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Abstract

This notebook and package redesign the didactics of the classic SIR, SIRD and SEIRD models. A first 
step is to relabel to SI(EY)A(CD). The acquitted A = C + D are the cleared or deceased. This avoids the 
triple use of R for removed, recovered and reproductive number. The infected I = E + Y are the 
exposed and infectious. The basic structure is given by the Euler-Lotka renewal equation. The 
format of ordinary differential equations (ODE) should not distract. The deceased are a fraction of 
the acquitted, D = φ A, with φ the infection fatality factor (IFF). The ODE format D’ = μ I or D’ = μ Y can 
be rejected since it turns the model into a course in differential equations, with the need to prove D 

= φ A what can already be stated from the start. The ODE format also causes distracting questions 
what μ might be and whether there is a difference between a lethal acquittal period and a clearing 
acquittal period, and how parameters values must be adapted when the acquittal rate γ changes. 
The didactic redesign is discussed with the example of the SARS-CoV-2 pandemic. The common 
formula on herd immunity 1 - 1 / R0 assumes a steady state, but unless infections are zero then they 
actually proceed in a steady state, and thus not with the promised protection. SI(EY)A(CD) has only 
an asymptotic steady state so that this formula does not even apply. For SI(EY)A(CD) a notion of 
“near herd immunity” might be 95% of the limit values. For SARS-CoV-2, RIVM (the Dutch CDC) has 
mentioned R0 = 2.5 and herd immunity of 60%, presumably using another type of model. In 
SI(EY)A(CD) an infection with R0 = 2.5 proceeds after 60% till the limit value of 89.3%, which, with IFF 
= 1.5%, would mean another 78,000 deceased in Holland, compared to 9,000 at the end of May. For 



Public Health, it is important to balance medical and economic issues. A better understanding of 
the SI(EY)A(CD) family of models helps to gauge exit strategies for the pandemic and its economic 
crisis. A possible strategy is to eradicate the virus: with test, test, and test it would be possible to put 
positively tested persons in quarantine till they have cleared. Another possible strategy is that the 
vulnerable (elderly and comorbid younger) are put into quarantine while the less vulnerable are 
infected (in cohorts dictated by ICU capacity), effectively using the virus as its own vaccine, for a 
period of 12-16 months until there is a proper vaccine for the vulnerable compartment of society. It 
is remarkable that these scenario’s are so little discussed in policy making circles, where there 
seems to be a preference for a lock-on-off approach, that is risky and prolongs the economic crisis. 
Epidemiology exists for longer than a century and there have been many warnings about the risk of 
pandemics. Lessons learnt at the level of cities and nations are now learnt at world level. There is 
something fundamentally wrong in the relation between society in general and science & learning. 
For the democratic setup of each nation it is advisable to have both an Economic Supreme Court 
and a National Assembly of Science and Learning. We want to save lives and livelihoods but let us 
not forget fundamental insights about democracy and science & learning. 
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1. Introduction

1.1. What this notebook and package do

1.1.1. Didactic redesign

This notebook and package redesign didactics for the S(E)IR(D) → SI(EY)A(CD) epidemic models. 

- There is no new finding on content. There is no new analysis. There are no new parameter esti-
mates. 

- There is only an effort at better didactics of what already is known in the field. 

- Readers of this notebook may be researchers from other fields than epidemiology or they may be 
first-year students from a general background. Readers will have at least a first-year student under-
standing of mathematics and they will be open to the use of Mathematica. Readers will require a 
discussion that uses mathematics. 

A readership with such competence should have little problem with the standard didactics of the 
S(E)IR(D) models. Thus, an effort at improving these didactics can only have a very marginal effect. 
However, advancement comes in little steps. The pandemic will cause an interest by researchers 
from other areas and new students. They can be served by clearer exposition, with the benefit of 
computer algebra and a computable environment. One hope is that this notebook also reaches 
conventional teachers: they may not adopt all suggestions but can find some alerts. 

PM. A new element may be the distinction in quarantine classes with a colouring scheme in Chapter 
4 that could contribute to better communication.

1.1.2. There already is an abundance

In addition:

- There is an abundance of SI(EY)A(CD) modeling. Important is the Berger, Herkenhoff and Mongey 
(2020) (March 29) paper, that adapts the SEIRD → SEYCD model to test-dependent states of quaran-
tine. Their code in Python is available. These authors are not epidemiologists but they present their 
paper as a proof of concept for the exit scenario of test, test, and test. See Tabarrok (2020) for an 
independent appreciation that this exit scenario is cost-effective. Acemoglu et al. (2020) (May) 
employ a SIRD → SICD model with at least three age compartments, and plot GDP & Death policy 
frontiers. See another application in Python at Idmod.org, called “Emod”. 

- Such abundance also exists for Mathematica, see the list of references. For SARS-CoV-2 (Covid-19), 
the Kaurov (2020) collection of computational publications must be mentioned. Appendix D shows 
that one does not need this present notebook and package of mine. Who knows the S(E)IR(D) 
models and Mathematica will find it simple and straightforward to create such model in Mathemat-

ica and run a WhenEvent policy intervention. This present notebook and package only provide 
structure in use, though at the cost of a learning curve. We only assume now that (such) experi-
enced readers are willing to look at the issue from the angle of didactics. 

- There are other approaches to epidemic modeling than the SI(EY)A(CD) models. A fine discussion 
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has been given by 3Blue1Brown (2020). See the interview by Spinney (2020) with Karl Friston on 
models derived from physics. This kind of modeling is supported by Gill (2020).

1.1.3. Overview of this Introduction

This Introduction proceeds with (i) the overview of didactic redesign, (ii) the context of the SARS-
CoV-2 pandemic and exit strategies, (iii) the overview of the notebook itself.

PM. Overall, this notebook has a lot of repetition. Not only the models are much alike, but also the 
analytical properties and the explanations of the routines, and the discussion of the aspects of the 
SARS-CoV-2 pandemic (e.g. in Holland and elsewhere). The assumption has been that readers 
might skip sections (e.g. jump to their model of interest), so that such repetition is beneficial.

1.2. The renaming S(E)IR(D) → SI(EY)A(CD)

The S(E)IR(D) abbreviation stands for the family of epidemic models that have these compartments 
or phases (switched on or off): 

Susceptible - Exposed - Infectious - Cleared or Deceased

The conventional S(E)IR(D) setup uses the label “R” in three different meanings: Removed in the SIR 
model, Recovered in SIRD and SEIRD, and overall for the (basic) reproductive factor R0. Also, all 
models use the “I” for the infectious compartment, but some also for “Infected”. SEIR(D) includes 
the exposed, as the infected but not infectious yet. Since all models claim to add up to the total 
population, and the exposed did not occur in SIR or SIRD, this implies that SEIR(D) would describe a 
different population.

This family of models has been presented in this manner for half a century. Within the computer 
algebra environment of Mathematica it appeared that there is a clear advantage of a better nomen-
clature. Unique names help the identification of variables, their parameters and the application of 
associated routines. When we discuss the same population then our analysis should not be clut-
tered with issues on the administration of the compartments. While humans are flexible, computers 
are a bit less so, and when humans work with computers then humans become rather inflexible too.

This notebook and package use:

- The Acquitted A instead of the Removed. 

- The Cleared C instead of the Recovered.

- So that the A compartment can be split in A = C + D or the Cleared or Deceased.
- The Infected I can be infectious or exposed but not infectious yet.
- The Infectious Y.

- So that the I compartment can be split in I = E + Y or the Exposed and Infectious.
- So that the SIA and SICD models have E = 0 and I = Y, or that their infected I are also the infectious Y.

Thus we get the abbreviation SI(EY)A(CD). For all variables V we distinguish Vq for the levels and Vp 
for the proportions w.r.t. the population N[0]. For plotting we can also plot the current population N 

= N[0] - D.

The decision to choose these names in this manner was taken with quite some hesitation and 
consideration but would seem to be optimal. A practical argument for this compartmentalisation 
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and nomenclature is that the limit properties of SI(EY)A(CD) are determined by I (i.e. the sum I = E + 
Y) just like in the SIA model, without the need for relabeling in SEYA(CD). The introduction of the 
exposed compartment has only effect for the short run behaviour. For the (crucial) limit property 
there really is a compartment I = E + Y, apart from the temporary distinction in the phases of E and Y. 

The package allows the user to adopt the conventional nomenclature, including the possibility of 
using Y = E + I instead. The underlying programming structure however is as above, and there is no 
reason to hide it and not take advantage of it.

With a standard SEYCD model, an unhindered pandemic in Holland would have given roughly the 
following path, i.e. neglecting a change in parameters due to the intervention in March. These 
figures have only a didactic meaning, see below for a comparison to RIVM figures (the Dutch CDC).  
The first death was reported on March 6 but according to the model there were actually already 6 
that day. The eventual total death toll could have been around 250,000, with 95% reached by May 
22, and the remaining 5% spreading over the remainder of the year. Only 2% of the population 
would not have been infected at one stage. 

Table legend: S = Susceptibles (uninfected), I = Infected (exposed or infectious), D = Deceased, C = 
Cleared, N = N[0] - D remaining population, A = C + D (the acquitted). Percentages (p) are w.r.t. the 
onset, i.e. N[0]. (Table taken from below.)

pDate Day Sp Ip Dp Cp Np Ap

Onset 2020-02-23 0 100.0 0.0 0.0 0.0 100 0.0
1st Death 2020-03-06 12 100.0 0.0 0.0 0.0 100.0 0.0

1st Intervention 2020-03-18 24 99.9 0.1 0.0 0.0 100.0 0.0
Top if free 2020-04-21 58 25.0 40.3 0.5 34.1 99.5 34.7
Ap = 50% 2020-04-25 62 13.5 36.5 0.7 49.2 99.2 50.0

95% Ap[∞] 2020-05-22 89 2.4 4.5 1.4 91.7 98.6 93.1
Limit if free ∞ ∞ 2.0 0.0 1.5 96.5 98.5 98.0

The levels (q) of the relevant compartments are as follows. (Table taken from below.)
pDate Day Sq Iq Cq Dq

Onset 2020-02-23 0 17.4×106 100 0 0
1st Death 2020-03-06 12 17.4×106 1290 391 6

1st Intervention 2020-03-18 24 17.4×106 19438 6356 97
Top if free 2020-04-21 58 4.4×106 7.×106 5.9×106 90455
Ap = 50% 2020-04-25 62 2.4×106 6.3×106 8.6×106 130500

95% Ap[∞] 2020-05-22 89 419710 778037 16.×106 243034
Limit if free ∞ ∞ 344995 0 16.8×106 255825
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ReadMeSIA["Symbol"]

N[0] = S + E + Y + C + D, with I = E + Y, is the startup population of units.

N = N[0] - D is the current population, mainly used in plotting.

S are the Susceptible.

E are the Exposed but not infectious yet. (They might become diseased.)

Y are the Infectious. The (currently) Infected are I = E + Y, while C + D are have-beens.

A = C + D are the Acquitted, or the Aftermath. (A avoids confusion

with R0. A is conventionally denoted as R that may cause that confusion.)

C are the Cleared. (Avoid the confusing use of R as "Recovered".)

D are the Deceased.

I = E + Y are the Infected. In SIA E = 0 and I = Y.

O = N[0] - S - I are "the other", so that these are all SIO models.

For variable V: Vq is the level and Vp = Vq / N[0] (and explicitly not divided by N).

? ReadMeSIA

Symbol

ReadMeSIA[] gives an overall explanation of the SIA` package. See there for:

ReadMeSIA["Terminology"]

ReadMeSIA["Symbol"]

ReadMeSIA["Period"]

ReadMeSIA[model] for models SIA, SICD and SEYCD

ReadMeSIA[SEYCD, Simplify]

ReadMeSIA["Terminology"]

This terminology applies to the SICD model:

SICD improves on SIA by distinguishing A = C + D, for D deceased and C cleared.

(-Sp') is the *incidence* of infections at moment t.

Ip is the *prevalence* of infections at moment t.

1 - Sp = I + C + D is the *cumulated prevalence* at moment t (i.e. the haves and hads).

1 - Sp[∞] = Ap[∞] in both SIA and SICD is the *limit prevalence*, since Ip[∞] = 0.

Cp is the cumulated survival factor at moment t (but the Sp also count as living).

Dp is the *cumulated mortality factor* at moment t (mortality ∼ population).

Cp[∞] is the limit cumulated survival, and part of the burden of disease (infection).

Dp[∞] is the *limit (specific) Infection Mortality Factor* (IMF) (prevalence of death).

Dp[∞] / Ap[∞] = Dp[∞] / (Cp[∞] + Dp[∞]) is the *limit Infection Fatality Factor* (IFF).

MuSICD[] is the *(instantaneous) Infection Fatality Rate* (IFR) (fatality ∼ infection).

MuSICD[] = GammaSIA[] * PhiSICD[] in the model, with PhiSICD[] the IFF.

In addition for SEYCD:

Ip = Ep + Yp subdivides into Exposed (but not infectious) and Infectious.
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1.3. Infection Fatality Factor (IFF) and symptomatic Case Fatality Factor 
(sCFF)

The conventional discussion of the SI(EY)A(CD) model family is oriented at the ordinary differential 
equations (ODE). In particular, the development of the deceased compartment is modeled as: 

D’ = μ I  in SICD
D’ = μ Y  in SEYCD

This causes the question what μ stands for. What happens if the parameter γ for the infectious 
period 1/γ changes ? Would there be a distinction between a “lethal infectious period” and a 
“clearing infectious period” ? Maugeri et al. (2020) have the better format D’ = γ sCFF, for the symp-
tomatic case fatality factor (sCFF). A change in γ will not affect the sCFF and the limit property of 
the model. The Maugeri et al. (2020) formulation still relies upon the ODE format. 

It appears that the C and D compartments are mere proportions of the acquitted A department. The 
formulation as an ODE is only mathematical convenience of modelers who have adopted this 
format but it is not the essential property of the model as such. A discussion of these epidemic 

models should not be confused with a course on differential equations. Assuming that didactics is 
targeted at the relevant property, we get this structure, with φ the infection fatality factor (IFF):

A’ = γ I  in SIA(CD)
A’ = γ Y  in SEYA(CD)
D = φ A
C = (1 - φ) A = A - D

This immediately clarifies that there is no distinction between a lethal infectious period and a 
clearing infectious period: both compartments have the common 1/γ infectious period.  (Some 
readers might want to check Appendix A.)

The package allows the conventional format too, and such properties can then derived, even 
though it is also mathematically more elegant to directly specify what the model does.

This notebook and package use an Infection Fatality Factor (IFF) of 1.5%, based upon reweighing 
the Verity et al. (2020) and Ferguson et al. (2020) estimates, applying the Dutch age composition 
and inserting a special assumption on the age 70-79 group, see Colignatus (2020cd), part of which is 
reproduced below in section 2.7. In testimony for Dutch Parliament, RIVM (2020e) mentions 9,000 
deaths, and, using tests on antibodies that cause an expected value of the prevalence of infected 
(current and past) of 650,000 (3.74%), arrives at a crude IFF ≈ 1.38%, not far of the 1.5% used in this 
notebook (that is directed at didactics). 

PM. Not irrelevant: these models for infections are also used for symptomatic phases, which is also 
the case for the Goh (2020) “epidemic calculator”. Thus below we also discuss the distinction 
between the infection generation interval and the symptomatic serial interval. The sCFF has a 
higher value than the infection fatality factor (IFF) since sCFF excludes the infections without symp-

toms, which is important in the SARS-CoV-2 case.

PM. For antibody testing, see Slot et al. (2020), who also mention a 9.5% prevalence in the hardest 
hit areas, and “that the protective effect of SARS-CoV-2-specific antibodies is not yet known”. 
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1.4. The meaning of parameters R0, α, β and γ

1.4.1. Euler 1767

Leonhard Euler in 1767 already formulated a “renewal equation” for population dynamics, and the 
SI(EY)A(CD) model appears to be a reformulation in terms of (ordinary) differential equations (ODE). 
Relevant papers are Fine (2003), Svensson (2005, 2007), Breda et al. (2012) and Champredon, 
Dushoff & Earn (2018). The latter paper is quite recommendable, though they regrettably do not 
refer to Svensson while a comparison of results would have been informative. Delamater et al. 
(2019) clarify that George MacDonald who introduced the term of “reproductive number” (factor) in 
the epidemiological literature in the 1950s used Z0. See Heesterbeek (2002) for an overall brief 
history. 

The structure that seems best for didactics can be found in the Wallinga & Lipsitch (2006) paper. For 
understanding of the SI(EY)A(CD) model family we better now specify the latter main structure here 
at the outset. Let us mention two models that do not apply - the fixed period and the normal 
distribution - and one model that does apply: the exponential distribution (to be distinguished from 
exponential growth).

The general structure is that R0, β and γ are related to r, the rate of growth of the infected compart-
ment, and the Euler-Lotka "renewal" format rather than the ODE. In general a growth process x[t] 
has an average factor of growth f = (x[t] /x[0])1/t and then a rate r = f - 1 or r = Log[f] depending upon 
one’s preference for linear or exponential format. For small values r ≈ Log[1 + r] so that the formats 
differ but the numbers not so much. We may also write r = Log[1 + ρ] or 1 + ρ = Exp[r]. The process 
may be written with a linear or exponential rate x[t] = x[t-1] (1 + ρ[t]) = x[t-1] Exp[r[t]]. For a constant 
or average we get x[t] = x[0] (1 + ρ)t = x[0] Exp[r t]. A doubling period is Pd = Log[2] / r. The point for 
SI(EY)A(CD) is that exponential growth is impossible because the pool of susceptibles shrinks. 
Nevertheless, during the first growth phase the share of susceptibles is close to 1 for a relatively 
long period and we might e.g. estimate β - γ ≈ Log[2] / Pd. 

Two new variables are Pc and R0. They basically restate what has already been stated above, but 
now shift to the context of an infection.

- There is the  “generation interval”, denoted as Pc, with “c” standing for the contribution to the 2nd 
generation. This interval starts when the infector got infected, and it ends when the infector infects 
another unit (and thus when a new generation starts). (There might be some ambiguity however 
when a mean interval concerns the mean age of the new generation.)

- Starting with infector 0, the multiplication factor for the secondary infections of the new genera-
tion with be denoted by R0. Conventionally the factor is called a number, but it is in relation to the 
number count 1 of the first generation. PM. This generation interval differs from the "serial interval" 
for symptomatic disease, see Chapter 10.

The linear growth rate is r = (R0 - 1) / δ, so that R0 = 1 + δ r, in which R0 - 1 is the increase of the next 
generation compared to the single originator, and δ is the duration over which this increase hap-
pens. Rewrite r = (R0 - 1) / δ = R0 / δ - 1 / δ = β - γ, with β =  R0 / δ as the contribution to the second 
generation over the generating / infectious period of the originator, and γ = 1/δ as the rate per time. 
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It may be convenient sometimes to write γ = δH or δ = γH with H = -1 in multiplicative format, see 
Colignatus (2018). SI(EY)A(CD) models are defined in terms of β and γ and not in terms of the direct 
R0 and δ, nor even R0 δH and δH. Standard modeling then proceeds in the exponential format, see 
the following.

1.4.2. Constant generation interval

When the generation interval is constant then all secondary infections arise exactly after the same 
period. This constant Pc then is also the mean generation interval. The distribution of the infections 
over time is called the “delta distribution”. With the rate of growth r and the period over which this 
applies, the number of secondary infections will be:

R0 = Exp[r Pc] = ⅇ r Pc

The development over time would show R[t] = R0
t = Exp[r Pc t]

Above, we had the rate r = f - 1 or r = Log[f]. Now we have r = Log[R0] / Pc so that the unit of account 
for r and R0 is not 1 but the generation interval. A historical reason is that R0 counted discrete units 
rather than being an average. Another reason is that we may attach some interpretation to the 
generation interval.

1.4.3. Normal distribution

When infections arrive with a generation interval with mean Pc and a standard deviation σ then, 
with appeal to the law of large numbers, they might approximate the normal distribution. The 
Dublin-Lotka result of 1925 is:

R0 ⩵ R0DublinLotka[r, Pc, σ]

R0  ⅇr Pc-
r2 σ2

2

Note the constant value when σ = 0. Also, the more dispersion, the lower R0, meaning that faster 
growing infection paths cannot compensate for the slower paths. 

1.4.4. The SI(EY)A(CD) family

Epidemiology uses these notions from demographics for the SI(EY)A(CD) family of models. See the 
formulas and the plot of the growth rates in Section 5.7 on the SIA model. The demographic model 
assumes exponential growth of the population. This will only work in the first and final phases of an 
epidemic. For a long period, the development is distinctly not exponential. However, the first and 
last phases can still be used for estimating the relevant parameters.

The relevant distinction within the SI(EY)A(CD) family is:

(1)  Pc = Pinf, or the generation interval is also the infectious period. This assumes an exponential 
distribution.

(2)  Pc = Pexp + Pinf, or the generation interval consists of the infectious period and a preceding 
exposed period during which the unit is not infectious. This assumes the sum of two exponential 
distributions, for both exposed and infectious.

Define the infections over the infectious period as β = R0 / Pinf (the 2nd generation considered over 
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the infectious period of the originator). This holds for both models. Thus R0 = β Pinf.

The rate of leaving the infectious period is denoted as γ, so that γ = 1 / Pinf or Pinf = 1 / γ. This note-
book takes Pinf = 10 days.

The rate of leaving the exposed period is denoted as α, so that α = 1 / Pexp or Pexp = 1 / α. This 
notebook takes Pexp = 1 day.

Rewriting from periods to the parameters for the rates:

(ad 1)  Pc =  1 / γ

(ad 2)  Pc = 1 / α + 1 / γ 

Each case has its relationship between the reproductive number and the growth rate r.

(ad 1) R0 = 1 + r Pinf = 1 + r / γ

(ad 2) R0 = (1 + r Pexp)(1 + r Pinf) =  (1 + r / α)(1 + r / γ) 

PM 1. We have done quite a roundabout to reproduce the original notion that r = (R0 - 1) / Pinf ≈ 
Log[R0] / Pinf. However, while we can apply such transformation for any dynamic process at any 
particular moment in time, only the exponential distribution will generate constant parameter 
values, as assumed here.

PM 2. Using R0 = β / γ:

(ad 1)  β / γ = 1 + r / γ  or r = β - γ

For example, RIVM & Van Dissel (2020a)(the Dutch CDC) mention R0 = 2.7 and a doubling period of 
5-6 days. If the SIA model applies:

eqs = r0 ⩵ 2.7, r0 ⩵ beta  gamma, r == beta - gamma /. r → Log[2]  5.5

r0  2.7, r0 
beta

gamma
, 0.126027  beta - gamma

sol = Solve[eqs, {r0, beta, gamma}] // Quiet

{{r0 → 2.7, beta → 0.20016, gamma → 0.0741334}}

1  gamma /. sol[[1]]

13.4892

(ad 2) β / γ  =  (1 + r / α)(1 + r / γ) 

(PM. ad 2) Log[β / γ]  = Log[ (1 + r / α)(1 + r / γ)]

(PM. ad 2) Log[β] - Log[γ] ≈ β - γ = Log[1 + r / α] + Log[1 + r / γ] ≈ r / α + r / γ

(PM. ad 2) r ≈ (β - γ) / (1 / α + 1 / γ)

(PM. ad 2) The latter expression reduces for α → ∞ to r ≈ γ (β - γ) which shows that the latter is 
a worse estimate than using the original non-approximated expression (1 + r / α)(1 + r / γ) → (1 + r / 
γ). It seems advisable to use (2) rather than the linearisation.

For the RIVM figures, assuming the SEYCD model:
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eqs = r0 ⩵ 2.7, r0 ⩵ beta  gamma, r0 ⩵ 1 + r  alpha 1 + r / gamma  /.

r → Log[2]  5.5, alpha → 1

r0  2.7, r0 
beta

gamma
, r0  1.12603

0.126027

gamma
+ 1 

sol = Solve[eqs, {r0, beta, gamma}] // Quiet

{{r0 → 2.7, beta → 0.243432, gamma → 0.09016}}

1  gamma /. sol[[1]]

11.0914

PM 3. The growth of the infected = infectious in SIA can be found in r = dLog[I] = I‘ / I =  = β Sp - γ, see 
Section 5.7. It will be useful to identify the dynamic reproductive factor R0[t] = β[t] / γ[t] and the 
effective reproductive factor R[t] = R0[t] Sp[t], where the latter corrects for the influence of the 
declining share of susceptibles. In SIA thus r = (R0 Sp - 1) / δ for δ = 1/γ, which gives an effective 

version of the above. Here Sp would be a dimensionless number, as units of susceptibles per units 
of the base population. 

PM 4. It is useful here to refer to the same result as in Chapter 10. The PDF of the random variable 
that is the sum of two exponentially distributed variables is (and observe the symmetry):

SumTwoExp[α, γ, t]

α γ ⅇα (-t) - ⅇγ (-t)

γ - α

When we substitute this pdf in the Moment Generating Function as indicated by Wallinga & Lipsitch 
(2006), then (while remembering that this only holds for part of the process in SEYA(CD), namely the 
exponential phases):

R0 ⩵ 1  Integrate[ Exp[-r t] SumTwoExp[γ, α, t], {t, 0, Infinity},

Assumptions → {{r, γ, α} ∈ Reals, γ + r > 0, α + r > 0 }]

R0 
(α + r) (γ + r)

α γ

1.4.5. Empirical distributions

Wallinga & Lipsitch (2006) mention the important case when the R[t] can be taken from the moment 
generating function of an empirically observed distribution of interarrival times. Wallinga has been 
affiliated with the RIVM, the Dutch counterpart of the US CDC, and has a special professorship in 
Leiden. He is also co-editor of the “Handbook of infectious disease data analysis”. Our chapter 2 
below will copy the RIVM graph of such R[t]. See section 5.2 for terminology, with β[t] / γ[t] for the 
“dynamic reproduction factor”, while the “effective reproduction factor” R[t] also corrects for the 
level of susceptibles Sp[t].

A comment from theory is that it would remain important to distinguish different types of infec-
tious paths. (i) For a longer horizon, there are births and background deaths. (ii) When there is 
symptomatic disease, there may be asymptomatic transmission, see Chapter 10, and this may have 
complications for estimation and source and contact tracing. (iii) When one path systematically has 
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short intervals and another path has systematically longer intervals, then the joint distribution is 
not stable, and one might better distinguish two compartments. A distinction may be that the 
elderly have faster symptoms and clear later. (iv) The RIVM R[t] graph is estimated on hospital 
admissions but over time in Holland the empirical value of this series has not been constant. There 
was a learning-effect about the virus, with a shift away from hospitalisation, with deaths no longer 
tested and not officially recorded as “SARS-CoV-2 deaths” but showing up as “surplus deaths” in 
the monthly statistics.

1.4.6. Interpretation of γ, also for estimation

Above discussion with the generation interval has the didactically beneficial property that the 
emphasis lies on the periods and not the rates. In the conventional ODE format, the SI(EY)A(CD) 
models are formulated with β and γ, and subsequently the relevance of R0 = β / γ is deduced. Below 
we will also present the models with those rates. However, the above should provide some anti-
dote, that underlying assumptions already have a close connection with the periods, the rate of 
growth and the reproductive factor, via the notion that r = (R0 - 1) / Pinf ≈ Log[R0] / Pinf.

The interpretations of “infectious period” and rate of acquittal are adequate for an application for 
e.g. such natural infectious period (a “real infectious period”). The issue may become more compli-
cated when we change our assumptions and the model might not quite apply like we might 
suppose.

On occasion a better format for the model may be to replace β → R0 / Pinf. While R0 gives the num-
ber of infections, those given infections are spread over said period. A change of the "infectious 
period" then does not affect the given number of infections. In this manner, β has been made 
“variable” in order to fit the given number of infections R0. This perspective appears relevant when 
modeling and estimating an intervention. An estimation routine may be ill-conditioned for β and γ, 
and show no real differences in outcome, when their ratio R0 does not change along the ray β = R0 
γ. In this perspective the Pinf can better be seen as a normalisation factor, that cannot be changed, 
and the estimation then concerns R0 only. 

Let us consider another case when both R0 and β are reduced, with a reduction of the infections, 
accompanied by a reduction of the “infectious period”. The rise in the rate of acquittals γ causes a 
surge of the acquittals, and thus also a rise in the death toll (in the short run). Let us first give a 
numerical example before discussing the issue further. The following has values relevant for SARS-
CoV-2.

(base) There is a base case β = 0.6 and γ = 0.1. Thus R0 = 6 and the infectious period is 10 days. The 
graph below depicts this base case with dot-dashed lines (and not just dashed).

(intervention) Subsequently there is an intervention on day 24 with β = 0.4 and γ = 2. Thus R0 = 0.2 
and the infectious period is 1/2 day. This is depicted with drawn lines (the deceased dashed 
though).

The intervention is dramatically effective. The death toll quickly tops at its limiting value of some 
7000 persons (including those of before the intervention). 

(The following graphs are copied from section 16.13.)
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However, let us focus on the lower ranges. To the left of the intervention, the plotted lines overlap. 
At the intervention and some few days after it, we see a surge of clearings and deaths. With γ 
changing from 1/10 to 2, the model presumes that there is an acceleration in acquittals indeed.
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Now that the graphs have been shown it will be easier to discuss the issue. The point is that the 
SI(EY)A(CD) model concerns compartments and not necessarily events.  It is true that the interven-
tion with the quarantine reduced the “infectious period” from 10 days to 1/2 day. And it is true that 
the Infection Fatality Factor (IFF) proportion of those acquitted belongs to the compartment of the 
(soon to be) deceased. However, the intervention did not speed up the process of dying. Given the 
new “infectious period” from the intervention, the infected are properly allocated to their compart-
ment but we should not assume that this “infectious period” still would be a “natural or real infec-
tious period” (ending e.g. in death). ( A consideration might be to use D’ = μ I and not change μ, so 
that the change in the “infectious period” is borne by C’ = λ I. However, this implies changing the 
IFF. The intervention cannot change this. A given proportion of the infected belongs to the compart-
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ment of the deceased.) Thus, entry into the compartment of the deceased does not yet indicate the 
day of actual death. The estimation on the observed death toll requires that we take into account 
that the model speeds up the allocation to this compartment, so that we need a longer period from 
entry into the compartment to actual death.

The conclusion is unavoidable that the SI(EY)A(CD) model has a parameter γ that must be treated 
with some care. The reading of 1/γ as the “infectious period” would be unproblematic for the 
natural process. When this interpretation is changed, in the context of an intervention, then 1/γ is 
rather regarded as a normalising constant and the interpretation as “infectious period” should not 
be taken too literally with connotations from the other context.

PM. Also stated below: Yan & Chowell (2019:167) nicely show how the rescaling of time into τ = γ t 

changes the SEYCD model into one that is dominated by only two parameters: β / γ and α / γ. Thus 
we basically still need three parameters, the latter two, and the scaling of time. Their deduction 
however helps us to focus on R0 and these ratios, and not on β / α.  

That said, the notebook and package have the conventional formulation with β and γ and only 
consider this substitution β → R0 / Pinf as a possibility for estimation. 

1.5. Benefit of better didactics on SI(EY)A(CD) epidemic models. 
Understanding herd immunity

1.5.1. General understanding and communication

The 2020 pandemic (again) proves the relevance of the SI(EY)A(CD) models for the common under-
standing of infectious epidemics and their impact on the economy. The Goh (2020) “epidemic 
calculator” allowed perhaps millions of people a better understanding, and clarified for them the 
notion of “flattening the curve” to remain within the capacity of the health system. Pueyo (2020) 
provided clarity for many too. There is common use of the model in the literature (see the refer-
ences). The model appears to be of key importance for a world at mercy of the pandemic, not only 
for education, but also for communication between research communities and for the media and 
general public. It stands to reason, but is not guaranteed, that better didactics would be beneficial 
for such understanding and communication.

The SI(EY)A(CD) model remains too simple as a foundation for practical policy making (when we 
have better models, see e.g. Diekmann et al. (1990) and Grant (2020)). However, the model remains 
relevant for general understanding, and such general understanding very much concerns issues of 
strategy too.

1.5.2. Interpreting official reports

RIVM - the Dutch equivalent of the US CDC - provides the national reservoir of experience in infec-
tious diseases and must have employed more complex models than SI(EY)A(CD) for its substantia-
tion to the Dutch government that there was a deadly pandemic. The international reports, the 
WHO PHEIC of January 30, and the growing alarm in Dutch hospitals themselves were factors too of 
course. The point remains that, against this backdrop, the SI(EY)A(CD) family of models can still be 
regarded as a bedrock for our understanding of epidemics. 
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RIVM has had a policy of not-mentioning the death-toll at stake but focusing on flattening the curve 

with the ICU capacity as a target. The RIVM (2020a-f) reports to Parliament have a speculation about 
“avoided ICU admissions” . However, “avoided deaths” are rather implied in the published parame-
ters. RIVM has reported values of R0 to Dutch Parliament starting with 2.7, down to 2.3 and up to 2.5 
again. With R0 = 2.5 and their IFF =1.38%, the death toll for a population of 17.4 million would have 
been, had there been no intervention:

Explain[SICD[Limit, BetaSIA[] → 2.5 GammaSIA[], PhiSICD[] → 0.0138], SICD]

{S → 0.107354, I → 0, C → 0.880327, D → 0.0123185, N → 0.987681, A → 0.892646}

17.4 × 10^6 * "D" /. TheFormer

214 342.

The RIVM policy of not mentioning an implied death toll seems rather a consequence of the attitude 
of avoiding speculation and “sticking to the facts”. However, it is actually better to mention these 
implications, because death toll estimates make for a more transparant discussion about the 
“value of a statistical life”. There may be a difference between the world of Public Health (including 
economics) and the world of Medicine (without economics), with RIVM too much influenced by the 
latter.

1.5.3. Remarkable statistical fits

This notebook took R0 = 4 from the literature, and φ = 1.5 was found by using international age-
specific factors for the Dutch population composition. The explanatory power of the SI(EY)A(CD) 
model remains baffling. The following plot has used SEYCD and shows the fit of the model to the 
official number of deceased in Holland till May 20, to a total of 5748 deaths. This still excludes the 
untested non-hospitalised "surplus deaths" of these months, so that the actual death toll is likely 
9000. For all clarity: this estimation is only for didactic purposes. This uses only 15 data-points on 
the cumulative death toll, and includes a heuristic linear-proportional back-tracing of the recorded 
day of death to an estimated end of the “infectious period”. (Graph copied from below.)
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This “didactic estimate” also allows to locate the Dutch onset to between Valentine’s Day (February 
14) and Dutch Carnival (February 23). There are also reasonable estimates of the basic reproductive 
factor R0 of the period before and after the intervention of the partial lockdown announced on 
March 12 and the closing of the schools on March 15. The estimate indicates that there would have 

been some 250,000 deaths if there had been no intervention. It is testimony of the quality of the 
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model that such an estimate can be regarded as reasonable. The difference with the similarly 
implied outcome of the RIVM parameters is not overly large. It are the properties of exponential 
processes, the SI(EY)A(CD) modeling itself, and such statistical fitting that makes this inference 
about the avoided death toll so reasonable. The Dutch economy suffers a lot, but the alternative, 
this death toll, would have been stark - while it remains an open question how the economy would 
have reacted if these deaths had actually occurred. National disasters were the flood of 1953 with 
1836 deaths and the 2014 MH17 plane with 298 deaths, and we are now considering disaster sizes of 
130 floods or 800 planes.

Above graph and “didactic estimation” on the official death count figures awkwardly exclude the 
"surplus deaths" while the parameter φ = IFF = 1.5% in the estimation includes them. It would seem 
that the estimate on the distribution of deaths is not affected by the proportional parameter. A 
reduction to φ = 1% within the estimation would basically mean a lower RMSE. The model is flexible 
and can be adapted. The following graph clarifies that above estimate has used such flexibility. This 
graph shows the Root Mean Squared Error (RMSE) as a function of both the R0 before the interven-
tion (R0-pre) and the possibility that the onset of infections happened some days earlier than 
Carnival, February 23 2020.  (Graph copied from below.)

2 4 6 8 10

Earlier onset
before Feb 23

200

400

600

800

1000

RMSE

R0-pre = 4

R0-pre = 4.37

R0-pre = 4.55

R0-pre = 5.7

This notebook chose R0 = 4 with reference to the literature, before doing this estimation on Dutch 
data. The value of 4 agrees with 9-10 days earlier than Carnival: Valentine’s Day. With a higher R0 
then there is less need for an earlier onset to explain the cumulative death toll at the end of May. We 
can maintain the onset at Carnival, if R0-pre would be 5.7, and then have the same RMSE level as in 
other cases - which RMSE is so uniform low because all fits are so well (or so worse since none 
reaches 0). In all these cases we maintained γ = 0.1. The range of 4 - 5.7 seems rather large. How-
ever, it so happens for the SI(EY)A(CD) model family that this range is not unreasonable.

1.5.4. Limit values

The following gives the contours of the proportion of the acquitted A = (1 - susceptible - infected), as 
a function of R0. There is a close relation between R0 and the limit value of those affected in society. 
Remember that the death toll is a fixed proportion of the acquitted as well. Based upon the age 
composition of Dutch society, the IFF ≈ 1.5%. For our assumption of R0 = 4, the top of infections 
would have been reached after 58 days. The level of 50% of the population would have been 
reached after 62 days. The limit value of some 98% would never have been reached because it is a 
limit value. However, 95% of this limit value would have been reached after 89 days, say three 
months. The point to observe is that the values of the limit shares are rather flat in the range of 4 ≤ 
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R0 ≤ 6. This gives some leeway for above “didactic estimation” outcome.  (Graph copied from 
below.)
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1.5.5. Understanding herd immunity

RIVM informed the Dutch Prime Minister about the notion of “herd immunity” which information 
the PM used in his television speech of March 16. Rutte (2020) did not mention a specific number 
but RIVM circulated that herd immunity would be around 60% of the population, see the interview 
by journalist Tweebeeke and RIVM department head Van Dissel (2020). There are at least four 
possibilities how to arrive at such notion with such value, see Chapter 6. 

(a) When R0 ≈ 1.5, then the limit value can be 60% (see above graph). It is less likely that RIVM used 
this notion, when they explicitly reported R0 in the range of 2.7 to 2.3, and when the notion of herd 
immunity was indicated for the period after the lockdown. But conceivably RIVM might have the 
argument that R0 ≈ 1.5 might work for the new rules on social distancing. Still, RIVM then seems to 
imply that also the vulnerables would be exposed while the very idea is to protect them. The implied 
death toll is 60% * 1.5% = 0.9% of the population, or 156,600 persons. Perhaps this issue clarifies to 
RIVM that it is useful to also mention the death toll, even while it is “speculative”.

(b)Potentially, 40% of society (7 million) will remain in permanent quarantine, so that 60% (10.4 
million) would be the less vulnerables. This would work, see below, but it is remarkable that RIVM 
does not discuss the issue in these terms.

(c) Within the epidemiological literature there might be authors who are subject to confused reason-
ing with a formula 1 - 1 / R0. When RIVM has R0 = 2.5 and applies this formula then this gives 1 - 1 / 
2.5 = 60% indeed. The formula arises as follows. With Ap the proportion of immune, the effective 
reproduction (1 - Ap) R0 ≤ 1 if Ap ≥ 1 - 1 / R0. However, this still means that infections continue. The 
literature calls this "overshoot", which doesn't provide the protection that RIVM refers to. Thus the 
death toll would be higher than 156,000. The reasoning also requires a model with a steady state.

(d) The SI(EY)A(CD) family of models does not have a steady state but an “asymptotical steady 
state”. If R0 > 1 then the infections have a top when the susceptibles are at Sp = 1/R0. Perhaps this 
invites attention for 1 - Sp = 1 - 1/R0 again but this has another interpretation, because the level of 
infectiousness at this top is nonzero and not a steady state or limit value. After the top the infec-
tions decline, but the infections continue nevertheless. When R0 = 2.5, then the limit value Ap[∞] = 
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90% (see above graph). When the Acquitted are at 60%, the infection may be reducing, but is not 
over yet, and still continues with 30% * 1.5% = 0.45% of the population or 78000 deaths. 

Explain[SIA[Ip, Top, R0], SIA] (* the real top of Ip *)

S →
1

R0
, I →

R0 - log(R0) - 1

R0
, A →

log(R0)

R0


Explain[SICD[Limit, BetaSIA[] → 2.5 GammaSIA[]], SICD]

(* the limit values for R0 = 2.5 *)

{S → 0.107354, I → 0, C → 0.879256, D → 0.0133897, N → 0.98661, A → 0.892646}

In the following plot, the difference between the lines times the  population times the Infection 
Fatality Factor is the overshoot in deaths, that is not accounted for by the claim that ApHI = 1 - 1 / R0 
would give “protection” (“herd immunity”).

ApByR0Plot["HerdImmunity"]
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(abcd) In sum, the possibility cannot be excluded that Dutch RIVM was itself the cause for confusion 
here, and that it was reticent in discussing the implied death counts for such policy scenario’s. For 
journalists, it might be that it requires knowledge of mathematical modeling to know when those 
models are not needed when IFF values can applied directly.

PM. The three (inadequate) scenario’s as proposed by RIVM: https://www.rivm.nl/en/novel-coron-

avirus-covid-19/dutch-response-to-coronavirus or https://web.archive.org/web/20200527143138/http-

s://www.rivm.nl/en/novel-coronavirus-covid-19/dutch-response-to-coronavirus.

1.5.6. Relevance of better didactics

A presumption of better didactics is that it would be beneficial for the general discussion, at least 
within the wider community of researchers and policy makers, when such notions, as just dis-
cussed, would be well-understood. 

PM. In a paper that got through peer-review, Ioannidis (2020) (my italics): “Focusing on protecting 
susceptible individuals may be preferable to maintaining countrywide lockdowns longterm.” Likely 
he means “protecting vulnerable individuals”. With the terminology of epidemiological models, 
protection of all susceptibles requires a national lockdown.
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1.6. A nasty virus, asking for eradication. A challenge anyway

1.6.1. A world at risk but also badly managed

John Snow (1813-1858) is considered one of the founders of modern epidemiology, when he deliber-
ately searched for and identified a Soho water pump in the London cholera epidemic of 1854. We 
are more than 150 years later. It is not for nought that the world has set up the WHO and created 
the notion of an official warning of a public health emergency of international concern (PHEIC). 
Recent more general warnings were e.g. from HIV / AIDS 1981-present, SARS 2003, MERS 2012-
present, the Mexican “swine flu” 2009, Ebola 2013-2016 and 2018-2020 and still risky, and Zika 
2015-2016. Microsoft founder Bill Gates is credited for a 2015 TED talk warning for “the next out-
break”. Piot (2018) is more recent and essentially more qualified. The UK government provided for 
a study how to respond to pandemics, which study was duly used by Singapore for the current 
SARS-CoV-2 outbreak. However, it was not used by the UK itself. The USA response team was 
dismantled from the US White House a few years ago. Something has gone badly wrong in the last 
decade. The world in the last few years shows a huge pandemic mismanagement, likely caused by 
fundamental misunderstandings, while the issue was already clearly spelled out in the literature 
decades ago.  

Observations are: (1) The health community has a hierarchical setup and mindset while the eco-
nomic community is more liberally minded. When top health officials do not strongly criticise policy 
makers - because they have to work with them on a daily basis - then the health community appar-
ently also subdues criticism. But economics is not perfect either. (2) What are severely lacking in the 
democratic setup of each nation are both an Economic Supreme Court and a National Assembly of 

Science and Learning, see Colignatus (2020a).

1.6.2. Prevent future pandemics

Future pandemics are better prevented. The BBC Horizon (2020) broadcast can be much recom-
mended for its overview of the issue and essential information, including the discussion of the WHO 
2018 warning on pandemics and the identification of risk "hotspots". At roots, the lessons already 
learnt on epidemics ages ago are rediscovered for the world-scale without world-governance, and 
with scientists already warning for decades. Mankind is advised to make some fundamental 
changes, towards much lower world population and  environmentally sustainability, including less 
contact with wildlife and their pathogens, but also in the information and decision making struc-
ture in society, see Colignatus (2020ab).

