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Povzetek

Naslov: Uporaba medjezičnih vektorskih vložitev za odkrivanje sovražnega

govora v komentarjih

V zadnjih letih se je z eksplozijo vsebin na družbenih medijih povǐsala

količina sovražnega govora. Zaradi velike količine podatkov je ročno mo-

deriranje sovražnih vsebin nemogoče. Trenutno za avtomatsko odkrivanje

sovražnega govora najpogosteje uporabljamo nevronske mreže. Za njihovo

učenje je potrebno veliko označenih primerov, ki so večinoma na voljo le za

večje jezike, npr. za angleščino. Označenih podatkov za manǰse jezike je

načeloma malo. Vseeno bi želeli tudi v teh jezikih zaznavati sovražni go-

vor. V tem delu s pomočjo medjezikovnih vložitev razvijemo metodo, ki

ob prenosu dosega sprejemljive rezultate za ciljni jezik. Komentarji s so-

vražnim govorom so v angleščini, nemščini in hrvaščini. Uporabimo fastText

vložitve, jih poravnamo z metodo RCSLS, in dosežemo sprejemljive rezultate

za dva od šestih jezikovnih parov. Z modelom BERT izbolǰsamo to metodo

in dosežemo sprejemljive rezultate za tri od šestih jezikovnih parov.

Ključne besede

vektorska vložitev, medjezikovna vložitev, globoko učenje, odkrivanje sovražnega

govora, obdelava naravnega jezika, metoda RCSLS, jezikovni model BERT





Abstract

Title: Cross-lingual embeddings for hate speech detection in comments

With the recent explosion of social media content, the amount of online

hate speech is increasing, making it impossible to filter it manually. For

automatic hate speech detection, a lot of annotated data is needed, which is

mostly available for high-resource languages. In spite of data scarcity in low-

resource languages, we want to detect hate speech in those languages. We

use cross-lingual embeddings to achieve an acceptable performance in hate

speech detection in a target language, using data from another language.

We use hate speech comments from English, German, and Croatian. We use

fastText word embeddings, align them with the RCSLS method, and achieve

reasonable performance in 2 out of 6 language pairs. With Multilingual

BERT, we improve upon this method, and achieve acceptable performance

in 3 out of 6 language pairs.

Keywords

word embedding, cross-lingual embedding, deep learning, hate speech detec-

tion, natural language processing, RCSLS method, BERT language model





Razširjeni povzetek

V zadnjih letih se je z eksplozijo vsebin na družbenih medijih povǐsala količina

sovražnega govora. Zaradi velike količine podatkov je ročno moderiranje

sovražnih vsebin nemogoče. Trenutno za avtomatsko odkrivanje sovražnega

govora najpogosteje uporabljamo nevronske mreže. Za njihovo učenje je

potrebno veliko označenih primerov, ki so večinoma na voljo le za večje jezike,

npr. za angleščino. Označenih podatkov za manǰse jezike je načeloma malo.

Vseeno bi želeli tudi v teh jezikih zaznavati sovražni govor.

V tem delu s pomočjo medjezikovnih vložitev razvijemo metodo, ki ob

prenosu dosega sprejemljive rezultate za ciljni jezik.

I Kratek pregled sorodnih del

Na področju odkrivanja sovražnega govora večinoma poskušamo razločiti

sovražni in nesovražni govor [33]. Pogosto za odkrivanje sovražnega go-

vora uporabljamo SVM in nevronske mreže. Med nevronskimi mrežami

so konvolucijske mreže in rekurentne nevronske mreže najbolj priljubljene

[4, 14, 27, 31, 33].

Da bi nevronske mreže lahko učili s tekstovnimi podatki, moramo bese-

dila pretvoriti v številske vrednosti, za kar uporabljamo vektorske vložitve.

Pomembna značilnost vektorskih vložitev je, da so besede, ki so si pomensko

blizu, blizu tudi v vektorskem prostoru [21].

Dve znani vložitvi sta word2vec [21] in GloVe [23]. FastText [7] je iz-

bolǰsana inačica metode word2vec [21], vendar ne upošteva konteksta, torej
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homografi zasedajo v vektorskem prostoru isto točko. Metoda ELMo [24]

upošteva kontekst tako, da je vsaka beseda predstavljena kot funkcija celo-

tnega stavka.

Isti pomeni v različnih jezikih zavzemajo različna mesta v vektorskih

prostorih. Če bi želeli podatke iz različnih jezikov uporabiti za skupno kla-

sifikacijo, bi morali biti v skupnem prostoru. V ta namen so bile razvite

medjezikovne vložitve.

Conneau et al. [10] so pokazali, da lahko sestavimo dvojezični slovar brez

uporabe paralelnih korpusov. Razvili so metriko CSLS (angl. cross-domain

similarity local scaling), ki poskuša najti poravnavo dveh jezikov tako, da je

najbližji sosed besede v izvornem jeziku najbližji sosed besede tudi v ciljnem

jeziku. Joulin et al. [19] izbolǰsajo metriko CSLS z metriko RCSLS (angl.

relaxed CSLS). Pokazali so, da je, če sprostimo omejitev ortogonalnosti pri

učenju preslikave, metrika RCSLS konveksna in jo lahko minimiziramo. S to

kriterijsko funkcijo so, predvsem za jezike, ki si niso blizu (npr. angleščina-

kitaǰsčina), izbolǰsali rezultate metode CSLS.

II Predlagana metoda

Glavna ideja naše metode je, da model naučimo na večji podatkovni množici v

izvornem jeziku, ki je poravnan s ciljnim jezikom, model potencialno doučimo

na manǰsi množici v ciljnem jeziku in klasificiramo sovražni govor v ciljnem

jeziku.

Za poravnavo smo uporabili metodo RCSLS in učne slovarje s 5.000

besednimi pari. Opazimo, da sta para angleščina-nemščina in nemščina-

angleščina dobro poravnana. Jezikovni pari s hrvaščino so mnogo slabše

poravnani.

Podatkovne množice v izvornem jeziku so večje (največ 10.000 primerov)

in vsebujejo približno 10 % primerov sovražnega govora. Za ciljni jezik upo-

rabimo tri podatkovne množice: učno, validacijsko in testno. Te množice so

manǰse (do 2.000 primerov) in vsebujejo približno 50 % primerov sovražnega
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govora. Pri evalvaciji metode ostaneta validacijska in testna množica kon-

stantni, spreminjamo le učno množico.

Za klasifikacijo smo razvili dve nevronski mreži; CNN in BiLSTM-CNN.

Struktura konvolucijske mreže (CNN) temelji na mreži, ki jo je razvil Kim

[20]. S to mrežo želimo prepoznati vzorce, ne glede na to, kje se pojavijo. Z

mrežo BiLSTM-CNN želimo s slojem BiLSTM zajeti relacije med besedami,

in s konvolucijskim slojem zajeti lokalne značilke.

Za testirane modele poročamo njihovo točnost, priklic in mero F1. Da bi

razumeli vpliv primerov v izvornem jeziku na klasifikacijsko točnost v ciljnem

jeziku, izračunamo tudi korelacijo med številom primerov v ciljnem/izvornem

jeziku in metrikami. S podobnim namenom dodajamo izvornim podatkom

podatke v ciljnem jeziku in opazujemo dodano vrednost izvornih podatkov.

III Eksperimentalna evalvacija

Rezultate lahko glede na kakovost preslikav razdelimo v dve skupini. V prvi

skupini sta jezikovna para angleščina-nemščina in nemščina-angleščina, ki sta

dobro poravnana in dosegata dobre rezultate. V drugi skupini so jezikovni

pari s hrvaščino, ki so slabo poravnani in dosegajo slabše rezultate.

Jezikovni par angleščina-nemščina dosega najbolǰse rezultate. Opazimo,

da imajo primeri v izvornem jeziku v vsaki testirani kombinaciji dodano

vrednost. Predvsem pri učenju brez primerov v ciljnem jeziku dosegamo

sprejemljive rezultate. V korelacijski tabeli (tabela 6.2) opazimo, da imajo

izvorni primeri primerljiv vpliv na klasifikacijsko točnost kot primeri v ciljnem

jeziku. Ugotovimo, da imajo izvorni primeri pri dobrih poravnavah primerljiv

vpliv na klasifikacijsko točnost kot ciljni primeri.

V skupini s slabšimi poravnavami sta dva zanimiveǰsa jezikovna para.

Jezikovni par hrvaščina-nemščina je najbolǰsi primer slabe poravnave, par

hrvaščina-angleščina pa je najslabši primer slabe poravnave. Izvorni primeri

pri paru hrvaščina-nemščina so pozitivno korelirani z mero F1 (+0,11), pri

paru hrvaščina-angleščina pa negativno korelirani (−0,11). Ugotovimo, da
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Tabela 1: Primerjava rezultatov metode RCSLS in modela BERT. Učenje

samo s primeri v ciljnem jeziku (tgt) in samo s primeri v izvornem jeziku

(src). Poročamo priklic (r), točnost (p), mero F1 (f) za najbolǰsi rezultat

(obeh modelov). Krepko besedilo označuje najbolǰsi rezultat stolpca.

en-de en-hr de-en de-hr hr-en hr-de

r p f r p f r p f r p f r p f r p f

BERT tgt 0,72 0,71 0,72 0,74 0,74 0,74 0,88 0,72 0,79 0,71 0,75 0,73 0,85 0,73 0,78 0,73 0,69 0,71

RCSLS tgt 0,75 0,68 0,70 0,65 0,72 0,70 0,75 0,84 0,80 0,72 0,70 0,71 0,90 0,73 0,78 0,79 0,73 0,76

BERT src 0,65 0,64 0,64 0,49 0,58 0,53 0,63 0,67 0,65 0,67 0,61 0,64 0,77 0,64 0,70 0,71 0,53 0,61

RCSLS src 0,45 0,70 0,62 0,24 0,64 0,51 0,63 0,71 0,69 0,19 0,59 0,47 0,11 0,84 0,44 0,03 0,44 0,37

imajo izvorni primeri v primeru slabih poravnav zanemarljiv oziroma nega-

tiven vpliv na klasifikacijsko točnost v ciljnem jeziku.

Zaradi slabših rezultatov parov s hrvaščino smo se odločili testirati še

model BERT. Ugotoviti želimo, če je za slabe rezultate odgovorna slaba po-

ravnava. Modelu BERT doučimo vse skrite sloje s podatki v angleščini,

nemščini in hrvaščini. Na njegovem izhodu uporabimo enaka klasifikatorja

kot pri metodi RCSLS. V tabeli 1 primerjamo rezultate metode RCSLS

in modela BERT. Opazimo, da BERT večinoma izbolǰsa rezultate metode

RCSLS in doseže sprejemljive rezultate pri treh od šestih jezikovnih parov,

če učimo samo s primeri v izvornem jeziku. Izrazite so izbolǰsave pri pa-

rih nemščina-hrvaščina, hrvaščina-angleščina in hrvaščina-nemščina. Zaradi

tega sklepamo, da so bile slabe poravnave vzrok za slabe rezultate pri parih

s hrvaščino.
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IV Sklep

Naša prvotna hipoteza je bila, da bomo z medjezikovnimi vložitvami prenesli

nekaj znanja iz izvornega v ciljni jezik. Pokazali smo, da lahko samo s podatki

v izvornem jeziku dosežemo sprejemljive rezultate pri prepoznavi sovražnega

govora v ciljnem jeziku, vendar je za to potreben dobro poravnan skupen

prostor. Z modelom BERT smo izbolǰsali rezultate metode RCSLS; predvsem

pri učenju samo s primeri v izvornem jeziku so izbolǰsave izrazite. Ugotovimo,

da naj bo to prva izbira, ko želimo jezikovne prenose znanja.

Omejitev našega pristopa je, da naši modeli uporabljajo privzete parame-

tre in ne upoštevajo izvenslovarskih besed. Sklepamo, da bi z optimizacijo

parametrov in upoštevanjem izvenslovarskih besed dosegli bolǰse rezultate.

Čeprav smo se pri izbiri podatkovnih množic sovražnega govora trudili

najti tematsko čim bolj podobne, so naše učne množice vseeno tematsko

različne. Angleška (forum Stormfront) in nemška (npr. Facebook skupina

Pegida) sta specifični, medtem ko je hrvaška množica splošna. Sklepamo, da

tematska različnost dodatno slabša rezultate.
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Chapter 1

Introduction

With the explosion of social media content in recent years, the amount of

online hate speech is increasing. Since there is no consensus concerning

the definition of hate speech, it is difficult to identify. Legal and academic

literature generally define it as speech that expresses hatred against a person

or group of people because of a characteristic they share, or a group to which

they belong [26].

Companies like Twitter, Facebook and Youtube have been investing mil-

lions of euros every year into moderating hate speech on their platforms, but

are still criticised for not doing enough. Currently, most of the efforts to

identify and delete offensive posts are done manually. As such, the process is

extremely labour intensive, time consuming, and not sustainable or scalable.

Given the massive amount of data, it has become impossible to manually

process and detect potential hate speech. Thus, the need for automated hate

speech detection arose [33].

