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Abstract— Fetal magnetoencephalography (fMEG) is a
method to record human fetal brain signals in pregnant
mothers. Nevertheless the amplitude of the fetal brain signal is
very small and the fetal brain signal is overlaid by interfering
signals mainly caused by maternal and fetal heart activity.
Several methods are used to attenuate the interfering signals
for the extraction of the fetal brain signal. However currently
used methods are often affected by a reduction of the fetal
brain signal or redistribution of the fetal brain signal. To
overcome this limitation we developed a new fully automated
procedure for removal of heart activity (FAUNA) based on
Principal Component Analysis (PCA) and Ridge Regression.
We compared the results with an orthogonal projection (OP)
algorithm which is widely used in fetal research. The analysis
was performed on simulated data sets containing spontaneous
and averaged brain activity. The new analysis was able to
extract fetal brain signals with an increased signal to noise ratio
and without redistribution of activity across sensors compared
to OP. The attenuation of interfering heart signals in fMEG
data was significantly improved by FAUNA and supports fully
automated evaluation of fetal brain signal.

I. INTRODUCTION

Fetal magnetoencephalography (fMEG) allows the non
invasive recording of maternal and fetal heart signals and
spontaneous [1], [2], and event related brain activity [3], [4],
[5], [6], [7], [8] of the fetus with good spatio-temporal res-
olution. The analysis of fetal brain signals makes it possible
to address important questions regarding the developmental
process of the fetal brain and the autonomic nervous system
[9] as well as the maternal influence on the metabolic and
cognitive outcome of neonates.

The evaluation of fetal brain activity is challenging since
the brain signal is superimposed by fetal and maternal heart
activity, which have a signal strength 10-1000 times larger
than the fetal brain signal. Thus, it is mandatory to remove
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this heart activity before the analysis of fetal brain activity.
The detailed characterization of the interfering sources is
only possible with multisensor systems covering larger parts
of the maternal abdomen. A widely used method for heart
artifact removal in fMEG data is Orthogonal Projection (OP)
[10], [11]. OP separates heart activity from other activity
in a dataset by attenuation of the estimated signal space of
the heart signal. This process is fairly effective in removing
the maternal and in most cases also the fetal heart signals
but it has its limitations. One drawback of the method is a
possible redistribution of the signal [12], which can lead to
inconsistent localization and involves the risk that some brain
activity is removed together with the heart signals. Since the
fMEG signal is only present in a small number of sensors,
the identification of these sensors has to work reliably to
make further automated evaluation steps possible.

To improve the analysis of fetal brain activity and open
up new possibilities for advanced analysis methods, the aim
of this work was to develop a fast and effective artifact
rejection procedure that does not cause signal redistribution.
This algorithm for fully automated subtraction of heart
activity is abbreviated FAUNA. In the following sections we
describe the algorithm and its evaluation based on a model
for artificial fMEG.

II. METHODS

We first explain how the proposed algorithm works step
by step. Subsequently we compare it to the current standard
method and verify its functionality.

Fig. 1. Sketch of a pregnant woman on the fMEG device. Sensors (black)
record maternal heart (red) fetal heart (purple) and fetal brain activity (blue).



Fig. 2. Schematic display of FAUNA algorithmic structure. Starting with the raw data and the peak times of the R-peaks (MCGpt), FAUNA consists of
three steps: A) Building a heart beat template, B) PCA and Ridge regression and C) the ICA refinement. The procedure is, with a few exceptions, the same
for maternal and fetal heart signals. D: Short time sequence of the data before, during and after the removal of the fetal MCG signal. After the removal
the triggered brain signal is visible (red circle).

A. FAUNA

FAUNA is an algorithm for fully automated subtraction of
heart activity to prepare fMEG data for further processing.
For a subtraction of the heart signals from a fMEG
dataset, it is necessary to estimate a clear heart signal first.
This procedure is done twice in a row for fetal datasets to
remove the maternal and fetal heart activity and one time for
neonatal datasets to remove the heart activity of the newborn.

Before the heart activity removal can be performed, a
detection of the R-peaks is necessary. FAUNA uses the
result of an external automated R-peak detection algorithm
(FLORA, [13]) which is used for maternal and fetal R-peaks.
In the first step, the peak times of these R-peaks are used to
generate a template of the heart activity. By using average
heart beats for the template the risk of removing anything
else than the heart activity is minimized. In the second step
several components of the heart activity are selected and
estimated on the original dataset and removed afterwards.
The last step divides the remaining signal into independent
components and additionally removes the components that
correlate with the heart activity.