There is a perspective that SARS-CoV-2 might only mean a reduction of life-expectancy of 1%, see 
Richardson & Spiegelhalter (2020). For Dutch readers there is Jaspers (2020). From this perspective, 
there is only a limited effect, and there might be no need for more involved changes. However, the 
other view is that we got only lucky now. And perhaps we are not so lucky actually, since the virus 
appears to be a nasty one.

1.6.3. A nasty virus, asking for eradication
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SARS-CoV-2 is a nasty virus that attacks many parts of the body, see the column by Collins (2020), 
the director of the US National Institutes of Health (NIH), and the interview with Longley by BBC 
Horizon (2020) (May 26). For Dutch readers there is De Visser (2020). A possibility is also that the 
body is cleared of infection but that the immune system is out of control and starts to attack the 
own body.

Draulans & Piot (2020), is an interview with Piot, who suffered the virus, and who says: 

"Many people think COVID-19 kills 1% of patients, and the rest get away with some flu-like symp-
toms. But the story gets more complicated. Many people will be left with chronic kidney and heart 
problems. Even their neural system is disrupted. There will be hundreds of thousands of people 
worldwide, possibly more, who will need treatments such as renal dialysis for the rest of their lives. 
The more we learn about the coronavirus, the more questions arise. We are learning while we are 
sailing. That's why I get so annoyed by the many commentators on the sidelines who, without 
much insight, criticize the scientists and policymakers trying hard to get the epidemic under con-
trol. That's very unfair." 

Viruses mutate fast, and are apt in exchanging parts of their RNA, and we would not want that this 
"multi-system attack property" is spread amongst viruses. Perhaps it is still feasible to choose for 
eradication. The example of smallpox, eradicated, and polio, though still with problems, is encourag-
ing, see WHO GPEI & Heymann (2020). This notebook will not arrive at a choice, and only mention 
the options: either eradication or find a way to live with the virus till there is a vaccine. There is an 
overlap in measures: a discussion about “herd immunity” might also fit a scenario of eradication.

Piot also states: “Let’s be clear: Without a coronavirus vaccine, we will never be able to live nor-
mally again. The only real exit strategy from this crisis is a vaccine that can be rolled out worldwide. 
That means producing billions of doses of it, which, in itself, is a huge challenge in terms of manufac-
turing logistics. And despite the efforts, it is still not even certain that developing a COVID-19 vac-
cine is possible.”

1.6.4. Under normal conditions the virus can no longer be contained

If we want to eradicate SARS-CoV-2 then special conditions must apply. Under normal conditions it 
can no longer be contained in the world. The reasons for the latter are standard from an introduc-
tory course in infectious disease - see e.g. BCM (2020).

- getting a vaccine takes time (perhaps 1.5 years) … and then give it to 7.5 billion people on the 
planet
- health care is under strain, will perform less well, thus there will be breaches and ever newer 
infections
- the virus already shows mutations and is likely to continue to do so: every new mutation would 
require a swift reaction for new containment – but the health care system already is under strain
- special for SARS-CoV-2: the pandemic cannot be suppressed because of the asymptomatic 

infectious.

Kissler et al. (2020) at Harvard mention already two strains and suggest that intermediate periods 
of national lockdowns might be needed (“lock-on-off”). The logic is impeccable, and worthy of 
more than a century of research in epidemiology. The logic however leads to the absurd conclusion 
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that we must destroy our economy in order to save lives, while the destruction of the economy also 
costs lives - not included in their study. Epidemiologists have lived too long in a world that 
accepted models without consequences for the economy.

Less developed nations lack the medical systems of the developed world, will be open to the virus, 
and will form breeding grounds for new waves and mutations. Developed nations might think that 
they might insulate themselves by containment and suppression, but it is dubious that they can 
insulate themselves forever.  We can expect waves of new infections indeed, like with the flu, but 
then 10 times more infectious / deadlier than the flu, with the risk of shorter intervals because of 
faster mutations. The Northern hemisphere now benefits from the Summer, but in Autumn the 
reduced health because of the common cold and flu will combine with SARS-CoV-2, causing 
increased joint mortality. The Summer of 2020 should rather not be wasted. 

There are more than 7.5 billion people on the planet. Not all will comply with quarantine or get the 
eventual vaccine in time. Viruses mutate. This virus derives from the common cold strain and 
people may lose immunity after a period. The economic price of national lockdowns is high and it 
seems that the virus is “not terrible or deadly enough” for people to bear that price, causing much 
indecision and delay perhaps till it is too late again.

1.6.5. Return to some normalcy, or consider what urgently requires 
improvement

With the pandemic still continuing, the medical world faces the challenge to restore care to the 
level of before the pandemic.  Gupta (2020) reports that some 40% of normal care has fallen away 
because of the focus on SARS-CoV-2 and the fear amongst patients of getting infected in the hospi-
tal. De Rek & Goudsmit (2020) is an interview with virologist Jaap Goudsmit (involved in finding HIV) 
who comments that the emergency brake of the national lockdown contained the problem but that 
normal care ought to be restored, and: (i) there is a lack of data, (ii) reliance on models means also 
a reliance upon assumptions, (iii) there is too little attention for scenario’s (the three scenario’s 
presented by RIVM are not enough). See https://jaapgoudsmit-over-corona.nl/

The economy faces the similar challenge, see Baldwin (2020ab), Baldwin & Weder di Mauro (2020), 
Berger et al. (2020) and Acemoglu et al. (2020).

A core question is: if some return to normalcy would be possible today, in May through September 
2020, then why wasn’t it considered in January ? Was it really necessary for Western Europe to first 
have this wave and national lockdowns from February to May, before its CDCs, governments and 
citizens would accept the idea that “normalcy” would require some adaptation ? If CDCs have only 
an advisory role, what happened at the government Departments of Health ? Indeed, it is reported 
that Taiwan, Hong Kong, Singapore and South Korea learned their lessons by the SARS-CoV-1 
epidemic in 2003.  Would this mean that countries can only learn from disasters happening on their 

own territory ? And if this would be the sad truth indeed, then what have countries learned from the 

present episode ? (It is said, however, that Singapore used the pandemic scenario developed in 
London, that London itself did not use. Thus Singapore can learn, and what is so special about 
Singapore ?)

RIVM, the Dutch counterpart of the US CDC, issued a health warning in January. RIVM (2020) advised 
the Ministry to give alert status A to SARS-CoV-2, which e.g. allows mandatory quarantine. This 
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status was assigned. (https://www.rivm.nl/meldingsplicht-infectieziekten/welke-infectieziekten-
zijn-meldingsplichtig) However, when a general practitioner doctor (GP) reports a case, the case is 
only a “suspected case”, and there is no legal obligation for microbiological testing, and somehow 
this then isn’t done. Thus, Dutch statistics, with the official death toll of 5748 at the end of May 
2020, are based upon hospital admissions. RIVM’s modelers estimated the dynamic reproductive 
number R[t] as getting below 1 by March 16, but based upon such hospital admissions where such 
testing is done. At the end of May, CBS Statistics Netherlands reported a total of 9000 “surplus 
death”, i.e. above the normal level expected from earlier years. Thus some 3000 cases (likely mostly 
reported) were left untested. Why doesn’t RIVM make sure that all suspected cases are tested and 

included in the official statistics ? If making sure that statistics are collected is not in their job descrip-
tion, then in whose job description is it ?

Originally there was source and contact tracing by GGD but this was later repealed when the num-
ber of cases rose, instead of hiring more people to do the job. In May, the GGD director stated that 
they would be capable to take up source and contact tracing again. The media and eventually 
Parliament found it problematic that he mentioned some 2-3 hours per case, and that he intended 
to use of a letter of warning. Germany uses some 16 hours per case. A letter of warning might be 
used for a sexually transmitted infection while SARS-CoV-2 requires direct telephone calls. 

If Holland had clammed down the infections from January like Taiwan did, and e.g. forbidden 
Carnival, and quarantined the provinces of Brabant and Limburg where they had the Carnival 
festivities anyway, then the economy would not have needed to lock down, and 9000 deaths by the 
end of May could have been prevented. Comparison with Malaysia Airlines MH17 with 298 deaths in 
2014 might be seen as somewhat dramatic, but we are speaking about thirty of such disasters, 
caused by home-grown failure of the protective system.

So, if RIVM is only advisory, what prevented the Dutch Ministry of Health from seeing the notion of a 
pandemic in proper perspective, even while there had been ample warnings about pandemics 
before, and while they are the professionals on public health ? If we can understand what is blocking 
insights at government Departments of Health the world over, then perhaps we can find out what is 
blocking the insight on preventing pandemics in the first place. Yes, indeed “the world” is a big 
vague place outside of your own territory, but are you sure that you can really continue to neglect it 
?

1.6.6. While there is no vaccine: options for an exit strategy

In all cases, there remains the challenge for the upcoming period till there would be a vaccine. 

As an economist, I find it remarkable that the Dutch Prime Minister Mark Rutte (2020) (March 16) 
spoke about "herd immunity", first as one of the aims of the Dutch partial lockdown but later 
corrected to only a consequence and by-product of the real policy aim of flattening the curve. A 
crucial question is: if the government allows the virus to spread in a more natural way amongst the 
less-vulnerables, as a by-product, then why not use the virus as its own vaccine ? Apparently there 
is only the problem of responsibility - so to speak "the (legal) blame" - of who causes an infection, 
especially when it goes wrong: either some "natural cause", or the person self or a vaccinator. This 
issue of responsibility can better be discussed openly with an evaluation of the options, risks and 
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costs involved. Also with an eye on future pandemics (that we rather ought to prevent though). 
Obviously, herd immunity is an objective in any vaccination programme, and vaccines differ from 
the dangerous pathogens: so the properly phrased question is whether this virus for this target 
subgroup of the less-vulnerables is like such vaccine and thus not the dangerous pathogen as it is 
for the vulnerables. One cannot avoid the impression that the Dutch government thought so, as it 
allowed the virus to spread (though asking for self-quarantine).

Another element is: a vaccine test on humans also requires deliberate infection. McKie (2020) 
reports in May about the Van Bunnik et al. (2020) paper: “UK scientists want to infect volunteers 
with Covid-19 in race to find vaccine. Trials could be speeded up by using risky strategy of deliber-
ately introducing the virus”.  Critical researcher Riley at Edinburgh University: “Challenge studies 
are done for many diseases but only when strict criteria are followed. Firstly, the virus should be 
really well studied and its clinical behaviour understood in detail. It should also be incapable of 
causing severe illness in healthy individuals, or there should be a highly effective drug to clear the 
infection. None of these criteria are met for Covid-19, and I would be very concerned to hear chal-
lenge studies were being planned.” The latter reasoning is within the well-defined world of medical 
testing and its protocols. It neglects the phenomenon that the lifting of lockdown will cause the 
virus to spread again anyhow, and that the economy collapses if we do not lift the lockdown. 

There are four main scenario’s on the table. All scenario’s rely upon some notion of infection status.  
Chapter 4 distinguishes actually 11 compartments with own risk profiles, and the compartments 
are indicated by a colouring scheme. An inspiration was my suggestion of having a “passport” for 
the status on sexually transmitted infections, see Colignatus (2004). At issue is not whether such 
compartments might exist, since any scenario uses their existence. At issue is whether it is feasible 
or even desirable to give an official role for such compartments.

(1) The current policy by the Dutch government: muddle through, wait and see, prepare ICU capac-
ity for the Autumn, apparently especially for the vulnerable compartment that has only a 50% of 
survival at the ICU (see below “ad 1”).

(2) Lock-on-off. The “Harvard study”, or Kissler et al. (2020). RIVM commented on it favourably, but 
also called it risky, and it need not be the policy of the Dutch government. Kissler et al. (2020) point 
to the need to have (recurrent) lock-on-offs to “flatten the curve” and remain within the capacity of 
the health system. They suggest that over two years some “herd immunity” can arise as a by-
product as well. Thus, they allow infections, but shift the blame to “natural causes”. They might 
also think that it is impossible to shield the vulnerables by quarantine so that there indeed would be 
a high demand for the ICU. Remarkably, RIVM (2020ef) in May still discuss only the Harvard study 
but not the two following options that should already have been obvious in February too.

(3) Eradication. There is the test, test, and test approach, and then quarantine anybody who tests 
positive. Berger, Herkenhoff and Mongey (2020) provide a model-based proof of concept. Tabarrok 
(2020) supports the cost-effectiveness. Suppression fits the observation by Draulans and Piot (2020) 
that an infection may cause more damage than thought. It may be that the use of a SI(EY)A(CD) 
model is required for the proof of concept, but one might also argue that the method would be 
logical by itself too. The death toll could likely be calculated directly without a model run. In Hol-
land in March, RIVM stated that there was a lack of tests. However, Alex Friedrich, head of microbiol-
ogy and infection diseases of the University of Groningen medical center (UMCG), states that RIVM 
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made a deliberate decision, and he arranged a testing strategy for Groningen, see 1V EenVandaag 
(2020) (April 17). RIVM misinformed the public about the options. At the end of May, the government 
and RIVM are making tests available for the whole country. Tweebeeke & Sietsma (2020) (June 10) 
report that elderly home care managers are distressed and furious that the much higher available 
capacity for testing has not been used at a much earlier moment.

(4) Segment and shield. A policy is to distinguish a compartment of vulnerables - say 60+ and those 
with comorbidity - and a compartment of less vulnerables - the younger others though perhaps still 
with some hidden risk. Van Bunnik et al. (2020) (May 5) call this “segmenting and shielding”, see 
also Sample & Mason (2020). The issue is discussed by Colignatus (2020bcd) (March 31) and with a 
full model by epidemiologists De Vlas & Coffeng (2020) (April 12) at Erasmus MC, while Frijters 
(2020) (March 21) has much by implication. A non-quantitative discussion is by Eichenberger et al. 
(2020) (March 25), who also point to the rising frustration by the immune compartment when they 

would be subjected to a string of lock-on-offs. Criticism is: (a) Sridhar & Rafiei (2020) argue that it is 
practically impossible to shield the vulnerables. Government policies like in the UK and Holland 
already promised such shielding but actually only achieved this by the national lockdown. Adamik 
et al. (2020) alert us that families magnify the number of contacts. The proper question is: Have we 

done enough to achieve the required shielding ? (b) There is the protest that deliberate infection runs 
against the rules for vaccination. This is better seen in the light of the Draulans and Piot (2020) 
observation that it is a nasty virus that can have chronic effects. If there were no nasty effects then 
the principle on vaccination would actually be adhered to (which is also why the idea originated).

We arrive at the latter scenario without the SI(EY)A(CD) models. Thus, our praise for SI(EY)A(CD) is 
guarded. We could have arrived at such compartmentalisation also in February, right after the WHO 
declaration of the PHEIC. A modeler’s question obviously is whether these two sections in the 
population can be put into the  model, and how would they interact ? To some extent it is remark-
able and even amazing that RIVM in its reports to Dutch parliament hasn’t much reported on these 
two structural compartments, and still presents only a single R[t], as if persons from the two com-
partments could freely mingle, and as if it should not be obvious that there is quite a distinction 
between the elderly and comorbids who would always have to be quarantined and the others for 
who contact reduction is less relevant.

Consider the following figures about the Dutch population, latest age-group data of 2019, using the 
level of 17.4 million of 2020. For SARS-CoV-2 there are 9000 “surplus deaths” including 5748 official 
deaths, of which 177 below the age of 60, of which none in the ages 9-14. Let us allocate the 3252 = 
9000 - 5748 unofficial deaths in proportion. The distinction of the chronically ill and multi-morbid 
are by Van Oostrom et al. (2011). Multi-morbidity is defined as having at least 2 chronic afflictions. 
Their age-group specific prevalences are applied to the age-groups of 2019. It is remarkable that the 
younger vulnerables have such a low SARS-CoV-2 death score, but they do not tend to live in care 
homes. 

Category \ Age < 60 60 + Total

Population 2019 12.9 4.5 17.4 million

Chronically ill 3.4 3.1 6.4 million

Multi morbid 0.9 1.8 2.7 million
SARS - CoV - 2 dead 177 5571 5748 persons

Idem unofficial 100 3152 3252 persons
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Let us identify the vulnerables as the 60+ and the younger chronically ill (which includes the multi-
morbid), thus 4.5 + 3.4 ≈ 7.9 million (45%). Then the less-vulnerables are 9.5 million (55%).

Let us assume that the vulnerables are put into quarantine but that 1% of quarantines will be 
breached, with the group-specific IFF of 5.1% (observed for the 60+), meaning 7.9 million x 1% x 
5.1% ≈ 4029 deaths. Potentially, all these deaths have tried the ICU with a 50% chance of survival 
(but still this net outcome). Regrettably there is no good indication for the IFF of the younger 
vulnerables.

The less-vulnerables will have the (observed) group-specific IFF of 0.06%. Avoiding the confusion of 
"herd immunity" we adopt 95% of the limit value Ap[∞]. With a R0 = 4 (chosen from the literature), 
the limit value of all infections is Ap[∞] = 0.98. A value of 95% of this limit value is 93.1% and this is 
reached after some three months. This means 9.5 million x 93.1% x 0.06% ≈ 5307 deaths. All these 
youngsters will likely have been to the ICU, with a 90% chance at survival (and still said net out-
come). The ICU will not be oversupplied (allowing for normal service too) if the infections take place 
in cohorts of 325,000 every 1.5 weeks, for a total of some 10 months. These cohorts are spread over 
hospital service areas. These assumptions give the following table, and a more detailed discussion 
with an Excel spreadsheet is provided by Colignatus (2020d) (update in the next week).

Category \ Compartment Vulnerables Less Vulnerables Total

Population 2019 7.9 9.5 17.4 million

Infected : breaches vs deliberate 1×% 93.1×% 8.9 million

Infection Fatality Factor (IFF) 5.1×% 0.06×% Quarantine average
SARS - CoV - 2 deaths 4029 5307 9336 persons

Maximum deaths (100×%) 402 900 5700 408 600 persons

At issue is not the choice between lockdown versus “let the pandemic run its course”. At issue is a 
sound (and not only preached) quarantine of the vulnerable and possibly deliberate (self-) infection 
of the less-vulnerable with sufficient medical backup if something goes wrong (because it remains 
risky to predict who would be less-vulnerable). This does not yet include the observation by Peter 
Piot on chronic effects of infection.

The scheme is not without risks, for example when people cross the quarantine barriers. This idea 
thus requires close discussion. See Van Bunnik et al. (2020) for their version of “segment and shield” 
and self-infection, see also McKie (2020). The idea to deliberately speed up the path to the limit 
values provides a way to cope with the economic recession, which otherwise might develop into 
worse than the Depression of 1930-1941. The world has some luck that the SARS-CoV-2 pandemic 
hits an identifiable compartment in society. In another situation, when potential victims cannot be 
identified so easily, it would be much harder to think of a solution approach (other than test, test, 

and test). The sobering idea is the observation by Peter Piot that we actually may be in such a much 
harder situation, with a burden of disease that still must be diagnosed.

Above compartmentalisation could have been done in February with the information available at 
that time. Why were these policy options not formulated in this manner ? The potential answer is: 
RIVM might be rather a “Bureau of Infection Statistics” and not an “Infection Planning Bureau”. 
Though there are “the three scenario’s”, also on the RIVM website, it still seems as if they do not 
have a tradition of making such scenario’s, and if they do not wish to speculate about the number 
of deaths as if such discussion would make it seem as if they are responsible for those deaths. RIVM 
advises, they report and trace infections and advise on vaccinations rather than “plan” infections in 
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the sense of advising on organising who gets what. Vaccinations are designed to protect the vaccina-

tor from accusations of wrong-doing. By consequence, at the end of May, Holland has 9000 deaths, 
but precisely in the category of the vulnerables, the very group that RIVM advised to protect. Risk 
aversion behaviour caused the risk to actually happen (to others than RIVM itself). And while Hol-
land in May somewhat recovers from the first wave, above scenario with another 9336 deaths is still 
in the waiting, at least if we want “segment and shield” as an exit strategy for the economic crisis.

(ad 1) We can compare with the Dutch planning on ICU beds, see NVIC & Gommers (2020) and NVIC 
(2020) (April 26), the Dutch association of intensive care doctors. Their calculation is elementary. 
Their population are the 20+ aged: 13,490,325. They observe that 4% has been infected (based upon 
testing of blood samples) and that this will grow to 60% in the next three years. (Possibly confused 
about herd immunity, or assuming a permanent quarantine of 40%, or assuming a R0 = 1.5.) The 4% 
arose over 8 weeks, so that the other 56% would take some 112 weeks, but with a lower R0 they 
now assume 156 weeks or three years. Of the infected, 0.45% arrives at the ICU. (Thus they assume 
that the vulnerables will not be protected, because only those have such high demand.) With 19 
days per patient (indeed for the vulnerables) this translates into 700,000 bed-days. In the 8 weeks 
from March to April 2020 there were 2500 patients. With another 37500 persons to go, this would 
imply 15 other 8 week periods. While 1150 ICU beds is the Dutch standard, the new standard would 
be 1531 beds. A peak capacity of 2400 beds seems required. NVIC admits that regular care has 
suffered from the SARS-CoV-2 episode. What is remarkable in this calculation is that NVIC does not 
distinguish between the two compartments. It is remarkable that they do not mention the death 
toll: they plan beds, and if survival is only 50%, then this is not in their planning. They do not 
strongly advise that much more is done to prevent vulnerable patients to get infected in the first 
place. This kind of planning helps to obscure the issue. When there are sufficient beds available, 
then beginning-of-pipe organisations with care of the vulnerables might think that they have room 
to send patients downstream, while an infection may still come with quite some risk.

We will return to the issue in Chapter 2. In all cases, a discussion of these aspects requires an 
underlying understanding of epidemics. This translates as a basic understanding of models of 
epidemics.

1.6.7. Information that is missing now about such scenarios

Information that is missing now, and that we would need for informed decision making, is the 
following.

Common effect measures are lives extended (“lives saved”) and (quality adjusted) life-years gained. 
Colignatus (2003) (2020b) proposes the Unit-Sqrt compromise: though mortality and qaly’s might 
no longer be needed, it still would be useful to calculate them to clarify the compromise. The issue 
is complicated by the Piot (2020) implication of chronic effects (an argument for eradication and an 
argument against deliberate infection: but there is uncertainty about the effect size), and we may 
include the increased awareness of the Post Intensive Care Syndrome (PICS). Such effects do not 
affect the death count but reduce the qaly’s and increase economic costs. PM. Such effect mea-
sures require the extension of the modeling with the hospital sector, not included in the present 
SI(EY)A(CD) model family. Models with such enlargement are Goh (2020) and Berger et al. (2020) 
and Acemoglu et al. (2020). Relevant is Bodenstein, Corsetti, Guerrieri (2020), for the distinctions in 
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economic sectors, and that rational policies, including lockdowns, are preferable above chaos. For 
the present modeling, I give priority on didactics above including such enlargements.

While the alternative scenarios of eradication (assuming that asymptomatic infection allows this) 
versus “segment and shield” (with quarantine for the vulnerables and cohort-wise deliberate 
infection for the less vulnerables) seem rather well defined, it is still unclear what the current 
government policy is (except that it starts to look like the Harvard lock-on-off), and it needs to be 
defined if we want to be able to compare outcomes. 

For the base scenario, the first half of the year 2020 forms a sunk cost. We would be interested in an 
evaluation but there is no use in crying over spilled milk (except for restructuring the social decision 
making process). We better start from the present state of the economy and health system, and 
work from there. Since government policy can be expected to be erratic, we need a stable base 
scenario. The best selection is a path that avoids global warming and reduces the risks of future 
pandemics. It would be rather irrational to assume a path towards global warming with new pan-
demics, and then try to micro-manage the case of 2020 on this path. Indeed, it makes sense to 
assume a structural change, and then evaluate policies about SARS-CoV-2 in this context. See 
Colignatus (2020fg) for the Tinbergen & Hueting approach in the economics of National Accounts 
and ecological survival.

The required information is in the following table. We would gauge the costs not only in sizeable 
percentages of national income and national debt, but also in terms of unemployment, private 
debt and bankruptcy, and measures of inequality. We see a strange combination of both epidemio-
logical modeling that reckons in days and macro-economic modeling that concerns the medium 
term (5 years) and the long term (the year 2100). A new topic is how the standard economic models 
would need to be adapted to the new circumstances - while it seems that we did not yet finish the 
discussion on including the financial crisis. PM. Mortality rates are w.r.t. the population (as opposed 
to the IFF that is w.r.t. the infected). PM. S&S = “segment and shield”.

Category \ Compartment Vulnerables Less Vulnerables Total

Population 2019 7.9 9.5 17.4 million

Mortality by SARS - CoV - 2 μVC μLC (2020 as sunk cost)

Mortality by reduced care μVR μLR take a longer horizon

Mortality in eradication μVE μLE needs elaboration

Mortality in S & S μVA μLA quarantine vs deliberate infection

Lifeyears Lost by SARS - CoV - 2 λVC λLC (2020 as sunk cost)

Lifeyears lost by reduced care λVR λLR (2020 as sunk cost)

Lifeyears lost in eradication λVE λLE
Lifeyears lost in S & S λVA λLA

Unit sqrt measure, govt policy υVC& R υVL& R Colignatus (2003)

Unit sqrt in eradication υVE υLE
Unit sqrt in S & S υVA υLA

Economic cost, govt policy likely aggregate only

Economic cost in eradication cost defined w.r.t. base scenario

Economic cost in S & S

1.7. Summary of a complex objective

In summary, this notebook has a complex objective:
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(a) Redesign of didactics about SI(EY)A(CD) in order to reduce confusion.
(b) Document the latter within the computer algebra environment of Mathematica.

(c) Middle of the road: we may assume novice readers but do not aspire at an introductory course 

for novices, and allow for refreshment for modelers.
(d) Make this modeling and documentation very accessible for others, also for variants.
(e) Use SARS-CoV-2 parameter estimates and scenarios as examples for such SI(EY)A(CD).
(f) Place the discussion within the literature, with real data and commentary about the quality of 
the data.
(g) Allow for some creativity along the way, like the use of colour-coding for (quarantine) compart-
ments.
(h) Give the context of above exit strategies of eradication or using the virus as its own vaccine.
(i) Identify what information is missing, which we need when we want to make informed decisions.
(j) Regard the pandemic as only an example of a much more fundamental issue, see Colignatus 
(2020a).

SI(EY)A(CD) is only a very basic model. It is adequate only for outlining the exit strategies. It allows 
us to show that the current (partial) lockdown is wise as an emergency brake - for Holland - given 
the otherwise deadly outbreak, with a rough indication of how many deaths would have occurred 
otherwise. It allows us to observe that said exit strategies were already feasible in February, so that 
the lockdown in March was an emergency brake indeed. It also allows us (in a later notebook) to 
evaluate the (quality adjusted) life-years gained, since we should not focus on the mortality count 
only. 

1.8. Structure of this notebook

The SIA, SICD and SEYCD models are discussed sequentially in Chapters 5-9. Each opens with a first 
practical chapter on model structure and how to run the software and proceeds with a second 
chapter on analytical properties (supported by other routines). There is no analytical chapter on 
SICD since the model merely splits A = C + D. 

The SI(EY)A(CD) model family is formulated for infections but is also applied for symptomatic 
disease.  Chapter 10 thus discusses the distinction between the infection generation interval and 
the symptomatic serial interval. There is no suggestion of new didactics on this, and the discussion 
here is only provided for completeness, taking advantage of the best presentations that I have seen 
elsewhere.

Chapter 11 compares with four empirical studies, reproducing their model within the present 
environment. Those studies tend to use symptomatic disease, for the obvious reasons that patients 
turn up when they have symptoms and that (lab) testing is not easily arranged. Chapter 11 does 
actual model runs, while some such comparisons are already mentioned in Chapter 10.

Intervention and estimation have a complexity of their own. Chapter 12 gives a short overview. 
One method is the use of full separate models. Alternatively, there is also Mathematica’s 
WhenEvent feature that can be used fruitfully for estimation. Chapter 13 compares base and 
alternative scenarios using full SEYCD models.  Chapter 14 discusses the death toll data that might 
be used for estimation. Chapter 15 uses the WhenEvent structure for R0, with a “model insert” 
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SEYCDT - “T” for “time of intervention”. Chapter 16 is analogous, with SEYCDB for β. The last 
subsection of the chapter does a “post-mortem” on γ, the result of which has been shown in the 
Introduction, section 1.4.6. In all estimation we regard γ = 1/10  as a given normalisation parameter. 

This present notebook is not a developed “course”. There are no student syllabus and teacher’s 

manual. This notebook serves both such purposes now. The assumption is that new students look 
at all material and that experienced readers (teachers) might take bigger steps. In some sense, the 
Introduction chapter is a teacher’s manual. Novice readers will understand little about this Introduc-

tion but can return to it after reading the subsequent chapters. PM. This notebook and package 
target didactics, and do not target education. Still, while writing, I have been increasingly assuming 
that this notebook might also be used by first year students under guidance of their teachers. 
Supplementary introductory comments for this have been put in Appendices A, B and C. Appendix 
A is advisable and B & C may be useful.

Appendix A discusses the basic Success versus Failure model, with exponential decay of Success, 
and with Failure collecting the fall-out. The model is basic for understanding the relationship 
between factor and rate, the relation between rate and period = 1/rate, the notion of a half-life, and 
for the comparison of dynamic events and the exponential probability distribution. Appendix B 
refers to my background on queueing theory and related packages in The Economics Pack. Epidemio-
logical models with interarrival periods have a conceptual overlap with some queueing theory. The 
distinction between exposed and infectious phases concerns sequential processing but the distinc-
tion between cleared and deceased is not parallel processing but merely proportional allocation. 
Appendix C refers to other survival analysis packages in The Economics Pack. Appendix D shows 
that one does not need this notebook and package. For who knows the S(E)IR(D) models and 
Mathematica, it is simple and straightforward to create such model in Mathematica and run a 
WhenEvent policy intervention with it. The present notebook and package only provide for some 
structure, and intended didactics. The present notebook and package also confront the user with a 
learning curve which might slow down needlessly. Mathematica is a wonderful computer algebra 
environment but has a learning curve of its own. There is always the issue that when some routine 
doesn’t (quite) do what one wishes, or doesn’t work for other applications than shown in the 
example, then it might be easier to adapt or trace errors when you have written the routine your-
self. For example, the SI(EY)A(CD) model family has extensions with Birth and background death, 
that allow for annual dynamics in infection processes (and a real steady state), and likely more 
relevant notions of herd immunity: this is not implemented here. A user faces the question whether 
to try to adapt what has been presented here or find alternatives. 

These Chapters on SI(EY)A(CD) are preceded by the following three chapters. Chapter 3 is on the 
Survival`SIA` package, its limitations, and repeats the aims in didactics and application, but now 
directed at the level of programming. Chapter 4 discusses compartments and quarantine colour 
coding. There are more compartments in the real world than used in SI(EY)A(CD). For a policy 
discussion on SARS-CoV-2 it is relevant to distinguish between the more vulnerables and the less 
vulnerables, but these compartments are not in the models that we look at. Thinking about quaran-
tine caused me to design a colour scheme anyway. This scheme was at least useful for the current 
plotting of SI(EY)A(CD) graphs.

Finally there is Chapter 2, following next, about the Dutch timeline and some issues of strategy and 
policy making. The Dutch performance is actually not so well. While the WHO issued its PHEIC on 
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January 30, i.e. announced that there was a pandemic, the month of February was basically not 
used in Holland. The period of the (partial) lockdown since March 18 has passed much in waiting 
and without developing clarity about an exit strategy. Is the world going to try to exterminate SARS-
CoV-2 or are we going to accept and perhaps even target some (potentially confused notion of) 
herd immunity or .... ? Such issues of strategy however are not in the SI(EY)A(CD) models them-
selves. This notebook and package were written partly to clarify that some points ought to be clear 
at the foundational level. The focus was on didactics and there has been no effort at economic 
modeling.

1.9. About the author

1.9.1. Caveat

The caveat is that I am an econometrician (Groningen 1982) and teacher of mathematics (Leiden 
2008) and no medical doctor or epidemiologist. If SARS-CoV-2 is a virus that humanity cannot live 

with - like with smallpox that was eradicated in 1980, see WHO GPEI & Heymann (2020) - for exam-
ple because the virus has risky properties also for future mutations, then the current low preva-
lence might be a good start for eradication via surveillance and quarantine for the infected. This 
might come at the economic price of national lockdown and the burden of disease because of the 
deterioration of common health care.  It might be unwise to target for herd immunity, even though 
such might be seen as part of eradication. It depends upon the properties whether stable immunity 
can be created indeed. Corona viruses of the “common cold” tend to be forgotten by the immune 
system. At first I did not think that containment / suppression / eradication was really a feasible 
option - Taiwan would remain an island - but the Piot (2020) warning and the Berger et al. (2020) 
paper and Tabarrok (2020) commentary caused me to change views. For now, it is best to present 
and discuss scenario’s, and subsequently enquire for medical views.

1.9.2. Work related to medicine

In 2002-2004 I collaborated at Erasmus Medical Center on the modeling of the Human Papilloma 
Virus (HPV) as the cause of cervical cancer. I gave a presentation on MISCAN modeling at a gynaecol-
ogy conference in Paris and had a poster at the 4th IHEA world congress at San Francisco on public 
health economics.  My background in modeling and also logistics was relevant because diseases 
may look like a Markov logistics process with stages and transition probabilities. There can be the 
same issues of test reliability, criteria of lives-saved or life-years-gained, and cost-effectiveness of 
screening and treatment. I also followed the discussion about the SARS epidemic of 2003. My 
period at Erasmus MC was too short to allow for publishing peer reviewed papers but let me men-
tion two working papers of that period, and actually another one of 2019, all with software that 
eventually was included in The Economics Pack. Applications of Mathematica, see Colignatus (1995, 
2020e). Currently I am in a phase towards retirement, and consider the purpose of the Pack as 
shifting towards didactics and education.

(1) Colignatus (2003): On the value of life. This compares the lives-saved and life-years-gained 
measures, and develops a compromise: a “unit-square-root” measure, that regards each life as 
100% and takes the square root of the relative gain. It compares somewhat with the “fair innings” 
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notion but I rather tend to regard it as the “fair outings”. The relation to SARS-CoV-2 is discussed by 
Colignatus (2020b). Discussion of the value of life meets with the problem of the “cricket and the 
ant”. If there would be an ideal scoring measure for ants, then what to do with a cricket that has 
been living irresponsibly and in distress wants to be treated like an ant ? The “unit-square-root” 
method would apply for a general class of deserving persons, consisting of generally responsible 
behaviour, a grace period up to 25 years where youngsters might need to learn from accidents, and 
the occasional insurable glitches for ages 25+. I have no developed ideas for chronic irresponsible 
behaviour of the 25+ ages who burden the public health system. However, the latter discussion 
should not be confused with the earlier topic of the valuing normal decent lives (e.g. the lives of 
doctors).

(2) Colignatus (2004): Modifying behaviour with a passport for sexually transmitted infections (STI). At 
that time there was no HPV-vaccine yet. An option was to manage human behaviour. The status of 
infection can be recorded in the medical dossier: free (green) or carrier (red). While children can 
gets warts, an assumption might be that children start out uninfected by the harmful HPV variants 
(status green). When adults meet and want to get into a serious relationship – in the sense of 
sharing their germs – then they can show each other their status of infection in their medical 
dossier and discuss the implications. From this working paper, we may take the idea of recording 
the status of infection, and using colour coding for clear communication. For SARS-CoV-2, it is 
better to use “red” (alarm, or hungry in Chinese restaurants) for the barrier between zones and 
groups. This is discussed by Colignatus (2020c). PM. Due to the national lockdowns, we may also 
see a reduction in STIs, and one may wonder whether behaviour oriented policies should not have 
been more prominent in the past (catching HIV before it hibernates).

(3) Colignatus (2019): Population size and climate change. Encourage women to delay having their 
first child till they are age 30+, in order to provide a crucial contribution in fighting climate change, 
especially in the crucial decade 2020-2030. Colignatus (2020a) discusses the gap between demogra-
phers and researchers on climate change.

2. Timeline and assumptions of the Dutch case

2.1. Introduction

This Chapter assumes that the reader has knowledge about the SI(EY)A(CD) models. Readers new to 
the subject are advised to reserve this chapter for later. This especially holds if you already had 
problems with the Introduction.

2.2. Properties of SARS-CoV-2 and some support for the Dutch policy 
statement of 2020-03-16

SARS-CoV-2 can be deadly for (i) younger persons with comorbidity and (ii) the elderly (60+) (often 
with comorbidity). This group can be called “the vulnerable”.

For younger and healthier persons, SARS-CoV-2 may compare to the common cold - though this 
issue is not clear-cut, see section 1.6.3 that refers to Draulans & Piot (2020) with the warning about 
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chronic effects. With respect to short term fatality, this group can still be called “the less vulnera-

ble”. There is always a risk that such person is misclassified and actually appears to be vulnerable. 

In an address to the nation of March 16, Dutch prime-minister Mark Rutte (2020) formulated the 
policy:

(1) Protect the vulnerable
(2) Remain within the capacity of the health system, and in particular the  intensive care units (ICU)
(3) Allow the less vulnerable to build up herd immunity. 

At first it was presented as if herd immunity was a policy objective. In discussion (also) with Dutch 
parliament Rutte clarified that the 3rd aspect was only a consequence of the first two aspects. 

Ever more measures were imposed, short of a total lockdown of Holland that would require permits 
for leaving one’s home. Eventually, reports were focusing on the hope that the basic reproduction 
factor was getting below 1. However, in sum, containment / suppression hasn’t been an longer 
term policy objective (yet). 

In the press conference on April 21 2020, the policy was (re-) formulated:

(4) Wait and see, collect data and policy options, because we are still much in the dark
(5) Develop instruments for better surveillance, like an “app”, for a potential long term policy 
objective of containment and suppression
(6) Restart the health system on normal care, which had deteriorated by the focus on the pandemic
(7) Release a few restrictions, like allowing young children to go to school and participate in sports.

Official Dutch policy is much guided by the lack of good data (see below), but it also seems that the 
policy options are not fully developed yet. The ship sails between the cliffs of a deadly outbreak and 
economic collapse (with additional collapse of the health system). This situation is not different at 
the beginning of June.

The following discussion basically supports points (1) - (3) above, and allows for the notion of 
deliberately using the virus as its own vaccine, namely for the less vulnerable group, while still 
remaining within the confines of the health system (ICU) and protecting the vulnerable. The issue is 
wide open however, given the nasty properties of the virus that are asking for eradication.

2.3. Relating to the RIVM data and parameters (1)

RIVM is the Dutch counterpart to the US CDC. Their modeling is so much more complex than 
SI(EY)A(CD) that it is quite difficult to find translations for the relatively simple SI(EY)A(CD) model. 
For example, RIVM has a dynamic reproduction factor R[t] which puts us at a loss what to take as 
the R0 = R[0] for our simple case. The views and estimates of RIVM are also evolving with the Dutch 
data and interventions over the period, so there is no “the” view. When this notebook and package 
were written, basically starting March, the parameters mentioned in some RIVM documents caused 
too many questions, and perhaps I simply did not locate the relevant documents. Thus, for the 
present didactic exposition, I selected R0 = 4, β = 0.4, γ = 1/10 and α = 1 based upon the interna-
tional literature, in which Dutch authors were actually involved too. Since the notebook and pack-
age are oriented at didactics, the difference with (recent) views with RIVM does not matter much, 
though it remains relevant for the suggestion of “taking the example of Holland”. The following 
discussion first presents the choices for this notebook and package starting in March. Section 2.9 

2020-06-15-Didactics-SIEYACD.nb     41



below compares with the RIVM view of May. The following table already reviews the differences.

RIVM (January - May) This notebook

Objective R[t] for intervention Didactics

Onset in Holland February 10 footnote February 23 with Seed 100

R0 2.7 then 2.3 then 2.5 4

Generation interval "Generation time" first 6 then 3 - 5 1/α + 1/γ = 11 days

Doubling period 5.5 2.3 days

Implied β 0.2 0.4

Implied γ 0.09016 using α = 1 0.1

φ (IFF) 0.0138 0.015

Incubation 6 6 days

Incubation

longer than

generation time

yes no

Infectious period implied 11.1 = 1/0.09 10 days

Asymptomatic

infectiousness

1 - 3 days (related to the above ?)

1/α = 6 - 3 = 3 days ? α = 1/3 ?

5 = 6 - 1 days

Period from infection

to Hospital admission

14 days

Footnote: This first date seems a result of later back-tracing. It was not widely published at the time 
(did not stop Carnival).

RIVM presents the following graphs as input and result from their model on R[t]. Their approach 
differs from our present simple models. The inference that R[t] dropped below 1 on March 16 can 
only hold for the official death counts; additional CBS data show a spike of some 3000 additional 
“surplus deaths” in April. Many patients, supported by their families and GPs, decided to no longer 
report to the hospital, since they were afraid of the prospect of dying alone and unconsciously in an 
ICU bed. It is fully unclear what this means for the dynamics of the process and the estimate.  PM. 
See section 5.2 on the terminology of the effective R[t].
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PM. Documentation of the RIVM modeling: https://www.rivm.nl/en/novel-coronavirus-covid-19/cal-
culations/calculation-models-are-public-and-accessible

2.4. Basic parameters R0, α, β and γ for unmitigated spreading before the 
lockdown

2.4.1. Choice of latency α

Anderson et al. (2020), Supplement 3, suggest a value of 1 day for the latency of the Exposed. There 
are not really competing alternatives. Thus α = 1 / (1 Day) = 1 too.

2.4.2. Choice of R0

Flaxman et al. (2020), in a study on 11 European nations, find a R0 = 3.87 for SARS-CoV-2. 

Let us take 4. We write R[0] = R0 = 4. We need to know the time-dependent reproduction factor R[t] 
too. Flaxman et al. (2020:25) allow that a national lockdown takes 4 days to take full effect, and 
when it happens then the effect is uncertainly around R0 ≈ 1. For the smaller and closer knit country 
of Holland we might take 3 days for full effect.

2.4.3. Choice of γ 

2020-06-15-Didactics-SIEYACD.nb     43



For this notebook we want to have a value of the infectious period 1/γ such that the natural process 
of clearing has been observed without confounding and intervention, so that we can subsequently 
insert the assumption that this clearing period would also be the (natural) infectious period. 

Kretzschmar et al. (2020) (May 15) take an infectious period of 1/γ = 10 days, though with variable 
infectiousness, which doesn’t quite fit the assumptions of a constant rate in SI(EY)A(CD). But a 
constant rate can be seen as a special case of a variable rate.

Li et al. (2020) (January 29 & 31) gave one of the first estimates. They have 10 confirmed cases with 
a mean incubation period of 5.2 days. Based upon 6 pairs of cases, they find a serial interval with a 
mean of 7.5 days with a sd of 3.4 days and a 95% confidence interval of 5.3 to 19 days. They present 
an estimate of R0 and a doubling period.

For SIA, we have the following equations for the growth rate r = β - γ:

eqs = r0 ⩵ 2.2, r0 ⩵ beta  gamma, beta - gamma ⩵ Log[2]  7.4

r0  2.2, r0 
beta

gamma
, beta - gamma  0.0936685

sol = Solve[eqs, {r0, beta, gamma}] // Quiet

{{r0 → 2.2, beta → 0.171726, gamma → 0.0780571}}

1  gamma /. sol[[1]]

12.8111

For SEYCD we have the following equations for the growth rate, for us with α = 1:

eqs = r0 ⩵ 2.2, r0 ⩵ beta  gamma,

growth ⩵ Log[2]  7.4, r0 ⩵ 1 + growth 1 + growth  gamma 

r0  2.2, r0 
beta

gamma
, growth  0.0936685, r0  (growth + 1)

growth

gamma
+ 1 

sol = Solve[eqs, {r0, beta, gamma, growth}] // Quiet

{{r0 → 2.2, beta → 0.203712, gamma → 0.0925964, growth → 0.0936685}}

1  gamma /. sol[[1]]

10.7996

Joseph Wu et al. (2020) use cases “exported from Wuhan internationally”. They present an estimate 
of R0 and a doubling period.

