyer & Smith, 2019 Dissacus rougierae Solé, Godinot, Laurent, Galoyer & Smith, 2019 Eoproviverra eisenmanni (Godinot, 1981) Eurotherium Polly & Lange-Badré, 1993 Eurotherium matthesi (Lange-Badré & Haubold, 1990) *Eurotherium theriodis* (Van Valen, 1965) Galecyon Gingerich & Deutsch, 1989 Galecyon gallus Solé, Gheerbrant & Godinot, 2013 Galecyon morloi Smith & Smith, 2001 Gazinocyon vulpeculus (Matthew & Granger, 1915) Hyaenodon brachyrhynchus de Blainville, 1839 Hyaenodon exiguus (Gervais, 1872) Hyaenodon gervaisi Martin, 1906 Hyaenodon heberti Filhol, 1876 Hyaenodon minor Gervais, 1852 Hyaenodon requieni Gervais, 1848-1852 Hyaenodon rossignoli Lange-Badré, 1979 Kerberos langebadreae Solé, Amson, Borths, Vidalenc, Morlo & Bastl, 2015 Leonhardtina Matthes, 1952 Leonhardtina godinoti Solé, Falconnet & Laurent, 2014 Leonhardtina gracilis Matthes, 1952 Leonhardtina meridianum n. sp. Lesmesodon Morlo & Habersetzer, 1999

Lesmesodon behnkeae Morlo & Habersetzer, 1999

Lesmesodon edingeri (Springhorn, 1982) Lophiodon isselensis Fischer, 1929 Lophiodon parisiense Matthodon Lange-Badré & Haubold, 1990 Matthodon menui (Rich, 1971) Matthodon peignei n. sp. Matthodon tritens Lange-Badré & Haubold, 1990 Minimovellentodon russelli Solé, Falconnet & Laurent, 2014 Morlodon Solé, 2013 Morlodon vellerei Solé, 2013 Namasector Morales, Pickford & Salesa, 2008 Namasector soriae Morales, Pickford & Salesa, 2008 Oxyaena gulo Matthew & Granger, 1915 Oxyaena woutersi (Lange-Badré & Godinot, 1982) Oxyaenoides Matthes, 1967 Oxyaenoides aumelasiensis n. sp. Oxyaenoides bicuspidens Matthes, 1967 Oxyaenoides lindgreni (Rich, 1971) Oxyaenoides schlosseri (Rütimeyer, 1891) Pachyaena Cope, 1874 Pachyaena gigantea Osborn & Wortman, 1892 Paenoxyaenoides liguritor Lange-Badré, 1979 Pakakali Borths & Stevens, 2017 Pakakali rukwaensis Borths & Stevens, 2017 Palaeonictis gigantea de Blainville, 1842 Paracynohyaenodon magnus Crochet, 1988 Paracynohyaenodon schlosseri Martin, 1906 Parapterodon lostangensis Lange-Badré, 1979 Paroxyaena galliae Filhol, 1881 Parvagula Lange-Badré, 1987 Parvagula palulae Lange-Badré, 1987 Praecodens acutus Lange-Badré, 1981 Preregidens Solé, Falconnet & Vidalenc, 2015 Preregidens langebadrae Solé, Falconnet & Vidalenc, 2015 Prionogale Schmidt-Kittler & Heizmann, 1991 Prionogale breviceps Schmidt-Kittler & Heizmann, 1991 Prodissopsalis eocaenicus Matthes, 1952 Protoproviverra palaeonictides (Lemoine, 1880) Prototomus girardoti Smith & Smith, 2001 Prototomus minimus Smith & Smith, 2001 Proviverra Rütimeyer, 1862 Proviverra typica Rütimeyer, 1862 Pterodon dasyuroides de Blainville, 1839 Quercytherium simplicidens Lange-Badré, 1975 Quercytherium tenebrosum Filhol, 1880 Simbakubwa kutokaafrika Borths & Stevens, 2019 Thereutherium Filhol, 1876 Thereutherium thylacodes Filhol, 1876