An overview of the different steps of FAUNA is shown in
Figure 2. The different steps are described in the following:

1) Building a heart beat template: The raw dataset is
filtered using a second order butterworth filter from 1-35
Hz. Thereafter an average heartbeat is built using the average
over the R-peaks (MCGpt) for each sensor. By concatenating
this average heart beat template with the distance of the
original R-R intervals, an artificial pure heart signal is built
for each sensor (see Fig. 2 A).

2) PCA and Ridge regression: As a static template does
not take into account signal variations, we create a model
for generating a dynamic template that takes into account
these variations. To reduce noise in the data and the dimen-
sionality of the data, a Principal Component Analysis (PCA)
is performed on the artificial heart signal and the 4 main
components are selected (3 main components for fetal heart).
To build a model that takes into account signal variations,
a ridge regression is trained to estimate these 4 components
based on the original dataset. For each component, a separate
ridge regression is trained. The resulting ridge regression
models serve as a spatial filter [14], which is a linear
combination of all input sensors, with the aim to extract the
heart component as close to the template as possible, while
reducing noise and all other activity that is not related to that
component. The spatial filter thereby allows to extract the
heart components from the MEG signal with a good signal-
to-noise ratio. In contrast to a template-based approach,



Fig. 3. The first row shows the magnetic activity, averaged over all sensors, in an segment of 20 sec duration for A) maternal heart, B) fetal heart, C)
fetal brain and D) noise. The second row represents the magnitude of all sensors at the time point of the red line for E) maternal heart, F) fetal heart, G)
fetal brain and H) noise.

extracting the heart components by a spatial filter has the
benefit that dynamic variations of the heart components are
accounted for. As the heart components are also modeled
for the time points where the R-peak detection failed to
detect a peak, those peaks can be visible in the spatially
filtered signal and can be used to fill up missing R-peaks.
Afterwards, the heart components extracted by the spatial
filters are used for a reverse PCA to transform the estimated
heart components back to a dynamic estimation of the heart
signal for all sensors (see Fig. 2 B).

This pure estimated heart signal is then subtracted from
the original dataset.

3) ICA refinement: Since the former procedure removes a
large amount but not all heart signal components, in the next
step an additional independent component analysis (ICA) is
performed on the resulting dataset. First, the correlation of
each component and the pure heart signal is calculated and
second, the average of each component at the R-peak time
points is generated. 40% of the components with the highest
correlation and average components that reach a threshold
of 1 were also removed from the remaining dataset. By
reversing the ICA with the leftover components, the dataset
without interfering heart activity is generated (see Fig.2 C).

B. Model

A model with real and simulated data was used. Real
data were collected by a 156 sensor system (SARA, SQUID
Array for Reproductive Assessment, VSM MedTech Ltd.,
Port Coquitlam, Canada) at the University of Tübingen with
a sampling rate of 610 Hz. The model data were adapted to
this system and sampling rate.

To evaluate the quality of heart removal by FAUNA, we
compared it to Orthogonal Projection (OP). As the real fetal
brain activity is unknown in real datasets and the aim is to
extract the fetal brain activity as well as possible, we do not
have a ground-truth of the fetal brain activity in a real dataset.
Therefore we combined artificially generated fetal brain
activity with real fMEG data. We generated a dataset con-
sisting of real fMEG background activity and heart signals,
generated artificial fMEG data based on a forward model
[15] and superimposed that artificial fMEG data by real
maternal magneto-cardiography (mMCG) signals, real fetal
magneto-cardiography (fMCG) signals and real background
noise. To extract these real mMCG and fMCG signals for
the model, a dataset was selected where an independent
component analysis (ICA) could separate multiple mMCG
and fMCG components. An reverse ICA was performed on
six mMCG components and on two fMCG components to
generate the maternal (Fig. 3 A,E) and fetal heart signal
(Fig. 3 B,F) included in the model. The artificial fetal brain
signal was put into the time trace at specific trigger time
points (see Fig. 3 C,G). Triggers were set with a random
distance of 10-15 sec. An empty fMEG measurement was
performed to generate the background noise (Fig. 3 D,H).

After generating an artificial dataset with this model, the
generated dataset was processed by OP and FAUNA.