For SIA:

eqs = r0 ⩵ 2.68, r0 ⩵ beta  gamma, beta - gamma ⩵ Log[2]  6.4

r0  2.68, r0 
beta

gamma
, beta - gamma  0.108304

sol = Solve[eqs, {r0, beta, gamma}] // Quiet

{{r0 → 2.68, beta → 0.172771, gamma → 0.0644668}}

1  gamma /. sol[[1]]

15.5119
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For SEYCD with α = 1:

eqs = r0 ⩵ 2.2, r0 ⩵ beta  gamma,

growth ⩵ Log[2]  6.4, r0 ⩵ 1 + growth 1 + growth  gamma 

r0  2.2, r0 
beta

gamma
, growth  0.108304, r0  (growth + 1)

growth

gamma
+ 1 

sol = Solve[eqs, {r0, beta, gamma, growth}] // Quiet

{{r0 → 2.2, beta → 0.241894, gamma → 0.109952, growth → 0.108304}}

1  gamma /. sol[[1]]

9.09488

Rocklöv et al. (2020) about the Diamond Princess state: “The cruise ship conditions clearly amplified 
an already highly transmissible disease.” This will indeed complicate the estimate on β and R0, but 
need not affect the infectious period when there is no quarantine yet. However, they do not esti-
mate but choose 1/γ = 10 days, simply stating “In the homogeneous model, the infectious period, i, of 

COVID-19 was set to be 10 days based on previous findings”, where they refer to Li et al. (2020), where 
we see 1/γ = 12.8 (SIA). They also refer to Joseph Wu et al. (2020) for their modeling (with a higher 
1/γ for SIA). On the Diamond Princess, apparently an index case got on board around January 21-25, 
and by February 20  619 persons of 3700 passengers and crew (17%) tested positive. The outbreak 
of the infection was noted on February 3 with 10 cases, with subsequent measures on February 4. 
The authors write take 1/γ = 10 for t < 16 and 1/γ = 4 for t ≥ 16, counting from (and including) Jan-
uary 21. 

DayCount[{2020, 01, 21}, {2020, 02, 04}]

14

Rocklöv et al. (2020) also take an incubation period as the parameter for their “exposed” category, 
suggesting that their “SEIR” model does not concern infections but symptomatic disease. Their α = 1 
/ (5 days) = 0.2. For infections, we took α = 1.

We can agree that 1/γ = 10 is a conservative assumption w.r.t. the (longer SIA) estimates by Li et al. 
(2020) and Joseph Wu et al. (2020), in the sense of a faster indication of the risk. This gives us the γ 
that we are looking for.  

PM 1. The distinction between infection and symptom will be discussed in Chapter 10. Let us first 
develop the models with a focus on infection only, so that we are in a better position to understand 
the complication of symptoms (especially for parameter estimation).

PM 2. SIA, SICD and SI(EY)CD assume that the mean clearing period is also the mean infectious 
period. Therefor the naming and value-assignment of 1 / γ causes some difficulty. A clearing period 
is biologically given and cannot be easily changed.  It is a property of the person rather than the 
process of infection, that can involve (self-) quarantine. A choice of a mean clearing period of 10 
days seems acceptable for a younger population, if the virus would only circulate there. The period 
would be longer for elderly persons who do not cure as fast, but they would get sick and soon be 
less in contact with others. Overall, the actual clearing is not relevant for us, since we do not look 
(yet) at the further process towards (self-) isolation or hospitals. For the present modeling exercise, 
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it suffices that the period of infectiousness has stopped after the mean value of 10 days.

PM 3. On May 15 2020, the European CDC reports for the general public: “The infectious period may 
begin one to two days before symptoms appear, but people are likely most infectious during the 
symptomatic period, even if symptoms are mild and very non-specific. The infectious period is now 
estimated to last for 7-12 days in moderate cases and up to two weeks on average in severe cases.”  
https://www.ecdc.europa.eu/en/covid-19/questions-answers. However, they do not provide a 
reference. It may well be that their “infectious period” doesn’t quite apply to the kind of modeling 
that we intend. Potentially they refer to the 99% confidence value required to keep people in 
quarantine, while the SI(EY)A(CD) model requires a mean value.

2.4.4. Consequence for β

With R0 = 4 and γ = 1/10 we find that β[0] = β = 0.4, with a doubling period of Log[2] / (β - γ) = 2.3 
days. See section 5.4 for the meaning of β. In principle R0 is a dimensionless factor, 1/γ has the 
dimension of duration, and with R0 = β / γ then β has the dimension of 1/duration. The interpreta-
tion of β as the number of infectious contacts per (infectious) period requires that R0 has the dimen-
sion of a number. This is immaterial for the point that contacts might be influenced by behavioural 
or non-pharmaceutical interventions like quarantine. In any case we get β = β[t]. On March 12 2020, 
the Dutch government decided to a (partial) national lockdown, and closed the schools on March 
15, so that β has changed since then. Presently we continue with β = 0.4, and look at a change when 
discussing intervention and estimation.

PM. Anderson et al. (2020) look at the original situation in China, and report a doubling time in the 
early phase of 4-5 days, or say r = β - γ = Log[2] / 5 ≈ 0.14. They suggest a R0 = 2.5 and herd immunity 
of some 60%, which for a γ = 0.1 fits a β = 0.25. The value of Flaxman et al. of R0 for Europe seems 
more relevant however. Liu et al. (2020) give comparisons, and there is quite some variety depend-
ing upon circumstances. It is not clear to what extent Chinese citizens already practiced (self-) 
quarantine. PM. Observe that α has no role here, except for delay. 

NB 1. There is a difference between the internationally applied “full lockdown” (people may no 
longer leave their home, except for one person who gets the necessary supplies, and the personal 
distance is 2 meters) and the Dutch “partial lockdown” (in which people might on occasion go for a 
stroll but keep a distance of 1.5 meters). 

NB 2. The Adamik et al. (2020) study of the MOCOS groups is important. They warn that the number 
of contacts should rather be based upon households, since household members infect each other. 
They do a micro-simulation rather than this SI(EY)A(CD) model.  PM. They also nicely phrase the 
dichotomy between “infect nobody” and “infect towards herd immunity”: “Mitigation of a novel 
infectious disease with the aim to reach herd immunity is a classical textbook concept in epidemiol-
ogy and has been successfully applied in the past, foremost in the case of novel influenza strains 
(...). The idea is simple: in the absence of a vaccination for a novel infectious disease one tries to 
flatten the incidence curve to such an extent that the daily number of cases that require medical 
assistance is kept below the capacity of the health care system. The long term goals are to obtain a 
sufficiently large fraction of the population that has become infected and to reach herd immunity 
which would lead to a less severe or even subcritical second outbreak wave. On the other hand, an 
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extinction strategy would aim at introducing sufficient contact reductions to keep the epidemic 
subcritical and not lifting these restrictions until the disease becomes extinct.”

2.4.5. General understanding about the choice of R0

The following two plots give an indication how R0 = 4 is located within the ranges. The acquitted 

compartment tells how large the impact of the infection will be eventually, with the limit in A[∞]. 
Thus we concentrate on this compartment. (The distinction within the acquitted between the 
cleared and deceased is a later issue (SICD).)

The first plot below gives the contour lines of the acquitted A as a function of the basic reproduction 
factor. See a discussion in Section 6.10 below. Observe that the 50% level (62 days) does not have 
to be in the legend, and that there cannot be a number of days for the limit value because this 
would be infinite. (Potentially, though, we might say that the infection is exterminated when the 
value of the infected units drops below 1 or 0.5 (rounding error), but this does not work well for our 
interpolations.)

Observe: (i) After R0 = 4, higher values have remarkably less impact on the outcome. Below in 
estimation, we will find a possible value of R0 = 5.7 but this hardly affects the death toll anymore. (ii) 
The values of R0 = 4 and R0 = 0.5 (below 1) can be compared by inferring that the number of con-
tacts must be 4 / 0.5 = 8 times reduced. This may be difficult, when people live in households, infect 
each other within households, and as a household have many more contacts than a single unit, see 
Adamik et al. (2020) of the MOCOS group.

(PM. The plot uses a the current variables. In this case, first a SI(EY)CD model with a latency of 1 day 
was run, which means a delay of about 14 days w.r.t. the SIA(CD) without latency.  The model has I = 
E + Y = Exposed + Infectious, so that the variable I of infected can directly be compared to the I in 
SIA(CD) (with E = 0).)

ApByR0Plot[] (* locked from an earlier run with SEYCD and α = 1;

see also section 6.10*)

58 days

62 days

89 days

0 2 4 6 8
R0

0.2

0.4

0.6

0.8

1.0
A = 1 - S - I

A at top I

A[∞]

95% A[∞]

The line for the top is downward sloping after a certain point: a higher value of R0 will cause a 
higher infection level for I at the top, and thus there will be a lower value for A at that time.

The second plot gives the contour lines for the number of days as a function of the basic reproduc-
tion factor. One may check the number of days at R0 = 4. PM. The contour of 95% Ap[∞] can be 
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crossed because it is not the limit value itself.

TimeByR0[ListLinePlot, SEYCDTimeAsFunctionOfR0[List]]

(* former run, read from file at startup *)
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R0
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Days
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A = 25%

A at top I

A = 50%

A = 95% A[∞]

It is surprising that the dynamics of the process can be caught in a single parameter R0. The word of 
caution of course is that the parameter actually changes, and cannot simply be assumed to be 
constant. 

2.5. Choice of Infection Fatality Factor (φ = IFF)

Verity et al. (2020) find an Infection Fatality Factor (IFF) for China of 0.66%. Ferguson et al. (2020) 
adapt to the UK population profile and find 0.9%. Applying their age-group specific fatality factors 
(that they call a “ratio”, their Table 1) to the Dutch age composition causes a Dutch infection fatality 
factor of 1.27%. Holland has on average an older society.

However, we will look at this in section 2.7 in more detail. A summary is: The Dutch data are quite 
unreliable, with underreporting, lack of testing, testing focused in hospital workers, changes in 
practices (whom to send to a hospital), and after March 15-18 the national intervention. However, 
the age-group of 70-79 seems most reliable, since they tend to still participate in society but do not 
work at hospitals. For this age-group, Ferguson et al. have an infection fatality factor of 5.1% (that 
they call a “ratio”). When we apply this to the Dutch deaths in this age-group (certified for SARS-
CoV-2 with the current reporting practices) then the prevalence of infections for them (on some n 
days before April 2) was 0.535%. When we assume this to be the national infection prevalence, then 
we get an age profile of infections and deaths that is not unreasonable, see Colignatus (2020cd), 
with also adoption of the Ferguson IFF for the 80+. In that case, the Dutch IFF is 1.45% instead of 
1.27%. This is considerably higher than the UK 0.9%, but Holland is apparently not only an older but 
also a more densely populated country after all. This translates into a SI(EY)CD model input parame-
ter, rounded to φ = 0.015 = PhiSICD[] = IFF, or the Infection Fatality Rate IFR = 0.015 * γ = 0.0015.

2.6. A timeline with scores from a SEYCD model without intervention

With these parameters for the standard SEYCD model, an unhindered pandemic in Holland would 
have given the following path, i.e. neglecting a change in parameters due to the intervention on 
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March 12-15 2020, with an assumed delay of 3 days, thus March 18. 

The death toll could have been at 250,000, with 95% reached by May 22, and the remaining 5% 
spreading over the remainder of the year. Only 2% of the population would not have been infected 
at one stage. 

Table legend: S = Susceptibles (uninfected), I = Infected (exposed or infectious), D = Deceased, C = 
Cleared, N = N[0] - D remaining population, A = C + D (the acquitted). Percentages (p) are w.r.t. the 
population at the time of onset, i.e. N[0].

SIABasicTable[SEYCDBasicRun, 100, { Sp, Ip, Dp, Cp, Np, Ap}]

(* former run, read from file *)

pDate Day Sp Ip Dp Cp Np Ap

Onset 2020-02-23 0 100.0 0.0 0.0 0.0 100 0.0
1st Death 2020-03-06 12 100.0 0.0 0.0 0.0 100.0 0.0

1st Intervention 2020-03-18 24 99.9 0.1 0.0 0.0 100.0 0.0
Top if free 2020-04-21 58 25.0 40.3 0.5 34.1 99.5 34.7
Ap = 50% 2020-04-25 62 13.5 36.5 0.7 49.2 99.2 50.0

95% Ap[∞] 2020-05-22 89 2.4 4.5 1.4 91.7 98.6 93.1
Limit if free ∞ ∞ 2.0 0.0 1.5 96.5 98.5 98.0

The levels (q) of the relevant compartments are as follows.

SIABasicTable[SEYCDBasicRun, 1,

{Sq, Iq, Cq, Dq}, TableSpacing → {1, 2}] // PopulationForm

pDate Day Sq Iq Cq Dq

Onset 2020-02-23 0 17.4×106 100 0 0
1st Death 2020-03-06 12 17.4×106 1290 391 6

1st Intervention 2020-03-18 24 17.4×106 19438 6356 97
Top if free 2020-04-21 58 4.4×106 7.×106 5.9×106 90455
Ap = 50% 2020-04-25 62 2.4×106 6.3×106 8.6×106 130500

95% Ap[∞] 2020-05-22 89 419710 778037 16.×106 243034
Limit if free ∞ ∞ 344995 0 16.8×106 255825

2.7. Dutch data are unreliable, but the 70-79 age group might be stable

While epidemiologists and these modelers emphasize the uncertainty in the data, they are also the 
group whom we expect to provide us with estimates anyhow, whatever those uncertainties. Thus, 
paradoxically, we may be so focused on finally receiving some reliable information that we might 
perhaps not listen carefully enough to them about their warnings about these uncertainties. Some 
statisticians, who are (now) at some distance of involved modeling, can be more candid, see 
Richardson & Spiegelhalter (2020) (Royal Statistical Society) and Gill (2020) (emeritus Leiden) for 
example. It remains useful to identify some uncertainties.

The Dutch data are unreliable because:

(1) Tests were hardly available, and symptomatic cases were not trusted because of a partly concur-
rent flu episode.  There was some surveillance in the beginning, but this was stopped because of 
the lack of tests, and the authorities decided to “monitor hospital admissions and the death 
counts”, assuming the connection between the infections, symptoms and deaths, but relying on 
people reporting to hospitals and apparently underestimating those who did not report to hospi-
tals (the “surplus deaths”).

(2) Available tests were restricted to health system workers and hospital patients. The ratio "hosp-
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italised / (confirmed infections)" thus contains confirmed infections amongst (younger) health 
workers.

(3) As indicated, overall deaths, also from non-hospitalised cases, also including normal deaths, 
were not tested. Later there appeared to exist sizeable "surplus deaths". The mixture of data 
components changed, as normal hospital services stagnated, and the national lockdown changed 
the economic process.

(4) In the beginning, GP doctors were unfamiliar with the disease, and were more inclined to send 
patients to the hospital, when they considered that the symptoms were more severe than a flu. 
Over time, when it became clear that elderly patients would suffer longer periods of isolation at the 
ICU, and with a lower survival probability, patients themselves, their families and GPs became more 
reluctant on hospitalisation. Holland has a somewhat stronger notion on the quality of life and the 
acceptance of death when life reaches its end. However, the change in attitude within this episode 
still makes for mixed data. When hospitals and ICUs reported lower arrivals, then this does not 
mean by itself that the infections were waning. The infected vulnerables have become more 
reluctant.

(5) There have been reports about outbreaks in home-care for the elderly. Personal protection 
equipment (PPE) and tests for care workers there were hardly available. Those patients might no 
longer be hospitalised because of (4).

(6) New tests are arriving and thus more infections will be reported merely because of this availabil-
ity. There is also a planned uptake on surveillance now that this wave seems to be ending (May 20). 

(7) Obviously, there is the distinction between pre-lockdown, the lockdown phase, and the now 
partial release. Modeling these phases becomes an even more complex issue.

My impression is that the data on the 70-79 age group are the most reliable. They still are relatively 
healthy and partake in society, they do not work in the health care system, and they are still in the 
phase that hospitalisation is regarded as a better option than accepting the end. Using their data as 
the “canary in the mine” indeed gives a profile also for the other age groups that looks reasonable 
and comparable with international data. See Colignatus (2020cd) for the argument and calculation.

Let us reproduce some aspects.  Colignatus (2020c) states about Ferguson et al. (2020) (their Table 
1) and these Dutch data of April 2:

"The Imperial College estimates give problems for the Dutch data. With 121 deaths in the Dutch 
60-69 age group, the London age-specific IFF gives 5500 infected in the population while their 
"symptomatic cases per hospitalised" gives 7663 symptomatic cases in the population, which is too 
much since we are assuming that the flu season is over. Holland has 29 hospitalised children of age 
0-9, and the London symptoms / hospital ratio for this group gives 29000 symptomatic children in 
the Dutch population, which would create panic if true. Looking the issue over, I cannot find a 
match. It must be remarked that the Dutch "reported number of cases" is rather useless, because of 
the lack of tests, and their preferred application to medical personel rather than patients. Also the 
death count is understated since non-hospitalised deaths are not tested. See Table 1 below." 

“However, the Dutch 70-79 age group may be used as canary in the mine. The number 2951 of 
“reported cases” will be accurate for this group, since they do not belong to medical personel. 
These patients will have some symptoms (like “feeling really sick”) and not be tested for nought. 
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The reported number of 2951 means only 0.19% of the whole age group. The Imperial College IFF 
for this group gives an estimate that 8137 would be infected, or a share of 0.005346 or 0.5%. We 
arrive at the problem that we are not in the steady state. Either these elderly “infected but non-
patients-yet” have a stronger immune system or they are due to arrive at the hospital at a later 
moment. With lack of other information, we can still presume that this is the overall prevalence of 
infection (haves and have-beens) in Holland. When we apply this prevalence to the whole popula-
tion, then we get age-group specific ratios of hospitalisation and IFF that show the same pattern as 
in China and the London research group. Especially relevant is the “hospitalised per infected ratio” 
(H/I). See Table 2 below. NB. This uses IFR and CFR, namely as “rates” while it actually are factors 
IFF and sCFF (symptomatic case fatality factor).”

Colignatus (2020d) performs the same analysis, now with data of April 19. The table 2 at that 
moment is as follows. Given the IFF of 0.051 for the age-group of 70-79, the implied infection preva-
lence of the 70-79 group is 20824 / 1522110 = 0.0136807, and this is applied to the groups younger 
than 70 years. The pattern of the age group specific IFFs is acceptable. The overall IFF of 0.0145 has 
been rounded for this notebook and package as 0.015.

2.8. Timeline of the Dutch case, to determine onset and when β changed

Reference to the time line on wikipedia (a portal and no source) may be made.

The WHO confirmed on January 12 2020 that there was a novel virus in Wuhan. The European 
Centre for Disease Prevention and Control (ECDC) judged the risk of introduction and spread in 
Europe as low. They might have been little aware that Northern Italy has workshops with cheap 
Chinese immigrant workers who produce luxury “Made in Italy” products (while Southern Italy has 
unemployment). It later appeared that Lombardy had had privatisations in the health system that 
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caused a slow uptake of alarm. 

Dutch RIVM (2020) discussed the situation on January 27, and formulated a strict "case definition": 
(i) symptoms, and either from an infected area or having been in contact with a certified infected 
person, (ii) neglect others. Cases falling under this definition however had to reported with priority 
A. 

On January 30, WHO Director-General, Tedros Adhanom, declared the PHEIC or pandemic. Holland 
was rather lacklustre in responding. While January was lost to the whole world, February was also 
lost to Holland, see Hendrickx & Modderkolk (2020). China collected medical supplies from all over 
the world, and the Dutch emptied their stocks and sent an airplane load to China on February 10, 
which effectively meant that those medical supplies and personal protection equipments (PPE) 
were in short supply when Holland needed them later. The February 21 conference at the Dutch 
royal academy of sciences KNAW (2020) had presentations that were correct on scientific content - 
they indicated the general lack of knowledge about the virus - but they also showed the failure by 
the RIVM agency for public health: namely, that while Aura Timen (RIVM) mentions the PHEIC, RIVM 
apparently neglects the cause for alarm given by the Asian data. Later the Leiden expert on Korea, 
professor Remco Breuker (2020), suggests that RIVM might be an expert on epidemiology but no 
expert on Asia. Another problem of course lies in communication. If RIVM had advised a lockdown 
on February 1, the Dutch population would not have understood. It is advisable to first have a 
national training on the situation, and broadcast reports about the situation in other countries, to 
generate public understanding for the WHO declaration of the pandemic. Within 10 days (before the 
plane leaves).

The Northern part of the country benefitted from an earlier Winter holiday and people returning 
from ski holidays earlier. On February 23-25 there was carnival in Southern Holland, with people 
participating who had returned from ski holidays and Northern Italy. For Holland, the first infection 
was confirmed for February 27, for a man having been in Italy. (RIVM states February 10 as the date 
of first recorded infection, but this seems a result of later back-tracing and was not widely pub-
lished at the time.) The first official death was reported on March 6. According to the model run 
shown above, that day actually had six deaths in total: according to the model five were not offi-
cially recorded as SARS-CoV-2 cases. The policy of surveillance of individual cases soon broke 
down, since the available tests were urgently required within the health care system itself, to 
protect health care workers. 

The government then opted for herd immunity, which was supported by RIVM (Jaap van Dissel), see 
Tweebeeke & Van Dissel (2020).  Prime Minister Mark Rutte warned about the economy, and that 
parents would not be able to go to work when their children could not go to school. Keulemans 
(2020) is an interview with Jaap van Dissel (RIVM) published on March 12. Van Dissel indicates that 
RIVM has only limited responsibility, namely advising about measures and not having responsibility 
in managing them, and that RIVM did not protest against limited measures for the South only - 
apparently allowing for a spread to other parts of the country. A quote: “If you would lock down the 

country then the economy stops.” This neglects partial solutions, ranging from quarantining South-
ern Holland to the whole range mentioned by RIVM at the end of May. Van Dissel showed little 
concern about the death counts in other nations and likely implied by RIVM models, and he has 
tended to in general to reject such modeling projections. Later that day, March 12, the government 
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however extended the measures for the entire country. It was only on Sunday March 15 that cafes 
and restaurants and schools were closed, after strong advice by the Dutch federation of medical 
specialists (FMS), but not so advised by RIVM. 

Mark Rutte (2020) is the prime-minister's speech of March 16. He indicates three options: (1) free 
reign and overburdening the health care system, with many deaths as a result, (2) total lockdown, 
with a permit system for leaving one’s home, for the coming two years, effectively closing down the 
economy, (3) his choice: (a) to protect the vulnerable, (b) to remain within the capacity of the health 
care system, (c) to allow the less vulnerable to build up herd immunity. The third option (3abc) 
became government policy. It is exactly the policy suggested in the original version of this present 
notebook, but this notebook is much stricter on quarantine barriers and deliberate use of the virus 
as its own vaccine. Since March, it has appeared that the virus is nastier than I thought, see Collins 
(2020) and De Visser (2020) and Draulans & Piot (2020). Herd immunity may be the wrong tactic, and 
eradication a better one.

Tweebeeke & Van Dissel (2020) is the interview that discusses the prime-minister's speech. It shows 
RIVM's support for the government policy towards herd immunity.  Remarkably, Van Dissel suggests 
that children would have no role in spreading viruses, and that this would neither show from the 
Asian data. His statement is in contradiction with views by epidemiologists if not everyday experi-
ence that children / schools have a key role in spreading viruses. He however states that the role of 
children in spreading SARS-CoV-2 is being investigated now. Later in May, there is the report by 
German researchers, Jones et al. (2020) (including Christian Drosten).

In the discussion in the Dutch House of Parliament March 18, the Dutch health minister Bruno 
Bruins collapsed during his speech, and he resigned a few days later, reporting a burn-out. The 
prime-minister Mark Rutte restated his televised policy, though actually made a switch, by stating 
that herd immunity was no policy objective but a consequence of the policy, which actual objective 
was (3a) to protect the vulnerable and (3b) remain within health system capacity. Members of 
Parliament criticised him for awkward communication. The switch on herd immunity has been 
documented by Kustaw Bessems (2020). On March 23 mass events that require advance regulation 
(like Summer festivals) were forbidden. RIVM & Van Dissel (2020a) is the powerpoint presentation 
given by Jaap van Dissel on March 25 for the Dutch House of Parliament, with modeling done by 
professor Jacco Wallinga (Leiden, RIVM). Van Dissel emphasizes the process towards R0 ≈ 1, which is 
required for reducing the number of cases, if only to remain within the capacity of the health 
system.

Overall, the Dutch policy had a focus on remaining within the capacity boundaries of the health 
system, especially for the bottleneck of ICU beds. There hasn’t yet been an actual policy choice on 
containment / suppression (forcing R0 << 1) versus an alternative. 

Over the course of April it appeared that the protection of the vulnerable wasn’t well maintained in 
the home-care for the elderly. Personal protection equipment (PPE) supplies were directed towards 
hospitals and ICUs. They were not supplied to home-care institutes and workers. This is curious, 
since it is the system of care that sends patients to the ICU. There are reports about a distinction 
between “medicine” and “care”, and a pecking order in social status, also in attention by policy 
makers.
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RIVM stated that there was a lack of tests. However, Alex Friedrich, head of microbiology and 
infection diseases of the University of Groningen medical center (UMCG), states that RIVM made a 
deliberate decision, and he arranged a testing strategy for Groningen, see 1V EenVandaag (2020) 
(April 17). At the end of May, RIVM is making tests available for the whole country. RIVM misin-
formed the public about the options for testing.

The number of SARS-CoV-2 confirmed deaths on April 2 was 1339 and on April 18 was 3600, and this 
rise predominantly was in the 60+ age group, apparently not-well-protected, even though it was the 
government-stated policy target. These are the official numbers only.

Also, there is a rise in general mortality, higher than what would be "normal" in this period like in 
the past, the “surplus deaths”. This rise in mortality includes persons who have not been tested on 
the virus, because they were not hospitalised. RIVM has estimated that this rise is twice as high as 
the officially recorded number of SARS-CoV-2 deaths. Thus the April 2-18 period may have seen a 
rise of some 4000 deaths, predominantly in the 60+ age with comorbidity group. 

PM. With a low prevalence, and regional heterogeneity, testing the general population is costly. 
However, testing the deaths (the regular average of 12,000 per month) comes with a higher preva-
lence, and thus is relatively cheap, and can be targeted on indications by GPs.

On April 21, the prime-minister announced that the government will kick the can further down the 
road, with another reprise at the end of May. However, children can go to elementary school again 
at the end of current holidays, on May 11. RIVM suggests that they tested that children were 
infected via adults and not via other children. (The finding is against common sense and other 
epidemiological reports. One hopes that RIVM did not test only during this quarantine phase.) A 
personal report is that traffic intensity rose significantly in the days after April 21, which suggests 
that many people regard the April 21 press statement as an indication of a reduced need for quaran-
tine. However, one might assume that people may be aware of their personal risk, and behave 
accordingly, though with greater likelihood with neglect of the risk of others.

Blok & Stronks (2020) (May 6) of an action group for containment, protest against the Dutch policy 
of mitigation, that allows gradual spreading of the virus, and the path towards release of the lock-
down, with the prospect of lock-on-off cycles. 

On June 3, the bloodbank Sanguin reports, based upon blood samples amongst blood donors (age 
18-75), that 5-6% of the population has antigens. This outcome must be biased, and RIVM itself 
combines such finding with its own Pienter project.

RIVM views and the latter research are now contested by Willem Engel (https://viruswaanzin.nl), but 
in dubious fashion, see Van Erp (2020). Why doesn’t Engel publish a paper on the issue ?

PM. Above timeline gives events that are specific for the development of the infection itself, dating 
from the presumed onset at the carnival of February 23, and assuming unmitigated spreading. 
There are some other points in time that are relevant to mention as well. In the “didactic estima-
tion” below we will only take account of the intervention on day 24.

(a) Delay in response, from earliest indication to PHEIC to the closing of Dutch schools: this period 
remains uninformative since we do not have other data about the role of schools.
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{DayCount[{2020, 01, 12 }, {2020, 3, 15}], DayCount[{2020, 01, 30 }, {2020, 3, 15}]}

{63, 45}

(b) Assume 100 infections for carnival February 23 and unmitigated spreading. The first official 
death was recorded on March 6.  There is a break in the β[t] by the closing of schools on March 15 
with an overall delay of say 3 days for societal implementation. 

{DayCount[{2020, 02, 23}, {2020, 3, 6}],

DayCount[{2020, 02, 23}, {2020, 3, 15 + 3}] }

{12, 24}

(c) The press statement of April 21 that some people interprete as a loosening of quarantine. Elemen-
tary schools start up again from May 11, though modestly, like with half-classes per day.

{DayCount[{2020, 3, 15 + 3}, {2020, 04, 21 + 3} ],

DayCount[ {2020, 04, 21 + 3}, {2020, 05, 11} ]}

{37, 17}

2.9. Relating to the RIVM data and parameters (2)

2.9.1. Introduction

RIVM calculation models are public and accessible, see: https://www.rivm.nl/en/novel-coronavirus-
covid-19/calculations/calculation-models-are-public-and-accessible

The above discussed the situation in March 2020, when we selected the parameters for this didactic 
version of the SI(EY)A(CD) model. Subsequently, new data have come available, and RIVM, the 
Dutch CDC, provided evidence to Dutch Parliament also on new modeling. Above, we already 
compared these findings with the parameter values in this notebook and package. In this section, 
we summarily discuss some reports.

There are a RIVM report from January 27 and subsequently slides from March to May with presenta-
tions at Dutch Parliament by RIVM head of the department for control of infectious diseases, profes-
sor Jaap van Dissel. We will not discuss all of these. These reports have different objectives than 
merely reporting on modeling but we can trace some aspects on this. The slides must be read in the 
context of listening to the spoken presentation. I still find it remarkable that the slides do not 
provide clear definitions: they could be included for reference without the need to read them aloud. 
Below I try to determine what some figures or graphs may mean, and mainly arrive at questions. I 
wonder whether the Members of Parliament would have surplus information.

RIVM & the Outbreak Management Team (OMT) (2020) (May 6 online) gives the Dutch view on 
asymptomatic transmission. Our own Chapter 10 below provides two common definitions. (i) The 
“serial interval” for symptomatic disease.  (ii) The “generation interval” for infections. This was also 
discussed in the Introduction, subsection 1.4.

2.9.2. RIVM & the Outbreak Management Team (OMT) (2020) on source and 
contact tracing

In conventional language, “contact” means any type of contact. For epidemic “source and contact 
tracing” for a particular subject (“index”), the term “contact” is redefined, and there is the termino-
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logical difference between “source” (subject and unknown infector) and “contact” (subject infect-
ing sinks). (Dutch weblink: https://lci.rivm.nl/COVID-19-bco.) There is also a difference between 
asymptomatic transmission (the infector is asymptomatic) and the incubation period (the infectee is 
asymptomatic).

(1) Incubation is generally taken as 6 days. In order to trace the infector of the subject, i.e. “source 
tracing”, contacts (in the colloquial sense though) in the six days before the onset of symptoms 
must be traced - or actually till the source has been found.

(2) RIVM & OMT (2020) discuss asymptomatic transmission and the consequences for “contact 
tracing” (i.e. that the subject can infect others). They arrive at the same conclusion of the European 
CDC (ECDC). The asymptomatic period can be 1-3 days. For surveillance it would suffice to back-
trace contacts (recipients) to 2 days before onset of symptoms with the subject. 

("Dit betekent dat voor effectieve bron- en contactopsporing (met of zonder app) contacten tot 1-3 
dagen voor de eerste ziektedag moeten worden gerapporteerd en opgespoord. Het ECDC neemt 
hiervoor in haar rapport over contactonderzoek twee dagen voor de eerste ziektedag (ECDC 2020). 
Voor de Nederlandse praktijk sluiten wij aan bij het advies van de ECDC. ") https://lci.rivm.nl/-
covid-19/bijlage/onderbouwing-a-pre-vroegsymptomatische-transmissie

The reasoning is unclear.

(2a) If it is acknowledged that asymptomatic transmission can occur 1-3 days earlier than why stop 
at 2 ? RIVM & OMT only refer to the ECDC guideline and apparently do not question it ? (If it is a 
matter of costs, specify those: what is the price of eradication ?)

(2b) RIVM refers to model studies, cluster studies, and cross-sectional studies. Only the first two 
could in theory support a 1-3 period of asymptomatic infectiousness on content. The cross-sectional 
studies indicate asymptomatic infectedness but this differs from infectiousness. RIVM & OMT (2020) 
notably refer to Kimball et al. (2020). Their key finding is: “Among 23 (30%) residents with positive 
test results, 10 (43%) had symptoms on the date of testing, and 13 (57%) were asymptomatic. 
Seven days after testing, 10 of these 13 previously asymptomatic residents had developed symp-
toms and were recategorized as presymptomatic at the time of testing.” A key conclusion is that 3 / 
23 = 13% remains asymptomatic. Supposedly the infection clears after a while. Nevertheless, the 
relevant issue is whether they were also infectious. This, however, was not looked at in this study. 
Perhaps the viral load might say something about this, but this is unclear to me. However, for the 
issue of contact tracing, the safest assumption is that these 13% asymptomatic infected persons 
would also be infectious. Thus, if contact tracing hits upon an asymptomatic infected person, then 
contacts over the full infectious period of this person must be traced, in our assumptions 10 days 
(though perhaps the growth and waning of the viral load might give an indication how long this 
person has been infectious). This notion is relevant precisely because we have seen that new 
outbreaks can occur via asymptomatic carriers. It is unclear why RIVM has no remark on this.

2.9.3. RIVM January 27

RIVM (2020) (January 27) mentions a possible R0 = 2.7 and a “generation time” of 6 days, defined as 
“the number of days for the next cycle of infections”. The reader is advised to first read Chapter 10 
on the infection “generation interval” and the symptomatic disease “serial interval”. We also dis-
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cussed the “generation interval” in the Introduction, subsection 1.4. Estimates from a period with 
intervention generate other values for the generation interval. It may also be that RIVM has the 
“generation time” to the first infection, as can be measured at the individual level in empirical 
studies, while the model uses the “generation interval” at the aggregate level for the generation 
means.

At the aggregate level, the generation interval is also the transmission period, which, in the assump-

tions of this notebook, consists of an exposed period of 1 day and an infectious period of 10 days, 
thus a total of 11 days. The value stated by RIVM also fits ranges mentioned in the literature but 
does not fit our choice of parameters. There is no reason to assume that the Dutch in February and 
the beginning of March were inclined to self-quarantine, as much as the Chinese people were at the 
time of some of their reports. Also, later an incubation of 6 days is mentioned: RIVM apparently 

allows that the incubation period is longer than the generation interval. Perhaps Chapter 10 should 
drop the assumption that for the aggregate the transmission interval = generation interval = incuba-
tion + infectious period = serial interval ? It may just be that we are using a SI(EY)A(CD) model while 
RIVM is not. RIVM later reports a "generation time" of 3-5 days, and their website later in the year 
refers to the Ganyani et al. (2020) estimate in which researchers at RIVM partook: this study is 
discussed in our section 10.6. A key comment by Ganyani et al. (2020) is: "This means that our 
estimates do not necessarily reflect the natural epidemiology of COVID-19, but instead reflect what 
is observed in the presence of these intervention measures." Instead, for the present notebook, we 
want to have the "natural epidemiology" first, before we consider an intervention. Ganyani et al. 
(2020) mention that the interventions cause a larger number of observations of negative serial 
intervals for individual cases, i.e. that the infectee develops symptoms before the infector does. 
This is okay for individual cases. However, Ganyani et al. (2020) (table 1 and 2) also have the aggre-
gate effect that the generation interval and the serial interval have the same duration. This does not 
take away the large difference between 5 (RIVM) and 11 (us), and is suggestive of a distinction 
between “first infection” (starting a generation) versus “generation mean”.

2.9.4. RIVM March 25

(1) RIVM & Van Dissel (2020a), March 25, depict the possible onset on February 4 (data by GP’s) or 
February 10 (confidence range chart), apparently back-tracing from information by patients. They 
mention R0 ≈ 2.7, a doubling time of 5-6 days (which in the graph is extended to 4-7 days), an 
incubation period of 6 days, and a "generation time" of now 4-5 days. Though the RIVM may have 
arrived at this estimate while using a different α, it remains unclear to us which, and with our α we 
get this reconstruction of β and γ.

eqs = r0 ⩵ 2.7, r0 ⩵ beta  gamma, r0 ⩵ 1 + r  alpha 1 + r / gamma  /.

r → Log[2]  5.5, alpha → 1

r0  2.7, r0 
beta

gamma
, r0  1.12603

0.126027

gamma
+ 1 

sol = Solve[eqs, {r0, beta, gamma}] // Quiet

{{r0 → 2.7, beta → 0.243432, gamma → 0.09016}}
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1  gamma /. sol[[1]]

11.0914

We assume the exposed period as 1 / α = 1 day. Thus, the RIVM “generation time” with value 4-5 
days differs even more from the “generation interval” in our assumptions.

1  α + 1  gamma /. α → 1 /. sol

{12.0914}

With an incubation of 6 days, we have 5 = 6 - 1 days of asymptomatic infectiousness. RIVM would 
have a symptomatic period of 12.1 - 6 = 6.1 days. Since RIVM did not provide definitions or discus-
sion, it is unclear where they stand.

(2) RIVM concentrates on “flattening the curve”, to remain within the capacity of the ICU, even to 
the effect that they do not provide any indication of the potential number of deaths. Basically, RIVM 
avoids any discussion about the effect measures of “lives saved” and (quality adjusted) “life years 
gained”. Policy makers, the “Outbreak Management Team”, the medical world and RIVM have 
converged on the idea that medical conditions of patients imply treatment at an ICU so that this 
capacity must be respected. The government and RIVM had presented the “three scenario’s” but in 
qualitative format, and there is no effort at developing more options, in also quantitative manner. 

RIVM reproduces the Chinese CDC summary (Wu & McGoogan (2020) in JAMA), keeps the numbers 
and changes the diagnoses: 81% “mild” becomes “little affected or without symptoms”, 14% 
“severe” becomes “seriously sick”, and 5% “critical” becomes “fatal”. While the Wu & McGoogan 
(2020) write “critical” and also explicitly state a case fatality of 2.3%, the RIVM interpretation is 
bizarre. Potentially, though, RIVM finds the CDC estimate unreliable, with its selection of mostly 
symptomatic patients reporting at hospitals. It is better to mention this.

RIVM oppose this Chinese "pyramid" with a finding at hospitals in Breda and Tilburg of 97% little 
affected and 3% seriously sick, and apparently no deaths. We can wonder why this is so relevant 
because in the next slide RIVM mentions 276 deceased. 

Using their R0 and our IFF = 1.5% we can find the implication of the SICD model of the limit value of 
deceased of the pandemic in Holland at around 240,000.

Explain[ SICD[Limit, BetaSIA[] → 2.7 gamma, GammaSIA[] → gamma], SICD]

{S → 0.0844068, I → 0, C → 0.901859, D → 0.0137339, N → 0.986266, A → 0.915593}

Explain[ 17.4 × 10^6 * SICD[Limit, BetaSIA[] → 2.7 gamma, GammaSIA[] → gamma], SICD]

S → 1.46868×106, I → 0., C → 1.56924×107, D → 238 970., N → 1.7161×107, A → 1.59313×107

2.9.5. RIVM April 8

(1) RIVM & Van Dissel (2020b), April 8, now mention R0 ≈ 2.3, a doubling time of 5-7 days, an incuba-
tion period of 6 days, and a "generation time" of 3-5 days. 

(2) Remarkably, the first slide still has the Breda and Tilburg message that there would be no 
deaths, and a few slides later that there are 2101 deceased, and again a few slides later there is the 
report of the “surplus deaths”. The first slide has become somewhat like a “logo”. 
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(3) Again RIVM concentrates on “flattening the curve”, to remain within the capacity of the ICU, but 
they do not provide any indication of the potential number of deaths. 

(4) Slide 17 shows the effective R, in which the first day of symptomatic disease is traced back from 
the Osiris database, apparently February 27, which allows us to infer that the GP-data are not in this 
database. The effective R got lower than 1 on March 23. Slide 18 shows the measures that were 
gradually taken in the period of February 27 to March 16.

Since R0 changed from March 25 to April 8, let us reconstruct β and γ.

eqs = r0 ⩵ 2.3, r0 ⩵ beta  gamma, r0 ⩵ 1 + r  alpha 1 + r / gamma  /.

r → Log[2]  6., alpha → 1

r0  2.3, r0 
beta

gamma
, r0  1.11552

0.115525

gamma
+ 1 

sol = Solve[eqs, {r0, beta, gamma}] // Quiet

{{r0 → 2.3, beta → 0.250239, gamma → 0.1088}}

1  gamma /. sol[[1]]

9.19121

The number of implied deceased, using IFF = 1.5%:

17.4 × 10^6 * SICD[Limit, BetaSIA[] → 2.3 gamma, GammaSIA[] → gamma][[4]]

225 093.

2.9.6. RIVM April 22

(1) RIVM & Van Dissel (2020c), April 22, still have the first “logo” slide, and correct with a later slide 
with 3916 deaths. Osiris mentions 34 thousand patients who tested positive on SARS-CoV-2, of 
which 33% are care workers, given the lack of tests and the policy that only patients and care 
workers are tested.

(2) Slide 9 gives the claim that without the interventions 23354 ICU admissions more would have 
been required, representing 90% of the total, while current admissions are 10%. A later RIVM figure 
is that 0.35% of all national diseases arrive at the ICU. Thus, the implied limit number of infections 
is Aq[∞] =  Infections / Case * 23354 / .9 / 0.0035. One wishes that the slide would give full informa-
tion and not only some tidbits with much to assume. Using the RIVM R0 = 2.3 we can find the 
implied symptomatic Cases Per Infection (sCPI).

23 354  .9  0.0035 ⩵

CasesPerInfection 17.4 × 10^6 * SIA[Limit, BetaSIA[] → 2.3 GammaSIA[]][[3]]

7.41397×106  1.50062×107 CasesPerInfection

Keep in mind that Infection = Exposed + Asymptomatic + Symptomatic, but that we might have to 
make a distinction between “merely symptomatic” and “disease that might cause hospitalisation”.

Solve[TheFormer, CasesPerInfection]

{{CasesPerInfection → 0.494061}}

(3) Slide 16 has the claim that the effective reproduction factor came below 1 on March 16, i.e. the 
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first Monday when schools were closed. Apparently RIVM adapted the estimate. The estimate refers 
to Wallinga & Lipsitch (2006).

Contact tracing apparently allows a chart of “what age group infects what age group” (slide 20).

RIVM reports about a study done on infectious spread under and by children, but this study was 
done in April after schools had closed, and RIVM accurately reports that there is “selection bias”. We 
can be very skeptical about this study. I am much amazed that RIVM presents this biased finding as 
“conclusions”.

(4) Tests on blood donors: On average 3.6% of the population has antigens. This is 1% for persons 
below 20 years and 4.2% for those older. We may presume that there has been correction for 
sampling selection; it leads too far now to look into the referred study (F van der Klis et al, IIV-
CIb/RIVM). The issue returns on May 20, and then allows an estimate of the Infection Fatality Factor 
(IFF).

2.9.7. RIVM May 7

RIVM & Van Dissel (2020d), May 7, still have the first “logo” slide, corrected later with 5204 deaths. 