Currently, most methods for hate speech detection use supervised learn-

ing. Since hate speech lacks unique, discriminative features, best results are

achieved using deep learning [27, 31, 33]. For that approach to work best,

a lot of training data is needed, which may be costly. Construction of large

datasets in low-resource languages poses a further challenge. We would like

to achieve good classification results exploiting existing resources in other

1



2 CHAPTER 1. INTRODUCTION

languages.

In recent years, cross-lingual word embeddings have enabled us to reason

about word meaning in multilingual contexts and are a key facilitator of

cross-lingual transfer when developing natural language processing (NLP)

models for low-resource languages [25]. In this thesis, we propose an approach

using cross-lingual embeddings for solving the issue of low-resource languages

in the context of hate speech detection. We show that using cross-lingual

embeddings and data from other languages can compensate for the lack of

data in the target language.

This thesis is organised as follows: In Chapter 2, we give an overview on

related work done in the field of hate speech detection. In Chapter 3, we

take a closer look at the used datasets. We have chosen datasets in English,

German, and Croatian. In Chapter 4, we review the ideas behind word and

cross-lingual embeddings. In Chapter 5, we present our approach, our imple-

mentation and models used for classification. In Chapter 6, we present and

comment on the results achieved for the six language combinations tested.

We conclude with Chapter 7 where we summarise our work and present im-

plications. We analyse shortcomings of our approach and discuss possible

improvements.



Chapter 2

Related work on hate speech

detection

In the UK, there has been a significant increase in hate speech towards mi-

grant and Muslim communities following events like leaving the EU or the

Manchester and London attacks. In the EU, surveys and reports focusing on

young people show an increase of hate speech and related crimes based on

religion, sexual orientation, or gender. Statistics also show a similar trend in

the US since the Trump election. A range of international initiatives have

been launched towards the qualification of the problems and the development

of counter measures [33].

In this section, we present work done on automated hate speech detection.

In recent years, extensive research has been conducted to develop automated

methods for hate speech detection on social media. These typically employ

semantic content analysis techniques based on natural language processing

(NLP) and machine learning methods. Usually they try to distinguish hate

from non-hate content. Although this usually shows good results, evaluations

are often biased towards detecting non-hate, as opposed to detecting hateful

content. In some domains, detecting hate speech achieves between 15 and 60

percentage points lower F1 scores, as opposed to detecting non-hate speech.

This suggests that detecting hate speech is a much harder task [33].

3



4 CHAPTER 2. RELATED WORK ON HATE SPEECH DETECTION

Some of the techniques which often achieve good results are support-

vector machines (SVM) and deep learning [4, 14, 27, 31]. SVM tries to find a

line or hyperplane which separates the data into classes. It relies on manually

designing and encoding features of data samples into feature vectors, which

are then used by the classifier. Deep learning methods learn abstract feature

representations of features from input data through multiple stacked layers,

which means that the input features may not be used for classification. The

two most popular neural network architectures are convolutional neural net-

work (CNN) and recurrent neural network (RNN). In the context of hate

speech, CNNs extract word or character combinations, whereas RNNs learn

word or character dependencies [33]. Zhang and Luo [33] have outperformed

other state of the art models using a skipped CNN.

Most research is focused on hate speech in English. Some examples of

English datasets are presented in Davidson et al. [11] and de Gibert et al.

[12]. Examples of other languages where research is done include German

[8] and Italian [30]. We have found no examples of research for low-resource

languages.

Davidson et al. [11] note that one of the problems in detecting hate speech

is distinguishing it from offensive speech. Building on that, Waseem [32]

shows the importance of labelling the datasets correctly. It is important to

note that amateur annotators are more likely to label items as hate speech

and systems trained on expert annotations outperfrom systems trained on

amateur annotations.

Zhang and Luo [33] show that hateful content is usually found in the

long tail of a dataset (most hate speech samples occur far away from the

central part of the distribution) due to their lack of unique, discriminative

features. Due to that, the practice of ’micro-averaging’ over both hate and

non-hate classes can be questionable, since it can be significantly biased

towards the dominant non-hate class and overshadow the method’s ability

to detect hateful content.



Chapter 3

Datasets

In this thesis, we have chosen datasets from three languages: English, Ger-

man, and Croatian. Even though English and German are representatives of

high-resource languages, Croatian is the language where the available dataset

is magnitudes larger. In the context of hate speech, even high-resource lan-

guages do not seem to have many publicly available datasets, as the largest

have at most 15,000 labelled samples. Datasets from different hate domains

introduce further uncertainty.

3.1 English dataset

For the English dataset, created by de Gibert et al. [12], the data was scraped

from Stormfront, the largest online community of white nationalists and

known as the first hate website. The extracted content was published be-

tween 2002 and 2017 and presents the first dataset of textual hate speech

annotated at sentence-level. Sentence-level annotation allows to work with

the minimum unit containing hate speech and reduce noise introduced by

other sentences that are clean. They also include data about how much con-

text the annotator needed to classify each sentence. Annotators discussed

guidelines to ensure everyone had the same understanding of hate speech.

As seen in Table 3.1, a total of 10,703 sentences have been extracted

5



6 CHAPTER 3. DATASETS

Table 3.1: The English dataset distribution of hate speech samples [12].

#samples %

noHate 9,507 88.83

hate 1,196 11.17

total 10,703 100.00

Table 3.2: Two samples from the English dataset [12].

comment label

That’s all I needed to hear . 0

He is a pathetic little chimp . 1

from Stormfront and classified as hate speech or not. 1,196 samples have

been labelled as hate speech and 9,507 as non-hate speech.

In Table 3.2, two samples from the dataset are shown. All samples are

labelled with either 0 or 1, 0 denoting a neutral comment and 1 a hateful

comment. In some samples, added context was needed to label the comments.

This hints that those samples marked as hateful are noisier than usual.

The authors of the dataset tested three models, SVM, CNN, and long

short-term memory (LSTM), all with no special optimisation. They tested

the models on a balanced subset of 2,000 labelled sentences. From this sub-

set, 80% are used for training and the remaining 20% for testing. The model

structures are constructed in the following way: SVM uses bag-of-words vec-

tors, CNN is a simplified version of Kim’s model [20] using a single input

channel of randomly initialised word embeddings, and the LSTM with a

layer size of 128 over word embeddings of size 300. As seen in Table 3.3,

LSTM performed best, but SVM using bag-of-words vectors was close to its

performance. The CNN model performed worse than both. Instead of choos-

ing the recall and precision metric for a single class, the authors decided to
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Table 3.3: The English dataset model performance [12].

model ACCHATE ACCNOHATE ACCALL

SVM 0.69 0.73 0.71

CNN 0.54 0.79 0.66

LSTM 0.71 0.75 0.73

report sensitivity and specificity to highlight the performance for both classes

individually [12].

3.2 German dataset

The German dataset by Bretschneider and Peters [8] was constructed by ac-

cessing publicly available Facebook pages. Three pages were chosen. ”Pegida”

(dataset 1) and ”Ich bin ein Patriot, aber kein Nazi” (dataset 2) are known

for their critical view of foreigners and refugees. ”Kriminelle Ausländer raus”

(dataset 3) is known for xenophobe and racist comments. Two human ex-

perts annotated the datasets marking offensive statements, their severity

and intended target. Each offending passage is marked and assessed with a

severity value. Statements perceived by the experts as slightly offensive to

offensive are denoted with a severity value of 1, and explicit to substantial

offensive statements with a value of 2.

Since we want to predict only two classes (neutral or hate), we have made

a new dataset where a sample with severity at least 1 was given the label 1.

In Table 3.5, two samples from the German dataset are shown. All samples

are labelled either 0 or 1, with 0 denoting a neutral comment and 1 a hate

comment.

Bretschneider and Peters [8] tested two models on the dataset. Their

pattern-based approach uses an architecture which detects references and

recognises hate speech patterns. As can be seen in Figure 3.1, their pattern-
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Table 3.4: The German dataset summary [8]. Cohen’s kappa measures

inter-rater agreement. As it takes agreement by chance into account, it is a

more robust agreement measure than percent agreement calculation.

Dataset 1 2 3 total

#comments 2.649 2.641 546 5.836 (100.00%)

#cases (severity=1) 99 112 50 261 (4.47%)

#cases (severity=2) 137 112 130 379 (6.49%)

Cohen’s kappa 0.78 0.68 0.73 0.73

Table 3.5: Two samples from the German dataset [8].

comment label

Bla bla bla bla 0

Ausländer sind alle Dreck 1
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Figure 3.1: The German dataset model performance [8]. The reported

evaluation scores are precision (p), recall (r) and F1 score (f1).

based approach performed better than the tested baseline model using a

bag-of-words approach [8]. To assess performance of the binary classification

they report precision (p), recall (r) and the F1 score (f1).

3.3 Croatian dataset

The Croatian dataset is provided for research purposes within the EMBED-

DIA project [2]. There are two files of user comments extracted, one from the

24sata.hr news portal and the other from vecernji.hr. Both datasets have 11

columns. The 24sata dataset has 21,548,192 rows and Vecernji List dataset

has 9,646,634 rows, where each row represents one user comment.

Before we could use the data, we had to do some preprocessing. One of

the columns is ”infringed on rule”, which has data about the infringement

type of the comment (if there has been an infringement). The relevant in-

fringements for us are ”Rule ID 3” in 24sata dataset, which is given when

the comment contains ”Verbal abuse, derogation and verbal attack based on

national, racial, sexual or religious affiliation, hate speech and incitement”.

For the Vecernji List dataset ”Rule ID 1” is relevant, which marks a com-

ment that contains ”Hate speech on a national, religious, sexual or any other

basis”. We have taken those samples and marked them as hate speech (label

1). Comments that do not infringe on any rules, we consider neutral com-

ments and mark them with 0. We disregarded all other comments that do

not fall in those two categories e.g. political trolling, verbal abuses of moder-

ators etc. We extracted 84,509 hate speech comments from the Vecernji List



10 CHAPTER 3. DATASETS

Table 3.6: Two samples from the Croatian dataset.

comment label

tko to gleda 0

hahahaha! 1

dataset and 19,304 from the 24sata dataset. Given that the 24sata dataset is

about twice the size of Vecernji List and contains only 19% of the hate speech

comments, it is fair to assume that the annotators had different standards

for annotating the comments. Two examples of the extracted comments

can be seen in Table 3.6. From the positive example, we can see that the

labelling is context dependent since the comment itself cannot be consid-

ered hate speech. Upon further inspection, it was deemed hateful because it

was a response to a hateful comment and seen as a support of hate speech.

we noticed multiple samples like that, and assume that such comments will

be difficult to recognise as hate speech. By removing comments marked as

replies, we could reduce this issue.

We created two datasets (see Table 3.7) with the data subset (neutral and

hateful comments) to use for model training. The ”hr full” dataset contains

all samples combined from the two before-mentioned datasets (24sata and Ve-

cernji list). To ensure fixed samples during evaluation, we made train, valida-

tion and test splits of ”hr source 12k” and ”hr bal 3k”. The ”hr source 12k”

dataset contains 12,000 samples and hate speech ratio of 0.11. This is similar

in terms of size and hate speech ratio to the datasets in English and German.

It is used as training set for Croatian as the source language. A balanced

dataset (”hr bal 3k”), which has a hate speech ratio of about 50%, is used

as a training set for Croatian as the target language.
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Table 3.7: Croatian datasets summary.

Dataset #non-hate #hate hate ratio total

hr full 30,293,479 103,813 0.003 30,397,292

24sata full 21,094,135 19,304 0.001 21,113,439

vecernji full 9,199,344 84,509 0.01 9,283,853

hr source 12k 10,680 1,320 0.11 12,000

hr train 12k 6,826 857 0.11 7,683

hr val 12k 1,710 218 0.11 1,928

hr test 12k 2,114 245 0.11 2,389

hr bal 3k 1,500 1,500 0.50 3,000

hr bal train 960 971 0.50 1,931

hr bal val 227 221 0.49 448

hr bal test 313 308 0.50 621
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Chapter 4

Word embeddings

An important part of this thesis is how we represent words as numeric values.

Word embeddings give us a vector representation of a word in an embedded

space. It has been shown that words similar in meaning are close to each

other in an embedded vector space. This is the main idea behind our thesis.

We assume that hate speech will be represented similarly in an embedded

space.

Different languages have semantics presented in different areas of the vec-

tor space. However, to use them for classification, they should be sharing the

same space. To achieve a shared space, cross-lingual embeddings have been

developed. Cross-lingual embeddings enable better insight into word mean-

ings in multilingual contexts. In Figure 4.1, we see an example of aligning

two vector spaces. Our assumption is that we can use this characteristic of

cross-lingual embeddings to detect hate speech independent of language.

Figure 4.1: Cross-lingual alignment of a vector space [10].

13
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4.1 Review of embeddings

Mikolov et al. [21] introduce a Skip-gram model for learning vector rep-

resentations of words from unstructured data. Training Skip-gram model

does not involve dense matrix multiplications. This makes training efficient.

