
The Diagnosis of Psychogenic Non-epileptic Seizures using Machine Learning

Materials: This study used seizure-free activity EEG recordings from seven

patients with PNES (aged: 40.7±9.25 years, 2 male) and seven with epilepsy

(aged: 44.4±7.69 years, 5 male). Each patient contributed ~15 minutes of EEG.

Method: As shown in the flow chart, the signals were filtered and split into 10-

second, non-overlapping epochs. From which, various features selected using

Random Forest and AdaBoost feature importances were extracted from each

channel. A range of machine learning algorithms, listed in the legend of Figure

1, were compared. Due to the limited dataset, the data were separated into

training and test sets using leave-one-subject-out and repeating for every

subject. The parameters of the selected algorithms were then tuned using grid

search with 10-fold cross-validation and principle component analysis was

applied to the features. These fine-tuned models were then evaluated using

the test subject. The evaluation metrics for each subject were averaged for

comparison.

Results: Initial experimentation with the whole dataset showed that both Naïve Bayesian methods and the decision tree were the weakest of all methods and were 

excluded. Leave-one-subject-out showed that LDA was the best classifier, with an average accuracy of 88.42%±0.10, followed by logistic regression, then SVM-RBF 

with 86.10%±0.08 and 86.06%±0.10 respectively, as seen in Table 1. Unfortunately, the dataset was too small to be certain of a superior technique but did show 

that machine learning can be a reliable tool. 

Conclusion: This pilot study has shown that machine learning can be used for the differential diagnosis of PNES and epilepsy from EEGs alone, thus reducing the 

costs of the current gold standard method. However, with limited data and over-fit models, more investigation with a significantly larger number of subjects is 

required.
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Figure 1 ROC-AUC plot comparing the machine learning algorithms before fine tuning 
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Hypothesis: machine learning is a viable option for the diagnosis of PNES using electroencephalogram (EEG) recordings during interictal recordings.

Introduction: Psychogenic non-epileptic seizures (PNES) are the result of a functional disorder that superficially resembles epilepsy but is not caused by epileptic

activity in the brain[1]. PNES is as prevalent as multiple sclerosis[2, 3] and is, on average, misdiagnosed for seven years[4]. Hypothesis: machine learning is a viable

option for the diagnosis of PNES using electroencephalogram (EEG) recordings during interictal recordings. Current gold standard methods of diagnosis rely on the

recording of a seizure during EEG recordings, and the absence of ictal epileptic activity[5].

Preprocessing: 

1. Interpolate bad channels

2. Filter – band-pass Hamming window, cut-off 

frequencies at 0.5 and 40 Hz

3. Segment into 10-s non-overlapping epochs, 

excluding labelled artefacts

4. Remove noisy epochs with the AutoReject

python package

5. Baseline adjust using the mean  

Extract 
features 
from 
every 
channel

Features from each channel: 
• Energy of five frequency bands
• Higuchi fractal dimension
• Line length
• Spectral Hjorth complexity
• Number of maxima
• Lempel-Ziv complexity 
• Correlation coefficients
• Skewness
• Hurst exponent
• Number of zero crossings

Separate 
six 
subjects 
for the 
train 
dataset

Use ten-fold cross-validation for a 
grid search to optimise the model 
parameters

Test the final model tuned using 
the test dataset, evaluate using 
the precision, recall, accuracy and 
F1-score

Test fine-tuned 
models

Separate one 
subject for the test 

dataset

Repeat, using a 
different subject for the 
test set every time, for 

every subject

Table 1 Average evaluation metrics from leave-one-subject-out fine-tuned models  

Machine Learning Algorithm Precision (%) Recall (%) Accuracy (%) F1_score (%)

LDA 88.65 87.92 88.42 88.08

Logistic regression 86.73 85.13 86.10 85.76

SVM-RBF 91.07 80.29 86.06 85.23

Stochastic Gradient Descend 89.90 79.89 85.58 83.73

AdaBoost 81.37 69.10 76.84 74.67

Random Forest 86.43 63.88 77.01 72.85

kNN 73.62 65.73 70.86 69.00