The levels at the ICU have dropped so much that RIVM concentrates on giving scientific blessing to 
the government plan of phasing out lockdown measures such that a second wave ought to be 
avoided.

2.9.8. RIVM May 20

(1) RIVM & Van Dissel (2020e), May 20, no longer have the first “logo” slide. The death toll is 5715, 
not counting the “surplus deaths”. Osiris counted 44249 patients, and thus a Hospital Fatality 
Factor (HFF) of 12.9%. In the chart on slide 9, RIVM puts Holland below instead of above Spain with 
12%. Below, for lack of other data, we will take the sCFF as this HFF.

HFF ⩵ 5715  44 249.

HFF  0.129155

(2) Slide 9 gives the “surplus deaths” as 9000, which means some 3300 cases more than the official 
number 5715. There is no information yet about the composition of these surplus deaths. There 
may also be flu victims, deaths from reduced normal care, and there will be fewer traffic accidents 
(normally 65 per month).

Research on blood samples, now a combination of blood donors and a RIVM panel called “Pienter”, 
shows that 3-4% of Dutch inhabitants have antigens. RIVM mentions 650,000 that “have been” 
infected, which means that they took 3.735%. 

650 000  17.4 × 10^6

0.0373563

RIVM arrives at an Infection Fatality Factor of 1.3%, and it is somewhat remarkable that they do not 
round to 1.4%.
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IFF ⩵ 9000  650000.

IFF  0.0138462

(3) RIVM actually provides this (incomplete) table that is focused on hospitals.
Hospital Not All

Have been infected 44249 + ? rest 650 000

Patient 44 249 ? ?
Deceased 5715 rest 9000

We have: IFF = D / I = D / H * H / I, but there are different death counts, and the H / I ratio must be 
corrected for this.

We can combine the Osiris data and the infections from the blood testing.

HospitalCasesPerInfection == 44 249  650 000.

HospitalCasesPerInfection  0.0680754

We would like to have the symptomatic Case Fatality Factor (sCFF) too. We have IFF = D / I = D / sC * 
sC / I = sCFF * sCPI with the symptomatic Case Per Infection (sCPI). Above we had an indication that 
it might be 0.49 but this was dubious.

(4) However, let us suppose that the distribution of infections copies the distribution of deaths, or 
that we can use the IFF to backcast the infections. Let us suppose that the symptomatic death rate 
as observed for hospitals (HFF) roughly applies to the total of 9000 deaths, with sCFF = HFF, so that 
we can backcast the symptomatic development. Then we can fill in two blanks.

Hospital Not All

Have been infected 412 750 237250 650 000

Little affected or no symptoms 368 501 211 815 580 316

Patient or symptomatic 44 249 25 435 69 684
Cleared 38 534 22 150 60 684
Deceased 5715 3285 9000

And we can now compare with the Chinese CDC “pyramid”, see Wu & McGoogan (2020). Though 
they also have confirmed cases, their selection has been biased by mostly symptomatic patients, 
though confirmed by microbiological testing.

Chinese CDC (IFF) Holland (IFF)
Deceased 2.3 1.38

Critical including deceased 5 -

Severe 14 9.34

Mild 81 89.28

Thus we now have the decomposition IFF = sCFF * sCPI with sCFF = 12.9% (HFF = 9000 / 69684) and 
sCPI = 69684 / 650000 = 10.7%.

(5) The claim on the number of ICU admissions that has been prevented has now risen to 44000. 
RIVM does not specify what percentage this is, and thus we search for a statistic on the current 
cumulative number of ICU admissions. For May 20 this is 2847, see https://www.stichting-nice.nl/. 
Thus we can do the same algorithm as above. It is actually here on May 20, slide 16, where it is 
stated that the ICU form 0.35% of all diseased per day. RIVM states that 16 /100,000 new diseases 
per day mean 40 hospital admissions and 10 ICU admissions per day, in the latter ratio of 1/4. Less  
rounded numbers are 154 / 100,000 disease new cases, 384 hospital and 96 ICU admissions, still 
with the latter 1/4. With a population of 17.4 million, the 0.00154 figure translates into 26796 cases 
per day, of which then 384 = 1.4% hospital and 96 = 0.358 ICU admissions. It still are rounded 
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numbers. The implied figure of 1.4% “hospital case per disease” differs much from what we found 
above, as 9.34% “severe” or even the 6.8% “hospital cases per infection”.  Something happened to 
the definition of “disease” and it is unfortunate that the slides do not give a definition. (It is even 
unclear whether the ICU belong to the hospitals or are a separate category.) However, we can take 
1/4 as the ratio and presume that 9.34 / 5 of the critical might be at ICU of which more than 50% 
actually dies.

{hosp, icu} = {384, 96}  17.4 × 10^6 * 154  10^5

{0.0143305, 0.00358262}

Assuming that 0.35% was rounded, and using the RIVM R0, we find a high figure for the disease per 
infection, that doesn’t fit even the high factor of asymptomatic cases. For us, it is a mystery what 
RIVM here is presenting to Dutch Parliament.

44 000 + 2847  0.00358262 ⩵

DiseasePerInfection 17.4 × 10^6 * SIA[Limit, BetaSIA[] → 2.3 GammaSIA[]][[3]]

1.30762×107  1.50062×107 DiseasePerInfection

Solve[TheFormer, DiseasePerInfection]

{{DiseasePerInfection → 0.871386}}

(8) Slide 13 has this curious diagram of the periods between the stages. Incubation has been 
reduced from 6 to 5 days, and instead of “symptoms” there are “complaints” (“klachten”) (which I 
would regard as a major distinction). In the recording, Van Dissel states that the seriously ill have 
their own shorter path from complaints (“klachten”) to ICU (9.2. days). The total period from infec-
tion to hospital admission is 5 + 7.7 + 7 = 19.7 days, suggesting a one-decimal accuracy. However, 
when RIVM estimates the effective reproductive factor R[t], then they can back-trace hospital 
admissions to infections 14 days earlier (as apparently recorded in the Osiris database). I would say 
that 14 differs from 19.7. It may well be that various visits to the GP (“huisartsbezoek”) do not result 
into a hospital admission, so that the averages in this scheme are much influenced by either the 
healthier who eventually clear by themselves or those who prefer to die at home rather than uncon-
scious in an ICU bed. This scheme is more confusing than informative, though the period for back-
tracing likely will be accurate (as accurate as the database entry system).
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(9) The pyramid in above diagram refers to the original Chinese CDC summary that 81% mild, 14% 
severe, and 5% critical (that RIVM calls “fatal”). RIVM has drawn a dashed line to indicate that there 
are many asymptomatic infectious, i.e. “below the radar of symptoms”. In the video presentation, 
Van Dissel very shortly remarks that most experts think that the pandemic cannot be suppressed 

because of these asymptomatic infectious. Singapore and South Korea thought that they had the 
infection under control but were confronted by recurrences caused by such carriers. Never-ending 
surveillance and contact tracing are required. 

(10) RIVM then discusses Kissler et al. (2020), the Harvard study, referring to it as “Marc Lipsitch et 
al, Science, 2020”, and subscribe to the findings. A method of lock-on-and-off could respect the 
capacity of the health care system, and would gradually result into a build-up of herd immunity of 
some 55% over two years. The fact that antigens have been found in Dutch blood samples is encour-
aging for the assumption of immunity, but it is not clear how long this will last. (Sanguin stated 
independently that antibodies need not say much about immunity. Corona viruses cause the 
common cold and the immunity system tends to forget them.) The method requires close monitor-
ing of developments (with said delay of 14 days between onset and hospital admission), and comes 
with a risk of a “Fall peak” (this Fall and Winter) and overlap with the flu. Apparently “herd immu-
nity” still is an appreciated by-product (see our deconstruction in section 1.5.5 and Chapter 6).

(11) RIVM suggests a gradual release of lockdown. There are distinctions between individual / 
group, inside / outside, local / regional. There are systems for “early warning” and “surveillance”. 

2.9.9. RIVM May 25

RIVM & Van Disssel (2020f), May 25, has the “logo” slide re-instated, though no longer mentioning 
Breda and Tilburg that reported no deaths, and replacing the Chinese CDC pyramid for confirmed 

infections with the RIVM undefined “disease”, of 98% “no or few complaints”, 1.5% hospital admis-
sions and 0.35% of ICU (which at least informs us that these are separate categories, i.e. ICU not 
counted as part of hospitals): (i) which emphasises the RIVM focus on the ICU, (ii) which neglects the 
deaths, also outside of the hospital system, and which does not mention the IFF of 1.5% as a rele-
vant issue (their own estimate 1.38%). Remember that the sCFF was 12.9% so the RIVM undefined 
“disease” is something else then landing in the hospital because of symptoms. However, the slide 
mentions the world death toll of 350,000, so RIVM shows awareness that deaths are happening 
somewhere. The R0 had been 2.7 and had been reduced to 2.3, and is now put at 2.5. What is the 
meaning of this change: has RIVM indeed done a re-estimation of the situation in February, or is it 
only the presenter of the slides who happened to pick one particular file on his computer out of a 
large collection of versions ? Incubation had been put at 6 days, then 5, and is back at 6 again. 

2.10. A partial result of this exercise

2.10.1. A result for us

This exercise is partly useful to determine what if we hadn’t had a lockdown. Thus, using β = 4 and γ 
= 1/10, what would the death toll have looked at the end of the year ? Many people would agree 
that a temporary lockdown in March 2020 has been sensible, if only to consider the options. Dutch 

2020-06-15-Didactics-SIEYACD.nb     63



society saved some time to consider the options. But did we really consider those options, and, 
what are the options actually ? As said, this discussion cannot be settled with a didactic exercise, 
but one can discuss what information would have to be improved in order to make such discussion 
fruitful.

2.10.2. A list of questions for others

The government and RIVM allowed the virus to spread, first formulated as an objective but quickly 
rephrased as a by-product of the policy of flattening the curve. Allowing a virus to spread might be 
based upon medical criteria and the properties of the virus, like the common cold, but it has a 
distinct legal flavour of avoiding responsibility for the spread. If the virus is innocent then why not 
use it as its own vaccine ? The situation is a conundrum in terms of public health. Such questions 
should have been addressed with the WHO PHEIC, but are still waiting for an answer. The health 
system allowed events to evolve such that the emergency brake of a lockdown was required, so 
that such questions were sidetracked, but such questions still need attention.

It is sobering that the Dutch lockdown in the middle of March was an emergency brake. Given the 
statement of RIVM (2020) of January 27, then, when the WHO declared the PHEIC on January 30, the 
proper course would have been to clam down on the infection, as in Taiwan, Hong Kong, Singapore 
and South Korea. This would have required intensive education of the Dutch population, within 10 
days, but the scenes from Wuhan and Italy would have helped. The plane that left Holland on 
February 10 with medical supplies and personal protection equipments collected for China, would 
have stayed here.

The above criticises RIVM statements about herd immunity and the role of children. There was the 
collapse of conventional hospital care. It seems that RIVM was focused on the end-of-pipe ICU beds, 
with prominent doctors, and with neglect of up-stream homes of the elderly, with less status, even 
while RIVM stated that the policy was targeted at protecting the vulnerables. RIVM only advises, but 
still.

Sridhar and Rafiei (2020) indicate that it is almost impossible to shield the vulnerables, except by a 
national lockdown. I have my doubts whether we actually tried enough. However, RIVM in the early 
phase called for such protection as if it were possible without a lockdown. In the later phase RIVM 
provided various measures for social distancing, but rather late and even now, with RIVM support-
ing the release of lockdown measures, it seems that they trust that the vulnerables can be shielded. 
We can only assume that this is evidence based, so, what is this evidence ?

There are questions about source and contact tracing. Critical questions arose in the media while 
one would assume that RIVM should have spotted the problem itself earlier (even when it is GGD 
that has been assigned that task). 

RIVM allowed that deaths were only counted for hospitals, and that suspected cases at home were 
not tested, even though RIVM knows that this distorts the information. We discussed the estimate 
of the dynamic R[t] on hospital data only, with unreliable uncertainty because of the changing 
attitude w.r.t. hospitals and the peak in “surplus deaths” in April. 

There are questions about the balance of medical needs and economic needs. The provinces of 
Brabant and Limburg were not put into quarantine with the argument that a lockdown would also 
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lock down the economy, but the lock down of two provinces does not lock down the entire nation. 
When RIVM had manoeuvred the process into the funnel of a national lockdown, then it seemed as 
if discussion with economists was superfluous, but such discussion would have been needed at all 
times, even in January, even now. Though it is useful to remark that this notebook looked at the 
didactics of SI(EY)A(CD) modeling with the example context of SARS-CoV-2 for Holland, and this 
notebook does not discuss the didactics of economic models for this context.

PM. The above basically concerned the RIVM department of infectious diseases. RIVM does more 
than this, and RIVM also does many more things not. In 2004, minister of Economic Affairs L.J. 
Brinkhorst and public health and environment secretary P. van Geel wrote to Dutch Parliament that 
RIVM had been given funds to calculate each five years the figure of environmentally Sustainable 
National Income (eSNI) according to the definition by Hueting, see Brinkhorst & Van Geel (2004). 
This was done till 2005. Thereafter the calculations stopped, and it is not clear why. See Colignatus 
(2020f).

3. The package

3.1. Caveat: This is didactics. The package only hints at the real world

The above already indicated:

(a) We want to focus on SARS-CoV-2 but we will not get far. SIA, SICD and SI(EY)CD have few parame-
ters, and we should not expect that these few parameters are sufficient to describe the world. It is 
educational that such a simple model already conveys major conceptual aspects about a pan-
demic, but an increased confidence in one’s understanding of pandemics should not cause 
overconfidence.

For example, these basic models have only 1 class of susceptibles. In our own discussion there are 
rather two classes (SI(EY)CD2): vulnerables and less-vulnerables. Modeling with more stages and 
more age-groups likely requires SI(EY)CD20. 

In other words: If and when elements from this notebook and package are used for real world 
applications then those must be documented for themselves.

(b) The notebook and package present both the conventional S(E)IR(D) setup and a didactic 
redesign to a new format SI(EY)A(CD). It you want to, you can use this package in the traditional 
S(E)IR(D) format. In all cases, there is no change in conceptual content or material findings. There is 
only the suggestion that the (underlying) notions are expressed more clearly and more accessible, 
extended now with user-friendly programming for an environment of computable writing. The 
principle is: Do not program to others what you do not want to be programmed to you.  

There are obvious drawbacks to this effort at restating what is already known. An experienced 
reader might wonder why this redesign is needed: there is a learning curve for this notebook and 
package, with nothing gained on new understanding.  A novice reader might benefit from a better 
understanding of models and programming as provided here, but then still faces the literature with 
its conventions. This notebook and package thus are a rather dubious endeavour. The proof is in 
the eating of the pudding. My expectation is that many readers will find that the reading has been 
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worthwhile. (For teachers: When one doesn't adopt the redesign itself then this discussion at least 
highlights issues in didactics.)

3.2. Design / Redesign of didactics

The following repeats the overview of the choices from didactics, as stated in the Introduction, but 
relates those choices now to some programming particulars, like the choice of options and the use 
of variable names.

3.2.1 Avoid using R for compartments, and instead use A and C

The conventional S(E)IR(D) model uses the label R for three applications: the Removed, the Recov-

ered and the Reproduction factor. Perhaps best would be to avoid R altogether, so that there is not 
even the question what R might mean. However, R0 is used in various models and it suffices to 
relabel the compartments. We use A for the Acquitted, and C for who has cleared the infectious 
period without dying. On occasion we may write f for the reproduction factor, since it is a factor 
indeed.

PM. The symbol R is also avoided in the “traditional versions” that the package recognises. How-
ever, Rq, Rp, and Rg are available, and users may set Rq = Aq, Rp = Ap and Rg = Ag. (This would have 
to be done after each clearing of the variables, and one might write a small routine that both clears 
and redefines.)

3.2.2. Have D = φ A as an explicit proportion

Section 7.3. The conventional format of the SICD (SIRD) model has D’ = μ I. This causes the question 
what μ means, how to calculate its value, and what happens if the overall γ would change. The best 
didactic format is to give the actual model D = φ A. The deceased are a mere proportion of the 
acquitted, with φ = Infection Fatality Factor (IFF).  The conventional format is oriented to Ordinary 
Differential Equations (ODEs) and it is an exercise in mathematics to show that this translates in the 
proportions. It is clearest however to state what the model entails, and regard the education about 
ODE as another issue. 

PM. The “traditional version” in the package has D’ = μ I. 

3.2.3. One single conceptual model SIA with two kinds of splits: A = C + D and I = 

E + Y

SIA is the conceptual model that has two kinds of nuance splits, whence the full name is SI(EY)A(CD):

(a) Section 7.3. The acquitted A can be split into the Cleared and Deceased, thus A = C + D. 

(b) Section 8.3. The infected = infectious I can be split into the Exposed and Infectious, either I = E + Y 

(didactically clearest) or traditionally Y = E + I (in which I puts emphasis on being infectious).

Within the new didactic format, the two splits are such, that the properties of the S, I, and A compart-
ments remain the same (taking I = E + Y). This warrants the use of a single set of Options[SIA] that 
control the functioning of all model formats. The routines for SIA, like finding the top of I = E + Y and 
the limit values, apply to all variants, since the same assumptions apply.
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PM. The “traditional version” in the package has Y = E + I.

PM. For simplicity, no background births and deaths have been included, though they obviously 
effect conclusions about waves of infections and a steady state.

3.2.4. Separate models but joint options

Good programming requires that a new model comes with its own set of options: but this applies 
only when we really have different models. The SIA, SICD and SI(EY)CD models are so alike that it 
would be unwise to have different sets of options. Having different sets of options would require 
checks on e.g. the same size of the population etcetera, and this better be avoided.

It would have been possible to construct SICD by first run SIA and then split A into C and D, but we 
follow the convention (historical development) to present SICD as a separate model indeed. This 
has the advantage that all variables are available in both input and output. We include A = C + D in 
the model, for this purpose. For SEYCD we also include I = E + Y.

(It may be remarked that the design of this package started out with separate options and the more 
traditional format “SEICD”. This appeared to be too complex, for the reasons given. Thus the setup 
was simplified, and using the routines showed that this was beneficial. An example is the run on the 
intervention, in which the same set of Options[SIA] can be adapted to the new regime.)

PM. Still, applications of the options can differ. The user can call the routine SIA[Options, Check] for 
some diagnostics on the settings. For example, the parameters GammaSICD[] and MuSICD[] are 
used in the traditional setup of the models, and it may be useful to check that they add up to 
GammaSIA[] for the SIA. 

Options[SIA]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

SIA[Options, Check] // MatrixForm (* these are strings → values *)

beta == R0 * gamma (estimation) → 0.4  0.1 Null
0.1  GammaSICD() + MuSICD()

Aqt0 ⩵ Cqt0 + Dqt0 → True
Sqt0 is no parameter, Sq[t0] is in equations → 1.73999×107

{SIA and SICD use Seed instead of Itq0, {Iqt0 → Null, Seed → 100}}
{Didactic SECYD has (Iqt0 → Null), Iqt0 → Null}

{Traditional SEYCD has (Yqt0 → Iqt0 + Seed), Yqt0 → Null + 100}

3.2.5. Joint set of parameters and variables

The models not only have a joint set of parameters but also a joint set of variables Sq[t], Iq[t], Aq[t], 
... for the levels and Sp[t], Ip[t], Ap[t], ... for the proportions. The routines defined for the variables of 
SIA can be used by SICD and SEYCD. The routines defined for C and D for the SICD model can also be 
used by SEYCD. 

One would not expect anything less from an integrated didactic environment. Any disciplined 
writer would also generate such administration too. However, it is somewhat remarkable that in 
the many formulations of the S(E)IR(D) literature, mostly only those variable names and R0, β and γ 
are the same, while there is a somewhat chaotic variety in other aspects. Let authors feel invited to 
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adopt more uniformity.

While variables Sq[t], Iq[t], Aq[t], ... have specifications that are also agreeable for computational 
writing, the package also provides for translation to shorter symbols , ℐ, , ... for the human eye. 

3.2.6. Distinction between infections and symptomatic disease

The distinction between infection and symptomatic disease is fundamental in this discussion. 
Chapter 10 gives the conventional distinction between the generation interval and the serial inter-

val. This notebook and package have no contribution to this discussion. There is only the advan-
tage that the discussion has been rephrased within the confines of above redesign. A basic finding 
is that many reports in the literature apply the S(E)IR(D) → SI(EY)A(CD) model to symptomatic 
disease (e.g. the Goh (2020) “epidemic calculator”). For SARS-CoV-2, the crucial phenomenon is 
asymptomatic infectiousness.

3.2.7. Models SEYCDT and SEYCDB for estimation

Chapter 12 discusses two methods to present an intervention. 

The first method has a Base SEYCD model alongside an Alternative SEYCD model, and the models 
differ in parameters and time of intervention. 

The second method compares the Base SEYCD model with a model that uses the Mathematica 

feature of the WhenEvent statement: either SEYCDT for an intervention on R0 or SEYCDB for an 
intervention on β. The WhenEvent formulation appears fruitful for estimation, so that not only the 
parameter before the intervention but also the parameter after the intervention can be estimated, 
taking into account that the observed number of deceased will be an effect of overlapping periods. 
Again, this estimation has educational objectives only. Practical application would require more 
data and also much more precise data (with e.g. regional aspects). Another advantage of this 
limited estimation exercise is that it clarifies the meaning of the parameters.

Having an intervention and estimation may require an administration of the N[0] that is used as the 
denominator of the proportions. This is not required for the latter SEYCDT and SEYCDB with the 
WhenEvent approach, 

3.2.8. Modularity

A fundamental programming principle is to build with blocks that are fully functional and well-
tested. The user often knows little about the building blocks and only requires that everything 
works as stated in the manual.

It is tempting to create flashy results (e.g. some plots below) using quick and dirty routines. In such 
cases, it takes only a small glitch and the whole edifice doesn't work anymore. Even worse: if 
programming isn’t well-structured, then it is often impossible to trace its cause and repair the issue.

The present setup provides both the building blocks and the higher-up routines. The building block 
have been tested (by writing this notebook, also in steps) and are reliable. If there would occur 
glitches in the higher-up routines (e.g. entering 1/0) then it remains possible to redo the process in 
steps by using the underlying building blocks. 
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For example, in steps (available building blocks) we define the equations, assign parameter values, 
do the NDSolve for the path, set the level variables Sq, Iq, Aq, ... to the interpolated functions, set 
the proportion variables Sp, Ip, Ap, .... Normally all steps have a standard sequence, so there is also 
a routine to do the steps for us. The higher-up routines are less-tested than the building blocks, so if 
something happens, like with a parameter out of range, then it still is possible to do the steps. For 
example, while the package presents a main plot format with a particular choice of plotting 
options, and there would be a glitch, say by a newer version of Mathematica that changes some-
thing in plotting, it always remains possible to use the Plot routine that is standardly available 
within Mathematica.

3.2.9. Administration of scenarios

Apart from this discussion of what the models and package do, there is also the application that 
requires record keeping of assumptions, parameters and outcomes. This is handled in another 
package Survival`ApplySIA`, not shown or discussed here. My administration is organised but it 
has not been documented for use by others.

3.3. General setting on programming

3.3.1. Reasons for choosing Mathematica

Reasons for choosing Mathematica are the same as for writing packages in Mathematica in general:

- Use of a general environment, so that code isn’t locked-up within the confines of a particular 
application, but can be used in direct combination with other computable aspects, like estimation 
and economic implications. There is a price to pay though: this notebook and package come with 
the confinement of the Mathematica environment.

- While the language of mathematics is universal, also on the computer, Stephen Wolfram had a 
talent to bring it to the computer. Mathematics has been developing over millennia, and my impres-
sion is that Mathematica has caught this development in the best manner for application on the 
computer. Other applications obviously must satisfy mathematics if they are to work, and mathe-
matics can have many dialects, so this reason need not be an universal truth itself, and likely it is 
only a matter of (acquired) taste. 

- All this is embedded within my proposal for redesign of mathematics education, see https://zeno-
do.org/communities/re-engineering-math-ed/about.

I made a choice for Mathematica in 1993 and have much benefitted from it. Over the years, other 
computer algebra packages have not developed as much. New options like R and Python do not 
have the appeal of the language.

3.3.2. The Economics Pack

This notebook and its discussion are open access. At first my objective was to make the package 
open access too, but soon I found it more efficient to use features from The Economics Pack, which 
features had been developed in the past for good reason. The pack is available at a cost, see Coligna-
tus (1995, 2020e). Considering that others can use notebooks in Mathematica only by also acquiring 
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Mathematica anyhow (except for the MathReader, now WolframPlayer), I dropped the notion of an 
open access package. The new package is basically for convenience. The Economics Pack already 
contained a section on the life sciences, and Survival`SIA` is included there. When the Pack has 
been installed on the computer, use the file explorer to find the notebooks. A complication is that 
the Help function of Mathematica has abolished the HelpBrowser, and switched to a paclet struc-
ture. The Pack hasn’t adapted to this yet. However, the user can find the explanatory files by use of 
the file explorer.

ToFileName[{$TEPDirectory[], "Applications",

"Economics", "Documentation", "English", "LifeSciences"}]

C:\Users\Eigenaar\AppData\Roaming\Mathematica\Applications\Economics\Documentation\English\

LifeSciences\

3.4. The SIA package

Contents["Cool`Survival`SIA`"] (* click on symbols to find explanations *)



Cool`Survival`SIA`

Acquitted Dp MuSICD QuarantineColours SICD

Ag Dq Ng R Sq

AlphaSEYCD Dqt0 Np R0 Sqt0

Ap Eg Nq R0DublinLotka Susceptible

ApByR0Plot Ep Nqt0 ReadMeSIA TforAp

Aq Eq Og Recovered TforAp50

Aqt0 Exposed OmegaSICD Rg TforAp95

AttackRate FindTime Op Rp TforTopEq

BetaSIA GammaSIA Options$SEYCD Rq TforTopIq

BetaSIADivNqt0 GammaSICD Options$SEYCDB Seed TforTopYq

Cg ICU Options$SEYCDT SEYCD TimeByR0

Cleared Ig Options$SIA SEYCDB TopIq

Cp Infected Options$SICD SEYCDLettersOnly Yg

Cq Infectious Oq SEYCDNumericQ Yp

Cqt0 Ip Other SEYCDT Yq

Deceased Iq PhiSICD Sg Yqt0

Dg Iqt0 PlotLegendsSIA SIA


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? ReadMeSIA

Symbol

ReadMeSIA[] gives an overall explanation of the SIA` package. See there for:

ReadMeSIA["Terminology"]

ReadMeSIA["Symbol"]

ReadMeSIA["Period"]

ReadMeSIA[model] for models SIA, SICD and SEYCD

ReadMeSIA[SEYCD, Simplify]
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ReadMeSIA[]

The SIA` package recognises the levels (q) and proportions (p) with Vp = Vq / Nq[0] for variable V: N, S, E, I,

R, A, C, D, Y, O. The proportions are w.r.t. N[0] and explicitly not current Nq (thus not Vp = Vq

/ Nq). The didactic assumptions are A = C + D and I = E + Y (with Y the infectious). The package

uses the short names Vq. The long names like Exposed etcetera are available as symbols only.

The routines generally allow for user options when these are relevant.

ReadMeSIA["Terminology"] clarifies terms on mortality, fatality, factor and rate.

ReadMeSIA["Period"] gives equations on latency period and serial interval (using Strings).

ReadMeSIA["Symbol"] lists the meanings of the symbols.

The basic routines f are SIA, SICD and SEYCD. They operate via the standard Mathematica practice of

using options. We do SetOptions[SIA, ...] for the parameters, call sol = f[NDSolve, ...], call f[Set, sol]

to set Sq[t], Iq[t] etcetera, and then SetOptions[Plot, ...] and Plot[f[t], {t, 0, tmax}] and also f[Plot, ....].

We want to use Sq[t] for both numerical output at one time and as a variable

or a symbolic expression for solving at another time. To do so, the runnable equations

are put into Hold. We first clear the variables before submitting them to NDSolve.

The models can be presented in traditional or simplified form. Default is the latter.

ReadMeSIA[model] for SIA, SICD, SEYCD gives an even more simplified form, using β* = β / Nqt0.

ReadMeSIA[SEYCD, Simplify] gives an even more simplified format.

For traditional form use f[Equations, TraditionalForm, ...] and f[N, TraditionalForm, ...]

PM 1. In Mathematica: N is the number function, E is the exponential number, I is the unit complex

number, C the coefficient, D the differential operatator, and O for Landau, and there are In[]

and Out[], so that we use q instead of n for the number. We avoid name conflicts, and actually

enhance clarity, by using Vq and Vp. At times, using Script font appears to work was well.

PM 2. Default parameters R0 -> 4 and γ -> 1/10 and φ -> 0.015 and α -> 1 are for Holland

and the SARS-Cov-2 pandemic, April 21 2020. PM. The SIA model uses β = R0 * γ

3.5. Initialisation cells for loading of The Economics Pack and Survival`SIA`

4. Compartments

4.1. Principle

Principles for this chapter are:

(1) (Public health) compartments appear to be relevant for quarantine controls. The following is a 
suggestion for such compartments.
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(2) The SARS-CoV-2 pandemic requires clear communication in and over a variety of cultures in the 

world. We should use as much common ground as possible. 

(3) One common ground is the human sensitivity to colours. Colour coding seems rather important 
for effective communication. Humans are sensitive for very subtle differences in colours, but, while 
the rainbow shows all frequencies, or colours ordered by hues, there is a tendency to see only some 
10 hues, differing by about 0.1 degrees.

4.2. The meaning of red for regulation

Like with traffic lights, we need colours to manage not only people but also locations. It is insuffi-
cient to paint “dangerous cars” red and “safe cars” green. Red is the general colour for alert status 
(likely because blood is red), and it is best to use red for the barrier between any quarantine group 
rather than for a particular group.

The basic idea is that red identifies a barrier. 

The following suggested colour scheme uses identifiable patterns in the hue or RGB schemes. 

Rainbow

0.

0.05

0.1
0.15

0.2
0.25

0.3 0.35
0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.75
0.8

0.85
0.9

0.95

1.

In the RGB rainbow:
- B goes from 0 (uninfected) to 1 (infected) (uphill only). 
- R has the path 1-0-1 (valley). 
- G has the path 0-1-0 (up and down a hill). 
However, the rainbow is subsequently rearranged, namely to put red between the vulnerable and 
less vulnerable quarantine classes.

The interpretation is: the further a quarantine class is away from the barrier, the more extreme the 

position will be: either uninfected (B is 0) and more vulnerable, or infected (B is 1) and getting sicker. 
PM. The colour of DeeperPink for the ICU has an infringement upon the B = 0 or B = 1 dichotomy.

4.3. Suggested colour scheme

The colours might also be used for SI(EY)A(CD)-type of modeling with more compartments. The 
scheme allows that SI(EY)A(CD) is used for both infections and symptomatic disease. The “bluepu-
rple” group was included for symptomatic disease. For quarantine it would likely be joined with 
“freshpurple”.
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QuarantineColours[]

Colour Name RGB Colour scheme of combined Hue (no Venn diagram)
Hue R G B

Yellow 0.16 1. 1. 0. Uninfected and vulnerable (elderly or diseased)
Orange 0.09 1. 0.5 0. Uninfected, less vulnerable (young & no disease), preferably not infected
Red 0. 1. 0. 0. Barrrier between quarantine zones
Green 0.3 0. 1. 0. Immune: cured from an infection, and tested to be no longer a carrier
Cyan 0.48 0. 1. 0.88 Unsymptomatic or untested, not in the vulnerable group, infectable
Skyblue 0.59 0. 0.46 1. Unsymptomatic, latency or incubation (modeling)
Blue 0.67 0. 0. 1. Infected, (possibly) sick, and less vulnerable (modeling infectious)
BluePurple 0.72 0.32 0. 1. Symptomatic (modeling), or infected (tested), likely self-quarantine
FreshPurple 0.77 0.62 0. 1. Infected, (likely) sick, and vulnerable
Magenta 0.83 1. 0. 1. Hospitalised
DeeperPink 0.91 1. 0. 0.54 Intensive care unit, complications comorbidity

For SI(EY)A(CD) modeling, mortality can be indicated by dashed Black / White lines, which fits 
European / Chinese conventions on these “colours”.

We can put the RGB combinations in the familiar RGB-plot reminding of a Venn-diagram. (PM. 
Deeper pink is not shown here.)

(a) The larger disks give a Venn diagram indeed. For example, the yellow group is safe because they 
are protected by a quarantine barrier. For example, the blue group is infected but it is unknown 
whether they will become immune (green) or have to be hospitalised (magenta). 

(b) The smaller disks do not form a Venn diagram. They highlight special conditions. For example, 
for “fresh purple”, the barrier is breached, and those of the vulnerable group must be hospitalised. 
(Hospitalisation itself shows that the barrier was crucial for them.) 

QuarantineColours[RGBColor]

4.4. Use of these colours in the SI(EY)A(CD) plots

These colours will also be used for plotting the SI(EY)A(CD) graphs. For the Acquitted, the combina-
tion of Cleared (Green) and Deceased (Black and White) results into some brownish colour. 

The SI(EY)A(CD) model, while officially named for infections, is also used by researchers for symp-
tomatic disease. Instead of the “exposed” there is “incubation”, and instead of “infectious” there is 
“symptomatic”. In itself this is not so strange, see Chapter 10 about the distinction between the 
“generation interval” and the “serial interval”. For the SARS-CoV-2 virus, it appears that both such 
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applications are used indeed. These models however have different assumptions, and there is 
some risk of confusion. Thus it is necessary to have legends that fit the type of modeling assump-
tions. These are the two sets of categories, and the symptomatic case tends to be a bit darker or up 
in the rainbow than the infections.

The command PlotLegendsSIA[SEYCD] sets the legends and colour schemes for the standard 
interpretation of SIA, SICD and SEYCD for infections. PlotLegendsSIA[“Symptoms”] sets those for 
symptomatic disease.

PlotLegendsSIA[Show, All] (* dashing statement deliberate *)

Susceptible

Exposed

Infectious

Dashing[{Small, Small}],  Infected

Cleared

Dashing[{Small, Small}],  Deceased

Acquitted

Population

Susceptible

Incubating

Symptomatic

Dashing[{Small, Small}],  Diseased

Remissed

Dashing[{Small, Small}],  Deceased

Acquitted

Population

4.5. When in lack of colours

These ten or eleven “identified possible quarantine groups” and their colours will not be enough to 
serve the large variety of cases. However, it is always possible to combine codes. We could show 
colours in bands, and not blend the hues. 

For example, an icon that shows both magenta and freshpurple indicates that a hospitalised person 
belongs to the vulnerable group, and if this is clear, then we might add a little bit of yellow to 
indicate that the origin is from the elderly and comorbidity group or a little bit of orange for the 
younger group of vulnerables. In a graphical plot we could have a line dashed with those colours 
(except that this hasn’t been implemented yet).

ColourBand{Magenta, 1}, { FreshPurple, 1}, Yellow, 1  4, 3,

ColourBand{Magenta, 1}, { FreshPurple, 1}, Orange, 1  4, 3

 , 

PM 1. There is a curious effect. In everyday life, when we use colors red and green, we do not neces-
sarily think of traffic lights. With above colour scheme for infection status, the colours in a graph on 
another subject may cause the question whether that other subject concerns infection status or not 
... It is something to get used to.

PM 2. It would be fortunate if Mathematica adapts a notion of "generalised colour" that includes 
such band-dashing in different normal colours, so that the options for Mesh and Legend can be 
combined. Now a trick is to plot a function twice, in both a base colour and a dashed other, but this 
means that one also gets a double legend.
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5. SIA

Clear

Clear all relevant variables since we may do different runs.

SIA[Clear] (* not Clear[SIA] ! *)

SetOptions[SetDatabank, Databank → SIA]; (* for Explain *)

5.1. Basic model in standard formulas

The classic SIA model has time-dependent variables , ℐ and , their derivatives, their starting 
values [t0], ℐ[t0] and [t0], and parameters. The sum of the three variables is the population . It 
will be convenient for Options[SIA] to include the starting values as parameters without brackets 
too. The starting value of the infectious compartment ℐ[t0] will be called the Seed. [t0] will get 
parameter Aqt0. And [t0] will not need a parameter since it can be determined as Nqt0 - Seed - 
Aqt0. 

ReadMeSIA[SIA]

′  -β*  ℐ

′  γ ℐ

ℐ′  -′ - ′

(t0)  -Aqt0 - Seed + (t0)

ℐ(t0)  Seed

(t0)  Aqt0

PM 1.  It is logical to state S’ and A’ first and subsequently derive I’, as Smith & Moore (2001, 2004) 
do. 

PM 2. β* = β / N[t0]. This gives a tiny value for β* but simplifies the model. Below we immediately 
drop this simplification.

PM 3. Above model is in levels (q). Division by N[t0] or setting N[t0] = 1 gives proportions (p) (and β* = 
β).

5.2. Computable format

The above is pleasing for the human mind but potentially less reliable for computer algebra and 
computable publications.

The model is best treated in symbolic manner. 

(1) Some discussions use proportions (p) in terms of N[0]. At base, it is more natural to use levels 
(q). The SIA model has population N[0] = S + I + A.  In SICD the surviving population is N[t] = N[0] - D, 

so that over time the proportions in terms of N[t] change even more, and it is important to keep the 
proportions w.r.t. N[0]. The actual model concerns population densities, with probabilities of con-
tacts. Standard discussions of SICD thus properly normalize for N = N[0], but working in proportions 
can hide changes in normalisation (e.g. changing to another year), and it is better to emphasize the 
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notion of density from the start.

(2) Conventional presentation seems to be oriented at solving the differential equations by hand, at 
least as far as possible. That is, the conventional equation for I’ actually writes out S’ fully again.  
For computer algebra we can use the simplified form, like Smith & Moore (2001, 2004) do.

(3) The routines are served by symbolic expressions while readability is served by single and Greek 
letters. There is no fundamental difference, except that single and Greek letters are used for multi-
ple purposes, while computer algebra expressions better be unique over a wide range. With xp = xq / 
Nq[0] we can use Script for levels (q) (e.g.  = ESC scS ESC) and Formal (with dots below) for propor-
tions (S.  = ESC .S ESC). Using different fonts will prevent conflicts with default use in Mathematica of 
N, E, I, C and D. The derivative prime has been enlarged for readability.

(4) Conventional discussions assume a start at t = 0 and Sp[0] ≈ 1, but for combining modeling 
outcomes with interventions on the parameters it is useful to have formal parameters for the values 
at t0. Lin et al. (2010) show a simulation with N = 100 and Ip[0] = 1, and then it is important to take 
Sp[0] = 99. 

(5) Conventional discussions have a “basic reproduction number” R0. The use of R is confusing in 
the standard SIR formulation, while R is already used confusingly for both Removed and Recovered 
compartments. Eric Weisstein (2020) at Mathworld states: “Note that the choice of the notation R_0 
is a bit unfortunate, since it has nothing to do with R.” We avoid this by using A = C + D. There 
remains a lingering question on R0 though. See Heesterbeek (2002) for a brief history, where the 
notion itself was started without its own symbol. Delamater et al. (2019) clarify that George MacDon-
ald introduced the notion of an own symbol in the epidemiological literature in the 1950s, using Z0. 
The term R0 is so fundamental to the literature that it would be wrong to consider changing the 
symbol. (However, for programming, when we replace R in SEIR(D) by A and C, there might still be 
confusion whether we should not also replace R0, since confusion might still arise when readers 
also refer to other publications in this kind of modeling. For the computing environment below we 
should avoid needless confusion and computing error. On occasion within (hidden) programming 
we may use the neutral notion of a “factor” F[t] with F[0] a value at t0 or a constant. There appears 
to be little need for it actually. With the use of A and C it should be much less confusing to use R0. 
Perhaps the following might be a test for this.)

Subsequently, there is the issue of a time-varying factor, for example when the quarantines are 
installed so that the original outbreak with R[0] has a different path than the new situation with 
R[t], for time-dependent measures. The R0 actually is time-dependent, with R0[t] = β[t] / γ[t] as the 
dynamic factor, and thus also R0[0]. The literature is obviously aware that R0 is dependent upon 
time and region, but for modeling it makes no sense to keep a subscript zero in all expressions.  
Subsequently, there is also the effective reproduction factor R[t] that corrects R0[t] for Sp[t]. We will 
be using:

R0[t] = β[t] / γ[t] = R0[t] dynamic reproduction factor (with influence by 
interventions)

R[t] = R0[t] S[t] / N[t0] or in short R = R0 Sp effective reproduction factor (idem)

R00 = R00 = R0[0] = R[0] = R0 basic reproduction factor R0 (commonly no 
interventions)
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In SIA the infection top is given by R[t] = 1.

5.3. The different formats

An overview of the combinations of traditional / simplified and computable / readable formats is as 
follows (dropping β*).

symbolic = {SIA[Equations, t0, t],

SIA[Equations, TraditionalForm, t0, t]} // Transpose // TableForm

Sq′(t)  - BetaSIA() Iq(t) Sq(t)

Nqt0
Sq′(t)  - BetaSIA() Iq(t) Sq(t)

Nqt0

Aq′(t)  GammaSIA() Iq(t) Iq′(t)  Iq(t)  BetaSIA() Sq(t)

Nqt0
- GammaSIA()

Iq′(t)  -Aq′(t) - Sq′(t) Aq′(t)  GammaSIA() Iq(t)
Sq(t0)  -Aqt0 + Nqt0 - Seed Sq(t0)  -Aqt0 + Nqt0 - Seed
Iq(t0)  Seed Iq(t0)  Seed
Aq(t0)  Aqt0 Aq(t0)  Aqt0

symbolic // SEYCDLettersOnly (* without beta-star *)

′  - β  ℐ

(t0)
′  - β  ℐ

(t0)

′  γ ℐ ℐ′  ℐ  β 

(t0)
- γ

ℐ′  -′ - ′ ′  γ ℐ

(t0)  -Aqt0 - Seed + (t0) (t0)  -Aqt0 - Seed + (t0)
ℐ(t0)  Seed ℐ(t0)  Seed
(t0)  Aqt0 (t0)  Aqt0

5.4. Model formulation, choice of R0 = 4 and acquittal period of 10 days

To be able to run the model, we must set parameters and starting values.  For the model formula-
tion, we would prefer to use constant parameters. 

See the discussion above for the choice of R0 = 4 and the mean acquittal period of 1/γ = 10 days. 

In general there is the time-dependent (dynamic) transmission or reproduction factor R0[t] = β[t] / 
γ[t] = BetaSIA[t] / GammaSIA[t]. At the beginning, or for a constant: R[0] = β / γ = β δ with δ = (1 / γ) 
the mean acquittal period (duration). 

Recall the Introduction, section 1.4.1, and let us now insert the dimensions: [#] for number, [#/# = 1] 
for factor, and [P] for period. R0 [1 = #/#] is a factor since it gives a (new) number of infected units 
per (old, single) number of infected units. A linear calculation defines the (linear) growth rate as r = 
(R0 - 1) / δ [1 / P], in which R0 - 1 [#/#] is the increase of the next generation compared to the single 
originator, and δ [P] is the duration over which this increase happens. Then R0 = 1 + δ r [1 = 1 + P * 
1/P]. Then we may take γ = 1/δ [1/P] as the rate per time, and rework R0 = (γ + r) / γ and define β = γ 
+ r [1/P = 1/P + 1/P], and then find R0 = β / γ [1 = 1/P / (1/P)] and r = β - γ. (PM. Frits de Jong 
(1918-1976) advised dimension analysis in economics; he was the thesis supervisor of Wim Duisen-
berg (1959-2005), the first president of the ECB.)