An interesting property of the Skip-gram model is that simple vector addi-

tion can often produce meaningful results. For example, vec(”Germany”) +

vec(”capital”) is close to vec(”Berlin”) (see Figure 4.2). This suggests that

a non-obvious degree of language understanding can be obtained by using

basic mathematical operations on word vector representations.

Two well-known vector embeddings are word2vec [21] and GloVe [23].

FastText builds upon word2vec with subword information and outperforms

baselines that do not take subword information into account [7]. In word em-

beddings, fastText offers a strong baseline, but can be improved upon with

ELMo [24], where each word is represented as a function of the entire sen-

tence. Similar to fastText, ELMo also takes advantage of subword informa-

tion and thus can compute meaningful representations of out-of-vocabulary

(OOV) words.

In cross-lingual contexts, we have three different types of alignments:

word, sentence and document alignment. Most approaches use word-aligned

data in the form of bilingual or cross-lingual dictionary with pairs of transla-

tions. Sentence alignment requires a parallel corpus that is commonly used

for machine translation. Document alignment is the rarest of the three since

it requires parallel document-aligned data in different languages that are

translations of each other. One of the challenges that is relevant also to us

is embeddings for specialised domains where parallel data is scarce. That

makes robust cross-lingual word representations with as few parallel exam-

ples as possible an important research direction [25] .

Conneau et al. [10] have shown that we can build a bilingual dictionary

between two languages without using any parallel corpora, by aligning mono-

lingual word embedding spaces in an unsupervised way. Using adversarial

training, the authors are able to find a linear mapping between a source and
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Figure 4.2: word2vec representations of countries and capitals in 2D space

[21].

target space, which they use to produce a parallel dictionary. In some cases,

their approach outperforms the quality of supervised approaches. They intro-

duced a new comparison metric called cross-domain similarity local scaling

(CSLS). It aims to produce reliable matching pairs between languages such

that the nearest neighbour of a source word, in the target language, is more

likely to have this particular word as a nearest neighbour. Glavas et al. [15]

question the used metrics when measuring quality of cross-lingual embed-

dings, claiming CSLS is prone to overfitting to bilingual lexicon induction

(BLI). Joulin et al. [19] improve upon MUSE [10] with the relaxed CSLS

(RCSLS) method. They show that minimising a convex relaxation of the

CSLS loss significantly improves the quality of bilingual word vector align-

ment.

Contextualised word embeddings can also be aligned. One of the prob-

lems of cross-lingual alignments is that each token pair is represented by

many different vectors depending on its context. Even when supervision is

available in the form of a dictionary, it is unclear how to utilise the multi-
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ple contextualised embeddings so that they correspond to a word translation

pair. One of the approaches that bypasses the problem and works well in

low-resource environments is presented by Schuster et al. [28]. Instead of

learning alignments in the original contextual space, the mapping process

uses context-independent embedding anchors. Anchors are obtained by fac-

torising the contextualised embeddings space into context-independent and

context-dependent parts. This enables us to utilise a word-level dictionary

as a source of supervision. Once the anchor-level alignment is learned, it can

be applied to map the original spaces with contextualised embeddings.

4.2 Alignment with RCSLS method

Currently, most aligning methods solve a least-square regression problem to

learn a rotation aligning a small bilingual lexicon, and use a retrieval criterion

for inference. However, most of the models suffer from the ”hubness prob-

lem”: some word vectors tend to be nearest neighbours of a large number of

other words. Conneau et al. [10] solved the problem by applying a corrective

metric at inference time called CSLS. The CSLS criterion (Equation 4.1) is

a similarity measure between the vectors x and y defined as:

CSLS(x, y) = −2 cos(x, y)+
1

k

∑
y′∈NY (x)

cos(x, y′)+
1

k

∑
x′∈NX(y)

cos(x′, y) (4.1)

where NY (x) is the set of k nearest neighbours of the point x in the set of

target word vectors Y = {y1, ..., yN}, and cos is the cosine similarity. This is

not totally satisfactory because the loss used in inference (CSLS to infer word

correspondences) is not consistent with the one used in training (square loss

to find a orthogonal mapping W , which suffers from the existence of ”hubs”).

Joulin et al. [19] propose an unified formulation that directly optimises

a retrieval criterion in an end-to-end fashion. Their training objective is

inspired by the CSLS retrieval criterion. Convex relaxations of the corre-

sponding objective function are introduced, which are optimised with pro-

jected subgradient descent.
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The optimisation problem with the relaxed CSLS (RCSLS) loss is written

as:

RCSLS(x, y) = min
W∈Od

1

n

n∑
i=1

−2xT
i W

Tyi

+
1

k

∑
yj∈NY (Wxi)

xT
i W

Tyj

+
1

k

∑
Wxj∈NX(yi)

xT
j W

Tyi ,

(4.2)

where the linear mapping W is constrained to belong to the set of orthog-

onal matrices Od. We also assume the word vectors are `2-normalised. Un-

der these assumptions, cos(Wxi, yi) = xT
i W

Tyi is true. Similarly, we have

‖yj −Wxi‖22 = 2− 2xT
i W

Tyj. This means that finding k nearest neighbours

of Wxi among the elements of Y is equivalent to finding k elements of Y

which have the largest dot product with Wxi. When relaxing the orthogo-

nality constraint on W , we get a convex formulation of the loss, since the

second and third term can be written as a function of W , maximum of lin-

ear function of W , which is convex. This means that we can minimise this

objective function by using projected subgradient descent.

Using this objective function, the authors achieve a significant quality

improvement of bilingual word vector alignment. Especially improvements

in distant languages (like English-Chinese) have been significant [19]. This

motivates our use of this method for alignments.
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4.3 BERT language model

Currently, one of the state-of-the-art models for language representation is

BERT [13]. It is based on transformer neural architecture [29], which have

certain advantages over sequential models, e.g., LSTM. A transformer is an

encoder-decoder architecture which uses attention mechanisms to feed the

whole sequence to the decoder at once, instead of sequentially like LSTM.

This allows for more effective modeling of long-term dependencies.

The BERT model is built with bidirectional transformers using encoders.

It employs masked language modeling (MLM) as a training objective, which

means that 15% of words are hidden and their position is used to infer them.

The base BERT model has 12 hidden transformer layers trained on a large

general corpus. Multilingual BERT is trained with corpora from 104 lan-

guages and enables cross-lingual knowledge transfer [13].

Because of the large model size, training BERT is computationally ex-

pensive. That is why we use pre-trained models. To use pre-trained BERT

models for classification, we usually fine-tune all the hidden layers and add

a softmax layer for classification. This methodology achieves state-of-the-art

performance in many tasks [13].
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Cross-lingual embeddings for

hate speech detection

In this chapter, we present our approach of using cross-lingual embeddings

to detect hate speech. As previously mentioned, the idea is to use a bigger

dataset in a source language and through cross-lingual embeddings predict

samples in a smaller dataset in the target language. To see the added value

of source samples, we add different amounts of target samples. Our approach

consists of these main steps:

1. Align source and target language vector space (Section 5.1).

2. Prepare source and target data (Section 5.2).

3. Build and train neural net with source and target samples (Section

5.3).

4. Evaluate the models and report results (Section 5.4).

All code is written in Python. For alignment, we have used the code

and vectors provided by Joulin et al. [19]. They offer fastText vectors as an

effective word embedding method and a tool to transform a source and target

language into an aligned common space. To do the data processing, we have

used the libraries NumPy, Pandas [18], and NLTK [6]. To build, train and

19
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evaluate the models, we have used Keras [9] and sklearn [22], for plotting we

used matplotlib [17]. After classification, we evaluate and report our results.

Where sensible, we compare them to the results of the original authors.

5.1 Aligning embeddings

To align our pretrained fastText embeddings for all language pairs, we have

used the RCSLS method presented in Section 4.2. The training dictionary

has 5,000 word pairs and the test dictionary has 1,500 word pairs. Since

cross-lingual alignments contain a certain amount of error, we report the

quality of the alignments in Table 5.1. As expected, English and German are

better aligned than Croatian. This confirms that languages that are closer

to each other have better alignments. Our alignments achieve lower scores

than the same language combinations presented in Joulin et al. [19].

Since we did not find a Croatian-German and German-Croatian dictio-

nary, we had to make them ourselves. We used English dictionaries which

are available in both directions for both languages. For example, to get the

German-Croatian dictionary, we merged the pairs from the German-English

and English-Croatian dictionary, where the English entry was equal. The

alignment metrics for the pairs German-Croatian and Croatian-German are

poor, which could be due to the self-constructed dictionary. The entries

chosen for the dictionary may not be suitable as anchors for the alignment.

Another possibility is that the test dictionary is not well chosen.

5.2 Datasets

In this section, we describe the data we embedded using the aligned em-

beddings described in the previous section. For every language combination

tested, we have used datasets described in Section 3. We did some pre-

processing, we made the text lower case, removed unnecessary whitespaces,

removed URLs and mentions (strings that begin with @). We tokenised the
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Table 5.1: Alignment metrics for all language combinations. The metrics

chosen are nearest neighbour (NN), CSLS, and coverage, which respresents

the ratio of covered samples in the testing dictionary.

Combination NN CSLS Coverage

en - de 0.71 0.74 1

en - hr 0.33 0.37 1

de - en 0.71 0.74 1

de - hr 0.12 0.17 1

hr - en 0.46 0.49 1

hr - de 0.28 0.35 1

text and embedded the tokens in the vector space.

From here on, we call the dataset in the source language the source dataset

and the dataset in the target language the target dataset. Since the datasets

are heavily imbalanced, we made smaller target datasets with ≈50% neutral

and ≈50% hate samples. During preliminary testing, this approach showed

better performance in detecting hate speech. This also has two side benefits,

for one, we emphasise our models ability to detect hate speech, and since we

make small datasets, we simulate a low-resource environment. Consequently,

the source dataset is imbalanced and the target dataset is our balanced during

training. An exception to this is the German dataset, where using a balanced

source dataset achieved better performance. There seem to be many noisy

neutral samples in the German dataset, by reducing its size, thus reducing the

proportion of noisy neutral samples, seems to improve the ability to classify

hateful comments. Table 5.2 shows the distribution of source samples for

training. We split the target dataset into training, validation, and test set

since we want to predict hate speech samples in the target language. During

training, we evaluate the models on the validation set, and after training we

evaluate it on the test set. The target dataset is split into 80% training and
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Table 5.2: Source datasets summary.

Dataset #non-hate #hate hate ratio total

en source 9,507 1,196 0.11 10,703

de source 610 610 0.50 1,220

hr source 12k 10,680 1,320 0.11 12,000

Table 5.3: Target datasets summary.

Dataset #non-hate #hate hate ratio total

en train 760 763 0.50 1,523

en val 197 194 0.50 391

en test 239 239 0.50 478

de train 391 375 0.49 766

de val 88 109 0.55 197

de test 131 126 0.49 257

hr bal train 960 971 0.50 1,931

hr bal val 227 221 0.49 448

hr bal test 313 308 0.50 621

20% test. Furthermore, the train set is split in the same way into training

and validation set. To ensure comparability during our experiments, the

validation and test set stay fixed and do not change. This means, that when

we add target samples to the training, we always take samples from the train

set. In Table 5.3, we report the distribution of target samples we use for

training, validation, and test.
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5.3 Models

To classify the samples, we have constructed two models. One is a modi-

fied version of the CNN structure, proposed by Kim [20]. The other tested

model structure combines BiLSTM and CNN. The CNN is better suited

for extracting features and the BiLSTM model is better suited for getting

dependencies between tokens. With two separate models, we hope to see

how classification performance and the influence of cross-lingual embeddings

differ between model structures.

Since our models only accept a fixed length of input, we set the maximum

sequence length to 100 tokens. If samples are shorter, we zero pad them, if

they are longer, we shorten them to make them the appropriate length (this

affects about 5% of all samples). The activation function for our hidden

layers is ReLu. For output layer, we use the softmax activation function and

for the loss function the categorical cross-entropy. Since we predict binary

values, we could have also chosen sigmoid activation and binary cross-entropy

loss functions. Our approach behaves the same way in binary classification

with the added possibility of predicting more labels without changing model

structures. We use AdaDelta as the optimiser. We have briefly experimented

with Adam with worse performance.

To reduce overfitting during training, we employ early stopping. We

monitor the validation loss and stop the training if the validation has not

improved for 10 epochs. We consider the validation loss improved if the

improvement between iterations is more than 0.001. The maximum number

of epochs is 50.
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Figure 5.1: CNN model structure [20].

5.3.1 CNN

CNNs can capture features regardless of where they appear in the input.

They are most often used in image recognition, but this method can also

be used in text classification. In our case, this means that we can recognise

patterns regardless of where they appear in the text and word order is less

important.

Figure 5.1 shows the structure of our CNN model. The input of the model

is the embedded sequence of the shape maximum sequence length×embedding

size. After the input layer, there is a convolutional layer with max-over-

time pooling, which means that we are looking for local maximums in a 1D

sequence of inputs. In this layer, there are multiple filters with different sizes

and feature maps. We have used filter sizes 6, 5, 4, 3 and 2 × embedding size.