C. Evaluation

The evaluation of fMEG signals is usually made over the
whole time course of a recording or on data averaged over
a specific trigger. To cover both options we analyzed some
of our evaluation parameters first over the whole recording



time and second on data averaged over all fMEG simulation
triggers.

1) Redistribution analysis (RMSE over sensors): To com-
pare the redistribution of the brain signal over the sensors
we calculated the RMSE (root-mean square error) for each
sensor, of the difference between the modeled brain signal
and the datasets after processing with OP and FAUNA, over
the whole recording time. We compared the RMSE over all
sensors as well as for the 10 sensors where the magnitude
of the simulated brain signal was the highest.

2) Correlation analysis (CORR): To evaluate how much
of the simulated brain signal is left in the data after the
removal of maternal and fetal heart signals, the correlation
coefficient (CORR) between the simulated brain signal, and
the remaining data is calculated. This calculation is done on
the whole time course and on data averaged over all fMEG
simulation triggers.

3) Signal to noise ratio (SNR): The SNR was calcu-
lated by dividing the RMS of the simulated brain signal
(fMEGsim) by the RMS of the difference between the
simulated brain signal (fMEGsim) and the remaining signal
fMEGrest) after the heart artifact removal for both methods
(OP and FAUNA) and each sensor, for the whole time course
as well as for the data averaged over all fMEG simulation
triggers. SNR = RMS(fMEGsim)/RMS(fMEGrest −
fMEGsim)

4) Statistics: Results from all above mentioned metrics
were compared for OP and FAUNA by using a Wilcoxon
Signed Rank Test. This comparison was done for sponta-
neous fMEG activity and fMEG activity averaged over all
fMEG simulation triggers. 3 sensors were excluded within
preprocessing with FLORA [13] and thus were excluded for
statistical comparison in all methods to have an equivalent
number of sensors. Results are reported in [mean ± standard
deviation].

III. RESULTS

A. Redistribution analysis (difference in RMSE over sensors)

A comparison of the RMSE for all sensors resulted in
significant (p < 0.001) lower values for FAUNA [1.26±0.23]
than for OP [1.38±0.13] (see Fig. 4 A-D).

Comparing the RMSE only for the 10 sensors
with the highest RMS of the simulated fMEG signal
showed also a significant difference (p=0.019531)
between OP [1.00±0.16] and FAUNA [0.67±0.10]
(see Fig. 4 A-C red circles and E). The RMSE here is also
significantly lower for FAUNA.

B. Correlation analysis

A comparison of fMEG CORR over the whole time course
showed a significant difference (p < 0.001) between OP
[0.11±0.13] and FAUNA [0.21±0.22] (see Fig. 5 A-C,G).

Comparing fMEG CORR for the averaged data also
showed a significant difference (p < 0.001) between OP
[0.50±0.30] and FAUNA [0.69±0.28] (see Fig. 5 D-F, H).
CORR is significantly higher for FAUNA in both cases.

C. Signal to noise ratio (SNR)

A comparison of fMEG SNR over the whole time
course for all sensors showed a significant differ-
ence (p < 0.001) between OP [0.09±0.21] and FAUNA
[0.25±0.47] (see Fig. 6 A).

A comparison of fMEG SNR on the averaged dataset

Fig. 4. First row: The normalized RMS over the whole recording time for
all sensors for A) the simulated signal, B) the signal after processing heart
activity removal with OP and C) the signal after processing heart activity
removal with FAUNA. The sensors with the 10 highest RMS values are
marked with a red circle, top 5 with a bold red circle. Second row: Boxplot
of the RMSE between the actual fetal brain activity and the reconstructed
signal by either OP or FAUNA for D) all sensors E) 10 sensors with highest
RMS of the simulated fMEG signal.

Fig. 5. First row: Correlation of the original fMEG signal over the whole
recording time for A) simulated signal B) OP C) FAUNA. Second row:
Correlation between the original fMEG signal averaged over all fMEG
simulation triggers for D) simulated signal E) OP F) FAUNA. Third row:
Boxplot of the correlation with the original fMEG signal for all sensors over
G) the whole time of the recording and H) data averaged over all fMEG
simulation triggers.



Fig. 6. Boxplot of SNR for all sensors over A) whole time measurement
and B) data averaged over all fMEG simulation triggers.

for all sensors showed a significant difference (p < 0.001)
between OP [0.50±1.10] and FAUNA [0.78±1.20]
(see Fig. 6 B).

SNR is significantly higher for FAUNA in both cases.