In this format, the model formulation should actually not use β or β[t] but rather R0[t] / δ[t], since 
R0[t] and δ[t] are the independent parameters, while β is only a result of those two. In our case 
there are 4 / 10 infections per unit period. When the situation is changed, e.g. by an intervention, 
then R0[t] and δ[t] change, with β as a result, and it would be unwise to attach much value to β or 
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think that it ought to remain constant in some way (unless a reason is provided). The assumption is 
that we can do little about the biological process of clearing and recovery to health, or the path 
towards death, and that δ[t] is rather the relevant observation period. 

Section 1.4.4 stated: The growth of the infected = infectious in SIA can be found in r = dLog[I] = I’ / I = 
 = β Sp - γ, see also Section 5.7. It will be useful to identify the dynamic reproductive factor R0[t] = 
β[t] / γ[t] and the effective reproductive factor R[t] = R0[t] Sp[t], where the latter corrects for the 
influence of the declining share of susceptibles. In SIA thus r = (R0 Sp - 1) / δ, for γ = 1/δ, which gives 
an effective version of the above. Here Sp would be a dimensionless number, as units of suscepti-
bles per units of the base population. 

SI(EY)A(CD) models are conventionally defined in terms of β and γ and not in R0 and δ. Convention-
ally, the following decomposition is given to explain that R0[t] is a dimensionless number. In mea-
surement, the number of contacts can be tallied, including the share of infectious contacts. 

R0[t] = τ * κ * ι =  (# infectious
contact ) * (# contact

period ) * (# period
infectious ).

Unchanged is that R0[t] = β[t] / γ[t], so that β[t] = (# infectious
contact ) * (# contact

period ), or β[t] = (# infectious
period ). We can 

skip the reference to the infectious since it actually is a compartment, and the unit of account still is 
the population unit. Measuring by means of an intermediate step on contacts does not change the 
final result that the dimension of β is [1/P], as used in above growth accounting w.r.t. the renewal 
equation. The contacts are an element in the statistical measurement of β but are not part of its 
dimension; its dimension is [1/P] like γ.

This can also be shown by looking at the growth equations for S and I in the SIA model, that have 
the term I * Sp. This term can be seen as an indicator for the number of contacts. It becomes prob-
lematic when it is argued that only β is the factor that translates such contacts into a rise of I and a 
waning of S. Assume that β has the dimension [1/c/P] = [1/(c P)]. With a dimension analysis we get: 
S’ [change in #S / P] = - β [1 / c / P] [c / (#I #S / #N)] I Sp. We might assume [c / (#I #S/#N)] = [1]. How-
ever, [#S / #N] = [1] since these are both population units, and [#I] is needed for S’. Thus a contact 
dimension for β hangs in the air.

It is best to think of γ as a normalisation parameter, to allow that measurements for different 
regions can be compared. It is rather not seen as a policy variable. This was already mentioned in 
the Introduction. See Section 12.10 on estimation. For our case of β = R0 γ = 4 / 10 = 0.4, suppose 
that an intervention on (self-) quarantine reduces the “real infectious period” from 10 to 5 days. So 
we may want to use a new value of γ = 1/5 = 0.2. However, this means that the number of acquitted 
rises much faster, and also the number of deaths contained in them. A simulation run might cause 
the paradoxical result of increased death in the short run. Instead, since the argument is that the 
number of infections is reduced, the reduction of R0 may also be modeled by a lower β. In fact, 
given that mostly the infected are put in quarantine, β might reduce by more. Thus, for modeling 
such a case of quarantine, it would be wiser to drop the idea that 1/γ is really associated with some 
“real infectious period”, and we better regard it as a normalising constant. 

The package includes this equation but it is only used as a reminder.
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SIA["R0[t]"]

R0(t) 
BetaSIA(t)

GammaSIA()

SolveSIA["R0[t]"] //. R0[t] → 4, GammaSIA[] → 1  10, BetaSIA[t]

BetaSIA(t) →
2

5


? R

Symbol

R[t] = (# infectious / contact) * (# contact / period) * (# period / infectious), which is a dimensionless

number. It is the time-dependent reproduction factor. R[0] = R0. The literature has R also

for R = Recovered and/or R = Removed. We resolve the latter by taking A = Acquitted

and C = Cleared, and thus can use R and R0 unambigously for the reproduction factor.

Tau = infectious / contact = the transmissibility (probability of contact)

Kappa = contact / period = the average rate of contact between Iq and Sq

Iota = period / infectious = duration of infectiousness

SIA assumes that the acquittal period is also infectious.

BetaSIA[t] = 1 / period, or the inverse of the period between contacts

Likely the best reading is that b = R0 * g = R0 / (1/g), or that gamma

disperses an already given number of infections R0 over the 1/gamma period

? R0

Symbol

R0[t] = BetaSIA[t] / GammaSIA[t] dynamic reproduction factor

R0[] = R0[0] = R[0]. The value at t = 0, or a constant. It is called the *basic* reproduction factor. The

number of new cases per old case (also allowing the identification of the (mean) period over which

this happens). It is the number of new infections on the brink of the first day by a single infectious

seed in an otherwise fully susceptible population. See Heesterbeek (2002), Jones (2007) and

Delamater et al. (2019). (The R stands for "reproduction" and not for "Recovered" or "Removed".)

R0[] = BetaSIA[] * 1 / GammaSIA[]

Probably the best way to understand R0 is to replace BetaSIA[] ->

R0[] * GammaSIA[] with the latter also R0[] / (1/GammaSIA[]), so that R0[] are the

*** given *** number of infectious cases that are spread of period 1/GammaSIA[]
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? BetaSIA

Symbol

BetaSIA[t] is the transmission factor per period, at time t

BetaSIA[] is a symbol in the options for a constant value

? GammaSIA

Symbol

GammaSIA[] is a constant rate of the Infectious who will be acquitted

per day, i.e. be no longer infectious. (But might later die from pneumonia ...)

1 / GammaSIA[] is the mean acquittal period (a unit can only be acquitted once).

NB. SIA assumes that the acquittal period is also the infectious period.

PM. Since the number of infections has been given by R0[], and R0[] determines

all properties, 1/GammaSIA[] only spreads the given number of infections

5.5. Fast-track run and plot

This section directly runs the model and plots the results. The next section does the same in steps, 
so that the user might adapt steps and take more advantage of the environment in Mathematica.

The default options apply to Holland of February 23 2020 onwards. The Dutch population in 2020 is 
about 17.4 million people. Let us set NqSeed = 17.4 * 10^6, and subsequently use the rule Nqt0 → 
NqSeed, for the formal parameter Nqt0 in the equation Nq[t0] = Nqt0.  NqSeed is not a parameter in 
the model, and only a handy variable at the user level.

NqSeed = 17.4 × 10^6;

SetOptions[SIA, Nqt0 → NqSeed]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null,

NqProp → Nqt0, Nqt0 → 1.74×107, Onset → 0, Seed → 100, Yqt0 → 0,

AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

The infections are driven by the equation Iq[t0] == Seed. (Seed is parameter in the model.) The 
carnival festivities in the South of Holland were on February 23 2020. It is not unlikely that some 100 
infections were seeded by people having returned from Italy and Austria from work and ski holi-
days. The options already have default Seed → 100. When we use a different value of Seed, then this 
is “baked” into this model solution, and we must take heed of routines that rely upon Options[SIA] 
for the value of Seed in these options. We can mention the parameter here so that the user can 
check more easily that model solutions change when adapting the Seed value.

When the equations are set with particular parameter values, we can use an arbitrary label, in the 
case “newModel” to identify the particular setting. Then newModel[t] would show the chosen 
model. 
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SIA[Run, Pr, newModel, t, 150, Seed → 100];

The variables are now available in levels and proportions. The label “store” is arbitrary. The present 
assignment allows us to later refer to this particular outcome.

store[SIA] = SIA[75] (* SIA[t] calls levels *)

415 556., 738 924., 1.62455×107

SIA[Pr, 75] (* SIA[Pr, t] calls proportions *)

{0.0238825, 0.0424669, 0.933651}

It is useful to have plots that show both levels and proportions. The axes assume that it is obvious 
what are levels and what are proportions.

SIA[Plot, 0, 150]
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5.6. Interpretation of the result and finding crucial moments of the path

We can read values from the graph but numerical outcome is more useful. 

Let us calculate the day when 95% of the Dutch population would have been acquitted from the 
pandemic, given the parameters and without the intervention of March 15-19. (It so happens that 
the R0 is high enough so that this level can be reached.)

t95PercentOfN = FindRoot @@  0.95 ⩵ Aq[t]  NqSeed, {t, 100} // Quiet

{t → 79.7353}

DayPlus[{2020, 02, 23}, Round[t /. t95PercentOfN ]]

Day: Wed 13 May 2020

Above moment in time is relevant because R0 = 4, with a high prevalence in the limit. For lower 
values, the limit value will be lower than 95%. 
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It is better to define t95 as the time when 95% of Ap[∞] is reached.

The following routines find some crucial moments on the path. When we round the days from onset 
then we can determine the calendar date. 

NB. These dates use SIA and not SEYCD shown in the Introduction. (Check that α = 1 per generation 
adds up over time.)

{TforTopIq[], TforAp50[], TforAp95[4 ]} // Quiet (* R0 = 4 *)

{44.3682, 48.3071, 74.4295}

SIABasicTable[SIABasicRun, 100] (* from another package and another run: locked *)

pDate Day Sp Ip Ap

Onset 2020-02-23 0 100.0 0.0 0.0
1st Death 2020-03-06 12 100.0 0.0 0.0

1st Intervention 2020-03-18 24 99.0 0.8 0.3
Top if free 2020-04-07 44 25.0 40.3 34.7
Ap = 50% 2020-04-11 48 13.5 36.5 50.0

95% Ap[∞] 2020-05-07 74 2.4 4.5 93.1
Limit if free ∞ ∞ 2.0 0.0 98.0

The above becomes more acute when we can also print the mortality levels, which requires SICD.

The latter table assumed no interventions. Before modeling interventions, it is better to first 
develop SICD and SEYCD. And before doing the latter, it is better to first understand more about SIA.

The SIA model gives particular estimates for the days of particular events. The SEYCD model will 
give another estimate, normally a later date because of the delay caused by latency. 

ApByR0Plot[] (* using the days of the SIA model *)

44 days

48 days

74 days

0 2 4 6 8
R0

0.2

0.4
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1.0
A = 1 - S - I

A at top I

A[∞]

95% A[∞]

5.7. Growth rates of SIA

5.7.1. Formal

The growth rate of function f is: g = Log[f]’ = f ‘/ f.  Fully g[t] = dLog[f[t]] / dt. Shortest dLog[f].

A constant growth rate gives exponential growth.

The SIA equations relate their derivatives to their levels. Division by the levels gives the growth 
rates. 
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Using above numerical approximation, it is also straightforward to plot these growth rates.

The SIA equations give these growth rates.

  =  ’ /    gives   =  - β ℐp        

  =  ℐ ’ / ℐ   gives    =  β p - γ   

  =  ’ /    gives   =  γ  ℐp /  p 

An alternative but less elegant relation of  is:

  =  ℐ ’ / ℐ  =  (-’ - ’) / ℐ  = -  (p / ℐp) -  (p / ℐp) 

5.7.2. An important analytical result for the long term limit values

An important relation is  = 0 Exp[- R0 (p- p[0])], e.g. useful for the limit values.

Taking derivatives gives ’ = 0 Exp[- R0 (p- p[0])] (-R0 p’) =  -R0 p’. Then  = ’ /  gives  = 
-R0 p’ too. Comparing the latter with the above , we only recover already known p’ = γ ℐp. 
Taking the steps back however proves the important key relation.

5.7.3. Plotting numerical results

We use the variables Sg, Ig and Ag now.

SIA[GrowthRate, Equations, Hold, t]

HoldSg(t)  -
BetaSIA() Iq(t)

Nqt0
, Ig(t) 

BetaSIA() Sq(t)

Nqt0
- GammaSIA(), Ag(t) 

GammaSIA() Iq(t)

Aq(t)


SIA[GrowthRate, Set];

SIA[GrowthRate, 30] (* check that there are numbers *)

{-0.0171973, 0.276838, 0.288342}

For plotting, avoid division by 0 at t = 0 when A = 0. 

sirplotoptions = SIA[Plot, Options, PlotRange → All];
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Plot @@ {SIA[GrowthRate, t], {t, 3, 100},

AxesLabel → {"Day", "Growth rate"}, sirplotoptions}
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(1) When the growth rate of I intersects with the horizontal axis, with  = 0, then the infections reach 
their Top.

(2)The graph confirms that especially I has a long period (25 days) with a fairly constant exponential 
growth rate of   ≈ β - γ = 0.3. In percentages this is Exp[0.3] - 1 = 35%. Towards the end it has such 
growth at   ≈ -γ. 

(3) We may now be better aware that the decline of the susceptible has most negative growth at ’ = 
0 which gives I’ = 0. This conforms with the top of the infectiousness. The most negative growth is at 
- β IpTop.

(4) In terms of growth, S and I have more regular patterns, and A indeed follows as a remainder. This 
is somewhat remarkable, since the level and share plots suggest that S and A are dominant and that 
I is the remainder.

5.7.4. Difference between SIA and exponential functions

SIA has exponential phases but differs from the exponential process. There is no need for another 
method for numerical approximation of these equations, since we already have a good approach 
above. However, it helps to understand the growth rates by looking at the equations from numeri-
cal approximation too. 

Let us use the notation ℐp for the time dependent variable that in a numerical simulation is held 
constant for the short moment of updating. When exponential relations do not hold exactly there 
can be a dynamic approximation with locally held constant shares. A stepwise simulation is: (a) 
start with t = 0 and calculate the shares, (b) calculate  and ℐ from the exponential expressions, 

while holding the shares ℐp and p constant, (c) find  as the remainder, (d) update the shares, (e) 
increase time with a small increment and return to (b). Since this method has not been tried (here), 
it is unclear what its value is. There is no need to try.
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 =  ’ /    gives   =  - β ℐp        which gives   ≈ 0 Exp[ - β ℐp t]   in local approximation, e.g. when 
ℐp ≈ c

  =  ℐ ’ / ℐ   gives    =  β p - γ    which gives  ℐ ≈ ℐ0 Exp[ ( β p - γ ) t] in local approximation, e.g. 
when Sp ≈ c

  =  ’ /    gives   =  γ  ℐp /  p  while    = 0 -  - ℐ
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5.8. How to use the SIA routine

? SIA

Symbol

The Susceptible-Infectious-Acquitted model. (We avoid the term SIR.)

Options[SIA] has values for Onset time, Nqt0, Seed,

BetaSIA[], GammaSIA[] and also Aqt0 (e.g. for combinations of models).

SIA[Run, (Pr,) model_Symbol, t_Symbol, tmax, opts] makes a numerical model[t] by

substituting the parameters, solves this with NDSolve from Onset to tmax, and makes the three

variables available, also jointly as SIA[t]. If Pr is included, then also the proportions are set.

SIA[t] gives {Sq[t], Iq[t], Aq[t]}.

SIA[Pr, t] gives {Sp[t], Ip[t], Ap[t]} (set by above Run or by SIA[Set, Pr])

SIA[Plot, SIA[t], {t, t0, tmax}, opts] uses Frame.

The usage statement is so large that it has been cut into

Subjects. Rather than have subroutines with own names, they are collected under:

SIA[subject, ...] for subject in SIA[Explain, List] = {Run, Plot, GrowthRate, Limit, Top, Exp}:

SIA[Explain, subject] explains subroutines of SIA[subject, ...].

SIA[Explain, All] := SIA[Explain, #]& /@ SIA[Explain, List]

SIA["R0[t]"] = (R0[t] == BetaSIA[t] * 1 / GammaSIA[]), may

help setting parameters, while 1 / GammaSIA[] is the (mean) acquittal period

SIA[Clear] clears variables Sq, Iq, .... Sp, Ip, ...

SIA[ListOfSymbols] is the latter list, in strings

SIA["p-and-q"] are equations Vp = Vq / Nq[0]
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Appendix: In steps (for more control of details)

Meaning of this appendix

Above routines took big steps in calculating the variables and plotting them. For applications it 
tends to be necessary to know how this can be done by steps.

Setting the size of the population and other options

The default options apply to Holland of February 23 2020 onwards. The Dutch population in 2020 is 
about 17.4 million people. Let us set NqSeed = 17.4 * 10^6, and subsequently use the rule Nqt0 → 
NqSeed, for the formal parameter Nqt0 in the equation Nq[t0] = Nqt0. 

NqSeed = 17.4 × 10^6;

SetOptions[SIA, Nqt0 → NqSeed]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

Choosing a model with formal t0 or with the Onset from the options

We set the values of the parameters, so that we get equations that we can submit to NDSolve. The 
symbols in SI(EY)A(CD) are cleared and can be used as symbols again. We put the model equations 
into Hold, so that the symbols remain unevaluated when we assign values later on. 

We might define the model with an arbitrary t0.

model[t0_, t_] = SIA[N, t0, t, Seed → 100]

HoldSq′(t)  -2.29885×10-8 Iq(t) Sq(t), Aq′(t)  0.1 Iq(t),

Iq′(t)  -Aq′(t) - Sq′(t), Sq(t0)  1.73999×107, Iq(t0)  100, Aq(t0)  0

MatrixForm @@ TheFormer

Sq′(t)  -2.29885×10-8 Iq(t) Sq(t)
Aq′(t)  0.1 Iq(t)

Iq′(t)  -Aq′(t) - Sq′(t)

Sq(t0)  1.73999×107

Iq(t0)  100
Aq(t0)  0

The choice of t0 is not arbitrary however. All parameters are determined by the Onset t0 in the 
options. At a different moment, the population and the seed may have changed, and the β and γ 
may have been subject to interventions. The options must be consistent on this. The structure now 
is that the model has t0 and that NDSolve does the actual substitution.

We can also drop the arbitrary t0 in the model, and adopt the Onset from the Options[SIA]

model[t_] = SIA[N, t, Seed → 100]

HoldSq′(t)  -2.29885×10-8 Iq(t) Sq(t), Aq′(t)  0.1 Iq(t),

Iq′(t)  -Aq′(t) - Sq′(t), Sq(0)  1.73999×107, Iq(0)  100, Aq(0)  0
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MatrixForm @@ TheFormer

Sq′(t)  -2.29885×10-8 Iq(t) Sq(t)
Aq′(t)  0.1 Iq(t)

Iq′(t)  -Aq′(t) - Sq′(t)

Sq(0)  1.73999×107

Iq(0)  100
Aq(0)  0

In either format, solving the model requires a time window, for which we need t0 as well.

onset = Onset /. Options[SIA]

0

Solving and approximating by NDSolve for a specified time window

We solve and find a numerical approximation by SIA[NDSolve, ....] for a specified time window.

sol = SIA[NDSolve, model[onset, t], {t, onset, 150}]

Sq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Iq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Aq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar



Making the variables directly available

We want to be able to call Sq[t], Iq[t] and Aq[t] separately, and SIA[t] = {Sq[t], Iq[t], Aq[t]} jointly and 
directly. We use above “sol” to set these functions.

SIA[Set, sol];

After this setting, we can call the functions directly for different moments in time. We arbitrarily 
select day 75.

SIA[75]

415 556., 738 924., 1.62455×107

Plotting in levels and proportions

Plotting of outcomes of SIA[t] is served by colour-coding and legend. The following uses Plot and 
not SIA[Plot ....].

sirplotoptions = SIA[Plot, Options, PlotRange → All];
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Plot @@ {SIA[t], {t, 0, 150}, sirplotoptions}
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PM. When using SetOptions[Plot] then other analyses have to unset those options again. Alterna-
tively, new options can be put into a variable. The standard Plot routine can be used, but the input 
must be evaluated before Plot can access it. (Default ImageSize → Full to make plots fit the PDF, 
even though they might be overly large on screen.)

Given the earlier setting of NqSeed, it is easy to plot the proportions.

Plot @@ SIA[t]  NqSeed, {t, 0, 150}, sirplotoptions
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PM. Separate levels and proportions

The following selects the equations, and solves only for the levels.
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SIA[Run, newModel, t, 150]

InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$

Not surprisingly, the model and the outcomes are the same as above.

newModel[t]

HoldSq′(t)  -2.29885×10-8 Iq(t) Sq(t), Aq′(t)  0.1 Iq(t),

Iq′(t)  -Aq′(t) - Sq′(t), Sq(0)  1.73999×107, Iq(0)  100, Aq(0)  0

SIA[75]

415 556., 738 924., 1.62455×107

This sets the proportions.

SIA[Set, Pr, NqSeed] (* or leaving NqSeed out, and take the options *)

5.74713×10-8 InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

5.74713×10-8 InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

5.74713×10-8 InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$

SIA[Pr, 50]

{0.1068, 0.334003, 0.559197}

Appendix: Comparison with the traditional form for the equations

We might do:

tradmodel[t0_, t_] = SIA[N, TraditionalForm, t0, t, Seed → 100]

HoldSq′(t)  -2.29885×10-8 Iq(t) Sq(t), Iq′(t)  Iq(t) 2.29885×10-8 Sq(t) - 0.1,

Aq′(t)  0.1 Iq(t), Sq(t0)  1.73999×107, Iq(t0)  100, Aq(t0)  0

trad = SIA[NDSolve, tradmodel[0, t], {t, 0, 150}];

SIA[Set, trad];

After this setting, we can call the functions directly for different moments in time.
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store[SIA, tradmodel] = SIA[75]

415 556., 738 924., 1.62455×107

There is no difference in outcome with the simplified form.

store[SIA] (* we had stored this outcome of the standard run *)

415 556., 738 924., 1.62455×107

Appendix: Technical notes

PM 1. We might do a normal call of NDSolve. For this, we must be sure that the variables are 
cleared. 

Clear[Sq, Iq, Aq]; NDSolve[ReleaseHold[model[0, t]], {Sq, Iq, Aq}, {t, 0, 150}]

Sq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Iq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Aq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar



The SIA[NDSolve, ....] format has been made simpler: (i) without the need for Clear, ReleaseHold 
and the mentioning of the variables, (ii) while the routine also stores the outcome in Results[SIA] so 
that we can later retrieve earlier runs if needed.

PM 2. We might solve for the proportions, but division by NqSeed can be simpler (as has been done 
above).

SIA[Clear]

SIA["p-and-q"]

Np(t) 
Nq(t)

Nq(0)
, Sp(t) 

Sq(t)

Nq(0)
, Ep(t) 

Eq(t)

Nq(0)
, Ip(t) 

Iq(t)

Nq(0)
, Rp(t) 

Rq(t)

Nq(0)
,

Ap(t) 
Aq(t)

Nq(0)
, Cp(t) 

Cq(t)

Nq(0)
, Dp(t) 

Dq(t)

Nq(0)
, Yp(t) 

Yq(t)

Nq(0)
, Op(t) 

Oq(t)

Nq(0)


6. Analytical properties of SIA
The SIA model has analytical solutions for some key aspects. 

PM. xp = xq / N[t0] is the proportion of xq with respect to the original population. 

6.1. Proportionality between numbers and proportions

With xp = xq/ Nq[0] we have ∂
∂t

xp = ( ∂
∂t

xq) / Nq[0]. The equations are proportional so that the parame-

ters are the same for the model in levels and the model in proportions. 
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Crucial conditions are derived from the model of proportions, while it still seems more natural to 
work with the levels. There is no need to choose since we actually do both anyway. It remains 
important to check translations from one format to the other.

6.2. Exponential phases, doubling period and half-life

When the susceptible would be a constant fraction p then ℐ = ℐ0 Exp[ ( β p - γ ) t]. Especially at 
the beginning of the process p ≈ 1, and ℐ grows at rate  ≈ β - γ. For our parameters this is 0.3 (see 
the plot). We can write ℐ ≈ Seed * Exp[(β - γ) t] in the exponential first phase. For the proportion:

SIA[Ip, Exp, t] (*exponential function*)

5.74713×10-6 ⅇ0.3 t

In that phase β > γ so it has a doubling period of Log[2] / (β - γ).

Log[2]  BetaSIA[] - GammaSIA[] /. Options[SIA]

2.31049

At the end, when most infections are over, then I has a half-life of Log[2] / γ, i.e. almost a week.

Log[2]  GammaSIA[] /. Options[SIA]

6.93147

When the lockdown in Holland was imposed, it had a relatively fast effect, but there was growing 
impatience when it took so long to actually wane.

6.3. Effective reproduction factor R[t], R0, R00

6.3.1. Dynamic β[t] / γ[t] and effective reproduction factor R[t]

Section 5.2 already stated these definitions. 

R0[t] = β[t] / γ[t] is the dynamic reproduction factor.  

The effective reproduction factor also reckons with the reduction of the compartment of the suscep-
tibles. 

It is R = R[t] = R0[t] S[t] / N[t0], which for constant parameters reduces to (β / γ) S[t] / N[t0] = (β / γ) Sp. 

6.3.2. Basic reproduction factor R0 = R[t0] = β[t0] / γ[t0] = β / γ (assuming Sp[t0] 

→ 1)

For t →  t0 (i.e. apart from seeding) Sp = 1. Define R0 = R[t0] = β / γ as the basic reproduction factor. It 
is in the literature known as the basic reproduction number R0.

For the SI(EY)A(CD) default of constant parameters, we can also write R = R0 Sp.

The basic reproduction factor is relevant (i) at t = 0 (whether the infection will take off or not) and 
(ii) possibly when the infections have a top other than at t = 0, (iii) for the values in the limit.
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6.4. Growth rate and steady state

6.4.1. Dynamics of infection

Reworking the equation for I’ into an expression with R, we find I’ = γ I (R - 1).

Observe that ∂
∂t

ln[x] = (1/x  ∂
∂t

x) = x’ / x is the growth rate of x. 

We have found the growth rate of the infections (β p - γ)= I' / I = γ (R - 1).

(a) If R > 1 then the number of infections rises. If R < 1 then it wanes. At R = 1 there is a top and 
growth is 0. (Instead of inventing calculus, Newton might also have invented growth accounting.)

(b) R eventually gets below 1 by itself.

(c) If prevention is better than cure, then interventions choose β[t+1] <  γ / Sp[t+1] as their target.

While we have I →  0 we also have I’ = I (β p - γ) → I[∞] (β p[∞] - γ) = I[∞] = 0. Thus I has the “asym-

ptotic steady state” towards 0, which actually means that it is not a steady state in proper defini-
tion. The growth rate may still be nonzero, at a limiting value [∞] = β p[∞] - γ ≠ 0. Reasons are: (i) 
we always divide by a nonzero I, (ii) Sp[∞] = 1 / R0 only holds when Sp[∞] = 1 which cannot be the 
case (see below).

6.4.2. Comparison to a disease with a steady state of inflow and outflow

There is a steady state where inflow = outflow, because otherwise there would be no steadiness. The 
SIA model differs from a model with a steady state. It is useful to shortly review a steady state in 
another disease than an infection. We might take the incidence quotient as β I and the recovery 
quotient as γ but let us use different symbols because this is another type of situation.

DiseaseBasics[Set]

Equations → Population  Diseased + Healthy,

Diseased  Population Prevalence, CumulatedIncidence  Healthy IncidenceQuotient,

CumulatedRecovery  Diseased RecoveryQuotient, CumulatedIncidence - CumulatedRecovery  0,

DiseaseDuration 
1

RecoveryQuotient
, HealthDuration 

1

IncidenceQuotient


DiseaseBasics[{DiseaseDuration → "Pinf", IncidenceQuotient → q, Population → N}] //

Last // Last // MatrixForm

CumulatedIncidence → N q

Pinf q+1

CumulatedRecovery → N q

Pinf q+1

Diseased → N Pinf q

Pinf q+1

HealthDuration → 1

q

Healthy → N

Pinf q+1

Prevalence → Pinf q

Pinf q+1

RecoveryQuotient → 1

Pinf
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? DiseaseBasics

Symbol

DiseaseBasics[{x___Rule}, elims___List, opts] is a SolveFrom application of the

basic Disease equations, for the steady state when there is no disease-specific death.

By definition Prevalence == Diseased / (Healthy + Diseased).

In the steady state, the outflow from the healthy

must also be equal to the recovery outflow from the diseased. Then also:

Prevalence == IncidenceQuotient / (IncidenceQuotient + RecoveryQuotient);

where IncidenceQuotient and RecoveryQuotient

are measured as (perunage) fractions of the relevant subpopulations.

Implied are also durations. With d = DiseaseDuration

= 1 / RecoveryQuotient, and λ = IncidenceQuotient, we find:

Prevalence = λ d / (λ d + 1)

The latter notation may be more acceptable when there are

deaths involved and the 'cure' is rather the replacement with newborns. The

screen detected duration concerns a prevalence screen with 100% sensitivity.

Options[DiseaseBasics] contains the equations.

DiseaseBasics[Set] sets Equations -> DiseaseBasics[Equations] (default).

DiseaseBasics[Set, n] sets Equations -> DiseaseBasics[Equations, n] such that aggregate Healthy and

Diseased are decomposed in n subgroups that have the same (mutual) steady state properties.

See also ToDiseaseSymbols and SteadyStateFlows
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6.5. Maximal infections at the origin or later in the process

6.5.1. A maximum at the seed when Sp[0] ≤ 1 / R0 and thereafter decay

At the first seed, Sp[0] ≈ 1. If R < 1 or R0 < 1 / Sp[0] (conventionally R0 < 1  < 1 / Sp[0]) then the infec-
tion does not develop into an epidemic.

PM. When Sp[0] = 1 / R0: when R0 < 1 then Sp > 1, which is impossible for a share. For R0 < 1  we 
already have at the start Sp[0] < 1 / R0 so that the infection dwindles down.

6.5.2. A maximum after the seed when Sp[0] > 1 / R0 

The traditional model format directly shows that the infections find their top (other than at the 
origin) when:

(I' = 0 & I ≠ 0) ⇔ (β S / N[t0] - γ = 0) ⇔ (R0 Sp - 1 = 0) ⇔ (R = 1) ⇔ (Sp = 1 / R0) 

6.6. Later in the process, consequences of R0 > 1 / Sp[0], “the” top of 
infections

The following assumes that at the origin R0 > 1 / Sp[0] ≈ 1. 

6.6.1. The values of the shares at the top

For SARS-CoV-2, the top of Ip for R0 = 4 lies at Sp = 1/4. 

SpTop ⩵ GammaSIA[]  BetaSIA[] /. Options[SIA]

SpTop  0.25

What about the other two variables ?

Above we mentioned that  = 0 Exp[- R0 (p- p[0])], e.g. useful for the limit values. At the top of 
infections:

p = γ / β = Exp[ - β/γ (p, Top - p[0]) ] 

p = 1/R0 = Exp[ - R0 (p, Top - p[0]) ] 

-Log[R0] = - R0 (p, Top - p[0]) 

p, Top = Log[R0] / R0 + p[0].

Values of the proportions thus are, and we cannot neglect Aqt0:

{p , ℐp,   p} Top = 1
R0

  {1,   R0 -  1 - Log[R0],   Log[R0] }    +     {0,    -p[0],    p[0]}

The normal case has  p[0] = 0, and check that R0 = 1 causes the point {1, 0, 0}:

{p , ℐp,   p} Top = 1
R0

  {1,   R0 -  1 - Log[R0],   Log[R0] }    +     {0,    0,   0}

{p , ℐp,   p} Top = 1
R0

  {1,   R0 -  1 - Log[R0],   Log[R0] }    
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SIA[Ip, Top, R0 ] ⩵ SIA[Ip, Top, 4.]


1

R0

,
R0 - log(R0) - 1

R0

,
log(R0)

R0

  {0.25, 0.403426, 0.346574}

SIA[Explain, Top]

SIA[Ip, Top, f, atq0:0] gives the top of Ip for f = R0 formally: {1, f - 1 - Log[f], Log[f]} / f + {0, -atq0, atq0}

A related routine is:

TopIq[SIA, ...] for the t when Iq has its top when R0 > 1 (inverse problem)

with comparison of theoretical values and those generated by the interpolation run

TforTopIq[...] applies FindRoot to the equation Sp[t] == 1/R0

For SARS-CoV-2 with R0 = 4 and γ = 1/10, remarkably ℐp,Top ≈ β but the above shows that this is not 
exactly so. We can solve γ = β / R0 = ℐp,Top / R0 for those values of γ that cause such outcome, and it 
just so happens that we selected values close to that contour.

Plotf - Log[f] - 1  f^2, {f, 1, 8}, AxesOrigin → {0, 0},

AxesLabel → {R0, "γ that causes ℐp,Top ≈ β "}, BaseStyle → {FontSize → 13} 

2 4 6 8
R0

0.02

0.04

0.06

0.08

0.10

γ that causes ℐp,Top ≈ β

6.6.2. The value of tTop

(1) Let us calculate tTop using above solution of SpTop for the equations SIA[t]. Given that the value 
of Sp at the top of Iq follows from R0 and is not affected by Aq[0], the fast calculation is - and this 
only works when the model has been run and Sq[t] has values:

SIA[30]  NqSeed (* arbitrary point to check that this gives numbers *)

{0.942096, 0.0429933, 0.0149105}

FindRoot1  4 ⩵ Sq[t]  NqSeed , {t, 50, 100} // Quiet

{t → 44.3682}

It will be useful to have this available under its own function call.

TforTopIq[] (* not Quiet *)

InterpolatingFunction: Input value {-114.655} lies outside the range of data in the interpolating function. Extrapolation will

be used.

44.3682

(2) When we have found tTop then there are two estimates for the proportions of the variables at the 
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Top

top. 

(2a) The theoretical values directly from β and γ above. 

(2b) Those calculated from the numerically approximated equations, that allowed us to find tTop. 

The numerical approximation might cause a difference. The following routine prints the difference 
and checks whether the sum of the absolute differences is larger than (default) 0.0001. 

Check that the top for  R0 = 4 lies at Sp = 1/4 indeed.

res = TopIq[SIA, t]

InterpolatingFunction: Input value {-84.1178} lies outside the range of data in the interpolating function. Extrapolation will

be used.

t → 44.3682, Proportion →

Sp Ip Ap
From β and γ 0.25 0.403426 0.346574
Equations 0.25 0.403428 0.346572
(1) - (2) 0 -1.39436×10-6 1.39436×10-6

,

Nqt0 → 1.74×107, Seed → 100, Aqt0 → 0,

List →
0.25 0.403426 0.346574
0.25 0.403428 0.346572

0 -1.39436×10-6 1.39436×10-6
, AcceptableErrorQ → True

(3) Relating the top to real world events.

tTop = t /. res ;

Above, we mentioned the carnival festivities in the South of Holland of February 23 2020. It is not 
impossible that some 100 infections were seeded. Taking the daycount, we can determine the 
expected day of the calendar when the top of infections would have been, had there been no 
intervention in the mean time.

DayPlus[{2020, 02, 23}, tTop // Round]

Day: Tue 7 Apr 2020

(4) Use of this function.
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? TopIq

Symbol

TopIq[SIA || SICD, t] is a more involved routine than TforTopIq, and not only finds the

time but also compares numerical approximations with the theoretical outcomes at the

top of Iq. If you have SICD[t] or SEYCD[t] available, then you might choose SIA or SICD.

There are no parametric outcomes for E and Y in SEYCD, and thus there is no comparison

TopIq[SIA, t] assumes that SIA[t] gives {Sq, Iq, Aq} as functions of t (which will also happen when SICD[t]

and SEYCD[t] have been set), and uses FindRoot to find t from Sq[t] == Nqt0 / R0, i.e. when the

infections reach their top (assuming that R0 > 1). Options for Nqt0, BetaSIA[], GammaSIA[] and Aqt0

can be supplied or are taken from Options[SIA]. Default search startvalues for t are SIA[Ip, Exp, Top]

and 3 Log[beta/gamma] / beta for Ip = 1/3. Output gives both t and the {Sp, Ip, Ap} at the top, both

theory = SIA[Ip, Top, beta/gamma (, aqt0)] and calculated (from the Equations / interpolations).

Options[TopIq] have Max -> 10^-4 to give a message when Total[Abs[theory - calculated]] > max

TopIq[SIA, {t, tmin, tmax}] uses FindRoot for that window.

TopIq[SICD, t] similar, allocates {c, d} = {labda, mu} / (labda + mu) Ap.

TopIq[SICD, {t, tmin, tmax}] similar

Legacy:

TopIq[SIA, NSolve, t] uses NSolve

TopIq[SIA, NSolve, Sq[t], t] only solves for t

TopIq[SIA, NSolve, Sq[t], Nqt0, R0, t] solves directly without options

(5) PM. TopIq uses FindRoot. NSolve does not always generate outcomes.

nsol = NSolveSq[t] ⩵ NqSeed  4 , t // Quiet

t → InverseFunctionInterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

, 1, 14.35×106

SIA[t]  NqSeed /. nsol[[1]]; (* show if there is a numerical outcome *)

InverseFunction: Inverse functions are being used. Values may be lost for multivalued inverses.
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6.7. The exponential growth phase revisited

Above we discussed exponential growth. Now that we have discussed the top, we can include the 
following comment.

The infections have a first phase of exponential growth. The growth slows down because the 
lowering number of susceptibles reduces the impact of β. The phase is interesting for us for two 
reasons. A comparison may give us information when the true SIA path starts deviating, perhaps 
because of intervention. Secondly, rather technically, the exponential outcome provides a starting 
point for the FindRoot routine above.

Since we know the proportion Ip at the top, we can calculate how long it would take to get there if 
the exponential phase had continued. This routine does this calculation for us.

tExp = SIA[Ip, Exp, Top]

37.1968

Thus, the SIA-properties cause a delay of the top of infections with some 7 days. With above dou-
bling time of about 2.3 days, the difference is close to 8 times the size.

tTop - tExp

7.17132

SIA[Explain, Exp] (* also relevant for finding starting values for FindRoot *)

SIA[Ip, Exp, t] gives Ip for the first exponential phase

seed / Nqt0 Exp[(beta - gamma) t], with the values taken from the options

SIA[Ip, Exp, t, beta, gamma, ntq0, seed] takes values

SIA[Ip, Exp, Top] calculates the time for Ip to reach the top if it were using

exponential growth only (but falling Sp causes delay), with values taken from options

SIA[Ip, Exp, Top, ntq0, seed, beta, gamma, a0:0] takes values

6.8. Exponential growth and exponentially distributed acquittal periods

6.8.1. One function for two purposes: probability and dynamics

Appendix A contains the fundamental “success and failure” model of exponential decay of Success, 
with Failure collecting the decay. While this is a dynamic growth process, the shapes of the functions 
are such that we can interprete the proportion of failure as the cumulative probability (CDF) of the 
random variable “whether the event of failing will take a particular duration”. The population is 
homogeneous and we do not know which event of decay will take what duration. The model 
assumes a constant rate of decay λ which happens to conform with the exponential distribution. 

The PDF of Failure then is the exponential density, with PDFFailure = λ Success. See Appendix A for a 
short review of the Success and Failure model, and the distinction between calendar time (with 
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prevalence) and duration (age). (Events at different calendar times might be presented in an age 
distribution.)

6.8.2. Plotting with mean acquittal period 1 / γ

For SARS-CoV-2, the Success / Failure plot with γ = 0.1 is as follows. The plot gives the proportions 
of Success and Failure, with Success having exponential decay and Failure = 1 - Success. The com-
partment of the infected is taken as the Success category, and acquittal is counted as “failure”: 
acquittal means a decay of Success. Thus if p = 0 (e.g. they are quarantined or flee the country) 
and there is no new inflow of infectiousness, then the remaining pool shows exponential decay as ℐ 
= ℐ0 Exp[ - γ  t]. The mean acquittal period is μ = 1 / γ and it is no surprise that 10% of the patients 
may take more than 25 days to exit from the scheme.    

The half-life can be found at the intersection of Success = Failure = 1/2. Clearing has a half-life of h = 
Log[2] / γ = μ Log[2] ≈ 0.7 μ. Thus μ ≈ 1.4 h.  In this case μ = 10 is easy to spot. PM. The plot uses S for 
Success and not for Susceptible, and uses λ = γ.

SuccessFailurePlot[0.1, E → False]
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6.8.3. Interpretation of the mean acquittal period 1 / γ in SIA

We can interprete γ as a rate (always a mean) and 1 / γ as a mean duration.

For SIA, 1 / γ is best interpreted as the "mean acquittal and infectious period", to express its dual 
effect.

(1) SIA makes the additional assumption that the acquittal period is also the "mean infectious 
period". This does not hold by identity. (The birth certificate of Paul does not state that he and Mary 
later married, though he still is Paul who did so.) 

(2) Apart from this assumption on the acquittal period, there are processes of clearing and returning 

to health, or the path towards death. Those concern the medical circumstances of the persons 
involved, and those are not directly relevant for the process of infecting other people.  A part will be 
relevant for hospital costs. Such elements thus can be used for additional modeling on those 
aspects.

The model formulation that ’ = γ ℐ still is correct for the rate of acquittal (removal) from its 
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source, i.e. γ =  ’ / ℐ. 

The SIA assumptions obviously remain relevant for the first steps in modeling. It is remains impor-
tant to be aware of more complex models and such discussions in the literature. The SEYCD model 
already modifies the infectious period by including the Exposed. 

There is no assumption of a constant acquittal period, e.g. two weeks for everyone. 

For SARS-CoV-2, it now has been reported in Holland that some 200 patients have been in the ICU 
for longer than 30 days. Note that a patient who is released from the ICU may take a year to recover 
from ICU (with the deterioration of muscles etc.).

6.9. The limit with the Lambert W or ProductLog function

6.9.1. Finding the limit values

SIA has the property that I → 0 but never becomes zero. We write the limit of I as Iq[∞] = 0, a value 
never reached.  Thus we have Sp[∞ ] + Ap[∞] = 1. For SIA this can be solved by the Lambert W or the 
ProductLog function. 

As said, the relation  = 0 Exp[- R0 (p- p[0])] is useful for the limit values. 

The outcome depends upon R0 and the starting values Sp[t0] and Ap[t0]. The latter have defaults 1 
and 0, but might be different after an intervention. 

The following generates the three proportions {Sp[∞],  Iq[∞],  Ap[∞]}, using the default option 
settings.

SIA[Limit]

{0.0198273, 0, 0.980173}

We may also insert unevaluated parameters, and the discussion below provides an explanation.

SIA[Limit, BetaSIA[] → R0 GammaSIA[]]

-
1. W-0.999994 ⅇ-1. R0 R0

R0
, 0,

1. W-0.999994 ⅇ-1. R0 R0

R0
+ 1

6.9.2. Difference between top and limit outcomes

The following gives the difference in shares between the limiting values and those at the top of 
infections. Notice the value for Ap, meaning that many units still have to end their infectious period, 
including those who are infected after the top.

TopSIA = SIAIp, Top,  BetaSIA[]  GammaSIA[] /. Options[SIA] ;

Thread {Sp, Ip, Ap} → SIA[Limit] - TopSIA

{Sp → -0.230173, Ip → -0.403426, Ap → 0.633599}

6.9.3. Deduction

As said, the relation  = 0 Exp[- R0 (p- p[0])] is useful for the limit values. At the limit we have 
{Sp[∞], 0, Ap[∞] = 1 - Sp[∞]}.
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Solving vor Sp[∞], and substituting the symbols for the limiting values, and taking Aqt0 zero, we get:

SpLimit ⩵ SIA[ProductLog, R0]

SpLimit  -
W-ⅇ-R0 R0

R0

SpLimit ⩵ SIAProductLog, BetaSIA[]  GammaSIA[]  /. Options[SIA ] // N

SpLimit  0.0198274

The number of units (supposedly living till eternity, in an eternal population of 17.4 million):

Last[TheFormer] * NqSeed

344 997.

In practice, we cannot simply assume that Aqt0 is zero. Hence, the routine allows for the appropri-
ately full input.