This effectively means that we are looking for the most distinctive patterns

in 6-grams to bi-grams. For regularisation, we use the dropout layer with 0.5

probability.
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Figure 5.2: BiLSTM model structure.

5.3.2 BiLSTM-CNN

Since the meaning in text is often derived from the order of word appear-

ance, LSTMs are often used in text classification tasks. LSTMs allow us to

remember past input and make decisions based on that [16]. BiLSTMs learn

by seeing input from both directions. This allows us to capture dependen-

cies from both ends of text. Our model combines BiLSTM and CNN. We

hope to capture dependencies between tokens with the BiLSTM and capture

important local features with the convolutional layer.

Figure 5.2 shows the structure of our BiLSTM model. The input layer

is the same as in the CNN model. After the input layer, we do a spatial

dropout (dropping entire columns of the input matrix), since the embeddings

are sparse. Following the dropout, we have a BiLSTM layer which feeds into

a convolutional layer with max pooling. Before predictions, similar to our

CNN model, we feed the input to a dropout layer with 0.1 probability.
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5.4 Evaluation

We report classification results for all tested combinations. The chosen met-

rics are recall, precision and F1. Precision and recall are defined as

recall =
TP

TP + FN
(5.1)

precision =
TP

TP + FP
(5.2)

and for the F1 score we use sklearn’s implementation of the weighted

average F1 score [22].

We check how much added value samples from the source language have

by adding target samples to training data. We incrementally increase the

amount of target samples by 2.5% until we reach 20% of added samples.

Then we test the model’s performance with added 40%, 60%, and 100% of

the target samples. We also check at the correlation between the scores and

the amount of training samples used. Since we are focusing on models’ ability

to detect hate speech, we also test the training with only source hate speech

samples.



Chapter 6

Results

In this chapter, we present the results for the six language combinations with

the approach described in Chapter 5. Since we test 68 combinations per lan-

guage pair, we present all results in Appendix A.1 for the well-aligned results,

and in Appendix A.2 for the poorly aligned results. Here, we only show the

summary of results. To better show the added value of source samples on

classification results, we have prepared compact results. Compacted tables

contain the best achieved results for each split (12 different target splits, from

0 to 20% added target samples with 2.5% increase per step, 40%, 60%, 80%,

and 100% added target samples). ∆F1 values in compacted tables show the

difference between the best and the second best result, with or without added

target samples (depending on the best result), of the same model.

Analysing the results for the six language combinations, we noticed that

we can group the results in two groups by the quality of cross-lingual em-

beddings. The combinations English-German and German-English achieve

better results in terms of added value of source samples and have the best

alignment scores (see Table 5.1). They represent the best case scenario. The

remaining combinations have worse scores in terms of added value of source

samples and alignment. In this chapter, we present the results in three

sections, in the first the results for the well-aligned language combinations,

followed by less well-aligned language combinations. In the third section, we

27
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compare results of our approach with Multilingual BERT [13].

6.1 Well-aligned languages results

The language pairs English-German and German-English are our best aligned

language combinations. In this section, we focus on the combination English-

German since it represents the best case scenario for our approach.

The compacted results for English source and German target can be seen

in Table 6.1. In all cases, we get an improvement of the F1 score when adding

samples in the source language. When we have little (below 20%) of the tar-

get samples available, the added value of source samples is substantial. After

that, it seems that we get diminishing returns, which seems intuitive since

the number of source samples stays the same and only the number of target

samples increases. The result for training without target data seems espe-

cially impressive, with the F1 score of 0.62, while the best achieved score with

all source and all target samples is 0.71. Recall is a problem when training

with no target samples, which is to be expected since no target samples were

used in training. Even with as little as 20 added target samples, the recall

increases from 0.45 to 0.64, which is a substantial gain. The BiLSTM-CNN

profits from the source samples much more than the CNN model. The best

result for every target split is achieved with added source samples.

To check if there is actually a relationship between results and training

on aligned source samples, we calculated the correlation matrix between the

metrics and the number of source and target samples. We calculated the

correlation on the whole result Table A.1 in appendix. Table 6.2 shows

the correlation between metrics and number of samples used. We can see

that the number of source samples is strongly positively correlated with the

metrics, especially precision and F1. One can say that the importance of

source samples is comparable to the importance of target samples. Still,

target samples are more important for classification, especially in recall the

difference is substantial.
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Table 6.1: Compact result for English source and German target with ∆F1

scores. We report training type (only hate is True when the source dataset

contains only hate speech samples), number of source samples (#src), number

of target samples (#tgt), recall (r), precision (p), F1 score (F1), the difference

between F1 scores of the same target split (∆F1), and the model used.

only hate #src #tgt r p F1 ∆F1 model

0 False 10703 766 0.6984 0.7097 0.7120 0.0121 BiLSTM

1 False 0 766 0.7460 0.6763 0.6999 - BiLSTM

2 False 10703 460 0.7619 0.6809 0.7075 0.0526 BiLSTM

3 False 0 460 0.8810 0.6133 0.6549 - BiLSTM

4 False 10703 307 0.8492 0.6045 0.6410 0.0561 BiLSTM

5 False 0 307 0.7222 0.5652 0.5849 - BiLSTM

6 False 10703 154 0.6984 0.6377 0.6572 0.0786 CNN

7 False 0 154 0.6349 0.5634 0.5786 - CNN

8 False 10703 135 0.6667 0.6774 0.6809 0.1385 BiLSTM

9 False 0 135 0.6190 0.5306 0.5424 - BiLSTM

10 False 10703 115 0.6905 0.6591 0.6731 0.1261 BiLSTM

11 False 0 115 0.6111 0.5347 0.5470 - BiLSTM

12 False 10703 96 0.7302 0.6619 0.6843 0.1419 BiLSTM

13 False 0 96 0.6190 0.5306 0.5424 - BiLSTM

14 False 10703 77 0.7937 0.6098 0.6430 0.1027 BiLSTM

15 False 0 77 0.5794 0.5290 0.5403 - BiLSTM

16 False 10703 58 0.6905 0.6304 0.6494 0.107 BiLSTM

17 False 0 58 0.6190 0.5306 0.5424 - BiLSTM

18 False 10703 39 0.5476 0.6330 0.6204 0.0747 CNN

19 False 0 39 0.4286 0.5567 0.5457 - CNN

20 False 10703 20 0.6429 0.6750 0.6728 0.1304 BiLSTM

21 False 0 20 0.6190 0.5306 0.5424 - BiLSTM

22 False 10703 0 0.4524 0.6951 0.6219 - BiLSTM

Table 6.2: Correlation matrix for metrics of English source and German

target.

r p F1

#src 0.165068 0.562275 0.512695

#tgt 0.453470 0.529261 0.626205
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We cannot directly compare our results with the results of the authors

of the German dataset [8] since our training and test splits are different and

they also report results for two out of the three subsets of the whole dataset,

while we use the whole dataset. Assuming that the average results of the two

datasets represent the whole dataset, they get an estimated recall of 0.58,

precision of 0.75 and F1 score of 0.65. Generally, we achieve worse precision,

improve on recall and improve the F1 score.

The German-English combination is equally well-aligned to English-German,

but the added value of source samples is smaller. All the results can be found

in Appendix A.1. In Table A.2, we report the results for German as the source

language and English as the target language. We can observe increased score

with added target samples, as expected. Similarly to before, we observe that

the added value of source samples is larger when we have little to no target

samples available. Adding source samples improves the results and when it

does not, the ∆F1 is 0.015 or below. This could be due to the fact that the

English dataset is sentence-level labelled and the German is document-level

labelled. This makes the German samples noisier. For example, a sample can

have multiple sentences and only one of them is hate speech. In document-

level labelling, we label the whole document as hate speech even though not

all sentences are hate speech. Again, results of training without target sam-

ples are acceptable. Results are comparable to the results when training with

115 target samples, with worse recall. The results for training with no target

samples seems especially impressive, with the F1 score of 0.69 (recall of 0.63

and precision of 0.71), which is 0.11 lower than the best result.

Table A.3 shows the correlation between results and the number of sam-

ples used, calculated on the whole result Table A.4 in the appendix. We

observe that source samples are positively correlated with precision and F1

and negatively correlated with recall. This seems to be due (as discussed be-

fore) to the document-level labelling of the German dataset. Target samples

in this language combination are more valuable than source samples.

We have used the same train and test dataset as the authors of the original



6.2. POORLY ALIGNED LANGUAGES RESULTS 31

study [12]. Still, we cannot directly compare the results since the metrics used

are different. Our best model achieves a recall of 0.83 and accuracy of 0.78

(with less target samples), which improves upon the author’s recall of 0.71

and accuracy of 0.73 (see Table 3.3).

We can conclude that if languages are well-aligned, source samples add

value to classification results. Especially with a low number of target sam-

ples, the added value is substantial. While increasing the amount of target

samples in training, we observe diminishing returns from source samples in

regards to the observed scores. Even if there are no available target sam-

ples, training only on source samples achieves acceptable performance. The

recall is problematic in this case, but even a small number of target samples

substantially increases the recall.

6.2 Poorly aligned languages results

In this section, we discuss results when the alignment of source and target

languages is poor, i.e. all combinations with Croatian. This seems to be

due to Croatian not being similar to neither German nor English. We take

a closer look at the combination Croatian-German, as the case of bad align-

ment, and Croatian-English, as the worst case of bad alignment. The other

two combinations offer no new insights, so we do not comment them. Still,

the results for German-Croatian and English-Croatian are available in the

appendix.

In Table 6.3, there are results for Croatian source and German target, our

best case of poor alignment. Training with no target samples is not a good

option for this language combination, considering it is practically unable to

recognise any hate speech (recall of 0.03). The only substantial added value

of source samples in this combination is when we add 20 samples, where the

∆F1 is 0.22, achieving the F1 score of 0.57. This is still low compared to our

best F1 score of 0.75. Contrary to our observations in the previous section,

the added value of source samples is consistent through all target splits. This
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points that there is no pattern for added value of source samples when the

alignment is poor. A negative outlier is training with all source samples and

460 target samples, where adding source samples decreases the F1 score by

0.07. This bad performance is mainly due to the badly aligned source space,

which means that training the model with source samples mostly adds noise,

making hate speech recognition in the target space harder.

Even though the alignment is poor, the source samples add more value

than expected to F1 score, with a correlation of 0.11 (see Figure 6.4). Source

samples add little to precision (correlation of 0.04) and are negatively cor-

related with recall (correlation of –0.12). As previously mentioned, recall

seems to be affected by the added noise of the poorly aligned source samples.

Our worst case example of bad alignment is the language combination

Croatian-English. In the appendix Table A.6, there are compacted results

for Croatian source and English target. There is no substantial performance

increase when we add source samples. The source samples do not have an

impact in any of the target splits, the biggest gain being 0.04, and the biggest

loss being 0.04. Because of that, we assume that the hate speech overlap

between the embedded spaces is very small.

Table 6.5 shows the correlation between results and number of samples.

The number of source samples is negatively correlated with all the scores and

especially recall with a value of –0.27. There is no influence in precision, and

correlation with F1 score is negative with the value of –0.11. Training with no

target samples skew the correlation because of the poor performance. If we

remove those, we get a positive correlation of 0.09 with the F1 score, 0.20 with

precision, but recall remains negatively correlated at –0.14. The added value

of source samples between models differs substantially. Ignoring trained with

no target samples, the CNN model has a negative correlation with the F1

score of –0.10, while the BiLSTM-CNN model seems to profit from source

samples with correlation of 0.28 to the F1 score. All the best scores of

the BiLSTM-CNN model were achieved with added source samples. This

suggests that even with poor alignment we can extract dependencies from
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Table 6.3: Compact result table for Croatian source and German target

with ∆F1 scores. We report training type (only hate is True when the source

dataset contains only hate speech samples), number of source samples (#src),

number of target samples (#tgt), recall (r), precision (p), F1 score (F1) and

the difference between F1 scores of the same target split (∆F1), and the

model used.

only hate #src #tgt r p F1 ∆F1 model

0 False 0 766 0.7937 0.7299 0.7546 - CNN

1 True 1320 766 0.7698 0.7132 0.7352 -0.0194 CNN

2 False 0 460 0.7302 0.7360 0.7393 - CNN

3 False 12000 460 0.7857 0.6346 0.6694 -0.0699 CNN

4 False 12000 307 0.6984 0.6331 0.6532 0.0094 CNN

5 False 0 307 0.7857 0.6111 0.6438 - CNN

6 False 12000 154 0.7381 0.6458 0.6720 0.0119 CNN

7 False 0 154 0.7302 0.6345 0.6601 - CNN

8 False 0 135 0.7222 0.6454 0.6685 - CNN

9 False 12000 135 0.5873 0.6727 0.6558 -0.0127 CNN

10 False 12000 115 0.5476 0.6635 0.6388 0.0196 CNN

11 False 0 115 0.7698 0.5915 0.6192 - CNN

12 False 12000 96 0.6032 0.6179 0.6224 0.0119 CNN

13 False 0 96 0.5794 0.6083 0.6105 - CNN

14 False 12000 77 0.5952 0.5906 0.5992 0.0267 CNN

15 False 0 77 0.4206 0.6092 0.5725 - CNN

16 False 12000 58 0.5873 0.6167 0.6183 0.0081 CNN

17 False 0 58 0.6587 0.5929 0.6102 - CNN

18 False 12000 39 0.5238 0.6055 0.5969 0.0523 CNN

19 False 0 39 0.8016 0.5401 0.5446 - CNN

20 False 12000 20 0.4444 0.5895 0.5686 0.2244 BiLSTM

21 False 0 20 0.0000 0.0000 0.3442 - BiLSTM

22 False 12000 0 0.0317 0.4444 0.3680 - CNN
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Table 6.4: Correlation matrix for metrics of Croatian source and German

target, our best case example of a bad alignment.

r p F1

#src -0.119145 0.044716 0.111110

#tgt 0.261762 0.385075 0.653312

Table 6.5: Correlation matrix for metrics of Croatian source and English

target, our worst case example of a bad alignment. The results with removed

instances, trained with no target samples, are marked with an asterisk (*).

r p F1

#src -0.273637 -0.003104 -0.116128

#tgt 0.297047 0.384704 0.575193

#src* -0.146265 0.204576 0.092097

#tgt* 0.320556 0.599150 0.707474

the source language, which help predict hate speech in the target language.