IV. CONCLUSIONS

Orthogonal Projection (OP) until now is a well established
method for heart activity removal in fMEG data. In this
work we introduced our new algorithm for fully automated
subtraction of heart activity (FAUNA) and compared both
methods by using a model of real heart and simulated
brain activity to evaluate both methods on completeness and
redistribution. Therefore, we used the root mean square error
(RMSE), the correlation coefficient (CORR) and the signal
to noise ratio (SNR) as measures.

The significantly higher CORR values between FAUNA
and the simulated signal showed that more brain signal is
left after heart artifact removal with FAUNA than between
OP and the simulated signal.

This indicates that by using methods based on orthogonal
projection, some brain signal is removed together with the
heart signal and not only redistributed. The impact of the
redistribution is visible when looking at the RMSE for all
sensors. The remaining fMEG signal after heart artifact re-
moval with FAUNA shows a cluster of high RMS amplitudes
in the same region where the original simulated fetal brain
signal was located. Also 5 of the 10 sensors with the highest
RMS amplitudes are the same. In the remaining fMEG signal
after artifact removal with OP there is no cluster visible and
only two of the five sensors with highest RMS are congruent
with the simulated fetal brain signal (see Fig. 4 A-C). The
findings from the RMSE support these observations, showing
a significantly lower difference for FAUNA. The SNR over
all sensors is significantly higher for FAUNA, compared to
OP, for spontaneous and averaged brain activity. This is in
accordance with the findings from the correlation, which
showed that with FAUNA there is more brain signal left in
general.

In conclusion, we developed and tested a new algorithm
(FAUNA) for the removal of heart artifacts from fMEG data.
Compared to a well established method, FAUNA provides
better results in terms of SNR and does not have the
drawback of a redistributed signal. As FAUNA is also fully

automated, it is a superior alternative to currently used
methods for removal of heart signals. Using FAUNA for
heart artifact removal, the remaining signal containing fetal
brain activity in normal datasets should form clusters of high
RMS values, even for spontaneous brain activity. Such RMS
clusters can easily be identified by automated procedures.

REFERENCES

[1] D. F. Rose and H. Eswaran, “Spontaneous neuronal activity in fetuses
and newborns,” Experimental neurology, vol. 190, pp. 37–43, 2004.

[2] N. Haddad, R. B. Govindan, S. Vairavan, E. Siegel, J. Temple,
H. Preissl, C. L. Lowery, and H. Eswaran, “Correlation between
fetal brain activity patterns and behavioral states: an exploratory fetal
magnetoencephalography study,” Experimental neurology, vol. 228,
no. 2, pp. 200–205, 2011.

[3] M. Chen, B. D. Van Veen, and R. T. Wakai, “Linear minimum mean-
square error filtering for evoked responses: Application to fetal meg,”
IEEE transactions on biomedical engineering, vol. 53, no. 5, pp. 959–
963, 2006.

[4] R. Draganova, H. Eswaran, P. Murphy, C. Lowery, and H. Preissl,
“Serial magnetoencephalographic study of fetal and newborn auditory
discriminative evoked responses,” Early human development, vol. 83,
no. 3, pp. 199–207, 2007.

[5] L. Moraru, R. Sameni, U. Schneider, J. Haueisen, E. Schleußner, and
D. Hoyer, “Validation of fetal auditory evoked cortical responses to
enhance the assessment of early brain development using fetal meg
measurements,” Physiological measurement, vol. 32, no. 11, p. 1847,
2011.

[6] J. Muenssinger, T. Matuz, F. Schleger, R. Draganova, M. Weiss, I. D.
Kiefer-Schmidt, A. Wacker-Gussmann, R. B. Govindan, C. L. Lowery,
H. Eswaran et al., “Sensitivity to auditory spectral width in the fetus
and infant–an fmeg study,” Frontiers in human neuroscience, vol. 7,
p. 917, 2013.

[7] F. Schleger, K. Landerl, J. Muenssinger, R. Draganova, M. Reinl,
I. Kiefer-Schmidt, M. Weiss, A. Wacker-Gußmann, M. Huotilainen,
and H. Preissl, “Magnetoencephalographic Signatures of Numerosity
Discrimination in Fetuses and Neonates,” Developmental Neuropsy-
chology, vol. 39, no. 4, pp. 316–329, may 2014.

[8] K. Linder, F. Schleger, I. Kiefer-Schmidt, L. Fritsche, S. Kümmel,
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