SIA[Explain, Limit]

SIA[Limit (, opts)] uses opts or default Options[SIA] to determine the infinite

values. The default options have the Iq seed and n = Nqt0 and Aqt0, so that it follows

that Sqt0 = n - seed - Aqt0; then it calls SIA[ProductLog, b/g, Sqt0 / n, Aqt0 /n];

SIA[ProductLog, R0, Spt0:1, Apt0:0] = Sp[∞] is the ProductLog finding for Sp[inf] on R0 and those

proportions. With the limit of Iq zero, the counter part of the limit of Sp is the limit of Ap

SIA[Sp, Limit, x__] uses the productlog with such values of x, finds s = Sp[inf], and returns {s, 0, 1-s}

See TforAp95

6.10. The importance of t50 and t95

The following provides additional explanation for the figure already shown above.

For SIA, we have two phenomena that directly depend upon R0, namely the top and the limit. Let us 
look now at Ap, since this determines the eventual burden of disease. The two equations are (with 
some blanks between them):

PointAtTop  
1

f
,

f - log(f) - 1

f
,

log(f)

f
 PointAtLimit  -

W-ⅇ-f f

f
, 0,

W-ⅇ-f f

f
+ 1

Both the top of infections and the limit values are determined by R0. The overall burden of disease is 
determined by the limit value. The top of infections says rather little about the overall burden of 
disease, which only appears in the limit. The limit is a long way off. Thus it seems useful to compare 
also some other values than the top only:

(1) t50 when Ap reaches 50% of the population 

(2) t95 when Ap reaches 95% of A∞. 

These durations give us a sense how the burden of disease is spread over time. Observe that the 
indicators relate to different bases: (i) for t50 we do a numerical approximation based upon the 
parameters, (ii) for t95 we directly use the parameters to find the R0 value. Obviously, t → ∞ cannot 
be calculated anyway.
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Thus we find these special moments in time.  They all require R0 but the first ones include it in the 
numerical approximations and the latter ones allow a parametric solution, whence we insert the 
numerical value of our choice for R0.

pnts = {TforTopIq[],

TforAp50[],

TforAp95[4],

1 - SIA[ProductLog, 4.]} // Quiet

{44.3682, 48.3071, 74.4295, 0.980173}

We already showed the following plot twice, and there is adequate reason to plot it again, here. The 
horizontal axis shows the different values of R0 with a vertical dashed line at the value 4. For t50 
there is no contour in the legend but we still get a dot.

ApByR0Plot[]

44 days

48 days

74 days

0 2 4 6 8
R0

0.2

0.4

0.6

0.8

1.0
A = 1 - S - I

A at top I

A[∞]

95% A[∞]

For the contour of Ap at the top of Ip, a higher value of R0 will cause a higher infection level for Ip at 
the top, and then there will be a lower value for Ap.

It is surprising that the dynamics of the process can be caught in one parameter. The word of 
caution of course is that we may be assuming a constant value of this parameter, while it actually 
changes.

The explanation of the plot is straightforward:
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? ApByR0Plot

Symbol

ApByR0Plot[R0chosen:4, R0max:8] plots Ap[R0]

for {R0, 0, R0max}, with R0 the basic reproduction factor. Plotted are:

(1) The limit value of Ap[Infinity]

(2) Ap95 = 95% of Ap[Infinity], and the days t95 to get there

(3) Ap50 = 50% of Population, and the days t50 to get there

(4) ApTop, i.e. at the top of Iq, and the days tTop to get there

PM. Options Text and Line (defaults True) control plotting of text and lines

PM. The plot requires numerical proportions, e.g. SIA[Set, Pr, (, Nq[0])]

NB. The graphs are fully determined by R0

on the horizontal axis. See TimeByR0 for time as a function of R0

ApByR0Plot["HerdImmunity", fmax:8] gives the plot with the Ap[infinity] and

the claimed ApHI = 1 - 1/R0: the difference between the lines times population times

the Infection Fatality Factor is the overshoot in deaths not accounted for by ApHI

6.11. Herd immunity

The term herd immunity exists in the literature, and it is important to know what people are speak-
ing about, or potentially may be confused about. See Fine, Eames, and Heymann (2011).

Since there appears to be so much confusion, section 6.11.1 gives an overview, and the following 
sections give more details. When there is confusion, it may happen that it is not possible to pinpoint 
what it actually is or what causes it. Speculation about this might be even more confusing. 

In section 1.5.5 we already stated: With Ap the proportion of immune, the effective reproduction (1 - 
Ap) R0 ≤ 1 if Ap ≥ 1 - 1 / R0. However, this still means that infections continue. The literature calls this 
“overshoot”. It might be someone dear to you. 

6.11.1. Population immunity, herd immunity and pseudo herd immunity

(1) The definition for “population immunity” is that I = 0, i.e. that everyone is protected because 
there are no infections. This end state is not reached in the SIA model, because it has only I → 0.  It 
even has no strict steady state; there is only an asymptotic state. However, SIA uses a continuous 
approximation to a discrete problem, and perhaps it is better to say that the infection is extinct 
when I drops below 0.5 (rounding down).

(2) The notion of “herd immunity” allows for a deviation of population immunity, presumably to 

2020-06-15-Didactics-SIEYACD.nb     105



make up for the notion that population immunity is unattainable in reality. 

The SIA limiting values give Sp[∞] +  Iq[∞] +  Ap[∞] = 1 = Sp[∞]+  Ap[∞] because Iq[∞] = 0. 

Define ApHerd,∞ =def Ap[∞]. We might say that this herd "protects" the still susceptible SpHerd,∞ =def 
Sp[∞]. However, Ap[∞] is only a limiting value. In the process Sp[t] → Sp[∞] there are still units 
infected. For some units there is not the promised protection. The problem with the use of the 
limiting values is that one must specify when the "herd immunity" is reached and for limits this is 
impossible. 

ApLimit == 1 - SIAProductLog, BetaSIA[]  GammaSIA[] /. Options[SIA] // N

ApLimit  0.980173

(3) We may use a criterion like 95% of the limit value.  Above, we already calculated the day when 
95% of the Dutch population would have been acquitted from the pandemic, given the parameters 
and without the intervention of March 15-19. It is at about day 80. 

There is no need to refer to some notion of "herd immunity" when the situation is that the infection 

comes to an end, because survivors have cleared the infection and have become immune.

t95 = t /. FindRoot @@  0.95 ⩵ Aq[t]  NqSeed, {t, 100} // Quiet

79.7353

(4) Other models may have a steady state, meaning that I = c so that I’ = 0.

A “steady state” for infections is defined as follows. R0 are the victims of an infectious unit in a 
situation without immunity. When only 1 contact results into a new infectious unit when there is 
immunity, then R0 - 1 end up nowhere because of immunity. The ratio (R0 - 1) / R0 = 1 - 1 / R0 gives 
the same notion as stated above. However, this also means that infections continue.

We can relate to the formulas for a disease with a steady state in section 6.2.4. When we take the 
IncidenceQuotient q there as β I for I = c and the DiseaseDuration as 1/γ, then we get the prevalence 
= R0 c / (R0 c + 1). Using factor f = R0 c + 1, the prevalence translates as (f - 1) / f = 1 - 1/f, which has the 
same structure but f = R0 c + 1. This however reduces to f = R0 if c = 1 - 1/R0, which is the same as the 
above.

(a) If I = c ≠ 0 then it is dubious to call this “herd immunity” since there will be infections at rate c / 
Nq[0].

(b) Such model is not SIA, and we should not mix models.

(5) For the SI(EY)A(CD) family, there is an asymptotic steady state because I’ → 0.  For SIA we still 
have growth  [∞] = β p[∞] - γ. This would be zero if p[∞] = 1 / R0. The only basic reproduction 
factor R0 that allows that Sp[∞] = 1 / R0 is R0 = 1. The outcome that Sp = 1 however is incompatible 
with the idea that Iq[0] = Seed ≠ 0.

Sp[∞] == 1 / R0 or -
W-ⅇ-f f

f


1

f
solves into {{f → 1}}

For the SI(EY)A(CD) family, the literature still shows discussions that combine these ideas in confus-

ing manner. It may be thought that Sp[∞] = 1 / R0 and then we see the use of the formula ApHerd =??? 1 
-  1 / R0. 

106     2020-06-15-Didactics-SIEYACD.nb



For SI(EY)A(CD), the latter combines both IpHerd,∞ = Ip[∞] = 0 and IpHerd, Top = IpTop ≠ 0 (see point 

(6)). This combination is illogical.

(6) Define SpHerd, Top =def 1 / R0, with the advantage of an identifiable moment in time when this is 
reached. This notion of “pseudo herd immunity” is to focus on the idea that the disease gradually 
dies out when the effective reproduction factor drops below 1, or R < 1, either at the very start or 
after the top of infections. 

For SARS-CoV-2 we find the proportions at the top as follows.

SIAIp, Top, BetaSIA[]  GammaSIA[] /. Options[SIA]

{0.25, 0.403426, 0.346574}

However in the downward phase there will still be new infections for SpTop - SpTop. We already 

calculated this above. It is a curious form of “herd immunity” when one implies that when this 
“immunity” is reached, thereafter still 23% of the susceptibles will be infected. (This percentage 
depends upon the R0, and observe that we cannot take the value from the lockdown period).

TopSIA = SIAIp, Top, BetaSIA[]  GammaSIA[] /. Options[SIA];

Thread {Sp, Ip, Ap} → SIA[Limit] - TopSIA

{Sp → -0.230173, Ip → -0.403426, Ap → 0.633599}

(7) The following only gives details about the above basic observation.

6.11.2. Solving for an assumed herd immunity

For SIA, we find Iq[∞] = 0 in above Sp[∞ ] + Ap[∞] = 1. Thus Iq[t] has a limit value 0 but never 
becomes 0.

We might want to determine what value of R0 would be relevant as a public health goal. Let us 
target a value of Sp[∞ ] = 40%, so that that the proportion of the acquitted (i.e. having had an 
infection but no longer infectious) is Ap[∞] = 60%.

eqSpLimit = 0.4 ⩵ SIA[ProductLog, R0]

0.4  -
W-ⅇ-R0 R0

R0

res = NSolve[eqSpLimit, R0] // Quiet

{{R0 → 1.52715}}

SIALimit, BetaSIA[] → GammaSIA[] R0 /. res[[1]]

{0.399994, 0, 0.600006}

Thus the authorities might intervene to achieve such lower value for R0. 

For SARS-CoV-2, Dutch authorities (RIVM) have indicated a “herd immunity” of 60% of the popula-
tion. If they used the SIA model and above reasoning then they took Ap[∞] = 40% as in above 
example, and apparently they used a R0 ≈ 1.5. However, RIVM published a R0 ≈ 2.5, and it is more 
likely that they used the steady state formula 1 - 1/ R0, which is another model.

6.11.3. A confusing notion of heard immunity from a consideration of the 
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steady state

In section 1.5.5 we already stated: With Ap the proportion of immune, the effective reproduction (1 - 
Ap) R0 ≤ 1 if Ap ≥ 1 - 1 / R0. There is the following type of reasoning in the literature that might 
pertain to a model with a steady state, another model than SIA but that has overlapping properties 
with SIA, so that the reasoning becomes confusing on different assumptions. The confusion is 
about using different models, and making assumptions about a steady state that would not exist in 
the SIA model.There is no need to give references.

Consider another model with a steady state, in which I’ = 0 for t > T means that Ip has gotten a 
constant value Ip = c. Let the proportional  variables be 1 = Sp + Ip + Ap. Assume that the other model 
has a similar relation as SIA to the effect that with Ip = c ≠ 0, we have R = 1 or Sp = 1 / R0. Define h = Ip 
+ Ap as the herd proportion, of those already acquitted or soon-to-be-acquitted (from infectious-
ness). Conveniently R < 1 for t > T. 

Then 1 = 1 / R0 + h which gives h = 1 - 1 / R0. 

Somehow, there creeps in the assumption that c → 0 while the assumption for the steady state was 
c ≠ 0.

This type of reasoning combines the long run Sp[∞ ] + Ap[∞] = 1 relation with the assumption that 
Sp = 1 / R0 to generate Sp[∞ ] = 1 / R0.

eqSpLimit = GammaSIA[]  BetaSIA[] ⩵ SIA[ProductLog, R0] /. Options[SIA] 

0.25  -
W-ⅇ-R0 R0

R0

The latter however generates another R0. Thus curiously, the information about the current repro-
duction factor (0.25 = 1 / R0 but holding for the top) is used to determine a result under another 
hypothetical reproduction factor.

res = NSolve[eqSpLimit, R0] // Quiet

{{R0 → 1.84839}}

SIALimit, BetaSIA[] → GammaSIA[] R0 /. res[[1]]

{0.249997, 0, 0.750003}

The problem with this "reasoning about the steady state" is: 

(i) Unless the constant value of I is 0, there still will be (dwindling) infections, and possible deaths, 
so that this herd proportion does not provide the protection which one associates with the notion 
of immunity.

(ii) SIA has no steady state, only an approximation in the long run, so that the above assumes other 
models.

In the following plot, the area between the curves gives the “overshoot”, which can be multiplied 
by 0.015 * the population size to find the death toll of confusion.
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ApByR0Plot["HerdImmunity"]
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6.11.4. In sum

(1) The condition of zero growth of the infections,  = 0, does not only hold for the transient top but 
also for a steady state. A steady state in SIA is only possible when β = 0 or when p or ℐp are quaran-
tined. For SIA we basically have only limit values when time goes to infinity. 

(2) In the limit  = β Sp[∞] - γ ≠ 0. Sp[∞] = 1 / R0 only holds when Sp[∞] = 1, which is illogical since we 
seeded the population with an infection.

(3) There may be confusion in the discussion, but also the use of another model.

(4) It seems likely that the notion of “herd immunity” has been used in the epidemiological litera-
ture in well-defined cases, like vaccination for measles, in which discussions the experts know what 
they are doing, so that in practice no relevant confusion arose in those practices. However, in the 
SARS-CoV-2 pandemic, the term was applied by less-expert people in a situation new to them.

PM. The following is something of a mnemonic summary, that allows the substitution of parameter 
values.

eqs =  PeriodBetweenInfections[t] ⩵ 1  BetaSIA[t],

RecoveryPeriod[] ⩵ 1  GammaSIA[],

R0[t] ⩵ BetaSIA[t]  GammaSIA[],

HerdImmunity["ConfusionOrUnspecifiedOtherModel"] ⩵ 1 - 1  R0,

HerdImmunity["Rather misleading: reached R[t] < 1"] ⩵ "Sp[t] < 1/ R0[t]",

HerdImmunity[SIA, ApLimit] ⩵ 1 - SIA[ProductLog, R0], (* perhaps include 95% *)

"R0 ≤ 1" → R0 ≤ 1, (* the left does not change when replacing the right *)

TopIq → SIA[Ip, Top, R0];

eqs /. Options[SIA] // MatrixForm

PeriodBetweenInfections(t)  1

BetaSIA(t)

RecoveryPeriod()  10.
R0(t)  10. BetaSIA(t)

HerdImmunity(ConfusionOrUnspecifiedOtherModel)  1 - 1

R0

HerdImmunity(Rather misleading: reached R[t] < 1)  Sp[t] < 1/ R0[t]

HerdImmunity(SIA, ApLimit) 
W-ⅇ-R0 R0

R0
+ 1

R0 ≤ 1 → R0 ≤ 1

TopIq →  1

R0
, R0-log(R0)-1

R0
, log(R0)

R0

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6.12. Attack rate vs force of infection

Breda et al. (2012:105): “the force of infection is, by definition, the probability per unit of time that a 
susceptible becomes infected.” For the SIA model, this appears to be the (absolute value of the) 
growth rate - = β ℐp. Authors are free to define terms of course, but the association with the term 
“force” does not seem to enhance clarity. It suffices to identify this expression as the rate of decline 

of the remaining susceptible compartment. 

The growth rate  = - β ℐp can also be related to the value of p itself via  = - β p ψ with now the 
(cumulated) “attack rate” ψ = ℐp / p, i.e. the number of infectious units encircling the susceptible. 
The term “attack rate” seems also to be used for Ip[t] itself, but we already have a name for Ip.

AttackRate[Plot, t, 0, 150, BaseStyle → {FontSize → 14}]
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Day

1
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Iq / Sq

7. SICD

Clear

Let us first clear all relevant variables, since we may do different runs. When we call a “run” then the 
routine does so actually itself too, but it seems to be good discipline not to wait till such routine 
guidance.

SIA[Clear]

SetOptions[SetDatabank, Databank → SICD]; (* for Explain *)

7.1. Fast-track run and plot

This section directly runs the model and plots the results. An appendix to this chapter  does the 
same in steps, so that the user might take more advantage of the environment in Mathematica.

The Dutch population in 2020 is about 17.4 million people. It will be convenient to use formal 
parameter Nqt0 → the size of the population, while Npt0 → 1.  Subsequently, for quick calculation 
of proportions it will be useful to set NqSeed = Nq[t0] at a numerical value. NqSeed is not a parame-
ter in the model, and only a handy variable name at the user level.
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NqSeed = 17.4 × 10^6;

SetOptions[SIA, Nqt0 → NqSeed]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

The infections are driven by the equation Iq[t0] == Seed. (Seed is parameter in the model.) The 
carnival festivities in the South of Holland were on February 23 2020. It is not unlikely that some 100 
infections were seeded by people having returned from Italy and Austria from work and ski holi-
days. The options have default Seed → 100. When we use a different value of Seed, then this is 
“baked” into this model solution, and we must take heed of routines that rely upon Options[SIA] for 
the value of Seed in these options. We can mention the parameter here so that the user can check 
more easily that model solutions change when adapting the Seed value.

SICD[Run, Pr, newModel, t, 150, Seed → 100];

The variables are now available in levels and proportions.

res = SICD[75]

415 556., 738 924., 1.60018×107, 243 683., 1.71563×107, 1.62455×107

Explain[res, SICD]

S → 415 556., I → 738 924., C → 1.60018×107, D → 243 683., N → 1.71563×107, A → 1.62455×107

SICD[Pr, 75]

{0.0238825, 0.0424669, 0.919646, 0.0140048, 0.985995, 0.933651}

Explain[TheFormer, SICD]

{S → 0.0238825, I → 0.0424669, C → 0.919646, D → 0.0140048, N → 0.985995, A → 0.933651}

We now have the additional information that by day 75 some 240,000 people would have died, had 
the government not intervened.

It is useful to have plots that show both levels and proportions. The plot axes assume that it is 
obvious what are levels and what are proportions.

In the following plot, the population drops by about 1.5% because of the deceased. The difference 
between the population (red) and the cleared compartment (green) are the remaining 2% suscepti-
ble (cyan). 
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SICD[Plot, 0, 150]
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7.2. Relation to capacity of ICU beds

The national challenge has been for the intensive care units (ICU beds). Assume that there are 1500 
beds on the ICU, and that each death, after an infectious period of 1/γ, still requires 1/h = 10 days in 
the hospital. (Admission to a hospital acquits from the infectious stage for the public at large.) The 
rate per bed is 3 patients per month or h = 3/30 per day. A good way to look at this is to take a 
cohort of 10 beds, with one new patient arriving every day. In a steady state with input = output, the 
ICUs can accept only 1500 h = 150 new patients per day, as each new patient takes the open spot in 
a cohort of 10 beds. Capacity remains at 1500, and we can plot above graph for a lower range at 
that level to show how the ICU system cannot take the new arrivals who are clearly at risk of dying.

sicdplotoptionsICU = SICD[Plot, Options, ICU, PlotRange → {0, 10 000}];

Plot @@ {SICD[ICU, 1500, t], {t, 0, 150}, sicdplotoptionsICU}
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SICD[Explain, ICU]

SICD plots can be enlightened by including a line for the ICU capacity. This is simple by itself

but becomes a bit more complicated because of the colouring and legend. In this plotting,

the level of population is far out of range, and not included. Two main subroutines are:

SICD[Plot, Options, ICU, opts] combines plotting options and allows user options

SICD[ICU, level, t] does Append[Take[SICD[t], 4], level], thus removes N & A, inserts level

Subroutines used by those two main subroutines are:

SICD["Colours", ICU] gives DeeperPink for the ICU capacity

SICD[PlotLegends, ICU] uses the label "ICU capacity"

SICD[Plot, PlotLegends, ICU] puts the labels into a Placed object

SICD[Plot, Options, ICU,"Other"] chooses ImageSize and AxesLabel

SICD[Plot, SetOptions, ICU, opts] may set Plot options (inadvisable for other Plots)

7.3. Inclusion of C and D in SIA

7.3.1. Introduction

The Acquitted compartment of SIA can be divided into the compartments of C Cleared and D 
Deceased. The sum of A = C + D in SICD has the same value as A in SIA. 

The SICD model has an endogenous population N[t] = N[0] - D[t]. This endogenous population is 
only used for plotting and not for the ratios. The (infectious) contacts between the units depend 
upon the population density, normalised for N[t0] and not N[t]. For Sp we have N[t0] in the denomina-
tor and not N[t]. For, if we would use N[t] in the denominator then a decreasing population due to 
deaths would increase the intensity of contacts and thus infections, while actually the population 
density decreases. However, including endogenous N clarifies what the outcomes imply.

7.3.2. The traditional format for C and D causes conceptual questions

In the traditional presentation of SICD, the development of the two new compartments is given by:

C’ = λ I, for those cleared of the infection 

D’ = μ I, for the deceased

Then the acquitted are A’ = (λ + μ) I = γ I as in SIA, with γ = λ + μ. Conventionally the sum A is not 
mentioned.

This causes conceptual questions about how to calculate the values of λ and μ. When we have a 
variant γ[t] e.g. depending upon an intervention, how would we adapt the parameters ? It would be 
tempting to keep μ constant, and let λ take all changes, since the intervention cannot change the 
biological death rate. This however can cause inexplicable outcomes.

7.3.3. A clearer format for C and D but still not perfect

A clearer format is:
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D’ = γ φ I, for the deceased

C’ = γ (1 - φ) I, for those cleared of the infection

 A’ = γ I as in SIA

for φ the Infection Fatality Factor (IFF).

The model has an outcome IFF[∞] = D[∞] / (C[∞] + D[∞]) =  D[∞] / A[∞] =  Dp[∞] / (1 - Sp[∞]). We can 
make the model fit better when we choose φ =  IFF[∞] = IFF[observed]. This presentation of the 
model immediately clarifies the meaning of the parameters and the properties at the limit and for 
variants. A change of γ due to an intervention cannot change the biological IFF and the shares 
within the Acquitted department. (Check what keeping μ = γ[0] φ constant at the cost of λ[t] = γ[t] - 
μ would generate.)

In SIA, the assumption was that the duration before acquittal δSIA = 1 / γSIA was also the infectious 
period. This assumption is not changed here. The population is homogenous: whether one belongs 
to the survivors or deceased cannot be said in advance. The final weights in the population can only 
be determined after the whole infection episode is over. The event of death only happens at the 
end of the acquittal period. The dying are partaking in spreading the disease thus just as much as 
the eventual survivors, at least as long as they are alive (and not quarantined, like being hospi-
talised). When we regard C and D as mere proportions of A then they can have the same infectious 
period.

However, in this (still rather traditional) formulation with D’ = γ φ I, a student might consider that 
the mean infectious period for the deceased compartment is 1 / (γ φ), with a conventional value of 
1 / 0.0015 = 667 days. This idea arises purely by analogy with A’ = γ I, and has not been well thought 
about, but can arise nevertheless merely because of such thinking by analogy. The proper reason-
ing is that a proportion φ I is taken, with a mean period of φ / (γ φ). Nevertheless, given the model 
formulation, we cannot immediately reject the possible interpretation that there is a distinction 
between the lethal period and the (survivor) clearing period. The traditional formulation invites the 
interpretation of exponential decay with different half-lives, at least until we can spot an inconsis-
tency. The δSIA = 1 / γSIA acquittal duration could be an average of these two other durations. 

This line of thinking opens up a can of worms, with a need for deeper discussion of the assumptions 
of the underlying distributions and such. All of this still results in the same finding that we actually 
have only proportions D = φ I and C = (1 - φ) I, but for a moment we might also have to consider 
alternatives.

7.3.4. Didactically clearest format for C and D

The conclusion is that the above formulations have been inspired by the mathematical elegance of 
the use of ordinary differential equations. They have not been targeted at empirical and didactic 
clarity. 

The didactically best formulation is:

A’ = γ I

D = φ I

C = (1 - φ) I = A - D
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This formulation makes immediately clear that the dynamics of SIA are unchanged and that C and D 

are only proportions, with a clear interpretation of φ = IFF. It is also immediately clear that there is 
no special new application of differential equations, and that we only apply a little bit of administra-
tion within the compartment of the acquitted.

Analytical clarity requires us to include the expression A = C + D in the differential equations any-
way, because we must clarify the meaning of the variables from the start. This will also reduce 
clutter in later routines on programming and runtime calculation of the simple addition. Conven-
tional presentations of the set of equations leave out these administrative equations, apparently 
with the objective to enhance clarity by focusing on the core mechanism. This core however is quite 
clear, precisely when the administrative equations have been included. The core may be less clear 
when there is uncertainty about what the variables actually mean.

When SICD is presented in this didactic form, some readers might think that this would not be the 
proper SICD model from the literature. If those readers come from a background of already having 
used SI(E)R(D) models, then it would appear that they haven’t quite understood the underlying 
mechanism yet, apparently. Nevertheless, the discussion below also provides for the traditional 
formulation, and we can easily check that the model outcomes are the same. Other users might 
want to present the original form with differential equations merely to show that it results into such 
proportions, but having a course on differential equations is a different objective than presenting 
SICD. When the model is presented, then it must be presented in its clearest format, and not with 
some additional hidden objectives on education in mathematics. 

7.4. Basic model 

SIA[Clear]

ReadMeSIA[SICD]

′  -β*  ℐ

′  γ ℐ

ℐ′  -′ - ′
   φ

   (1 - φ)

  (t0) - 

(t0)  (t0)

(t0)  -Cqt0 - Dqt0 - Seed + (t0)

ℐ(t0)  Seed

(t0)  Cqt0

(t0)  Dqt0

(t0)  Cqt0 + Dqt0

PM 1.  It is logical to first state S’ and A’ and subsequently derive I’, as Smith & Moore (2001, 2004) 
do. 

PM 2. β* = β / N[t0]. This gives a tiny value for β* but simplifies the model.

PM 3. Above model is in levels. Division by N[t0] or setting N[t0] = 1 gives proportions (and β* = β).
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PM 4. The model might be run for symptomatic disease. Then μ = γ sCFF and λ = γ (1 - sCFF), for the 
symptomatic case fatality factor (sCFF). Not all infected will develop symptoms, so that sCFF = D / sC 
= (D / I) *(I / sC) = IFF / (sC / I).

PM 5. It is analytically and didactically relevant, namely for the comparison with SIA, to include A. 

This also reduces clutter in subsequent programming and execution (namely to always include 
what wasn’t stated at the start).

7.5. Computable format (Copy from SIA)

See the corresponding section in the discussion of SIA.

7.6. The didactic and traditional formats

SIA[Clear]

An overview of the traditional / simplified and computable / readable formats is as follows.

symbolic = {SICD[Equations, t0, t],

SICD[Equations, TraditionalForm, t0, t]} // Transpose // TableForm

Sq′(t)  - BetaSIA() Iq(t) Sq(t)

Nqt0
Sq′(t)  - BetaSIA() Iq(t) Sq(t)

Nqt0

Aq′(t)  GammaSIA() Iq(t) Iq′(t)  Iq(t)  BetaSIA() Sq(t)

Nqt0
- GammaSICD() - MuSICD()

Iq′(t)  -Aq′(t) - Sq′(t) Cq′(t)  GammaSICD() Iq(t)
Dq(t)  PhiSICD() Aq(t) Dq′(t)  MuSICD() Iq(t)
Cq(t)  (1 - PhiSICD()) Aq(t) Nq(t)  Nqt0 - Dq(t)
Nq(t)  Nqt0 - Dq(t) Aq(t)  Cq(t) + Dq(t)
Nq(t0)  Nqt0 Nq(t0)  Nqt0
Sq(t0)  -Cqt0 - Dqt0 + Nqt0 - Seed Sq(t0)  -Cqt0 - Dqt0 + Nqt0 - Seed
Iq(t0)  Seed Iq(t0)  Seed
Cq(t0)  Cqt0 Cq(t0)  Cqt0
Dq(t0)  Dqt0 Dq(t0)  Dqt0
Aq(t0)  Cqt0 + Dqt0 Aq(t0)  Cqt0 + Dqt0

symbolic // SEYCDLettersOnly

′  - β  ℐ

(t0)
′  - β  ℐ

(t0)

′  γ ℐ ℐ′  ℐ -λ - μ + β 

(t0)


ℐ′  -′ - ′ ′  λ ℐ

   φ ′  μ ℐ

   (1 - φ)   (t0) - 

  (t0) -     + 

(t0)  (t0) (t0)  (t0)
(t0)  -Cqt0 - Dqt0 - Seed + (t0) (t0)  -Cqt0 - Dqt0 - Seed + (t0)
ℐ(t0)  Seed ℐ(t0)  Seed
(t0)  Cqt0 (t0)  Cqt0
(t0)  Dqt0 (t0)  Dqt0
(t0)  Cqt0 + Dqt0 (t0)  Cqt0 + Dqt0

Options[SIA]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null
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TheFormer // SEYCDLettersOnly

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, (t0) → 1.74×107,

Onset → 0, Seed → 100, Yqt0 → 0, α → 1., β → 0.4, γ → 0.1, φ → 0.015, R0 → Null

Options[SICD] (* used by Explain on standard output of SICD[t] *)

{DataMold → {S, I, C, D, N, A}}

NB. When running the traditional model forma, its parameters can take values from Options[SIA] by 
first doing a substitution using the following rule.

SICD[GammaSIA, Rule]

{GammaSICD() → GammaSIA() (1 - PhiSICD()), MuSICD() → GammaSIA() PhiSICD()}

TheFormer // SEYCDLettersOnly

{λ → γ (1 - φ), μ → γ φ}

7.7. Choice of R0 = 4 and acquittal period of 10 days (Copy from SIA)

See the corresponding section in SIA.

7.8. Infection Fatality Factor (IFF) and symptomatic Case Fatality Factor 
(sCFF)

7.8.1. Infections versus symptomatic cases

The Infection Fatality Factor (IFF) is the proportion of who dies after having contacted the infection. 

For Holland, a rounded estimate of the Infection Fatality Factor (IFF) of SARS-CoV-2 for the Dutch 
population, in its composition of 2020, is 1.5% (at least up to the beginning of April, see Colignatus 
(2020d)). 

Commonly, it would also be the Case Fatality Rate, but we better distinguish:

(i) (level) factor and (instantaneous) rate (see Appendix A),

(ii) "Cases" are often defined by (flu-like) symptoms, which is the symptomatic rate. Not all infected 
develop symptoms.

(iii) To avoid confusion about "cases" and infections, we follow the suggestion of the London 
Imperial College to use infections in the denominator. However, there still is the distinction 
between rate IFR and factor IFF. (It does not help that the Imperial College calls the factor a rate.)  

7.8.2. IFF[t] and the eventual limit value IFF[∞]

There is also the distinction between the factor at a point in time and the value in the limit.

iIFF[t] = Dp[t] / (1 - Sp[t]) observed at time t, inclusively counting the haves and hads, influenced by 
changing Ip[t]

IFF[t] = Dp[t] / (Cp[t] + Dp[t]) observed at time t, counting the hads only

IFF[∞] = Dp[∞] / (1 - Sp[∞]) = Dp[∞] / (Cp[∞] + Dp[∞]) the eventual limit value (the key parameter) 

2020-06-15-Didactics-SIEYACD.nb     117



(Ip[∞] = 0).

7.8.3. Short conversion from IFF (observation) to IFR (model parameter μ)

In traditional formulation, the SICD model requires the input of μ. The model generates outcome of 
a model-IFF that allows to check that the model fits the observed-IFF. The conversion is rather 
simple, once we understand the properties of SICD.

When Ap arises because of decay by Ip with rate γ = μ + λ then it may be assumed now without proof 

that Cp and Dp are fractions μ / (μ + λ) Ap and λ / (μ + λ) Ap over the whole range, and thus also in 
the limit. 

Consider the Acquitted Ap[∞] = Cp[∞] + Dp[∞] = 1 - Sp[∞] (since Ip[∞] = 0). These four relations 
apply:

λ + μ == γSIA ⩵ 0.1;

IFF[∞] ⩵ Dp[∞] / Ap[∞] ⩵ 0.015;

Dp[∞] / Ap[∞] ⩵ μ / (λ + μ) == μ / γSIA == IFF[∞] ;

μ == IFF[∞] * γSIA ⩵ 0.0015;

Importantly: it is pointless to say that IFF[∞] was found by the model, since it was input, either 
directly or via a hidden manner by putting in μ and λ.

Maugeri et al. (2020) have the elegant formulation that μ = γ IFF and λ = γ (1 - IFF) in the model from 
the start. This is relevant for model variants, when we adapt γ by means of interventions. Since we 
can do little about the IFF, the change in γ affects both μ and λ. For Options[SIA] it suffices to use γ 
and φ = IFF, and we can always calculate μ = γ φ if we would need it for comparison, e.g. with 
publications. 

It is possible to call μ = φ γ the "infection fatality rate" (IFR) as long as it is clear that this rate has 
been calculated with a SICD model, because other models might require other rates. It is a bit 
dubious indeed to use the term IFR for such μ, since actually μ = φ / Tinf so that the value is spread 
over the infectious period. The discussion about 1/γ would be multiplied by a discussion on μ. It 
seems best to avoid the traditional format overall.

7.8.4. An expected death toll of 250,000, if there had been no interventions

We thus also know the expected death toll when the pandemic is over. The estimate of the final 
prevalence is Ap[∞] = 98%. The IFF of 1.5% gives, both as a percentage and in numbers for Holland:

.98 * 0.015 * {1, NqSeed}

{0.0147, 255 780.}

Thus:

(i) Modeling with SIA(CD) helps to identify the limit prevalence, but the IFF was already known.

(ii) In this type of research it remains important to consider the toll in terms of (quality adjusted) 
life-years lost too. 

7.8.5. Traditional limit, IFF (observation) → (model parameter μ), starting 
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values

The discussion about SIA used S = -β Sp I to get  = 0 Exp[- R0 (p- p[0])] for an analytical result 
on the limit outcomes Sp[∞] and Ap[∞].

We can repeat this analysis for the two new compartments C and D, using the conventional formula-
tion with:

C’ = λ I, for those cleared of the infection 

D’ = μ I, for the deceased.

We have I = (Cp ' / λ) = (Dp ' / μ) and thus two ways to substitute in the first SICD equation for S, 

giving: 

S = -β Sp(Cp ' / λ) = -β Sp(Dp ' / μ).

Instead of using R0 = β / γ and Ap we now express:

 = f[0, β / λ,  Cp, Cp[0]]

S = g[0, β / μ, Dp, Dp[0]. 

Thus the value of S[∞] given by SIA and new S[∞] = f[Cp[∞]] and S[∞] = g[Dp[∞]] allows us to find the 
values of Cp[∞] and Dp[∞].

It is a bit of algebra to show that Cp[∞] and Dp[∞] divide Ap[∞] up into the proportions φ = μ / γ 
and 1 - φ = λ / γ for γ = λ + μ. There will be clutter when Cp[0] and Dp[0] are nonzero. While this 
derivation is rather useless when we define C and D as proportions from the start, the derivation 
remains useful for an understanding of the influence of the clutter.

We conclude that we have a well-defined and calculable result for the limit value of the IFF accord-
ing to the model. Not writing the clutter:

IFF(∞) 
Dp(∞)

Cp(∞) + Dp(∞)


Dp(∞)

1 - Sp(∞)


μ

λ + μ
 φ

It follows that we can set the fatality rate in SICD as μ = γSIA * IFF[∞], using above observation for 
IFF[March] = 0.015, and skipping the idea of waiting till eternity. Instead, though, it appears better 
to formulate C and D from the outset as proportions. This is the mathematical portent of the model, 
and it is better expressed so clearly then.

PM. In SICD we might use death statistics to trace the development of infections, but when we do 
not know the level of infections then we cannot determine the IFF, and thus neither μ. We might use 
the property that infections and thus deaths have exponential growth at the start with rate β - γ. 
Then we are still lacking a fundamental piece of information. Using the share of hospital patients 
who clear the infection might be dubious when this is no representative sample.

? PhiSICD

Symbol

PhiSICD[] stands for the Infection Fatality Factor (IFF), such that

GammaSIA[] * PhiSICD[] is the rate MuSICD[] of the infectious who decease
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? MuSICD

Symbol

MuSICD[] is a symbol, no longer in the options,

for a constant rate of the Infectious who will decease (not in SIA)]

PM. Numerically GammaSIA[] ⩵ GammaSICD[] + MuSICD[] means different clearing periods per subgroup

? GammaSICD

Symbol

GammaSICD[] is a symbol, no longer in the options, for a constant

rate of the Infectious per day who will no longer be infectious and not dead

PM. GammaSIA[] ⩵ GammaSICD[] + MuSICD[], or MuSICD[] = GammaSIA[] PhiSICD[], with the latter

the Infection Fatality Factor (IFF). GammaSICD[] may be represented by symbol Lambda (life)

7.8.6. A small check on consistency of the starting values

The β and γ in the options for SIA apply for SICD as well. We also know the limit properties, since 
these are determined by the parameter values (without running the model). The IFF has been put 
directly into the parameters as PhiSICD[]. However, the starting values of SICD may still affect the 
eventual proportion of the assigned compartments. The basic warning is that model runs should 
have consistent starting values.

{sp1, ip1, ap1} = SIA[Limit]

{0.0198273, 0, 0.980173}

{sp2, ip2, cp2, dp2, np2, ap2} = SICD[Limit, Cqt0 → 10 000.]

(* assume a somewhat larger nonzero starting value *)

{0.0198644, 0, 0.965442, 0.0146934, 0.985307, 0.980136}

dp2  ap2

0.0149912

dp2  ap1

0.0149906

PM. SICD[Limit, ...] tests whether the starting values for Cqt0 and Dqt0 are zero, and if so, allocates 
the shares {Cp[∞], Dp[∞]} via {1 - φ, φ} Ap[∞] , since there is no need to calculate via the Sp what 
already is known. 

Thus both models have the same Ap[∞] while IFF[∞] = Dp[∞] / Ap[∞] fits the input parameters.

The following might be different from the input PhiSICD[] when the starting values in the Option-
s[SIA] are nonzero.
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SICD[Limit, "IFF"]

0.015

7.8.7. Summary of terms

Our terminology has been:

ReadMeSIA["Terminology"]

This terminology applies to the SICD model:

SICD improves on SIA by distinguishing A = C + D, for D deceased and C cleared.

(-Sp') is the *incidence* of infections at moment t.

Ip is the *prevalence* of infections at moment t.

1 - Sp = I + C + D is the *cumulated prevalence* at moment t (i.e. the haves and hads).

1 - Sp[∞] = Ap[∞] in both SIA and SICD is the *limit prevalence*, since Ip[∞] = 0.

Cp is the cumulated survival factor at moment t (but the Sp also count as living).

Dp is the *cumulated mortality factor* at moment t (mortality ∼ population).

Cp[∞] is the limit cumulated survival, and part of the burden of disease (infection).

Dp[∞] is the *limit (specific) Infection Mortality Factor* (IMF) (prevalence of death).

Dp[∞] / Ap[∞] = Dp[∞] / (Cp[∞] + Dp[∞]) is the *limit Infection Fatality Factor* (IFF).

MuSICD[] is the *(instantaneous) Infection Fatality Rate* (IFR) (fatality ∼ infection).

MuSICD[] = GammaSIA[] * PhiSICD[] in the model, with PhiSICD[] the IFF.

In addition for SEYCD:

Ip = Ep + Yp subdivides into Exposed (but not infectious) and Infectious.

7.9. Interpretation of the result and finding crucial moments of the path

The major finding here is the death toll. More sobering is that we put the 1.5% Infection Fatality 
Factor into the model and only reproduce it. The key contribution of the model is (i) the limit 
prevalence Ap[∞] and (ii) that it provides a time-path, how the death toll will be reached over the 
course of time. If we have an intervention at a particular moment, there will still be consequences 
for who are in the pipeline. (See section 1.4.6 and the intervention and estimation chapters that this 
remains complex.)

We already presented the table with the crucial moments along the path. For some persons, a table 
with figures might convey the message better than indicating the moments in a graph. For other 
persons a graph works best. For a graph, it might be advisable not to use the full vertical axis, since 
1.5% might not seem like a large difference. But it is better shown too, precisely for this reason, and 
thus SICD is a real improvement over SIA.

Further conclusions are best discussed when we have also looked at the SEYCD model.

7.10. How to use the SICD routine

? SICD
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Symbol

SICD is SIA with A = C + D = Cleared + Deceased.

R0 = BetaSIA / GammaSIA remains the same.

New is that D = PhiSICD[] A, and D = A -

C, with phi the Infection Fatality Factor (IFF) = D[Infinity] / A[Infinity]

SICD[(Pr,) t] gives {S, I, C, D, N, A}, with N = N[0] - D and A = C + D. Observe that it is best to include N

and A in the equations from the start, so that their values are directly available via the interpolated

functions, and we do not have to burden later routines and calculations with performing the same

arithmetic. Analytically, the meaning of N and A should also be clear from the start. PM. A DataMold

has been set, so that one can call Explain[lis, SICD] for such output lis (see Databank package)

SICD[Plot, ...] is like SIA{Plot, ....], see there. The routine takes the

first 5 elements of the list. Input of SICD[t] is okay, while A is not in the legend.

SICD["Colours"] gives the colours for plotting. The deceased are

given in dashed black and white, for European / Chinese conventions. The remaining

population (after subtracting the deceased) is plotted in red (quarantine barrier).

For traditional form use SICD[Equations, TraditionalForm, ...] and SICD[N, TraditionalForm, ...].

MuSICD[] = GammaSIA[] * PhiSICD[], with the latter the Infection Fatality Factor (IFF).

GammaSICD[] = GammaSIA[] * (1 - PhiSICD[]).

In Greek letters: mu = gamma * phi, labda = gamma (1 - phi).

SICD[MuSICD, gammaSIA, IFF] := gammaSIA * IFF for the

Infection Fatality Factor IFF (limit value), is a reminder, using the limit property

that IFF[inf] = Dp[inf] / (1 - Sp[inf]) = mu / gammaSIA = mu / (labda + mu).

SICD[Limit] has Ip[inf] = 0, finds s = SIA[ProductLog, b/g, ..,], and applies the same reasoning to C and D as

SIA does for A = C+D, so that c = f[s] and d = g[s], and then we easily find {s, 0, c, d}. If Cqt0 = Dqt0

= 0, then {c, d} = (1-s) {phi, 1-phi}, otherwise there is clutter. SICD[Limit, Differences] shows the

difference between the actual values and the outcome if those starting values were zero. SICD[Limit,

"IFF"] returns d / (c + d) at the limit, expected to be phi but possibly deviating if not Cqt0 = Dqt0 = 0.

See SICD[Explain, ICU] for plotting with a capacity level of ICU.

122     2020-06-15-Didactics-SIEYACD.nb



Appendix. In steps (for management of details)

Setting the size of the population and other options

The Dutch population in 2020 is about 17.4 million people. It will be convenient to use formal 
parameter Nqt0 → the size of the population, while Npt0 → 1.  Subsequently, for quick calculation 
of proportions it will be useful to set NqSeed = Nq[t0] at a numerical value.

NqSeed = 17.4 × 10^6;

SetOptions[SIA, Nqt0 → NqSeed]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

Choosing a model with formal t0 or with the Onset from the options

We put the model equations into Hold, so that the symbols remain unevaluated when we assign 
values later on. 