German-Croatian and English-Croatian are poorly aligned language pairs,

where adding source samples has little to no influence on results. The biggest

F1 score gain in these combinations is 0.06, while the biggest loss is –0.04.

Other gains hover around +/–0.02, as visible in Tables A.8 and A.11 in the

appendix.

We notice that Croatian as a source language offers two extremes, Ger-

man as the target language is the best case, and English as the target is

the worst case. As previously noted, this seems to be due to Croatian and

German being labelled at a document level, and English being labelled at

sentence level. Considering the quality of alignments, we assumed that the

best between poorly aligned language combinations would get most added

value from source samples. This does not seem to be the case. Croatian-
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English is best aligned, and yet the performance is worst, while the second

worst alignment performs best in the group of the poorly aligned languages.

This seems to confirm what Glavas et al. [15] are claiming, BLI performance

does not necessarily correlate to performance in downstream tasks.

Generally, we find that if the languages are not well-aligned, the added

value of source samples is negligible. Even in our best case, where the F1

score was positively correlated, the added value of source samples is negligible

(at most 0.02) as soon as we add more than 77 samples. In practice, none of

the poorly aligned models trained only on source samples are usable.

6.3 Comparison with Multilingual BERT

Because of the poor performance of combinations with Croatian, we checked

if this is due to poor alignments. To that aim, we employed Multilingual

BERT [13], which is currently the state-of-the-art method for cross-lingual

language representation. In domains where data is scarce, BERT improves

performance. BERT models are trained on large general corpora, so fine-

tuning them on domain specific data drastically improves the performance.

In this section, we compare results achieved with RCSLS alignments and

Multilingual BERT.

We use Multilingual BERT language model and fine-tune it using textual

data from source datasets in English, German, and Croatian. The Lan-

guage model fine-tuning script from PyTorch-Transformers [1] is used for

fine-tuning with default parameters and three epochs. The script fine-tunes

all hidden layers. We feed the BERT output to the classifiers, introduced in

Section 5.3.

During preliminary testing, we noticed that models trained on the full

source datasets get stuck in local minima. This could be solved with hyper-

parameter optimisation. However, we could reduce this issue using a smaller

balanced target train sets as train sets in the source language instead of the

bigger imbalanced source datasets. All results are achieved with target train
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Table 6.6: Comparison of RCSLS alignments and Multilingual BERT.

Training was done with source and target samples (all), only target sam-

ples (tgt) and only source samples (src). We report recall (r), precision (p),

F1 score (f) for the best result (out of both models) for the three splits. The

best result of each column is bolded.

en-de en-hr de-en de-hr hr-en hr-de

r p f r p f r p f r p f r p f r p f

BERT all 0.75 0.67 0.70 0.81 0.69 0.75 0.87 0.72 0.79 0.76 0.71 0.73 0.84 0.72 0.78 0.78 0.62 0.69

RCSLS all 0.70 0.71 0.71 0.71 0.69 0.70 0.80 0.75 0.77 0.71 0.72 0.72 0.81 0.75 0.77 0.77 0.71 0.74

BERT tgt 0.72 0.71 0.72 0.74 0.74 0.74 0.88 0.72 0.79 0.71 0.75 0.73 0.85 0.73 0.78 0.73 0.69 0.71

RCSLS tgt 0.75 0.68 0.70 0.65 0.72 0.70 0.75 0.84 0.80 0.72 0.70 0.71 0.90 0.73 0.78 0.79 0.73 0.76

BERT src 0.65 0.64 0.64 0.49 0.58 0.53 0.63 0.67 0.65 0.67 0.61 0.64 0.77 0.64 0.70 0.71 0.53 0.61

RCSLS src 0.45 0.70 0.62 0.24 0.64 0.51 0.63 0.71 0.69 0.19 0.59 0.47 0.11 0.84 0.44 0.03 0.44 0.37

sets in the source language.

In Table 6.6, we present the best results with Multilingual BERT and

RCSLS alignments. On average, using all samples or only target samples

yields similar performance, so we skip further discussion. The most extreme

cases are Croatian-German, where RCSLS achieves 0.05 higher F1 score, and

English-Croatian, where BERT achieves 0.05 higher F1 score. When compar-

ing results trained with only source samples, BERT outperforms RCSLS in all

language pairs except German-English, where RCSLS achieves a 0.04 higher

F1 score. F1 score improvements in German-Croatian (+0.17), Croatian-

English (+0.16), and Croatian-German (+0.24) are substantial. The com-

binations English-German and Croatian-English have the smallest F1 score

delta (0.08) to the best result, which is surprising for Croatian-English since

the languages are not similar. In practice, BERT performance without target

samples in English-German, German-Croatian, and Croatian-English seems

acceptable (F1 score delta to the best result are lower than 0.10). This

seems to confirm that the poor performance of combinations with Croatian

was caused by the poor RCSLS alignments.

Table A.14 in the appendix presents all tested BERT combinations. The

BiLSTM-CNN significantly outperforms the CNN model, which stucks in
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local minima, so training often fails after the first epoch. This seems to be

due to the used hyperparameters.

We also fine-tuned 11 hidden layers of the BERT model and added a

softmax layer for classification. During testing on a small subset of language

combinations, this approach yielded slightly worse results, so we skip further

discussion.

Our experiments confirm that Multilingual BERT shows improved perfor-

mance in cross-lingual transfer and should therefore be the preferred method

for cross-lingual embeddings. Considering that we have used less training

samples than in the RCSLS approach and significantly improved results us-

ing only source samples, we can assume that with classifier tuning the scores

could further improve.
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Chapter 7

Conclusion

The goal of this work was to develop an approach that uses cross-lingual

embeddings to solve the problem of hate speech detection in low-resource

languages. We have chosen the RCSLS method for alignment of fastText

vectors and developed two models, CNN and BiLSTM-CNN, for classifica-

tion. We use the BERT model to compare it to the RCSLS method. We

evaluated the approach on six language combinations. Simulating a low-

resource language, we trained the models on larger source datasets (at most

12,000 samples) and tested on small target datasets (at most 600 samples).

The performance metrics used were recall, precision and F1 score.

Our initial assumption was that cross-lingual embeddings will transfer

some information from a source to target language. Due to the noisy domain,

we did not know how much that will affect the impact of provided source

data. The most important findings are:

1. Best case: If the languages are well-aligned, the source samples are

substantially positively correlated with the performance metrics. Espe-

cially in the combination English-German, we observe that the source

samples are almost as important as the target samples. If we have no

samples available in the target language, we still achieve acceptable

performance. The F1 score difference between the best achieved result

with all target samples and with no target samples is around 0.10 for

39
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both well-aligned language combinations. The added value of source

samples is the largest with very little target samples; with increasing

number of added target samples we get diminishing return of source

samples.

2. Worst case: When the languages are poorly aligned the number of

source samples are, in the best case, positively correlated with F1 score

correlation of 0.11. In the worst case, they are equally negatively cor-

related. In tested language combinations, we can expect a negative F1

score correlation when the alignment is poor, since three out of four

combinations show negative correlation. When no target samples are

used in training, the resulting model is not usable. Even when we start

adding target samples, the added value of source samples is mostly

negligible.

Even though we cannot directly compare performance scores due to differ-

ent testing circumstances, the models proposed seem to work better (under

similar circumstances) compared to models proposed by the authors of the

English [12] and German dataset [8].

The metrics we use to evaluate the quality of cross-lingual embeddings

measure BLI performance, e.g., nearest neighbour and CSLS. BLI perfor-

mance, however, is not necessarily a good indicator of performance on down-

stream tasks like hate speech detection [15]. In our poorly aligned language

pairs, the second worst aligned language pair achieved the best result, and

was the only positively correlated poorly aligned language pair. The second

best was the most negatively correlated. This suggests that BLI performance

is indeed not a good indicator of downstream task performance, at least for

poorly aligned language pairs.

To check if the poor performance of language combinations with Croatian

is caused by the poor alignments, we used Multilingual BERT as the cross-

lingual language model. We found that trained without target samples, Mul-

tilingual BERT significantly improves performance on language pairs where

alignment is poor. In other cases, performance is comparable.
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We consider the goals of the thesis reached. In the case of well-aligned

languages, the proposed approach works well. For languages that are further

apart, and intuitively hard to align, our approach does not work well.

7.1 Limitations and future work

We discuss the limitations of our work and possible research directions for

the future.

We have not performed any hyperparameter optimisation, nor have we

been trying to find the optimal network architecture. To perform hyper-

parameter tuning, we could use sklearn’s ”GridSearchCV” [22]. Performing

this on all the tested combinations would be very time intensive, so we could

test the procedure on a small subset of instances. Tuning a model trained

with only source samples, and a model trained with source samples and all

target samples, seems sensible and would give the most added value. An-

other limitation of our models is that we likely overfit the data, and even

though we have tried to minimise overfitting by adding dropout layers and

early stopping, the number of trainable parameters is much larger than the

number of observed samples. This affects robustness of our models, which

we can see in some results being dependant on the samples chosen in data

splits. E.g. we add more target samples to training, but the performance

drops, even though the opposite is expected. This problem is apparent when

we were testing Multilingual BERT. Our models were prone to getting stuck

in local minima.

While we have tried to find hate speech datasets as similar as possible to

each other, the datasets still differ when it comes to the type of hate speech,

e.g., white supremacy forum v.s. Pegida Facebook group. The English and

German datasets are targeted towards a specific type of hate speech, while

the Croatian dataset seems to be less targeted.

Further limitation is that we have used pre-trained word-embeddings with

a dictionary that is non-specific to our problem. We do not specifically con-
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sider slang words and synonyms which may appear in our dataset and not in

the dictionary. Using a hate lexicon could be a possible solution. Training

an embedding specific to our problem would probably increase the model’s

performance. In a similar vein, we could have solved the problem of out-

of-vocabulary (OOV) words by using fastText’s feature that can build an

embedding of a OOV word by splitting it into a bag of n-grams and then

summing the representations of those as the representation of the OOV word.

Since we cannot align fastText models, we could get the vector representa-

tions of all OOV words in the training dataset and add them to the fastText

word vector embedding which we can align.

Though we have achieved relatively good classification results, we did not

aim to maximise them. An approach that would most likely improve upon

our best models, would need three changes. Our preprocessing is basic, and

does not consider information gained from e.g. hashtags and misspellings.

Ekphrasis [5] seems to be a good choice for social media content prepro-

cessing. Multilingual BERT [13] may be the best choice as contextualised

embedding, since it is currently widely used as the state-of-the-art language

model. For classification, the skipped CNN proposed by Zhang and Luo [33]

is, to the best of our knowledge, the best model architecture for hate speech.

Since hate speech samples are rare, it makes sense to acquire more sam-

ples. One way to do it is to use text-augmentation techniques, e.g., to ran-

domly switch order of tokens in hate speech samples to create more samples.

We assume that the CNN model would benefit from such an approach. An-

other approach is to switch chosen words with their synonyms and create new

hate speech samples in that way. This would expand the area hate speech

occupies in the embedded space, making classification easier.

One approach to hate speech detection is often dependant on context,

as seen by the hate speech sample in the Croatian dataset (see Table 3.6).

It would make sense to consider previous comments to classify hate speech,

e.g., if a comment is hate speech and it has a response which supports it,

even though the response by itself is not considered hate speech, it should
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be considered as such.

To make samples in a source language a viable option as a replacement for

samples in the target language, further improvements are needed in the field

of cross-lingual alignment. Especially for languages that are not close, align-

ments need further improvement. There is also the question of how to eval-

uate cross-lingual embeddings for downstream tasks such as ours. An exper-

iment with major cross-lingual embedding methods on hate speech datasets

would be beneficial.

We should note that this work ignores the LASER toolkit introduced

by Artetxe and Schwenk [3], which is another state-of-the-art cross-lingual

mapping model. It uses a single language-agnostic BiLSTM encoder for

93 languages, which was trained on publicly available parallel corpora and

applied to different downstream tasks. All languages are jointly embedded

in a shared space, in contrast to most other works which usually separately

consider English and foreign alignments [3]. It is sensible to test it in the

domain of hate speech detection.
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Appendix A

Complete results

In the appendix, we present all tables for the six language combinations

tested, related to Chapter 6. We tested 68 data split combinations. We have

split the results in two sections, in the first, we present the results for the

well-aligned language combinations, and in the second section, we present

the results for the poorly aligned language combinations. The tables found

in the appendix are the compacted tables, full result tables and correlation

tables.

A.1 Well-aligned results

In this section, we present complete results for well-aligned language pairs

English-German and German-English. Below you can find the following ta-

bles:

• Full result table for English-German in Table A.1.

• Tables for the language pair German-English: the compacted result

Table A.2, correlation matrix in Table A.3, and the full in Table A.4.

45
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Table A.1: Results for English source and German target. CNN on the

left and BiLSTM on the right side. We report training type (only hate is

True when the source dataset contains only hate speech samples), number of

source samples (#src), number of target samples (#tgt), recall (r), precision

(p), F1 score (F1).

CNN

only hate #src #tgt r p F1

0 False 0 766 0.6508 0.7009 0.6920

1 False 10703 766 0.6825 0.6719 0.6810

2 True 1196 766 0.7143 0.6522 0.6727

3 False 0 460 0.8492 0.6446 0.6899

4 False 10703 460 0.8413 0.6199 0.6600

5 True 1196 460 0.7698 0.6178 0.6494

6 False 10703 307 0.5397 0.6667 0.6382

7 False 0 307 0.6825 0.6099 0.6295

8 True 1196 307 0.5952 0.5906 0.5992

9 False 10703 154 0.6984 0.6377 0.6572

10 True 1196 154 0.6111 0.5833 0.5953

11 False 0 154 0.6349 0.5634 0.5786

12 False 10703 135 0.6984 0.6069 0.6289

13 True 1196 135 0.5635 0.6017 0.6025

14 False 0 135 0.5952 0.5556 0.5679

15 False 10703 115 0.4683 0.6413 0.6029

16 True 1196 115 0.5556 0.5983 0.5985

17 False 0 115 0.5714 0.5714 0.5798

18 False 10703 96 0.6190 0.6240 0.6303

19 True 1196 96 0.5952 0.5639 0.5758

20 False 0 96 0.5556 0.5691 0.5757

21 False 0 77 0.5159 0.5752 0.5744

22 False 10703 77 0.4206 0.6023 0.5691

23 True 1196 77 0.6349 0.5369 0.5497

24 False 10703 58 0.5556 0.6195 0.6134

25 True 1196 58 0.6746 0.5667 0.5847

26 False 0 58 0.5317 0.5776 0.5788

27 False 10703 39 0.5476 0.6330 0.6204

28 True 1196 39 0.6111 0.5620 0.5755

29 False 0 39 0.4286 0.5567 0.5457

30 False 10703 20 0.5714 0.6050 0.6065

31 True 1196 20 0.4683 0.5221 0.5275

32 False 0 20 0.0476 0.3158 0.3666

33 False 10703 0 0.6349 0.5755 0.5908

BiLSTM

only hate #src #tgt r p F1

0 False 10703 766 0.6984 0.7097 0.7120

1 True 1196 766 0.7540 0.6786 0.7037

2 False 0 766 0.7460 0.6763 0.6999

3 False 10703 460 0.7619 0.6809 0.7075

4 False 0 460 0.8810 0.6133 0.6549

5 True 1196 460 0.6825 0.5890 0.6091

6 False 10703 307 0.8492 0.6045 0.6410

7 False 0 307 0.7222 0.5652 0.5849

8 True 1196 307 0.6587 0.5497 0.5648

9 False 10703 154 0.6667 0.6222 0.6379

10 True 1196 154 0.6984 0.5789 0.5998

11 False 0 154 0.6190 0.5306 0.5424

12 False 10703 135 0.6667 0.6774 0.6809

13 True 1196 135 0.6190 0.5306 0.5424

14 False 0 135 0.6190 0.5306 0.5424

15 False 10703 115 0.6905 0.6591 0.6731

16 False 0 115 0.6111 0.5347 0.5470

17 True 1196 115 0.6190 0.5306 0.5424

18 False 10703 96 0.7302 0.6619 0.6843

19 True 1196 96 0.6190 0.5306 0.5424

20 False 0 96 0.6190 0.5306 0.5424

21 False 10703 77 0.7937 0.6098 0.6430

22 True 1196 77 0.6190 0.5306 0.5424

23 False 0 77 0.5794 0.5290 0.5403

24 False 10703 58 0.6905 0.6304 0.6494

25 True 1196 58 0.6190 0.5306 0.5424

26 False 0 58 0.6190 0.5306 0.5424

27 False 10703 39 0.8810 0.5812 0.6073

28 True 1196 39 0.5873 0.5362 0.5481

29 False 0 39 0.6190 0.5306 0.5424

30 False 10703 20 0.6429 0.6750 0.6728

31 True 1196 20 0.6190 0.5306 0.5424

32 False 0 20 0.6190 0.5306 0.5424

33 False 10703 0 0.4524 0.6951 0.6219
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Table A.2: Compact result table for German source and English target

with ∆F1 scores. We report training type (only hate is True when the source

dataset contains only hate speech samples), number of source samples (#src),

number of target samples (#tgt), recall (r), precision (p), F1 score (F1), and

model used.

only hate #src #tgt r p F1 ∆F1 model

0 False 0 1523 0.7448 0.8357 0.7986 - CNN

1 False 1220 1523 0.7950 0.7540 0.7676 -0.031 CNN

2 True 610 914 0.7866 0.7769 0.7803 0.0291 CNN

3 False 0 914 0.8828 0.7033 0.7512 - CNN

4 True 610 610 0.8243 0.7695 0.7884 0.0353 CNN

5 False 0 610 0.7657 0.7469 0.7531 - CNN

6 False 0 305 0.8410 0.7309 0.7644 - CNN

7 False 1220 305 0.6862 0.7961 0.7541 -0.0103 CNN

8 False 0 267 0.7699 0.7449 0.7531 - CNN

9 True 610 267 0.8117 0.7106 0.7393 -0.0138 CNN

10 False 0 229 0.8075 0.7338 0.7567 - CNN

11 False 1220 229 0.7908 0.7326 0.7507 -0.006 CNN

12 False 1220 191 0.6862 0.7664 0.7378 0.0019 CNN

13 False 0 191 0.7782 0.7181 0.7359 - CNN

14 False 1220 153 0.6862 0.7558 0.7316 0.0015 CNN

15 False 0 153 0.7322 0.7292 0.7301 - CNN

16 False 1220 115 0.8201 0.6853 0.7190 0.1948 BiLSTM

17 False 0 115 0.9205 0.5473 0.5242 - BiLSTM

18 False 1220 77 0.6695 0.7442 0.7190 0.0809 CNN

19 False 0 77 0.7490 0.6172 0.6381 - CNN

20 False 1220 39 0.6569 0.7202 0.7003 0.0937 CNN

21 False 0 39 0.7155 0.5917 0.6066 - CNN

22 False 1220 0 0.6318 0.7123 0.6873 - CNN

Table A.3: Correlation matrix for metrics of German source and English

target

r p F1

#src -0.051604 0.316607 0.247838

#tgt 0.348551 0.468938 0.536512
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Table A.4: Results for German source and English target. CNN on the

left and BiLSTM on the right side. We report training type (only hate is

True when the source dataset contains only hate speech samples), number of

source samples (#src), number of target samples (#tgt), recall (r), precision

(p), F1 score (F1).

CNN

only hate #src #tgt r p F1

0 False 0 1523 0.7448 0.8357 0.7986

1 False 1220 1523 0.7950 0.7540 0.7676

2 True 610 1523 0.8703 0.7051 0.7497

3 True 610 914 0.7866 0.7769 0.7803

4 False 1220 914 0.7866 0.7611 0.7698

5 False 0 914 0.8828 0.7033 0.7512

6 True 610 610 0.8243 0.7695 0.7884

7 False 0 610 0.7657 0.7469 0.7531

8 False 1220 610 0.7406 0.7597 0.7531

9 False 0 305 0.8410 0.7309 0.7644

10 False 1220 305 0.6862 0.7961 0.7541

11 True 610 305 0.8285 0.6996 0.7341

12 False 0 267 0.7699 0.7449 0.7531

13 True 610 267 0.8117 0.7106 0.7393

14 False 1220 267 0.7699 0.7160 0.7318

15 False 0 229 0.8075 0.7338 0.7567

16 False 1220 229 0.7908 0.7326 0.7507

17 True 610 229 0.8075 0.6918 0.7219

18 False 1220 191 0.6862 0.7664 0.7378

19 False 0 191 0.7782 0.7181 0.7359

20 True 610 191 0.8033 0.6621 0.6932

21 False 1220 153 0.6862 0.7558 0.7316

22 False 0 153 0.7322 0.7292 0.7301

23 True 610 153 0.6862 0.7009 0.6966

24 False 1220 115 0.7741 0.6981 0.7188

25 False 0 115 0.7908 0.6585 0.6872

26 True 610 115 0.7908 0.6540 0.6827

27 False 1220 77 0.6695 0.7442 0.7190

28 True 610 77 0.6360 0.6609 0.6547

29 False 0 77 0.7490 0.6172 0.6381

30 False 1220 39 0.6569 0.7202 0.7003

31 False 0 39 0.7155 0.5917 0.6066

32 True 610 39 0.2762 0.5546 0.4954

33 False 1220 0 0.6318 0.7123 0.6873

BiLSTM

only hate #src #tgt r p F1

0 False 1220 1523 0.8201 0.7368 0.7628

1 False 0 1523 0.8745 0.7133 0.7584

2 True 610 1523 0.8368 0.7168 0.7514

3 False 1220 914 0.7490 0.7490 0.7490

4 False 0 914 0.8536 0.6962 0.7372

5 True 610 914 0.8075 0.7044 0.7329

6 True 610 610 0.8703 0.6775 0.7224

7 False 1220 610 0.8536 0.6800 0.7214

8 False 0 610 0.8368 0.6826 0.7203

9 False 1220 305 0.7782 0.7019 0.7230

10 False 0 305 0.6569 0.7009 0.6880

11 True 610 305 0.7573 0.6558 0.6780

12 False 1220 267 0.7238 0.7119 0.7155

13 True 610 267 0.5816 0.7473 0.6886

14 False 0 267 0.7071 0.6550 0.6668

15 False 1220 229 0.7197 0.7382 0.7322

16 True 610 229 0.8619 0.6059 0.6343

17 False 0 229 0.8828 0.5687 0.5742

18 False 1220 191 0.7908 0.6750 0.7028

19 False 0 191 0.8410 0.6128 0.6424

20 True 610 191 0.6527 0.6265 0.6316

21 False 1220 153 0.7197 0.6935 0.7007

22 True 610 153 0.7908 0.6117 0.6366

23 False 0 153 0.7573 0.5801 0.5952

24 False 1220 115 0.8201 0.6853 0.7190

25 True 610 115 0.8452 0.5788 0.5935

26 False 0 115 0.9205 0.5473 0.5242

27 False 1220 77 0.8033 0.6214 0.6494

28 False 0 77 0.7113 0.6204 0.6361

29 True 610 77 0.7741 0.6106 0.6336

30 False 1220 39 0.5941 0.7358 0.6875

31 True 610 39 0.3431 0.5816 0.5283

32 False 0 39 0.0879 0.5676 0.4040

33 False 1220 0 0.7699 0.6133 0.6363
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A.2 Poorly aligned results

In this chapter of the appendix, we present the full results for the poorly

aligned language pairs. Below you can find the following tables:

• Full result tables for Croatian-German in Table A.5.

• Tables for the language pair Croatian-English, the compacted result

table in Table A.6, and the full result table in Table A.7.

• Tables for the language pair English-Croatian, the compacted result

table in Table A.8, correlation matrix in Table A.9, and the full result

table in Table A.10.

• Tables for the language pair German-Croatian, the compacted result

table in Table A.11, correlation matrix in Table A.12, and the full result

table in Table A.13.

A.3 Multilingual BERT results

In this section, we present the results for Multilingual BERT as an embedding

in Table A.14. We tested three source and target data split combinations for

every language pair: training on all source samples, training on all target

samples, and training on all target and source samples.
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Table A.5: Results for Croatian source and German target. CNN on the

left and BiLSTM on the right side. We report training type (only hate is

True when the source dataset contains only hate speech samples), number of

source samples (#src), number of target samples (#tgt), recall (r), precision

(p), F1 score (F1).