We seed the model with Seed → 100 as in the supplied options, but may choose another value later 
on.

model[t0_, t_] = SICD[N, t0, t, Seed → 100]

HoldSq′(t)  -2.29885×10-8 Iq(t) Sq(t), Aq′(t)  0.1 Iq(t), Iq′(t)  -Aq′(t) - Sq′(t),

Dq(t)  0.015 Aq(t), Cq(t)  0.985 Aq(t), Nq(t)  1.74×107 - Dq(t), Nq(t0)  1.74×107,

Sq(t0)  1.73999×107, Iq(t0)  100, Cq(t0)  0, Dq(t0)  0, Aq(t0)  0

MatrixForm @@ TheFormer

Sq′(t)  -2.29885×10-8 Iq(t) Sq(t)
Aq′(t)  0.1 Iq(t)

Iq′(t)  -Aq′(t) - Sq′(t)
Dq(t)  0.015 Aq(t)
Cq(t)  0.985 Aq(t)

Nq(t)  1.74×107 - Dq(t)

Nq(t0)  1.74×107

Sq(t0)  1.73999×107

Iq(t0)  100
Cq(t0)  0
Dq(t0)  0
Aq(t0)  0

Solving and approximating by NDSolve for a specified time window

We can run the model with SICD[NDSolve, ....], which gives a numerical approximation.
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sol = SICD[NDSolve, model[0, t], {t, 0, 150}]

Sq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Iq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Cq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Dq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Nq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Aq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar



Making the variables directly available

We want to be able to call Sq[t], Iq[t], Cq[t], Dq[t], N[t] and SICD[t] directly. We use above “sol” to set 
these functions.

SICD[Set, sol];

SICD[75]

415 556., 738 924., 1.60018×107, 243 683., 1.71563×107, 1.62455×107

The values for S & I are the same with SIA, and thus also A = C + D.

Plotting in levels and proportions

Options[Plot] better have some default settings for the layout of the SICD plots.

sicdplotoptions = SICD[Plot, Options];
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p0 = Plot @@ {Drop[SICD[t], -1], {t, 0, 150}, sicdplotoptions}

(*Drop the last element A*)
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Given our earlier setting of NqSeed, it is easy to plot for the proportions. An axis with proportions 
indeed helps to focus on the proportions.

Plot @@ Drop[SICD[t], -1]  NqSeed, {t, 0, 150}, sicdplotoptions
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Recapitulation

Above steps to run the model are combined in this routine, for the levels only. Let us use another 
label for the model.
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SICD[Run, newModel, t, 150]

InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$

Not surprisingly, the model and the outcomes are the same as above.

newModel[t]

HoldSq′(t)  -2.29885×10-8 Iq(t) Sq(t), Aq′(t)  0.1 Iq(t),

Iq′(t)  -Aq′(t) - Sq′(t), Dq(t)  0.015 Aq(t), Cq(t)  0.985 Aq(t), Nq(t)  1.74×107 - Dq(t),

Nq(0)  1.74×107, Sq(0)  1.73999×107, Iq(0)  100, Cq(0)  0, Dq(0)  0, Aq(0)  0

Proportions 

It appears useful to have the proportions available. We set them in the following way:
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SICD[Set, Pr, NqSeed] (* or leaving NqSeed out, and take the options *)

5.74713×10-8 InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

5.74713×10-8 InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

5.74713×10-8 InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

5.74713×10-8 InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

5.74713×10-8 InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$,

5.74713×10-8 InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

t$

SICD[Pr, 50]

{0.1068, 0.334003, 0.550809, 0.00838795, 0.991612, 0.559197}

Appendix. Comparison with the traditional form for the equations

We would clear the variables first.

SIA[Clear]

We might do:

tradmodel[t0_, t_] = SICD[N, TraditionalForm, t0, t, Seed → 100]

HoldSq′(t)  -2.29885×10-8 Iq(t) Sq(t), Iq′(t)  Iq(t) 2.29885×10-8 Sq(t) - 0.1,

Cq′(t)  0.0985 Iq(t), Dq′(t)  0.0015 Iq(t), Nq(t)  1.74×107 - Dq(t), Aq(t)  Cq(t) + Dq(t),

Nq(t0)  1.74×107, Sq(t0)  1.73999×107, Iq(t0)  100, Cq(t0)  0, Dq(t0)  0, Aq(t0)  0

MatrixForm @@ TheFormer

Sq′(t)  -2.29885×10-8 Iq(t) Sq(t)

Iq′(t)  Iq(t) 2.29885×10-8 Sq(t) - 0.1

Cq′(t)  0.0985 Iq(t)
Dq′(t)  0.0015 Iq(t)

Nq(t)  1.74×107 - Dq(t)
Aq(t)  Cq(t) + Dq(t)
Nq(t0)  1.74×107

Sq(t0)  1.73999×107

Iq(t0)  100
Cq(t0)  0
Dq(t0)  0
Aq(t0)  0
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trad = SICD[NDSolve, tradmodel[0, t], {t, 0, 150}];

SICD[Set, trad];

After this setting, we can call the functions directly for different moments in time.

store[SICD, tradmodel] = SICD[75]

415 556., 738 924., 1.60018×107, 243 683., 1.71563×107, 1.62455×107

TheFormer // Explain

S → 415 556., I → 738 924., C → 1.60018×107, D → 243 683., N → 1.71563×107, A → 1.62455×107

Perhaps it is enlightening to show the constant share of the deceased in the acquitted. We used the 
traditional format here, and still find that the share is constant at the implied IFF.

PlotDq[t]  Aq[t], {t, 0, 150}, PlotRange → {.014, .016},

AxesLabel → {"Day", "Share D / (C + D)"}

0 20 40 60 80 100 120 140
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0.0160
Share D / (C + D)

Appendix. The mistake to regard 1 / μ and 1 / λ as implied infectious periods

The formula γ = γSIA = (1 - φ) γ + φ γ = γSICD + μ = λ + μ is unambiguous. What is its meaning ? 

We already said that the best model formulation has A’ = γ I and D = φ A and C = (1 - φ) A. This immedi-
ately clarifies that C and D are mere proportions of A. In the formulation with D’ = μ I or even D’ = γ φ 
I, we might consider that the mean infectious period for the deceased compartment is 1 / μ = 1 / (γ 
φ), with a conventional value of 1 / 0.0015 = 667 days. This is only based upon an analogy with A’ = γ 
I. The conceptual error is that we cannot take I as the base, but must take φ I which thus gives 
period φ / (γ φ).

Still, we cannot simply reject the idea of different infectious periods for the cleared and deceased. 
When we take this idea serious then this gives rise to implied parameter ω, namely the weight of 
the lethal infectious period in the average infectious acquittal period. Let us see how far this goes.

If we disregard distributions and only consider rates and means:
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eqgamma = γ ⩵ μ + λ, 1  γ ⩵ 1 - ω  λ + ω / μ,

Solve[eqgamma, {ω, γ}] // TableForm

γ  λ + μ 1

γ
 1-ω

λ
+ ω

μ

ω → μ2

μ2-λ2

γ → λ + μ

SICD[OmegaSICD] /. SEYCD["GreekLetters"] // MatrixForm

Period(Acquittal, SIA)  1

γ

Period(Survivor acquittal = clearing, SICD)  1

λ

Period(Lethal acquittal, SICD)  1

μ

γ  λ + μ
1

γ
 1

λ+μ

Period(Acquittal, SICD)  1

λ+μ

Period(Acquittal, SICD)  1-ω

λ
+ ω

μ

ω  μ2

λ2-μ2

This scheme would only work if the weight ω would fit the shares of C and D in A, so that we have a 
proper mean indeed. This requires ω = φ. 

We also have μ = γ φ. Substitution gives:

eq = SICD[OmegaSICD] // Last /.

 OmegaSICD[] → PhiSICD[], MuSICD[] → PhiSICD[] × GammaSIA[],

GammaSICD[] → GammaSIA[] 1 - PhiSICD[] /.

SEYCD["GreekLetters"] (*this uses strings*)

φ 
γ2 φ2

γ2 (1 - φ)2 - γ2 φ2

seq = Simplify[eq] /. "φ" → x

x 
x2

1 - 2 x

Solve[seq, x]

{x → 0}, x →
1

3


Thus, this line of interpretation might gain validity if the infection is lethal for a third of the infected. 
(The zero point is not have SICD in the first place.) This still leaves the question about the underly-
ing distributions. With the common assumption on the distributions (C and D are proportions of A), 
the two lines of interpretations just happen to agree when the infection is lethal for a third of the 
population - but the logic of the interpretation still cannot be regarded as sound.
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8. SI(EY)A(CD)

Clear

Clear all relevant variables since we may do different runs.

SIA[Clear]

ResetOptions[SIA];

SetOptions[SetDatabank, Databank → SEYCD]; (* for Explain *)

PlotLegendsSIA[SEYCD] (* base versus intervention scenario *)

8.1. Fast-track run and plot

This section directly runs the model and plots the results. An appendix to this chapter  does the 
same in steps, so that the user might take more advantage of the environment in Mathematica.

The Dutch population in 2020 is about 17.4 million people. It will be convenient to use formal 
parameter Nqt0 → the size of the population.  Subsequently, for quick calculation of proportions it 
will be useful to set NqSeed = Nq[t0] at a numerical value. NqSeed is not a parameter in the model, 
and only a handy variable at the user level.

NqSeed = 17.4 × 10^6;

SetOptions[SIA, Nqt0 → NqSeed]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

With 1/γ = 10, the parameter α = 1 adds another 1/ α day of non-infectious exposure to the total 
transmission period, then 11. This means that every new “generation of infections” adds another 1 
day to the whole process, and the limit value may shift by some 20 days. 

There is no other important difference between SIA(CD) and SEYA(CD). There are no analytical 
results on the E and Y components. Values can be found by numerical interpolation.

The infections are driven by the equation Eq[t0] == Seed. (Seed is parameter in the model.) The 
carnival festivities in the South of Holland were on February 23 2020. It is not unlikely that some 100 
infections were seeded by people having returned from Italy and Austria from work and ski holi-
days. The options have default Seed → 100. When we use a different value of Seed, then this is 
“baked” into this model solution, and we must take heed of routines that rely upon Options[SIA] for 
the value of Seed in these options. We can mention the parameter here so that the user can check 
more easily that model solutions change when adapting the Seed value. (For larger values of α a 
longer time window could be needed.)

SEYCD[Run, Pr, newModel, t, 150, Seed → 100];

The variables are now available in levels and proportions.

store[SEYCD] = SEYCD[75]

(*store this for later comparison with the traditional format *)

688 760., 48 491.2, 2.61518×106, 1.38369×107, 210 714., 1.71893×107, 2.66367×106, 1.40476×107
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TheFormer // Explain

S → 688 760., E → 48 491.2, Y → 2.61518×106, C → 1.38369×107,

D → 210 714., N → 1.71893×107, I → 2.66367×106, A → 1.40476×107

We now have the additional information that by day 75 some 210,000 people would have died, had 
the government not intervened. 

SEYCD[Pr, 75]

{0.0395839, 0.00278685, 0.150297, 0.795222, 0.01211, 0.98789, 0.153084, 0.807332}

TheFormer // Explain

{S → 0.0395839, E → 0.00278685, Y → 0.150297,

C → 0.795222, D → 0.01211, N → 0.98789, I → 0.153084, A → 0.807332}

It is useful to have a plot that show both levels and proportions. The plot axes assume that it is 
obvious what are levels and what are proportions.

In the following plot, the population drops by about 1.5% because of the deceased. The difference 
between the population (red) and the cleared compartment (green) are the remaining 2% suscepti-
ble (cyan). 

Some points to observe are: (i) The exposure delay of 1 day has little effect, but if it would be 5 days 
then we would be advised to plot for 200 instead of 150 days. Such delays cumulate. (ii) Also, 
observe the top of Y is after the top of E. At first this makes little sense, because a high availability of 
infectious units would cause more infections and thus also more exposed units. However, at the top 
of Y the susceptibles have decreased so much that the effective contribution to new infections has 
been much reduced. (iii) Since the tops of E and Y are at different locations, there is no proportional 
relation with I. Potentially relevant is the time between the tops. (iv) Conventional plots may not 
show I = E + Y but it is important in relation to SIA and the analytical properties (e.g. the top).

SEYCD[Plot, 0, 150]
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8.2. Relation to capacity of ICU beds

The national challenge has been for the intensive care units (ICU beds). Assume that there are 1500 
beds on the ICU, and that each death, after an infectious period of 1/γ, still requires 1/h = 10 days in 
the hospital. (Admission to a hospital acquits from the infectious stage for the public at large.) The 
rate per bed is 3 patients per month or h = 3/30 per day. A good way to look at this is to take a 
cohort of 10 beds, with one new patient arriving every day. In a steady state with input = output, the 
ICUs can accept only 1500 h = 150 new patients per day, as each new patient takes the open spot in 
a cohort of 10 beds. Capacity remains at 1500, and we can plot above graph for a lower range at 
that level to show how the ICU system cannot take the new arrivals who are clearly at risk of dying.

The difference with the plot in section 7.2 is that there now are the exposed E in the middle, while 
the infectious Y have shifted to the right. The delay by the exposed has not much effect on the 
dynamics for the ICU.

seicdplotoptionsICU = SEYCD[Plot, Options, ICU, PlotRange → {0, 10 000}];

Plot @@ {SEYCD[ICU, 1500, t], {t, 0, 150}, seicdplotoptionsICU}
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SEYCD[Explain, ICU]

Replace SICD by SEYCD:

SICD plots can be enlightened by including a line for the ICU capacity. This is simple by itself

but becomes a bit more complicated because of the colouring and legend. In this plotting,

the level of population is far out of range, and not included. Two main subroutines are:

SICD[Plot, Options, ICU, opts] combines plotting options and allows user options

SICD[ICU, level, t] does Append[Take[SICD[t], 4], level], thus removes N & A, inserts level

Subroutines used by those two main subroutines are:

SICD["Colours", ICU] gives DeeperPink for the ICU capacity

SICD[PlotLegends, ICU] uses the label "ICU capacity"

SICD[Plot, PlotLegends, ICU] puts the labels into a Placed object

SICD[Plot, Options, ICU,"Other"] chooses ImageSize and AxesLabel

SICD[Plot, SetOptions, ICU, opts] may set Plot options (inadvisable for other Plots)
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8.3. Keeping the same compartments or recompartmentalise ?

The SIA model assumes that infected = infectious, but now for SEYCD we distinguish between (i) a 
period of latency, of being infected but without being infectious, and (ii) the subsequent infectious 
period thereafter. 

8.3.1. The traditional choice of keeping the same word “infectious”

Traditionally the SEYCD model creates a new compartment, so that N[0] = S + E + I + A, with Exposed 
E and Infectious I, and also A = C + D. We may introduce variable Y = E + I to get the SYA compart-
ments for comparison with earlier results of SIA (in which I then means Y, or E = 0). 

Indeed, we can prove that the S and A compartments in SE(Y)I(A)CD and SIA, are the same, so that 
that the Y = E + I in SEYCD would be the same as the I in SIA. To check this, also in programming, 
causes a lot of translating, with sources of confusion. There is no need for this complexity, except 
when one wishes to adhere to the dogma that I = infectious.

8.3.2. The didactic approach to maintain the same compartments

Another perspective is to argue that we already had the SIA compartments. If nothing changes in S 

and A, then nothing changes in I too, since the sum to N[0] remains the same. We can sub-compart-
mentalise I = E + Y, with Exposed E and Infectious Y. This is comparable to how we split A = C + D. This 
has the advantage that we do not have to keep in memory each time that we changed compart-
ments.  We do not have to adapt routines. For example TopIq still gives the top of I = E + Y. (Humans 
may be more flexible than computers, but in the interaction with inflexible computers humans may 
become even more inflexible.) We can agree that I in SIA also means I = Y because E = 0, but we do 
not stick to a dogma of vocabulary.

8.3.3. The choice (leave it up to the user)

The two views cause a curious conflict in perspectives Y = E + I or I = E + Y. It concerns only “different 
names for the same notions”. A choice comes with discussions like (one side) “we called I “infe-
ctious” and thus it will remain so” versus (other side) “there is already this I = N[0] - S - A compart-
ment and you only gave it a wrong name”. 

In practice, compartments are not set in stone. 

(i) Researchers must create as many compartments as is necessary to describe the actual process, 
and they are advised to use names that convey the key properties of those compartments. For 
these users, we allow a “traditional formulation of the SEYCD model”.

(ii) For education and didactics, it is useful to build upon earlier foundations. The foundation in SIA 
is not the name “I = Infected = Infectious” but the foundation are also the properties of two classes 
S and A that remain the same, while we now consider a change within the third compartment I. 
Thus, this follows the I = E + Y route. This notebook and package follow the didactics track.

(iii) In SICD we included A = C + D in the set of equations. This clarifies what the variables mean, in 
comparison with SIA, and has the added advantage that subsequent programs and runtime applica-
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tions do not have to do the addition every time over and over again. For SEYCD we better include 
the administrative equation Y = E + I (traditional) or I = E + Y (didactic).

8.4. Basic model in standard formulas (didactic format)

SIA[Clear] (* important since we have run the model above *)

The traditional SEYCD model, in its didactic SEYCD format, is as follows, with Infected = Exposed + 
Infectious or I = E + Y.

ReadMeSIA[SEYCD, Simplify]

′  -β*  

ℰ′  α (-ℰ) - ′

′  α ℰ - ′

′  γ 

   φ

   - 

  (t0) - 

ℐ   + ℰ

(t0)  (t0) - Dqt0

(t0)  -Cqt0 - Dqt0 - Seed + (t0) - Yqt0

ℰ(t0)  Seed

(t0)  Yqt0

(t0)  Cqt0

(t0)  Dqt0

(t0)  Cqt0 + Dqt0

ℐ(t0)  Seed + Yqt0

PM 1.  An alternative is to first state S’,E’, and A’ and subsequently derive Y’, but now E invites Y to be 
higher up in the ranking, and it has an advantage to keep A with C and D. 

PM 2. β* = β / N[t0]. This gives a tiny value for β* but simplifies the model. Below we immediately 
drop this simplification.

PM 3. Above model is in levels. Division by N[t0] or setting N[t0] = 1 gives proportions (and β* = β).

PM 4. See the discussion about φ = IFF for the SICD model. We now adopt subtraction C = A - D.

PM 5. The model might be run for symptomatic disease. Then φ = sCFF for the symptomatic case 

fatality factor (sCFF). Not all infected will develop symptoms, so that sCFF = D / sC = (D / I) *(I / sC) = 
IFF / (sC / I). SARS-CoV-2 studies who apply the SEIRD or SEYCD model for symptoms actually are 
Kucharski et al. (2020) and the Goh (2020) “epidemic calculator”, and Maugeri et al. (2020): see the 
chapter on comparison with other studies.

PM 6. SEYCD reduces to SIA if we take α → ∞ or 1/α → 0, though 1/α = 1/24 for one hour might 
suffice. If we take α = 0 then all infections are stopped immediately. The effect of α is only to delay 
events. The same properties of SIA(CD) apply, except for this time delay.

PM 7. Yan & Chowell (2019:167) nicely show how the rescaling of time into τ = γ t changes the SEYCD 
model into one that is dominated by only two parameters: β / γ and α / γ. Thus we basically still 
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need three parameters, the latter two, and the scaling of time. Their deduction however helps us to 
focus on R0 and these ratios, and not on β / α. 

NB. There is a small computational trick for Nq[0]. Below we will have an intervention, and switch 
from t0 = 0 to t0 = 24 for the day of intervention. This means that Nq[t] = Nq[0] - Dq[t] will have 
nonzero deaths. By the present specification, the proportions are still relative to the option parame-
ter Nqt0 but we can link the values of Nq[t] in the base and intervention scenarios.

8.5. Computable format (Copy from SIA)

See the corresponding section in the discussion of SIA.

8.6. The different formats

An overview of the traditional / simplified and computable / readable formats is as follows.

symbolic = {SEYCD[Equations, t0, t],

SEYCD[Equations, TraditionalForm, t0, t]} // Transpose // TableForm

Sq′(t)  - BetaSIA() Sq(t) Yq(t)

Nqt0
Sq′(t)  - BetaSIA() Iq(t) Sq(t)

Nqt0

Eq′(t)  -AlphaSEYCD() Eq(t) - Sq′(t) Eq′(t)  BetaSIA() Iq(t) Sq(t)

Nqt0
- AlphaSEYCD() Eq(t)

Yq′(t)  AlphaSEYCD() Eq(t) - Aq′(t) Iq′(t)  AlphaSEYCD() Eq(t) - (GammaSICD() + MuSICD()) Iq(t)
Aq′(t)  GammaSIA() Yq(t) Cq′(t)  GammaSICD() Iq(t)
Dq(t)  PhiSICD() Aq(t) Dq′(t)  MuSICD() Iq(t)
Cq(t)  Aq(t) - Dq(t) Nq(t)  Nqt0 - Dq(t)
Nq(t)  Nqt0 - Dq(t) Yq(t)  Eq(t) + Iq(t)
Iq(t)  Eq(t) + Yq(t) Aq(t)  Cq(t) + Dq(t)
Nq(t0)  Nqt0 - Dqt0 Nq(t0)  Nqt0
Sq(t0)  -Cqt0 - Dqt0 + Nqt0 - Seed - Yqt0 Sq(t0)  -Cqt0 - Dqt0 - Iqt0 + Nqt0 - Seed
Eq(t0)  Seed Eq(t0)  Seed
Yq(t0)  Yqt0 Iq(t0)  Iqt0
Cq(t0)  Cqt0 Cq(t0)  Cqt0
Dq(t0)  Dqt0 Dq(t0)  Dqt0
Aq(t0)  Cqt0 + Dqt0 Aq(t0)  Cqt0 + Dqt0
Iq(t0)  Seed + Yqt0 Yq(t0)  Iqt0 + Seed

symbolic // SEYCDLettersOnly

′  - β  

(t0)
′  - β  ℐ

(t0)

ℰ′  α (-ℰ) - ′ ℰ′  β  ℐ

(t0)
- α ℰ

′  α ℰ - ′ ℐ′  α ℰ - ℐ (λ + μ)

′  γ  ′  λ ℐ

   φ ′  μ ℐ

   -    (t0) - 

  (t0) -    ℰ + ℐ

ℐ   + ℰ    + 

(t0)  (t0) - Dqt0 (t0)  (t0)
(t0)  -Cqt0 - Dqt0 - Seed + (t0) - Yqt0 (t0)  -Cqt0 - Dqt0 - Iqt0 - Seed + (t0)
ℰ(t0)  Seed ℰ(t0)  Seed
(t0)  Yqt0 ℐ(t0)  Iqt0
(t0)  Cqt0 (t0)  Cqt0
(t0)  Dqt0 (t0)  Dqt0
(t0)  Cqt0 + Dqt0 (t0)  Cqt0 + Dqt0
ℐ(t0)  Seed + Yqt0 (t0)  Iqt0 + Seed
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NB. Repeat: There is a small computational trick here. Below we will have an intervention, and 
switch from t0 = 0 to t0 = 24 for the day of intervention. This means that Nq[t] = Nq[0] - Dq[t] will 
have nonzero deaths. By the present specification, the proportions are still calculated w.r.t. the 
option parameter Nqt0 but we can link the values of Nq[t] in the base and intervention scenarios. 
(This trick is not applied to the traditional format, since we will not run an intervention on this.)

NB. (i) The Seed is allocated to Eq[0]. We have to, otherwise the model will not run. (ii) To allow for 
the traditional approach, Options[SIA} contain key Iqt0, which would not be used in the simpler 
didactic version. (iii) Depending upon the value of α, the plotting period may need to be extended 
from 150 to 200 days to see the same phasing out.

Options[SIA]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

TheFormer // SEYCDLettersOnly

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, (t0) → 1.74×107,

Onset → 0, Seed → 100, Yqt0 → 0, α → 1., β → 0.4, γ → 0.1, φ → 0.015, R0 → Null

When running the traditional model, its parameters can take values from Options[SIA] by first doing 
a substitution using the following rule.

SICD[GammaSIA, Rule]

{GammaSICD() → GammaSIA() (1 - PhiSICD()), MuSICD() → GammaSIA() PhiSICD()}

TheFormer // SEYCDLettersOnly

{λ → γ (1 - φ), μ → γ φ}

Options[SEYCD] (* for Explain of SEYCD[t] *)

{DataMold → {S, E, Y, C, D, N, I, A}}

? AlphaSEYCD

Symbol

AlphaSEYCD[] is the symbol in the options for a

constant rate of the Exposed who will become infectious (only in SEYCD)

8.7. Choice of parameters such that SEYCD is similar to SIA(CD)

When we choose the parameters of SI(EY)A(CD) as the same as SIA(CD) then the model also behaves 
like SIA(CD), except for the time delay caused by α.

For SEYCD, it appears that R0 = β / γ as before, see the deduction below. For comparison with SIA, 
we thus can maintain the γ as in SIA, and φ or γ = λ + μ as in SICD. 

The new element in the discussion is that the process now consists of latency and infectious peri-
ods. Latency is when one is infected but not infectious yet. There is no parameter for the sum of 
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these two, relevant for the “transmission period” = 1/α + 1/ γ, since it has no further implication or 
use in the model. The parameter α is useful to understand the delay in events, and should help in 
accuracy of estimation of parameters (though we don’t do so below). Above we already explained 
the choice of 1/α = 1 day.

8.8. The infection fatality rate (Copy from SICD)

See the corresponding section in SICD.

8.9. Choice of R0 = 4 and acquittal period of 10 days (Copy from SIA)

See the corresponding section in SIA.

8.10. How to use the SEYCD routine

? SEYCD
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Symbol

SEYCD is SICD with Exposed. See their for formats. In addition:

Implemented is SEYCD, with I = E+Y and A = C+D, thus with same SIA compartments.

This allows identification of which parameters have changed in what fashion.

SEYCD[t] puts out {S, E, Y, C, D, N, I, A} (8 variables). PM. A DataMold has been

set, so that one can call Explain[lis, SEYCD] for such output lis (see Databank package)

SEYCD[Limit] only rearranges SICD[Limit]

AlphaSEYCD[] is the basic new parameter for the step from Exposed to Infectious. This also causes the

options Yqt0 (didactic) and Iqt0 (traditional format). The Exposed concern the latent period 1/alpha,

which appears to be about 1 day (not to be confused with the serial interval of about 5 days)

SEYCD["R0[t]"] gives equations to help the choice of parameter values. R0 = beta / gamma

can be kept the same, and there is only a longer duration of the overall process because

of the insertion of the latency period 1/ alpha before the infectious period 1/gamma

SEYCD[Variables] gives the list of first letters of the variables, as strings

SEYCD["GreekLetters"] is a rule to change symbols into Greek letters

SEYCD[Plot, Options] or SEYCD[Plot, Setoptions]

SEYCD[Plot, Options, All] are defaults for plotting of SI(EY)A(CD).

SEYCD["Colours"]

SEYCD[Equations, ...] has the small trick that Nq[t0] == Nqt0 - Dqt0, which has no effect while Dqt0 -> 0.

However, when an intervention is run, with Onset -> nonzero, then there is a smooth transition

between the paths. Observe that Sq' still depends upon Nqt0 and not the value reduced by the Dqt0

For traditional form use SEYCD[Equations, TraditionalForm, ...] and SEYCD[N, TraditionalForm, ...]
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Appendix. Run in steps (for management of details)

The Dutch population in 2020 is about 17.4 million people. These SI(EY)A(CD) models use a constant 
population. It will be convenient to use formal parameters Nq → the size of the population, and Np 
→ 1.  Subsequently, for quick calculation of proportions it will be useful to have a NqSeed available 
as a variable a the user level.

NqSeed = 17.4 × 10^6;

SetOptions[SIA, Nqt0 → NqSeed]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

We put the model equations into Hold, so that the symbols remain unevaluated when we assign 
values later on. 

We seed the model with Seed → 100 as in the supplied options, but may choose another value later 
on.

model[t0_, t_] = SEYCD[N, t0, t, Seed → 100]

HoldSq′(t)  -2.29885×10-8 Sq(t) Yq(t), Eq′(t)  -1. Eq(t) - Sq′(t),

Yq′(t)  1. Eq(t) - Aq′(t), Aq′(t)  0.1 Yq(t), Dq(t)  0.015 Aq(t), Cq(t)  Aq(t) - Dq(t),

Nq(t)  1.74×107 - Dq(t), Iq(t)  Eq(t) + Yq(t), Nq(t0)  1.74×107, Sq(t0)  1.73999×107,

Eq(t0)  100, Yq(t0)  0, Cq(t0)  0, Dq(t0)  0, Aq(t0)  0, Iq(t0)  100

MatrixForm @@ TheFormer

Sq′(t)  -2.29885×10-8 Sq(t) Yq(t)
Eq′(t)  -1. Eq(t) - Sq′(t)
Yq′(t)  1. Eq(t) - Aq′(t)

Aq′(t)  0.1 Yq(t)
Dq(t)  0.015 Aq(t)

Cq(t)  Aq(t) - Dq(t)
Nq(t)  1.74×107 - Dq(t)

Iq(t)  Eq(t) + Yq(t)
Nq(t0)  1.74×107

Sq(t0)  1.73999×107

Eq(t0)  100
Yq(t0)  0
Cq(t0)  0
Dq(t0)  0
Aq(t0)  0

Iq(t0)  100

We can run the model with SICD[NDSolve, ....], which gives a numerical approximation.
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sol = SEYCD[NDSolve, model[0, t], {t, 0, 150}]

Sq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Eq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Yq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Cq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Dq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Nq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Aq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Iq → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar



We want to be able to call Sq[t], Eq[t], Iq[t], Cq[t], Dq[t], Nq{t] and SEYCD[t] directly. We use above 
“sol” to set these functions.

SEYCD[Set, sol];

After this setting, we can call the functions directly for different moments in time. Let us also set the 
proportions.

SEYCD[Set, Pr];

It is somewhat useless to compare with earlier outcomes, because we know that the functions have 
shifted.

SEYCD[75] // Explain

S → 688 760., E → 48 491.2, Y → 2.61518×106, C → 1.38369×107,

D → 210 714., N → 1.71893×107, I → 2.66367×106, A → 1.40476×107

There are some default settings for the layout of the SEYCD plots. NB. These options assume that 
the last element in SEYCD[t] is dropped, which are the Acquitted. They are relevant for top and limit 
but not for the present plotting.

seycdplotoptions = SEYCD[Plot, Options];
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Plot @@ {Drop[SEYCD[t], -1], {t, 0, 150}, seycdplotoptions}

(*DROP the last A, not legended*)

20 40 60 80 100 120 140
Day

5.0×106

1.0×107

1.5×107

Units

Susceptible

Exposed

Infectious

Cleared

Deceased

Population

Infected

Given our earlier setting of NqSeed, it is easy to plot for the proportions (standard Plot doesn’t have 
an option for two vertical axes).

Plot @@ Drop[SEYCD[t], -1]  NqSeed, {t, 0, 150}, seycdplotoptions (*DROP A*)
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Appendix. Comparison with the traditional form for the equations (Y = E + I)

The traditional format of SEYCD has Y = E + I instead of I = E + Y. 

SIA[Clear]

SetOptions[SetDatabank, Databank → SEYCD];
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Options[SIA]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

? Iqt0

Symbol

Iqt0 = Iq[t0], an option in SEYCD traditional, not in SIA or SICD, default Null

It is important to choose Iqt0 → 0 now.

tradmodel[t0_, t_] = SEYCD[N, TraditionalForm, t0, t, Seed → 100, Iqt0 → 0]

HoldSq′(t)  -2.29885×10-8 Iq(t) Sq(t), Eq′(t)  2.29885×10-8 Iq(t) Sq(t) - 1. Eq(t),

Iq′(t)  1. Eq(t) - 0.1 Iq(t), Cq′(t)  0.0985 Iq(t), Dq′(t)  0.0015 Iq(t), Nq(t)  1.74×107 - Dq(t),

Yq(t)  Eq(t) + Iq(t), Aq(t)  Cq(t) + Dq(t), Nq(t0)  1.74×107, Sq(t0)  1.73999×107,

Eq(t0)  100, Iq(t0)  0, Cq(t0)  0, Dq(t0)  0, Aq(t0)  0, Yq(t0)  100

MatrixForm @@ TheFormer

Sq′(t)  -2.29885×10-8 Iq(t) Sq(t)

Eq′(t)  2.29885×10-8 Iq(t) Sq(t) - 1. Eq(t)
Iq′(t)  1. Eq(t) - 0.1 Iq(t)

Cq′(t)  0.0985 Iq(t)
Dq′(t)  0.0015 Iq(t)

Nq(t)  1.74×107 - Dq(t)
Yq(t)  Eq(t) + Iq(t)

Aq(t)  Cq(t) + Dq(t)
Nq(t0)  1.74×107

Sq(t0)  1.73999×107

Eq(t0)  100
Iq(t0)  0
Cq(t0)  0
Dq(t0)  0
Aq(t0)  0

Yq(t0)  100

trad = SEYCD[NDSolve, tradmodel[0, t], {t, 0, 150}];

SEYCD[Set, trad];

After this setting, we can call the functions directly for different moments in time.

store[SEYCD, tradmodel] = SEYCD[75] // Explain

S → 688 760., E → 48 491.2, Y → 2.66367×106, C → 1.38369×107,

D → 210 714., N → 1.71893×107, I → 2.61518×106, A → 1.40476×107

Let us create a small databank using the same SEYCD[DataMold] to compare the findings of the 
traditional model with those of the didactic SEYCD setup.

anylabel[Data] = {store[SEYCD] (*former run*), store[SEYCD, tradmodel] };

SetDatabank[SEYCD[DataMold], anylabel[Data], anylabel]

{Databank → anylabel}
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Check that I and Y have changed values.

ShowData[] (* cell locked  non-evaluatable, in case a former run wasn't stored *)

1 2
S 688 760. 688 760.
E 48 491.2 48 491.2
Y 2.61518×106 2.66367×106

C 1.38369×107 1.38369×107

D 210 714. 210 714.
N 1.71893×107 1.71893×107

I 2.66367×106 2.61518×106

A 1.40476×107 1.40476×107

To prevent possible confusion, run the educational SEYCD again.

ResetOptions[SIA]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

SEYCD[Run, Pr, newModel, t, 150, Seed → 100];

9. Analytical properties of SEYCD

9.1. Using didactic SEYCD with I = E + Y rather than traditional SEYCD with Y = 
E + I

The following establishes:

(a) SEI(Y)CD is just SIA(CD) with a delay between exposure and infectiousness. The properties for 
the limit and top values are maintained. This is shown  most clearly by using I = E + Y and SEYCD, 

(b) There are no analytical solutions of E and Y, but there are equations that can be solved numeri-
cally to find the tops of their curves: TforTopEq and TforTopYq.

(c) There are some other comments that show some properties of the model, but the main result is 
that we cannot find other analytical results, whence one may be advised to skip the discussion that 
there are no results.

(d) When we have SEYCD[t] available, then we can also call SIA[t] and SICD[t] for their selections of 
variables. If we would want to make a pure run of SIA, then store those in an own new routine 
PureSIA[t], because SEYCD[...] will use all standard variables here.

The following shows that it is didactically simpler to use SEYCD with I = E + Y, so that SEYCD = SIA 
with some delay.

PM. In section 1.4.4 we had a relation for the early phase of exponential growth. Now we extend for 
the whole domain.

PM. When some reset is needed, the key commands for the standards SEYCD setup are:

ResetOptions[SIA];

SEYCD[Run, Pr, newModel, t, 150, Seed → 100];
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SetOptions[SetDatabank, Databank → SEYCD];

PlotLegendsSIA[SEYCD] (* base versus intervention scenario *)

9.2. The growth rate of I depends upon Y / I

One track is to look at the growth equations. When we add the equations for E’ and Y’  then we get I’:

I’ = E’+ Y’ = β Sp Y - γ Y = (β Sp - γ) Y 

dLog[I] = I’ / I = (β Sp - γ) (Y / I)     which in SIA was   =  β p - γ 

With 0 ≤ Y / I ≤ 1 we can expect lower growth (over a longer period), while an early estimate now is 
more involved: r ≈ (β - γ) (Y / I).

For the growth of S, there is the next section.

9.3. The key equation on Sp, with consequences for top and limit

In SIA we have the key relation  = 0 Exp[- R0 (p- p[0])]. We back-traced this via A’ = γ I, and 
substituting I = A’/ γ in S’ = -β Sp I = R0 Sp A’.

For SEYCD, we have  A’ = C’ + D’ = γ Y, and S’ = -β Sp Y. Thus we find: S’ = R0 Sp A’, which is the same 
expression as in SIA. 

Thus we have a relation for 2 of the 3 SIA compartments that is unchanged, as in SIA. 

There are two consequences, one in combination with the top of Iq.

9.3.1. For the limit

For the limit, we have {Sp[∞], 0, Ap[∞]} like in SIA, with the same R0 and dependency upon the 
starting values. In the limit both E and Y are zero, and Cp[∞] and Dp[∞] are like SICD. 

Thus we have all limit values {Sp[∞], 0, 0, Cp[∞], Dp[∞]}.

With the same parameters, there is no need for a separate SEYCD[Limit] routine, but it is obviously 
convenient, and provided.

SEYCD[Limit] // Explain

{S → 0.0198273, E → 0, Y → 0, C → 0.96547, D → 0.0147026, N → 0.985297, I → 0, A → 0.980173}

9.3.2. For the top

We best discuss the top of I  separately.

9.4. The top of I at I’ = 0 is unchanged

9.4.1. Basics unchanged

We find a top of I when its growth is zero. At the start, I = E and Y = 0. Depending upon the value of β 
Sp - γ it will grow or decline. This analysis is no different than in SIA. If R0 > 1 and given that Y ≠ 0, we 
find the same SpTop Iq = 1 /  R0 as in SIA. 
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In steps: I’ = E’ + Y’ =  0 or I’  = (- S’ - α E) + (α E - γ Y) = - S’ - γ Y = (β Sp - γ) Y  = 0.

9.4.2. {S, I, A}Top are the same

For the top of I, Sp = 1 / R0 again implies Ap = Log[R0] / R0 (with the same nuance on starting values). 

With the same parameters, it is doubtful whether there is need for a separate SEYCD routine.

SIA[Ip, Top, R0 ] ⩵ SIA[Ip, Top, 4.] (* not inserting the starting values *)


1

R0

,
R0 - log(R0) - 1

R0

,
log(R0)

R0

  {0.25, 0.403426, 0.346574}

tTopI = TforTopIq[]

58.1472

pnt = SEYCD[tTopI] // Explain

S → 4.35×106, E → 710 236., Y → 6.30941×106, C → 5.9399×106,

D → 90 455.3, N → 1.73095×107, I → 7.01964×106, A → 6.03036×106

The values Eq[t] and Yp[t] can be found by applying the t that applies to the TopIq. Let us try to find 
an analytical expression though.

9.4.3. To plot I or not to plot I

Thus, I still is an important variable for the process. Perhaps it is no longer plotted, traditionally, 
when only E and Y are plotted. In such an approach, researchers might doubt whether I really is a 
relevant variable, and perhaps only a legacy of SIA. However, it appears that I still is an important 
indicator for the overall behaviour of the infection. 

9.4.4. Main point: delay in the top

In SEYCD, every person who gets infected still has the same infectious period. The difference is only 
the time delay. While the Iq[t] of SIA and SEYCD differ at a particular point in time, the integral 
values are still the same, whence the overall properties remain the same: which sameness is caught 
by the parameter values.

(At first, there is a bit of a paradox. In SIA, the I stands for infected = infectious, and in SEYCD this is 
no longer the case, with I = E + Y. But the same value of the top still applies, how can this be ? The 
cause is that we maintain the same 1/γ for the infectious period. What is important is that the 
horizontal axis shifts, not necessarily the vertical one. )

9.4.5. Trying to find analytical values for E and Y at the top

The following will not work, but it gives some information anyhow.

Take Y’ = α E - γ Y, and use I = E + Y to also get I’ = E’ + Y’ = 0 at the top, to that E’ = - Y’. Thus we have a 
system of two differential equations:

{ Y’ = α E - γ Y, E’ = - Y’ } 

Writing x for the exposed:
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res =

DSolve[{y'[t] ⩵ α x[t] - γ y[t], x'[t] ⩵ -y'[t]}, {x[t], y[t]}, t] // FullSimplify

x(t) →
ⅇ-t (α+γ) α c1 - γ c2 + γ (c1 + c2) ⅇt (α+γ)

α + γ
, y(t) →

ⅇ-t (α+γ) -α c1 + γ c2 + α (c1 + c2) ⅇt (α+γ)

α + γ


Since we are evaluating at the point at the top (we assumed I’ = 0), let us take τ = 0. The following 
holds for any parameters α and γ.

res /. t → 0 // Simplify

{{x(0) → c1, y(0) → c2}}

This merely rearranges around the point of approximation. We haven’t found a simplifying analyti-
cal result, like for example:

{Eq[t], Yq[t]} ⩵ {γ, α} / (α + γ) Iq[t] /. t → tTopI /.

{γ → GammaSIA[], α → AlphaSEYCD[]} /. Options[SIA]

False

plottable[t_] =

 {x[t], y[t]} /. res[[1]] /. C[1] → Eq[tTopI] /. C[2] → Yq[tTopI] /.

{γ → GammaSIA[], α → AlphaSEYCD[]} /. Options[SIA] // Simplify

638 149. + 72 086. ⅇ-1.1 t, 6.38149×106 - 72 086. ⅇ-1.1 t

Plot @@ {Flatten[{

{Legended[Eq[t], "Exposed"], Legended[Yq[t], "Infectious"]},

plottable[t - tTopI]

}], {t, 40, 80}, PlotRange → {0, 10^7}, PlotStyle →

{SkyBlue, Blue, {Dashed, SkyBlue}, {Dashed, Blue}}, AxesLabel → {Day, "Units"}}
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Local conclusion: 

(i) These are exponential relations, and thus will not work outside of the particular point at the top.

(ii) In itself it may be a useful observation that e.g. E at the top of I differs from the value γ / (α + γ) I. 
But this value has no analytical expression, as far as now, and thus we can do little with this. The 
idea was that we might perhaps spot an analytical relation, but we end up with an approximation at 
a point of an expression that already is an approximation ...

The issue can be filed. The Appendix to this section contains the same story but then in terms of 
growth rates.
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9.5. Summary on the top of I at I’ = 0

The comments on the top of Iq are somewhat spaghetti because there are separate contributions 
from Sp and the derivative itself. Let us collect the consequences for the routines.

Once SEYCD[t] has been set, and all variables are available, we also have:

(a) The time when Iq reaches its top. For SIA(CD) we had 44.4 days. This is now 14 days later, due to 
only 1 day of latency per generation.

tTopI = TforTopIq[]

58.1472

(b) All values at the top of Iq are available via the routine. For SICD we had 90 thousand deaths on 
day 44, if there had been no intervention. The very same value now is delayed to day 58.

topI = SEYCD[tTopI] // Explain

S → 4.35×106, E → 710 236., Y → 6.30941×106, C → 5.9399×106,

D → 90 455.3, N → 1.73095×107, I → 7.01964×106, A → 6.03036×106

SEYCD[Pr, tTopI] // Explain

{S → 0.25, E → 0.0408181, Y → 0.36261, C → 0.341374,

D → 0.00519858, N → 0.994801, I → 0.403428, A → 0.346572}

(c) There is the more involved comparison of the theoretical values and the actual approximations. 
There is no need to further develop this for SEYCD since we have no relation (yet) for a theoretical 
expectation other than for SIA(CD).

NB. We can call the routine for SICD since it uses the same variable names. Observe however that 
the input is not a pure SICD model, since the variables derive from a SEYCD calculation. This does 
not make a difference for the algorithm.