CNN

only hate #src #tgt r p F1

0 False 0 766 0.7937 0.7299 0.7546

1 True 1320 766 0.7698 0.7132 0.7352

2 False 12000 766 0.8016 0.6871 0.7223

3 False 0 460 0.7302 0.7360 0.7393

4 False 12000 460 0.7857 0.6346 0.6694

5 True 1320 460 0.7302 0.6389 0.6642

6 False 12000 307 0.6984 0.6331 0.6532

7 False 0 307 0.7857 0.6111 0.6438

8 True 1320 307 0.7460 0.6026 0.6300

9 False 12000 154 0.7381 0.6458 0.6720

10 False 0 154 0.7302 0.6345 0.6601

11 True 1320 154 0.7619 0.6038 0.6330

12 False 0 135 0.7222 0.6454 0.6685

13 False 12000 135 0.5873 0.6727 0.6558

14 True 1320 135 0.6746 0.5556 0.5720

15 False 12000 115 0.5476 0.6635 0.6388

16 False 0 115 0.7698 0.5915 0.6192

17 True 1320 115 0.7540 0.5556 0.5720

18 False 12000 96 0.6032 0.6179 0.6224

19 False 0 96 0.5794 0.6083 0.6105

20 True 1320 96 0.7143 0.5233 0.5274

21 False 12000 77 0.5952 0.5906 0.5992

22 False 0 77 0.4206 0.6092 0.5725

23 True 1320 77 0.5476 0.5111 0.5211

24 False 12000 58 0.5873 0.6167 0.6183

25 False 0 58 0.6587 0.5929 0.6102

26 True 1320 58 0.6190 0.5065 0.5128

27 False 12000 39 0.5238 0.6055 0.5969

28 False 0 39 0.8016 0.5401 0.5446

29 True 1320 39 0.7302 0.4946 0.4759

30 False 12000 20 0.3968 0.6098 0.5655

31 True 1320 20 0.7778 0.4949 0.4629

32 False 0 20 0.0476 1.0000 0.3942

33 False 12000 0 0.0317 0.4444 0.3680

BiLSTM

only hate #src #tgt r p F1

0 False 0 766 0.7063 0.7417 0.7351

1 False 12000 766 0.7381 0.7099 0.7237

2 True 1320 766 0.6825 0.7167 0.7118

3 True 1320 460 0.6905 0.6591 0.6731

4 False 12000 460 0.7778 0.6049 0.6359

5 False 0 460 0.7937 0.5917 0.6210

6 False 12000 307 0.6905 0.6000 0.6210

7 False 0 307 0.6270 0.5766 0.5910

8 True 1320 307 0.7143 0.5488 0.5637

9 False 0 154 0.7460 0.6065 0.6343

10 False 12000 154 0.6270 0.6220 0.6304

11 True 1320 154 0.0000 0.0000 0.3442

12 False 0 135 0.6984 0.6286 0.6491

13 True 1320 135 0.7302 0.6013 0.6270

14 False 12000 135 0.7222 0.5549 0.5717

15 False 0 115 0.7937 0.5495 0.5609

16 False 12000 115 0.7778 0.5444 0.5542

17 True 1320 115 0.0000 0.0000 0.3442

18 False 12000 96 0.6905 0.5800 0.6004

19 True 1320 96 0.6349 0.5714 0.5868

20 False 0 96 0.8016 0.5459 0.5545

21 False 12000 77 0.7619 0.5486 0.5616

22 False 0 77 0.8968 0.5305 0.5074

23 True 1320 77 0.8333 0.5000 0.4553

24 False 12000 58 0.7302 0.5644 0.5840

25 False 0 58 0.8016 0.5611 0.5785

26 True 1320 58 1.0000 0.4903 0.3226

27 False 12000 39 0.8333 0.5072 0.4725

28 False 0 39 0.8413 0.4977 0.4464

29 True 1320 39 1.0000 0.4903 0.3226

30 False 12000 20 0.4444 0.5895 0.5686

31 True 1320 20 0.5556 0.5036 0.5129

32 False 0 20 0.0000 0.0000 0.3442

33 False 12000 0 0.0000 0.0000 0.3442
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Table A.6: Compact result table for Croatian source and English target

with ∆F1 scores. We report training type (only hate is True when the source

dataset contains only hate speech samples), number of source samples (#src),

number of target samples (#tgt), recall (r), precision (p), F1 score (F1), and

model used.

only hate #src #tgt r p F1 ∆F1 model

0 False 0 1523 0.8996 0.7264 0.7772 - CNN

1 True 1320 1523 0.8117 0.7549 0.7737 -0.0035 CNN

2 False 0 914 0.8285 0.7615 0.7841 - CNN

3 False 12000 914 0.8326 0.7481 0.7754 -0.0087 CNN

4 True 1320 610 0.8033 0.7471 0.7654 0.0031 CNN

5 False 0 610 0.8368 0.7299 0.7623 - CNN

6 False 0 305 0.7448 0.7876 0.7718 - CNN

7 True 1320 305 0.8159 0.7040 0.7347 -0.0371 CNN

8 False 0 267 0.7950 0.7510 0.7655 - CNN

9 True 1320 267 0.8201 0.7000 0.7323 -0.0332 CNN

10 False 0 229 0.7992 0.7154 0.7397 - CNN

11 False 12000 229 0.7657 0.7121 0.7276 -0.0121 CNN

12 False 0 191 0.7657 0.7176 0.7319 - CNN

13 False 12000 191 0.7113 0.7083 0.7092 -0.0227 CNN

14 False 12000 153 0.7322 0.7353 0.7343 0.0417 BiLSTM

15 False 0 153 0.6151 0.7313 0.6926 - BiLSTM

16 False 12000 115 0.7490 0.6832 0.7001 0.0259 BiLSTM

17 False 0 115 0.7448 0.6544 0.6742 - BiLSTM

18 False 0 77 0.6444 0.6968 0.6816 - CNN

19 False 12000 77 0.6067 0.6872 0.6641 -0.0175 CNN

20 True 1320 39 0.7071 0.6190 0.6341 0.0056 BiLSTM

21 False 0 39 0.7782 0.6059 0.6285 - BiLSTM

22 False 12000 0 0.1130 0.8438 0.4412 - CNN
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Table A.7: Results for Croatian source and English target. CNN on the

left and BiLSTM on the right side. We report training type (only hate is

True when the source dataset contains only hate speech samples), number of

source samples (#src), number of target samples (#tgt), recall (r), precision

(p), F1 score (F1).

CNN

only hate #src #tgt r p F1

0 False 0 1523 0.8996 0.7264 0.7772

1 True 1320 1523 0.8117 0.7549 0.7737

2 False 12000 1523 0.7573 0.7573 0.7573

3 False 0 914 0.8285 0.7615 0.7841

4 False 12000 914 0.8326 0.7481 0.7754

5 True 1320 914 0.7950 0.7570 0.7697

6 True 1320 610 0.8033 0.7471 0.7654

7 False 0 610 0.8368 0.7299 0.7623

8 False 12000 610 0.6862 0.7961 0.7541

9 False 0 305 0.7448 0.7876 0.7718

10 True 1320 305 0.8159 0.7040 0.7347

11 False 12000 305 0.7238 0.7300 0.7280

12 False 0 267 0.7950 0.7510 0.7655

13 True 1320 267 0.8201 0.7000 0.7323

14 False 12000 267 0.6360 0.7876 0.7297

15 False 0 229 0.7992 0.7154 0.7397

16 False 12000 229 0.7657 0.7121 0.7276

17 True 1320 229 0.7531 0.6950 0.7108

18 False 0 191 0.7657 0.7176 0.7319

19 False 12000 191 0.7113 0.7083 0.7092

20 True 1320 191 0.7699 0.6815 0.7038

21 False 0 153 0.6778 0.7535 0.7273

22 False 12000 153 0.7531 0.6870 0.7043

23 True 1320 153 0.7155 0.6602 0.6731

24 False 0 115 0.7699 0.6691 0.6928

25 False 12000 115 0.5816 0.7514 0.6906

26 True 1320 115 0.7197 0.6772 0.6880

27 False 0 77 0.6444 0.6968 0.6816

28 False 12000 77 0.6067 0.6872 0.6641

29 True 1320 77 0.7238 0.6314 0.6487

30 False 0 39 0.6987 0.6162 0.6301

31 True 1320 39 0.6695 0.6178 0.6270

32 False 12000 39 0.8452 0.5906 0.6117

33 False 12000 0 0.1130 0.8438 0.4412

BiLSTM

only hate #src #tgt r p F1

0 False 12000 1523 0.7615 0.7745 0.7699

1 False 0 1523 0.7908 0.7560 0.7677

2 True 1320 1523 0.7824 0.7305 0.7465

3 False 12000 914 0.7950 0.7600 0.7718

4 False 0 914 0.8075 0.7539 0.7717

5 True 1320 914 0.7908 0.7441 0.7592

6 False 12000 610 0.7615 0.7615 0.7615

7 True 1320 610 0.8326 0.7158 0.7494

8 False 0 610 0.7531 0.7469 0.7489

9 False 12000 305 0.8075 0.7148 0.7416

10 False 0 305 0.8452 0.6733 0.7129

11 True 1320 305 0.7824 0.6751 0.7010

12 False 12000 267 0.8159 0.7196 0.7478

13 True 1320 267 0.8117 0.6929 0.7239

14 False 0 267 0.8494 0.6465 0.6847

15 False 12000 229 0.7197 0.7257 0.7238

16 False 0 229 0.8912 0.6283 0.6675

17 True 1320 229 0.8745 0.6239 0.6599

18 False 12000 191 0.7657 0.6703 0.6930

19 False 0 191 0.8703 0.6246 0.6605

20 True 1320 191 0.8536 0.6145 0.6456

21 False 12000 153 0.7322 0.7353 0.7343

22 False 0 153 0.6151 0.7313 0.6926

23 True 1320 153 0.7113 0.6296 0.6450

24 False 12000 115 0.7490 0.6832 0.7001

25 False 0 115 0.7448 0.6544 0.6742

26 True 1320 115 0.7071 0.6426 0.6560

27 False 12000 77 0.8285 0.6266 0.6585

28 True 1320 77 0.7280 0.6170 0.6351

29 False 0 77 0.5565 0.6584 0.6317

30 True 1320 39 0.7071 0.6190 0.6341

31 False 0 39 0.7782 0.6059 0.6285

32 False 12000 39 0.8368 0.6024 0.6282

33 False 12000 0 0.0000 0.0000 0.3333
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Table A.8: Compact result table for English source and Croatian target

with ∆F1 scores. We report training type (only hate is True when the source

dataset contains only hate speech samples), number of source samples (#src),

number of target samples (#tgt), recall (r), precision (p), F1 score (F1), and

model used.

only hate #src #tgt r p F1 ∆F1 model

0 False 0 1931 0.6494 0.7168 0.6981 - CNN

1 False 10703 1931 0.8052 0.6596 0.6939 -0.0042 CNN

2 True 1196 1159 0.6851 0.6741 0.6795 0.0285 CNN

3 False 0 1159 0.5260 0.7074 0.6510 - CNN

4 False 0 773 0.6948 0.6605 0.6713 - BiLSTM

5 False 10703 773 0.6558 0.6667 0.6666 -0.0047 BiLSTM

6 True 1196 387 0.6591 0.6881 0.6826 0.0153 CNN

7 False 0 387 0.7857 0.6368 0.6673 - CNN

8 False 0 338 0.6494 0.6826 0.6761 - CNN

9 True 1196 338 0.5422 0.7357 0.6704 -0.0057 CNN

10 True 1196 290 0.6948 0.6903 0.6940 0.0161 CNN

11 False 0 290 0.6818 0.6731 0.6779 - CNN

12 False 0 242 0.5812 0.7247 0.6794 - CNN

13 True 1196 242 0.5877 0.7016 0.6691 -0.0103 CNN

14 True 1196 194 0.6429 0.6735 0.6680 0.0032 CNN

15 False 0 194 0.6364 0.6712 0.6648 - CNN

16 True 1196 145 0.5877 0.6729 0.6522 0.0162 BiLSTM

17 False 0 145 0.6526 0.6281 0.6360 - BiLSTM

18 False 10703 97 0.6104 0.5646 0.5727 0.2313 BiLSTM

19 False 0 97 0.0032 1.0000 0.3414 - BiLSTM

20 False 0 49 0.6981 0.5556 0.5667 - BiLSTM

21 False 10703 49 0.6623 0.5484 0.5577 -0.009 BiLSTM

22 False 10703 0 0.2403 0.6435 0.5083 - CNN

Table A.9: Correlation matrix for metrics of English source and Croatian

target.

r p F1

#src -0.159470 -0.238391 -0.078302

#tgt 0.292514 0.276780 0.487689
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Table A.10: Results for English source and Croatian target. CNN on the

left and BiLSTM on the right side. We report training type (only hate is

True when the source dataset contains only hate speech samples), number of

source samples (#src), number of target samples (#tgt), recall (r), precision

(p), F1 score (F1).

CNN

only hate #src #tgt r p F1

0 False 0 1931 0.6494 0.7168 0.6981

1 False 10703 1931 0.8052 0.6596 0.6939

2 True 1196 1931 0.6656 0.6973 0.6906

3 True 1196 1159 0.6851 0.6741 0.6795

4 False 10703 1159 0.7565 0.6366 0.6624

5 False 0 1159 0.5260 0.7074 0.6510

6 True 1196 773 0.5357 0.7143 0.6578

7 False 0 773 0.6786 0.6451 0.6552

8 False 10703 773 0.6461 0.6525 0.6538

9 True 1196 387 0.6591 0.6881 0.6826

10 False 0 387 0.7857 0.6368 0.6673

11 False 10703 387 0.6104 0.6573 0.6484

12 False 0 338 0.6494 0.6826 0.6761

13 True 1196 338 0.5422 0.7357 0.6704

14 False 10703 338 0.6006 0.6584 0.6466

15 True 1196 290 0.6948 0.6903 0.6940

16 False 0 290 0.6818 0.6731 0.6779

17 False 10703 290 0.5974 0.6502 0.6402

18 False 0 242 0.5812 0.7247 0.6794

19 True 1196 242 0.5877 0.7016 0.6691

20 False 10703 242 0.6461 0.6258 0.6328

21 True 1196 194 0.6429 0.6735 0.6680

22 False 0 194 0.6364 0.6712 0.6648

23 False 10703 194 0.5357 0.6250 0.6081

24 False 0 145 0.6818 0.6383 0.6503

25 True 1196 145 0.6396 0.6417 0.6441

26 False 10703 145 0.3994 0.6758 0.5895

27 False 0 97 0.3604 0.6568 0.5668

28 True 1196 97 0.4058 0.5981 0.5582

29 False 10703 97 0.3506 0.6102 0.5458

30 False 10703 49 0.4903 0.5763 0.5658

31 False 0 49 0.7987 0.5395 0.5366

32 True 1196 49 0.4935 0.4780 0.4814

33 False 10703 0 0.2403 0.6435 0.5083

BiLSTM

only hate #src #tgt r p F1

0 False 10703 1931 0.7110 0.6887 0.6972

1 False 0 1931 0.7403 0.6766 0.6951

2 True 1196 1931 0.6201 0.7127 0.6861

3 True 1196 1159 0.6851 0.6635 0.6715

4 False 0 1159 0.5714 0.7126 0.6697

5 False 10703 1159 0.6429 0.6689 0.6649

6 False 0 773 0.6948 0.6605 0.6713

7 False 10703 773 0.6558 0.6667 0.6666

8 True 1196 773 0.6591 0.6424 0.6489

9 False 10703 387 0.6234 0.6621 0.6550

10 False 0 387 0.5065 0.6996 0.6402

11 True 1196 387 0.5292 0.6626 0.6288

12 False 0 338 0.6104 0.6738 0.6594

13 True 1196 338 0.5390 0.6721 0.6371

14 False 10703 338 0.5195 0.6723 0.6310

15 True 1196 290 0.5455 0.6857 0.6466

16 False 0 290 0.6753 0.6303 0.6422

17 False 10703 290 0.6071 0.6192 0.6199

18 False 0 242 0.5227 0.6910 0.6418

19 False 10703 242 0.6753 0.6265 0.6389

20 True 1196 242 0.5584 0.6165 0.6077

21 False 10703 194 0.5617 0.6528 0.6325

22 True 1196 194 0.5519 0.6439 0.6243

23 False 0 194 0.5779 0.5993 0.5989

24 True 1196 145 0.5877 0.6729 0.6522

25 False 0 145 0.6526 0.6281 0.6360

26 False 10703 145 0.5032 0.6225 0.5983

27 False 10703 97 0.6104 0.5646 0.5727

28 False 0 97 0.0032 1.0000 0.3414

29 True 1196 97 0.9968 0.4968 0.3352

30 False 0 49 0.6981 0.5556 0.5667

31 False 10703 49 0.6623 0.5484 0.5577

32 True 1196 49 1.0000 0.4960 0.3289

33 False 10703 0 0.0000 0.0000 0.3378
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Table A.11: Compact result table for German source and Croatian target

with ∆F1 scores. We report training type (only hate is True when the source

dataset contains only hate speech samples), number of source samples (#src),

number of target samples (#tgt), recall (r), precision (p), F1 score (F1), and

model used.

only hate #src #tgt r p F1 ∆F1 model

0 False 1220 1931 0.7078 0.7219 0.7198 0.0145 BiLSTM

1 False 0 1931 0.7208 0.6959 0.7053 - BiLSTM

2 False 1220 1159 0.6299 0.7321 0.7005 0.0495 CNN

3 False 0 1159 0.5260 0.7074 0.6510 - CNN

4 False 1220 773 0.6039 0.7181 0.6838 0.0172 BiLSTM

5 False 0 773 0.6818 0.6583 0.6666 - BiLSTM

6 True 610 387 0.6786 0.6677 0.6731 0.0095 CNN

7 False 0 387 0.7890 0.6328 0.6636 - CNN

8 True 610 338 0.6591 0.6789 0.6762 0.0001 CNN

9 False 0 338 0.6494 0.6826 0.6761 - CNN

10 False 0 290 0.6818 0.6731 0.6779 - CNN

11 True 610 290 0.4643 0.7333 0.6380 -0.0399 CNN

12 False 0 242 0.5812 0.7247 0.6794 - CNN

13 False 1220 242 0.6006 0.7034 0.6744 -0.005 CNN

14 False 0 194 0.6364 0.6712 0.6648 - CNN

15 True 610 194 0.6558 0.6392 0.6457 -0.0191 CNN

16 False 0 145 0.6818 0.6383 0.6503 - CNN

17 True 610 145 0.6526 0.6361 0.6425 -0.0078 CNN

18 True 610 97 0.6591 0.6006 0.6128 0.046 CNN

19 False 0 97 0.3604 0.6568 0.5668 - CNN

20 False 0 49 0.6916 0.5635 0.5763 - BiLSTM

21 True 610 49 0.5455 0.5773 0.5761 -0.0002 BiLSTM

22 False 1220 0 0.1851 0.5876 0.4684 - BiLSTM

Table A.12: Correlation matrix for metrics of German source and Croatian

target.

r p F1

#src -0.081869 0.093793 -0.079430

#tgt 0.199687 0.351221 0.517908
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Table A.13: Results for German source and Croatian target. CNN on the

left and BiLSTM on the right side. We report training type (only hate is

True when the source dataset contains only hate speech samples), number of

source samples (#src), number of target samples (#tgt), recall (r), precision

(p), F1 score (F1).

CNN

only hate #src #tgt r p F1

0 False 1220 1931 0.6591 0.7148 0.6999

1 False 0 1931 0.6299 0.7239 0.6958

2 True 610 1931 0.8149 0.6005 0.6282

3 False 1220 1159 0.6299 0.7321 0.7005

4 True 610 1159 0.5390 0.7186 0.6611

5 False 0 1159 0.5260 0.7074 0.6510

6 True 610 773 0.6948 0.6751 0.6827

7 False 0 773 0.6786 0.6451 0.6552

8 False 1220 773 0.4740 0.7449 0.6466

9 True 610 387 0.6786 0.6677 0.6731

10 False 0 387 0.7890 0.6328 0.6636

11 False 1220 387 0.7175 0.6406 0.6592

12 True 610 338 0.6591 0.6789 0.6762

13 False 0 338 0.6494 0.6826 0.6761

14 False 1220 338 0.7013 0.6261 0.6430

15 False 0 290 0.6818 0.6731 0.6779

16 True 610 290 0.4643 0.7333 0.6380

17 False 1220 290 0.4448 0.7366 0.6309

18 False 0 242 0.5812 0.7247 0.6794

19 False 1220 242 0.6006 0.7034 0.6744

20 True 610 242 0.6721 0.6592 0.6651

21 False 0 194 0.6364 0.6712 0.6648

22 True 610 194 0.6558 0.6392 0.6457

23 False 1220 194 0.8571 0.5511 0.5499

24 False 0 145 0.6818 0.6383 0.6503

25 True 610 145 0.6526 0.6361 0.6425

26 False 1220 145 0.4675 0.6957 0.6240

27 True 610 97 0.6591 0.6006 0.6128

28 False 1220 97 0.5227 0.5730 0.5691

29 False 0 97 0.3604 0.6568 0.5668

30 False 1220 49 0.4610 0.5992 0.5737

31 False 0 49 0.7987 0.5395 0.5366

32 True 610 49 0.5942 0.5027 0.5036

33 False 1220 0 0.9383 0.5026 0.4005

BiLSTM

only hate #src #tgt r p F1

0 False 1220 1931 0.7078 0.7219 0.7198

1 False 0 1931 0.7208 0.6959 0.7053

2 True 610 1931 0.7305 0.6579 0.6771

3 False 1220 1159 0.6721 0.6571 0.6634

4 True 610 1159 0.5682 0.7028 0.6634

5 False 0 1159 0.5325 0.7193 0.6590

6 False 1220 773 0.6039 0.7181 0.6838

7 False 0 773 0.6818 0.6583 0.6666

8 True 610 773 0.6299 0.6599 0.6552

9 True 610 387 0.7143 0.6395 0.6576

10 False 0 387 0.5065 0.7059 0.6431

11 False 1220 387 0.5000 0.6814 0.6292

12 False 0 338 0.6331 0.6610 0.6568

13 False 1220 338 0.7532 0.6270 0.6522

14 True 610 338 0.5682 0.6554 0.6359

15 False 0 290 0.7045 0.6420 0.6580

16 False 1220 290 0.5552 0.6527 0.6306

17 True 610 290 0.6623 0.6126 0.6243

18 True 610 242 0.5747 0.6969 0.6623

19 False 1220 242 0.4870 0.6667 0.6175

20 False 0 242 0.8214 0.5776 0.5966

21 False 0 194 0.5552 0.6381 0.6214

22 False 1220 194 0.5455 0.6222 0.6086

23 True 610 194 0.9058 0.5397 0.5168

24 True 610 145 0.4805 0.7081 0.6343

25 False 1220 145 0.5487 0.6213 0.6088

26 False 0 145 0.7435 0.5783 0.5962

27 True 610 97 0.3961 0.6703 0.5861

28 False 1220 97 0.4773 0.6000 0.5782

29 False 0 97 0.0000 0.0000 0.3378

30 False 0 49 0.6916 0.5635 0.5763

31 True 610 49 0.5455 0.5773 0.5761

32 False 1220 49 0.6429 0.5485 0.5575

33 False 1220 0 0.1851 0.5876 0.4684



A.3. MULTILINGUAL BERT RESULTS 57

Table A.14: Full results for Multilingual BERT. CNN on the left and BiL-

STM on the right side. We report number of source samples (#src), number

of target samples (#tgt), recall (r), precision (p), F1 score (F1). In bold is

the best result for every split.

CNN

#src #tgt r p F1

en-de

0 0 766 0.7222 0.7109 0.7165

1 1523 766 1.0000 0.4903 0.6580

2 1523 0 0.6587 0.5425 0.5950

en-hr

0 1523 1931 0.8117 0.6906 0.7463

1 0 1931 0.0000 0.0000 0.0000

2 1523 0 0.1623 0.6250 0.2577

de-en

0 766 1523 0.8243 0.7269 0.7725

1 0 1523 1.0000 0.5000 0.6667

2 766 0 0.3766 0.6667 0.4813

de-hr

0 766 1931 1.0000 0.4960 0.6631

1 0 1931 0.0000 0.0000 0.0000

2 766 0 0.5617 0.5986 0.5796

hr-en

0 1931 1523 0.7573 0.7449 0.7510

1 0 1523 1.0000 0.5000 0.6667

2 1931 0 0.0000 0.0000 0.0000

hr-de

0 0 766 0.7302 0.6866 0.7077

1 1931 766 0.7857 0.5964 0.6781

2 1931 0 0.6587 0.5390 0.5929

BiLSTM

#src #tgt r p F1

0 1523 766 0.7460 0.6667 0.7041

1 0 766 0.7063 0.6593 0.6820

2 1523 0 0.6508 0.6357 0.6431

0 0 1931 0.7435 0.7411 0.7423

1 1523 1931 0.6526 0.7390 0.6931

2 1523 0 0.4935 0.5779 0.5324

0 0 1523 0.8787 0.7167 0.7895

1 766 1523 0.8703 0.7197 0.7879

2 766 0 0.6318 0.6741 0.6523

0 766 1931 0.7597 0.7091 0.7335

1 0 1931 0.7110 0.7526 0.7312

2 766 0 0.6721 0.6070 0.6379

0 0 1523 0.8494 0.7250 0.7823

1 1931 1523 0.8368 0.7246 0.7767

2 1931 0 0.7657 0.6399 0.6971

0 1931 766 0.7778 0.6203 0.6901

1 0 766 0.6667 0.6512 0.6588

2 1931 0 0.7143 0.5263 0.6061
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