TopIq[SICD, t] // Quiet

t → 58.1472, Proportion →

Sp Ip Cp Dp
From β and γ 0.25 0.403426 0.341375 0.0051986
Equations 0.25 0.403428 0.341374 0.00519858
(1) - (2) 0 -1.42684×10-6 1.40543×10-6 2.14025×10

Dqt0 → 0, List →
0.25 0.403426 0.341375 0.0051986 0.346574
0.25 0.403428 0.341374 0.00519858 0.346572

0 -1.42684×10-6 1.40543×10-6 2.14025×10-8 1.42684×10-6
,

AcceptableErrorQ → True

SIA[Explain, Top]

SIA[Ip, Top, f, atq0:0] gives the top of Ip for f = R0 formally: {1, f - 1 - Log[f], Log[f]} / f + {0, -atq0, atq0}

A related routine is:

TopIq[SIA, ...] for the t when Iq has its top when R0 > 1 (inverse problem)

with comparison of theoretical values and those generated by the interpolation run

TforTopIq[...] applies FindRoot to the equation Sp[t] == 1/R0

(d) There is no analytical expression E and Y yet.
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9.6. The subsequent issues concern E and Y, and no longer S, I and A

PM. Observe that it is easier to make these analytical points by the choice of variables I = E + Y. We 
have been able to directly refer to earlier results in SIA without having to translate variable names. 
The mathematical result stands, whatever we call the variables. 

9.7. The top of E, or when E’ = 0, giving routine TforTopEq

At the top of E, the derivative is E’ = - S’ - α E = 0. To find t, we rather have variables in levels than in 
derivatives.

With S' = -β Sp Y we get α E = β Sp Y, or E / Y = β/α Sp, or α / β  =  Sp Y / E, where the latter might make 
a bit more sense since E starts with a positive Seed. There does not seem to be a further analytical 
solution for this. The equation can be solved by numerical approximation. There appear to be 
actually two solutions, see the intersections in the plot below.

{alpha, beta} = {AlphaSEYCD[], BetaSIA[]} /. Options[SIA];

tTopE = FindTimeEq[t] == beta  alpha Sp[t] × Yq[t], {t, 50, 150} // Quiet

53.3892

This has been turned into this routine, for ease.

TforTopEq[]

53.3892

? TforTopEq

Symbol

TforTopEq[t0:50, tmax:150] is FindTime for alpha

Eq[t] == beta Sp[t] Yq[t], with the parameters taken from Options[SIA]

9.8. The top of Y, or when Y’ = 0, giving routine TforTopYq

9.8.1. Analytically

At the top of Y, the derivative is Y’ = α E - γ Y = 0 and α E = γ Y.

Using I = E + Y, we also find I = (1 + α/γ) E or E = γ / (α + γ) I. Similarly, at this top: Y = α / (α + γ) I. This 
is comparable to the result in the appendix to this section. Thus we have part of an algebraic solu-
tion for the values at the top of Y. We can check the values in the plot.  

{Eq, Yq} == {γ, α} / (α + γ) Iq (* at the top of Y *)

{Eq, Yq}  
γ Iq

α + γ
,

α Iq

α + γ


It seems like a lot but it hangs in the air since we do not know I.
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9.8.2. PM. On taking second derivatives

PM. It is tempting to reason that when α E = γ Y then also α E' = γ Y', which in this case gets down to 
E' = 0 too. However, these are differential equations. In the graphs we can see that the tops are not 
at the same location. See the example where y’ = x + y also seems to suggest that y’ = 0 implies 
(differentiating at a derivative) that x’ + y’ =  x’ = 0, while the solution shows that this only holds for a 
special constant C  = 0. Instead x’ = y’’ - y’. (See https://math.stackexchange.com/question-
s/537629/is-the-differential-equation-y-xy-separable.)

9.8.3. Numerically, giving routine TforTopYp

The equation E / Y = γ / α can be solved numerically for the top.

{alpha, beta, gamma} = {AlphaSEYCD[], BetaSIA[], GammaSIA[]} /. Options[SIA];

tTopY = FindTimeEq[t] == gamma  alpha Yq[t] , {t, 50, 150} // Quiet

59.086

For convenience:

TforTopYq[]

59.086

? TforTopYq

Symbol

TforTopYq[t0:50, tmax:150] is FindTime for alpha

Eq[t] == gamma Yq[t], with the parameters taken from Options[SIA]

9.8.4. Time between the tops of E, I and Y

The following is straightforward. The distances between the tops are not symmetric around I.

{tTopY - tTopE, " ⩵ ", tTopI - tTopE, " + ", tTopY - tTopI} // Row

5.69685 ⩵ 4.75807 + 0.938778

9.8.5. Substituting Y in S’

Substituting Y = α / (α + γ) I into S’  = -β Sp Y = - (α β / (α + γ)) Sp I.

At the top of Y the model behaves as a SIA model for I, with β* = α β / (α + γ) and R0 = α β / (α + γ) / γ.

AlphaSEYCD[] × BetaSIA[]  AlphaSEYCD[] + GammaSIA[]  GammaSIA[] /. Options[SIA]

3.63636

However, this is local. Thus, substitution of this local R0 into the formula will be a category mistake.
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test = SIA[Ip, Top, R0 ] ⩵ SIA[Ip, Top, TheFormer]


1

R0

,
R0 - log(R0) - 1

R0

,
log(R0)

R0

  {0.275, 0.369979, 0.355021}

The actual values at the top of Y are, in fact:

SIA[Pr, tTopY]

{0.218059, 0.401195, 0.380746}

SEYCD[Pr, tTopY] // Explain

{S → 0.218059, E → 0.0364723, Y → 0.364723, C → 0.375035,

D → 0.00571119, N → 0.994289, I → 0.401195, A → 0.380746}

9.8.6. Plotting {γ, α} / (α + γ) Iq    

While Y = α / (α + γ) I holds at the top of Y, the following plot shows that this is not generally the 
case. Though Y looks rather like a delay of I (which includes E), it is not just a delay.

{alpha, beta, gamma} = {AlphaSEYCD[], BetaSIA[], GammaSIA[]} /. Options[SIA];

Plot @@ 

Legended[ Yp[t], "Yp[t]"],

Legendedalpha  alpha + gamma Ip[t], "α / (α + γ) Ip[t]", {t, 0, 150}

20 40 60 80 100 120 140

0.1

0.2

0.3

Yp[t]

α / (α + γ) Ip[t]

Just to be sure: the vertical axis for E is a factor 10 smaller than the vertical axis for Y.
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{alpha, beta, gamma} = {AlphaSEYCD[], BetaSIA[], GammaSIA[]} /. Options[SIA];

Plot @@ 

Legended[ Ep[t], "Ep[t]"],

Legendedgamma  alpha + gamma Ip[t], "γ / (α + γ) Ip[t]",

{t, 0, 150}, PlotRange → All

20 40 60 80 100 120 140

0.01

0.02

0.03

0.04

0.05

Ep[t]

γ / (α + γ) Ip[t]

9.9. Plots for E’ = 0 and Y’ = 0 (but generally not both at the same time)

The following plots Y / E and the intersecting line and curve that determine the tops. (NB. E starts 
nonzero with the Seed, while Y starts at 0.)

{alpha, beta, gamma} = {AlphaSEYCD[], BetaSIA[], GammaSIA[]} /. Options[SIA];

Plot @@ 

LegendedYq[t]  Eq[t] , "Y / E",

Legended alpha  gamma, "α / γ",

Legended alpha  beta, "α / β",

LegendedYq[t]  Eq[t] * Sp[t], "Sp Y / E", {t, 0, 150},

PlotRange → 0, 1.2 alpha  gamma



0 20 40 60 80 100 120 140

2

4

6

8

10

12

Y / E

α / γ

α / β

Sp Y / E

The following plots E / Y and the intersecting line and curve that determine the tops. 
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{alpha, beta, gamma} = {AlphaSEYCD[], BetaSIA[], GammaSIA[]} /. Options[SIA];

Plot @@ 

LegendedEq[t]  Yq[t], "E / Y",

Legendedgamma  alpha, "γ / α",

Legendedbeta  alpha * Sp[t], "β / α Sp",

{t, 0, 150}, PlotRange → 0, 1.5 beta  alpha

0 20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

0.6

E / Y

γ / α

β / α Sp

9.10. Conclusion of this chapter

The main relations on the limit values and the top of Iq do not differ from SIA, see the beginning of 
this chapter

Subsequently there are two numerical routines to find the time for the tops of Eq and Yq in SEYCD 
in particular.

There are no analytical results here.

Appendix. An exercise on growth (for the record only)

We have the rates of growth:

dLog[E] = E' / E = β Sp Y/E - α 
dLog[Y] = α E/Y - γ

Thus we can eliminate E/Y:

β Sp = (dLog[E] + α) E/Y = (dLog[E] + α) (dLog[Y] + γ) / α . Thus:

Sp = (dLog[E] + α) (dLog[Y] + γ) / (α β) 

And recall that also Sp = f[R0, Ap] above.

(1) Perhaps this might be helpful when we observe the rates of growth of E and Y, and know the 
parameters, so that we can estimate Sp. The growth rates are monotone but observation without 
error would be difficult.

(2) For the top of I, with I’ = 0, we had all {S, I, A}p values, like Sp = 1 / R0.

SIA[Ip, Top, R0]


1

R0
,

R0 - log(R0) - 1

R0
,

log(R0)

R0

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Then, using (α β) / R0 = α γ:

α γ = (dLog[E] + α) (dLog[I - E] + γ)  evaluated with I at IqTop.

This is a variant to the same equation that we already subjected to DSolve, above. 

It is tempting to simply substitute the evaluated value as a constant c = IqTop. Then dLog[c - E] = -E’ 

/ (c - E).

However, I is a variable, and we have dLog[I - E] = (I’ - E’) / (I - E).  However, we are evaluating at the 
point I’ = 0, and we can substitute these values, which gives -E’ / (c - E) anyhow.  (Recall the equation 
for dLog[I] and that we took the value β Sp = γ.) Thus we arrive at a proper expression for an approxi-
mation at the top of I.

Mathematica finds a solution for this equation (a local relation at the top of I). With x for the 
exposed, and assuming y’/y = -x’ / (constant - x), and using “I” for the value at the top:

dsol =

DSolveα γ ⩵ x'[t]  x[t] + α -x'[t]  "I" - x[t] + γ, x[t], t // FullSimplify

{x(t) → c1}, x(t) →
γ I

α + γ
+ c1 ⅇ-t (α+γ)

The equation without parameters is:

eq = "E" == x[t] /. dsol[[2]] /. topI /.

{α → AlphaSEYCD[], γ → GammaSIA[]} /. Options[SIA]

710 236.  638 149. + c1 ⅇ-1.1 t

The following generates a huge number.

nsol = Solve[eq /. t → tTopI, C[1]]

c1 → 4.32687×1032

Let us put in t = 0 for a local approximation. 

nsol = Solve[eq /. t → 0, C[1]]

{{c1 → 72 086.}}

Thus an approximate relation for E at the top is, provided that the t  = 0 corresponds to t = tTopI ≈ 
58.

Eprox[t_] = eq[[2]] /. nsol[[1]]

638 149. + 72 086. ⅇ-1.1 t

{Eq[t], Eprox[t - tTopI]} /. t → tTopI

{710 236., 710 236.}
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Plot[{Eq[t], Eprox[t - tTopI]}, {t, 57, 59}]

57.5 58.0 58.5 59.0

650000

700000

750000

800000

850000

900000

The idea was that we might perhaps spot an analytical relation, but we end up with an approxima-
tion at a point of an expression that already is an approximation ...

PM. Mathematica has no result for these joint equations, while the above shows the solution, using 
a small substitution (elimination of a variable).

dsol = DSolveα γ ⩵ x'[t]  x[t] + α y'[t]  y[t] + γ, C[1] ⩵ x[t] + y[t],

{ x[t], y[t]}, t // FullSimplify

DSolveα γ  α +
x′(t)

x(t)
γ +

y′(t)

y(t)
, c1  x(t) + y(t), {x(t), y(t)}, t

10. Infections versus symptoms

10.1. Introduction

It is basic to distinguish between infection and symptoms.  SI(EY)A(CD) modeling focuses on the 
biological mechanism of infection. There are authors who apply the  SI(EY)A(CD) model to symp-
tomatic disease however. The key consideration remains that symptoms have an impact on 
behaviour and hospital treatment and reporting, and thus are “easier to measure” than infection 
status.

Leonhard Euler in 1767 already formulated a “renewal equation” for population dynamics, and the 
SI(EY)A(CD) model appears to be a reformulation in terms of (ordinary) differential equations (ODE). 
Relevant papers are Fine (2003), Svensson (2005, 2007), Breda et al. (2012) and Champredon, 
Dushoff & Earn (2018). The latter paper is quite recommendable, though they regrettably do not 
refer to Svensson while a comparison of results would have been informative.

It appears that the discussion can be structured best by first discussing the distinction between 
infection and symptoms, and in particular the distinction between the generation period and the 
serial interval. When this has been clarified, we can focus on formulas for infections only.  The 
following discusses what aspects of this analysis have been included in the package, and compares 
parameter estimates by different authors: now with greater attention for the distinction between 
infections and symptoms.
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10.2. Comparing IFF and sCFF

With the Chinese infection fatality factor (IFF) of 0.66 (Verity et al.  (2020)), and the adjusted UK IFF of 
0.9 (Ferguson et al. (2020)), the Goh (2020) parameter of 2% concerns symptoms and is the symp-

tomatic Case Fatality Factor (sCFF). (They call it a rate but it is a factor.) When one misses many 
cases without symptoms then the sCFF indeed is higher than the IFF. 

We can use: IFF = D / I = (D / sC) * (sC / I) = sCFF * #symptomatic cases per infected. 

Thus we have 0.66% = 2% * sC / I, so that sC / I = 0.33 symptomatic cases per infected, or three 
infected units per 1 symptomatic unit.

However, when we change to the Dutch IFF of 1.5%, we cannot simply assume that this ratio stays 
the same.

There remains the question whether symptoms might also have been caused by common flu. There 
is not much discussion in this literature about confounding with flu symptoms, even though Jan-
uary had the flu season in China. However, authors refer to "confirmed cases", which implies 
microbiological testing, which would exclude such confounding (at the reporting stage at least).

10.3. Infection versus symptomatic disease

10.3.1. Arrival periods for a single unit

The basic distinction is:

- An infection starts with a latency period, during which one isn’t infectious, and continues with the 
infectious stage. 

- A symptomatic disease starts with an incubation, during which one doesn't have symptoms yet, 
and continues with the symptomatic stage.

We may assume that the total lengths of both paths are the same. This is a big assumption. A 
practical explanation for modeling is that when a person is put into quarantine, then for the pur-
pose of modeling both periods end. However, this is more complex when we are interested in the 
period before intervention. For SARS-CoV-2 the incubation period will tend to be longer than the 
latency period: whence there are asymptomatic infectious cases. For the following diagram we 
rather not introduce new colours but can use colour bands that fit the previous colour scheme.

QuarantineColours["Period"]

Latency Infectious

Incubation Symptomatic

While each unit will have its own values for these periods, the diagram can also display the popula-
tion averages.

With lack of microbiological testing, symptoms may be all that we have. There are key issues in 
measurement. (a) Persons with symptoms might also suffer from another (flu) infection. (b) When 
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we ask an infectee about possible infectors in the past, then the infectee will tend to mention 
persons with symptoms, who can be recognised because of the symptoms, and they might over-
look infectious persons without symptoms (who convey an impression of health). Thus, already on 
those two counts, there is every reason to be cautious with data using symptoms. It tends to make 
little sense to test 100% of the units with microbiological tests when only 1% show symptoms. For 
SARS-CoV-2, doing such tests can be cheaper than a lockdown of the economy however.

PM 1. It would also be possible that latency would be longer than incubation, so that persons with 
symptoms still might not be infectious at the beginning. Perhaps this applies for a subgroup in the 
SARS-CoV-2 case too (just a comment from theory). In that case, the “average” will hide quite some 
differences in the population. However, there seem to be no reports on this and thus we neglect 
this possibility.

PM 2. For a model with hospitalisation, we would have to include a period when a person has 
cleared the infection but still suffers from symptoms related to the disease, for example when the 
pneumonia has taken hold, or when the immune system has started to attack the own body. It 
depends upon what one calls symptoms (being in a hospital might be a symptom). But we do not 
regard hospitalisation here.

10.3.2. Interarrival periods between two units

While it is relatively straightforward to measure the durations of symptomatic periods, the infection 
status is rather elusive. A strategy is to look at the interarrival periods (IAP) between two cases, i.e. 
the infector and the infectee, as opposed to the arrival periods and rates for single cases. The 
relevant terms are the generational interval for infections and the serial interval for symptoms.

- The generational interval is given by the period between the moments of infection, from the 
infection at the infector to when the infector transfers the virus and a new generation starts. 

- Du et al. (2020):  "The serial interval of COVID-19 is defined as the time duration between a primary 
case-patient (infector) having symptom onset and a secondary case-patient (infectee) having 
symptom onset."  

In the following diagram, the infector and infectee both have a latency of 4 days. The infector has 
an incubation of 8 days: thus an asymptomatic period of 8 - 4 = 4 days. The infectee has an incuba-
tion of 10 days: thus an asymptomatic period of  10 - 4 = 6 days. The infection happens on day 7, 
thus with a generation interval of 7.  Both units have a symptomatic period of 10 days. The serial 

interval is equal to the generation interval plus the difference of the asymptomatic periods, thus 7 + 
(6 - 4) = 9, as can be shown by the following formulas.
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QuarantineColours["Period", 2]

Latency Infectious

Incubation Symptomatic

Latency Infectious

Incubation Symptomatic

Infector

Infectee
Generation

Serial

Results[QuarantineColours, "Period", 2]

{GenerationInterval → 7, SerialInterval → 9}

Let us use the following variables:

(i) inc1,2 = lat1,2 + a1,2  for the incubation, latency and asymptomatic periods of infector (1) and 
infectee (2)

(ii) g = lat1 + y  for the generation interval, latency of the infector, and the period to the actual 
infection y

(iii) s = (g - inc1) + inc2  for the serial interval, correcting g for the incubation of the infector and the 
infectee

The formula for the serial interval then is:

s = (lat1 + y - (lat1 + a1)) +  (lat2 + a2) = y + lat2 + (a2 -  a1)

The assumption that g = s is frustrated by differences in the periods of asymptomatic infectious-
ness. For example, the serial interval would be negative if the infector develops symptoms after the 
infectee.

10.3.3. Complication for the population averages

While above calculation was done at the micro level, it also applies to the macro level, and then the 
variables represent means. This has the special effect that y becomes the mean infectious period, so 
that g becomes the transmission period, or the whole length of the scheme (interpreting these as 
averages). Subsequently, we must assume either that the infectors and infectees come from the 
same population and thus have the same means, or that there is a structural difference. For popula-
tion averages, we would tend to assume that both the infector and the infectee would have the 
characteristics of the averages, but this can also be an intellectual pitfall, e.g. when infectors would 
be structurally younger than infectees.

If the infector and infectee have the same aysmptomatic infectious period, then the generational 
interval and the serial interval have the same duration. The following diagram displays the average 
situation, in which the infection happens at the mean moment, which is at the end of the shown 
bar. They both have the same asymptomatic periods. The incubation for both is 8 and the symp-
tomatic period is 10, and thus the generation interval and serial interval are both 18.
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QuarantineColours["Period", 2, 18, 4]

Latency Infectious

Incubation Symptomatic

Latency Infectious

Incubation Symptomatic

Infector

Infectee
Generation

Serial

Results[QuarantineColours, "Period", 2]

{GenerationInterval → 18, SerialInterval → 18}

The serial interval is officially an interarrival period because there are two persons involved, but in 
practice it is the mere addition of arrival periods, with the symptomatic phase of the infector and 
the incubation of the infectee, and using that the onset of symptoms is a rather reliable point of 
observation. The serial interval is primarily useful for the observations at the micro-level, where 
cases show variety. We calculated these values from our input data but in practice researchers 
determine onsets of symptoms, try to match infectees with their infectors, and apply statistics to 
the observed serial intervals to determine the mean periods in the scheme. At the summation level, 
the serial interval either defines the transmission interval (the whole range) or must be made 
consistent with such other estimates. 

Unless we model different compartments, there is no structural difference in the asymptomatic 
periods of infectors and infectees, and in practice we would expect a2 =  a1, so that the effect of 
variation shows up in the variances only. However, if infectors are structurally healthier persons 
without symptoms and if infectees with symptoms are structurally the more vulnerable ones, then 
there can be a structural difference between the asymptomatic periods.

A  problem with SARS-CoV-2 is that there are many asymptomatic infectious. The infectee might 
point to a possible infector who is not the relevant person. The SARS-CoV-2 literature shows 
authors reporting on the serial interval, because this is a commonly used statistic, but the same 
authors acknowledge that the statistic would not be so relevant without more information about 
the asymptomatic period.

Du et al. (2020) report that 12.6% cases (59 of 468) have an asymptomatic origin: “Fifty-nine of the 
468 reports indicate that the infectee had symptoms earlier than the infector. Thus, presymp-
tomatic transmission might be occurring. Given these negative-valued serial intervals, COVID-19 
serial intervals seem to resemble a normal distribution more than the commonly assumed gamma 
or Weibull distributions, which are limited to positive values [ref].” Du et al. (2020) indeed show a 
normal distribution for the serial interval, ranging between -10 and 20 and a mean at 4 days.

The average of 4 is remarkable. Anderson et al. (2020) have an incubation of 5-6 days, and Backer et 
al. (2020) (connected authors) have 6.4 days. Let us take as incubation for symptomatic disease: 6.4 
days. For our own set of parameters we can calculate a generation interval of 11 days. This differ-
ence of 11 - 4 = 7 days suggests that more than 12.6% cases may have had an asymptomatic infec-
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tion. At play is that we use γ = 1/10, which is not what these authors presume. The problem may lie 
in the incubation period. The incubation period was observed for the infectees and not for the 
infectors. When authors report an incubation period they should clarify for whom.

With s = (g - inc1) + inc2 we get 4 = (11 - inc1) + 6.4 we find inc1 = 13.4, meaning that the infectors need 
not develop any symptoms.

Single studies may not easily fit within a larger scheme though.

10.4. Additive equations in the package

For choosing values in the Options[SIA] the following equations may be handy. 

We already had:

Take[ SEYCD["R0[t]"], 5] // MatrixForm

R0(t)  BetaSIA(t)

GammaSIA()

GammaSIA()  GammaSICD() + MuSICD()

Period(Infectious)  1

GammaSIA()

Period(Latency)  1

AlphaSEYCD()

Period(Transmission)  Period(Infectious) + Period(Latency)

New concepts are the interarrival periods. 

Take[SEYCD["R0[t]"], -5] // MatrixForm

Period(Generation)  InfectionInterval() + Period(Latency)
Period(SerialInterval)  Period(Transmission)

Period(SerialInterval)  Period(Incubation) + Period(Symptomatic)
Period(Asymptomatic infectious)  Period(Incubation) - Period(Latency)

Period(Symptomatic)  Period(At hospital) + Period(Delay to hospital)

Our values for all equations are:

eqs2 = SEYCD["R0[t]"] /. {R0[t] → 4., Period["Latency"] → 1, GammaSIA[] → .1,

MuSICD[] → .0015, Period["Incubation"] → 6.4 } // MatrixForm

4.  10. BetaSIA(t)
0.1  GammaSICD() + 0.0015

Period(Infectious)  10.

1  1

AlphaSEYCD()

Period(Transmission)  Period(Infectious) + 1
Period(Generation)  InfectionInterval() + 1

Period(SerialInterval)  Period(Transmission)
Period(SerialInterval)  Period(Symptomatic) + 6.4

Period(Asymptomatic infectious)  5.4
Period(Symptomatic)  Period(At hospital) + Period(Delay to hospital)
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List @@ Reduce[eqs2, {Period["SerialInterval"]}] // MatrixForm

BetaSIA(t)  0.4
GammaSICD()  0.0985

AlphaSEYCD()  1
InfectionInterval()  Period(Generation) - 1

Period(Asymptomatic infectious)  5.4
Period(Transmission)  11.
Period(Symptomatic)  4.6

Period(Infectious)  10.
Period(At hospital)  4.6 - 1. Period(Delay to hospital)

Period(SerialInterval)  11.

10.5. Formulas for generation interval 

10.5.1. Theory

Champredon at al. (2018): “The renewal [Euler] and ODE [SI(EY)A(CD)] approaches are based on 
different conceptualizations of dynamics. The renewal approach focuses on cohorts of infectious 
individuals, and how they spread infection through time, while the ODE approach focuses on 
counting individuals in different states. The renewal equation is less common than compartmental 
models in epidemiological applications, probably because the goal when modelling epidemics is 
often to identify optimal intervention strategies, which is facilitated by clearly distinguishing the 
various epidemiological states (e.g., susceptible, infectious, immune, vaccinated, quarantined, etc.) 
to act on. However, the simplicity of the renewal equation makes it particularly well adapted to 
estimate the effective reproduction factor from incidence time series [25] and to forecast epidemics 
[8]. As a notable example, it was used recently by the WHO Ebola Response Team to estimate the 
reproduction factor the Ebola epidemic [27]” (PM. Their manuscript is a preprint and “for review 
purposes only”.)

Equally succinctly: “The generation interval [of infection between infector and infectee] is rarely 
observed, but through contact tracing it is possible to directly observe the serial interval (i.e., the 
interval of time between onset of symptoms for the infector and her/his infectee). Although differ-
ent in theory, the serial interval distribution may be a good approximation to the generation inter-
val distribution, especially for diseases for which the latent and incubation periods are similar 
(Appendix D and [14]). On the other hand, the latent and infectious periods —which are used to 
parametrize compartmental ODE models— can be observed only in clinical studies, which are more 
rare. Consequently, the [serial interval] distribution can be easier to obtain than the distributions of 
latent and infectious periods, in which case a renewal equation might be easier to parameterize 
than an Erlang SEIR ODE model.”  (PM. Their manuscript is a preprint and “for review purposes 
only”.)

Check Svensson (2005:9-10) and Champredon, Dushoff & Earn (2018:22) for their diagrams and 
compact notation, with also a statement on the variances of the relevant periods. Our own package 
is not so compact and uses “long names”, see below.

10.5.2. Mean interarrival period (MIAP) for infections

The MIAP of the infection by the infector to the infectee is called the generation interval. In our case, 
the generation interval consists of the sum of two exponentially distributed variables, namely the 
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exposed phase with mean 1/α and the infectious phase with mean 1/γ, of which the pdf are well-
known. Svensson (2005, 2007) provides relevant formulas and a substitution for the some special 
cases, see below, like the gamma distribution. Both Breda et al. (2012) and Champredon et al. 
(2018) give this explicit formula for (intrinsic) generation pdf as we have been using (assuming α ≠ 
γ): 

g[t] ⩵ Hold[α γ / (α - γ)] Exp[-γ t] - Exp[-α t]

(* stopping Mathematica on the fraction*)

g(t)  ⅇγ (-t) - ⅇα (-t) Hold
α γ

α - γ


For our parameters γ = 1/10 and α = 1, we use our “SumTwoExp” function (and observe that it does 
not matter in what order the parameters are entered).

SumTwoExp[γ, α, t]

α γ ⅇγ (-t) - ⅇα (-t)

α - γ

Plot [SumTwoExp[.1, 1, t], {t, 0, 20},

AxesLabel → {Day, "PDF"}, PlotLabel → "Generation interval"]

5 10 15 20
Day

0.02

0.04

0.06

0.08
PDF

Generation interval

The expected value can be found by the usual integration, or substitution of the known outcome for 
the exponential distribution per component:

α γ / (α - γ) 1  γ^2 - 1  α^2 ⩵ 1  α + 1  γ

α γ  1

γ2 - 1

α2 

α - γ


1

α
+

1

γ

% // FullSimplify

True

PM. https://en.wikipedia.org/wiki/Exponential_distribution#Sum_of_two_independent_exponen-
tial_random_variables

PDF[ExponentialDistribution[λ], t]

λ ⅇλ (-t) t ≥ 0
0 True

Mean[ExponentialDistribution[λ]]

1

λ
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10.5.3. Infections: Primary and secondary generation interval

Svensson (2005, 2007) provides us with the following for the “mean interarrival period” (MIAP).

In the following, we will put in the arrival period and find the derived interarrival period. In empiri-
cal testing, we will observe the interarrival period (e.g. the generation interval), and then must 
solve backwards to the arrival period that is relevant for the model.

An infection can be looked at from the position of the infector (“primary”) or from the position of 
the infectee (“secondary”). 

(Pp) Infectors may have contacts that do not result into infections, which causes an “infinite interar-
rival period”. Svensson’s formula from this perspective on the generation interval takes the period 
of latency plus half of the mean infectious period (since half will be infected before and half after 
this mean).  Thus Pp = Platency + Pinfectious / 2 (or Pp = lat + inf / 2  in above symbols).

(Ps) The secondary viewpoint, from the infectee, considers only contacts that result into infections. 
Apart from a general setup, there is a specific formula for a constant infectious rate with random 

arrival period with mean mu and standard deviation sd, following a period of latency with mean 
Platency. 

miap[constant rate] ⩵ InfectionInterval[Platency, mu, sd]

miap(constant rate) 
mu2 + sd2

2 mu
+ Platency

If we allow a constant period as a particular case of a random period, then:

miap[constant period too] ⩵ InfectionInterval[Platency, Pinfectious, 0]

miap(constant period too) 
Pinfectious

2
+ Platency

And this is the result the mean and sd for the exponential distribution.

miap[exponential] ⩵ InfectionInterval1  α, 1  γ, 1  γ

miap(exponential) 
1

α
+

1

γ

For the exponential case, relevant for SI(EY)A(CD), the transmission period is also the generation 
interval (MIAP). We already derived this above but it is useful to draw attention to the other formula 
with mean and standard deviation.

There can be observational equivalence. Different models might explain the same phenomena. To 
discriminate situations, observations on the serial interval or MIAP would need to determine not 
only a mean infectious period but also how those are distributed over time (e.g. a constant interval 
with a uniform distribution of cases in it, or exponential decay). The assumption for exponential 
decay is that the virus may remain available forever but only doesn’t become epidemic because of 
the low number of contacts.

10.6. Ganyani et al. (2020) on the generation interval

Writing in May 2020, with so many already infected in Holland, it is remarkable that studies refer to 
only a few data points also rather early in the pandemic in Asia, as if researchers in the West don’t 

162     2020-06-15-Didactics-SIEYACD.nb



do source and contact tracing. Ganyani et al. (2020) appears to be relevant for us, since researchers 
of RIVM partook, and it matters for the comparison of findings about Holland. See section 2.9.3 on 
RIVM January 27.

Ganyani et al. (2020) refer to 91 confirmed SARS-CoV-2 cases in Singapore 2020-02-26, of which 54 
cases provide adequate data, and which are bundled in four clusters. They also have 135 cases from 
Tianjin of 2020-02-27, of which 114 can be traced to one of 16 clusters. For some questions there are 
too few datapoints in Singapore. The authors: “quarantine and other containment measures were 
already in place at the time of data collection, which may inflate the proportion of infections from 
pre-symptomatic individuals.”

Ganyani et al. (2020) assume that that infectors and infectees have the same average incubation 
periods. Subsequently, they fix the incubation period to a gamma distribution with mean 5.2 and sd 
of 2.8 days, referring to Zhang et al. (2020). Due to the variation, it is still possible to find a fraction 
of asymptomatic infections. A sensitivity analysis is performed with incubation averages of 4.8 (sd 
2.6)and 6.4 (sd 2.3) days. 

The authors acknowlegde (p7): "Our study does have some limitations. First, we rely on previous 
estimates for the incubation period.  However, our sensitivity analyses showed that changing the 
incubation period distribution does not have a big impact on our estimates of the generation 
interval distribution." However, there is a distinction between putting in different values under the 
assumption of sameness for infector and infectee, and, alternatively, allowing that infectors have a 
different mean than infectees.

They find a mean “generation time” of 3.95 days for Tianjin and 5.2 days for Singapore. They find 
the same serial intervals, though with different standard deviations. 

The authors (p4): “When allowing for negative serial intervals in the Tianjin data, the mean genera-
tion time decreased to 2.90 days (95% CrI: 1.85–4.12). The sensitivity analyses showed that the 
assumptions made about the incubation period have only moderate impact on the results. On the 
other hand, assumptions made about the underlying transmission network (e.g. acknowledging 
possibly negative serial intervals) had a large impact on our results. As expected, the proportion of 
pre-symptomatic transmission increased (...) from 62% (95% CrI: 50–76) to 77% (95% CrI: 65–87) for 
the Tianjin data.”

“Hence, a large proportion of transmission appears to occur before symptom onset, which is an 
important point to consider when planning intervention strategies. It is worth noting that the 
outbreak data we used were collected in the presence of intervention measures such as case 
isolation and quarantining of identified contacts. This means that our estimates do not necessarily 
reflect the natural epidemiology of COVID-19, but instead reflect what is observed in the presence 
of these intervention measures. It is expected that these measures reduce the proportion of symp-
tomatic transmission, which implies that a high proportion of infections is likely to have occurred 
before symptom onset because isolation prevents symptomatic transmission.”

10.7. Kucharski et al. (2020) and Goh (2020) epidemic calculator on 
symptoms

The Kucharski et al. (2020) paper was used by Goh (2020) to select default parameters for his 
(recommendable) “epidemic calculator”.  Kucharski et al. (2020) present their results with refer-
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ence to a SEIRD model, but with the special aspect that alongside the transmission from Exposed to 
Infectious there is a parallel onset of symptoms.  

Their article, data and model actually appear to concern the development of symptoms rather than 
infections. 

Thus their model adopts the structure of the SEIRD or SI(EY)A(CD) model but it is not the "pure" 
SEIRD in terms of infections. Perhaps there exist infections such that latency = incubation. I am not 
familiar with the history of S(E)IR(D) and it may be that this is quite conventional. For me it 
appeared a discovery, so to speak, to realise that the model, the data and results had to be inter-
preted differently than infections even though the model was claimed to be SEIRD.

Application to symptoms doesn’t appear to change the functioning of the SEIRD or SI(EY)A(CD) 
model as such, or the usefulness of the Goh epidemic calculator. Below we will reproduce the core 
of that calculator (but not all of its features). 

Points are:

- The Kucharski model (parameters used by Goh) has the structure of SEIR(D) or SI(EY)A(CD), but 
does not quite apply to the SARS-CoV-2 situation with the infectious without symptoms. They report: 
“ Our results suggested there were around ten times more symptomatic cases in Wuhan in late 
January than were reported as confirmed cases (figure 2) ...” The problem however are also the 
asymptomatic cases that are not reported.

- Goh (2020) presents a “case fatality rate” (2%), which causes us to be alert about the distinction 
between the Infection Fatality Factor (IFF) and the symptomatic Case Fatality Factor (sCFF). 

- At first it seems that the translation from Goh’s webpage to our model is straightforward, since he 
provides the model and parameter values. However, he presents data for incubation of symptoms, 
which is not the latency which the SEIR(D) or SI(EY)A(CD) model is about. Thus, the translation to 
our model setup with infections is more involved. A practical solution is to merely run the model 
with their parameters, and disregard the content, to merely check the mechanics, and stop wonder-
ing about the meaning and policy implications.

- The Kucharski et al. (2020) diagram of the model (their figure 1) shows that symptoms develop 
between the Exposed and Infectious compartments. The Exposed are non-symptomatic as is stan-
dard. About the Infectious the legend explains: “infectious (and symptomatic)”. It is correct to count 
the Exposed and latency period as part of incubation, but it is another issue to take them as equal.

On the last page of the Kucharski et al. (2020) paper we finally get clarity:

"We also assumed that the latent period is equal to the incubation period (ie, individuals become 
infectious and symptomatic at the same time) and all infected individuals will eventually become 
symptomatic. However, there is evidence that transmission of SARS-CoV-2 can occur with few 
reported symptoms. [ref] Therefore, we did a sensitivity analysis in which transmission could occur 
in the second half of the  incubation period, but this did not change our overall conclusions of a 
decline in Rt from around 2·4 to almost 1 during the last 2 weeks of January."

The latter is an important conclusion for their paper, of course. It is not helpful for our purpose of 
reconstructing their model and finding the proper parameter values for latency and infectiousness. 
Subsequently, halving the incubation period generates (i) a part exposed (latency), (ii) a part infec-
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tious and asymptomatic, and (iii) a part symptomatic and infectious, which are three stages and is 
not our SEIR(D) or SI(EY)A(CD) model. Now, we could take “half of the incubation period” as the 
latency period, as Kurcharski et al. (2020) do for their sensitivity analysis, but based upon what 
data, and while it is not reproduced by Goh’s epidemic calculator ?

It is not clear to me how the SEIR(D) or SEIA(CD) model was developed in history. This present 
notebook has not modeled symptoms and for us the following two models could apply:

- the Exposed are the units in latency, i.e. before being infectious (presentation in this notebook)

- the Exposed are units in latency = incubation, and afterwards are symptomatic = infectious 
(Kucharski et al.)

Under the assumption of the latter, we can reproduce the SEIR(D) or SI(EY)A(CD) part of Goh’s 
epidemic calculator, but the relation with SARS-CoV-2 is limited, due to the asymptomatic infec-
tions. It is somewhat of a mathematical exercise, merely to show a reproduction of results. See 
section 11.4 for the run and plot.

This notebook does not look at symptomatic cases. The Kucharski et al. (2020) paper concerns 
these symptomatic cases, and the Goh epidemic calculator properly illuminates basic dynamics. 
Above comments are merely about the interpretation.

However, see below for the discussion of 10.8.4 Tao Liu et al. (2020), that was as the basis of the 
Kucharski et al. (2020) paper. With our assumption of α = 1, and then incubation - 1 / α  = asymp-

tomatic infectiousness, we still can arrive at an indication what this study on symptoms may imply 
for our application to infections.

10.8. Other literature

Other papers in the literature mentioned in our references also tend to look at symptoms. They all 
rely upon verified SARS-CoV-2 cases, but such testing does not overcome the conventional problem 
of measuring the generation interval in a more direct manner, and thus the standard solution 
remains taking the route via the serial interval. 

10.8.1. Anderson et al. (2020)

Anderson et al. (2020) is a review comment and no new empirical research. They suggest a serial 
interval of 4.4-7.5 days (paper) or 4-7 days (supplement 1). The term “serial interval”applies to 
symptomatic diseases, and it is more likely that they have this in mind, but in supplement 1 it is 
mentioned at the diagram for the infectious trajectory.  They also mention an incubation period of 
5-6 days. They correctly wonder that means of 5.5 for both serial interval and incubation result into 
a symptomatic period of mean length 0: “Combining this time with a similar length serial interval 
suggests there might be considerable presymptomatic infectiousness (appendix 1).”

If we assume that their serial interval is also the generation interval then we can apply Svensson’s 
formula. The assumption of the SI(EY)A(CD) model is that the infectious period would be exponen-
tial, thus with mu = sd. The MIAP outcome of 5.5 days must be explained by these input parameters 
for the arrival times.
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5.5 ⩵ InfectionInterval1, 1  γ, 1  γ

5.5 
1

γ
+ 1

An infectious period of 4.5 days seems rather short, not only in terms of the Diamond Princess but 
also common sense. A common cold may take 7 to 10 days, and those are corona viruses too.

Anderson et al. (2020) indeed comment: “The fourth uncertainty is the duration of the infectious 
period for COVID-19. The infectious period is typically short for influenza A, but it seems long for 
COVID-19 on the basis of the few available clinical virological studies, perhaps lasting for 10 days or 
more after the incubation period. [8]” The latter however is not an average.

A curious remark is this: “School closure, a major pillar of the response to pandemic influenza A [14] 
is unlikely to be effective given the apparent low rate of infection among children, although data 
are scarce.” Given that children are infectious in general, the prior assumption should rather be 
that they are also infectious for SARS-CoV-2 except when proven differently. Perhaps children are 
less symptomatic but they might be infectious for their environment (like grandparents).

10.8.2. Flaxman et al. (2020)

A fair point of consideration is that if we take the R[0] from Flaxman et al. (2020) then we should 
also consider taking the generation interval from their study. NB. They call it a “serial interval” but 
describe it as “the time between when a person gets infected and when they subsequently infect 
another other people”, and they actually use the letter “g” instead of “s”. Perhaps they assume that 
all asymptomatic periods are the same, so that numerically there is no difference (so skip the 
difference in terms). 

They also refer to the SIR model and not SEIR: “The renewal model is related to the Susceptible-
Infected-Recovered model, except the renewal is not expressed in differential form.”

Flaxman et al. (2020:18) use a gamma distribution with a mean of 6.5 and a coefficient of variation 
of 0.62.  We can apply Svensson's formula again, albeit with a zero mean for the latency phase (α → 
∞).

6.5 ⩵ InfectionInterval0, 1  γ, 1  γ

6.5 
1

γ

Alternatively, if we want to maintain our SEYCD structure, and use α = 1 and still use the Flaxman et 
al. (2020) estimate  of the generation interval, then we get:

6.5 ⩵ InfectionInterval1, 1  γ, 1  γ

6.5 
1

γ
+ 1

The latter would require a different distribution, namely the “SumTwoExp” discussed above, thus 
with the same mean but more dispersion over shorter and longer intervals. This notebook uses γ = 
1/10, thus a third version.

PM. For the parameterisation of the gamma distribution in Mathematica, the Flaxman et al. format 
translates as follows.
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Solve6.5 ⩵ Mean[GammaDistribution[alpha, beta]],

0.62 ⩵ 1  6.5 * StandardDeviation[GammaDistribution[alpha, beta]], {alpha, beta}

{{alpha → 2.60146, beta → 2.4986}}

The Economics Pack has a parameterisation of the gamma distribution with a mean and sd. 

PlotLegended[PDF[GammaMuSigma[6.5, 6.5 * 0.62], x],

"α = ∞, mean 6.5 (Flaxman et al.)"],

LegendedSumTwoExp1, 1  5.5, x, "α = 1, mean 6.5 (Flaxman et al.)",

LegendedSumTwoExp1, 1  10, x, "α = 1, mean 11 (notebook)"

, {x, 0, 20},

ImageSize → 300, AxesLabel → {"Days\nbetween\ninfections", "PDF"}

5 10 15 20

Days
between
infections

0.02
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0.10

0.12

PDF

α = ∞, mean 6.5 (Flaxman et al.)

α = 1, mean 6.5 (Flaxman et al.)

α = 1, mean 11 (notebook)

Though the gamma distribution is not symmetric, the above may still be read that roughly 50% of 
observations would occur before the mean. It would likely be those infections that drive the expo-
nential growth.

PM. Potentially, we spent too much attention to 1/γ, given the observation that it is mostly a normal-
isation factor. 

10.8.3. Other cases mentioned by Svensson (2005, 2007)

The assumption of a constant infectious period (a limiting value of these assumptions) generates a 
value of mu  = 11.

6.5 ⩵ InfectionInterval[1, mu, 0]

6.5 
mu

2
+ 1

As said, Svensson (2005, 2007) has also a formula for the primary interarrival period. This looks at 
the point of view of the infectors, of which a part may have no infections, with thus an “infinite 
interarrival period”. This perspective seems less relevant. This formula gives 6.5 = 1/α + Tinf / 2, 
which gives Tinf = 11. However, this is less relevant.

10.8.4. Tao Liu et al. (2020) 

Tao Liu et al. (2020) reported early in the year: “The average incubation period [...] was 4.8 days, 
ranging from 1 to 14 days, and the average period from onset to isolation was 2.9 days”. This onset 
must refer to symptoms. With latency of 1 day, the asymptomatic infectious period was 4.8 - 1 = 3.8 
days. The symptomatic period of 2.9 can be seen as infectious (otherwise there is no need for 
isolation). The infectious period is 3.8 + 2.9 - 1 = 6.7 days, of which 3.8 days asymptomatic. Their 
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finding was adopted by Kucharski et al. (2020), who actually adapted to incubation of 5.2 days, to a 
total infectious period of 7.1 days. This was adopted by Goh (2020) in his “epidemic calculator”, 
that looks at the symptomatic development rather than purely infections. 

5.2 + 2.9 ⩵ InfectionInterval1, 1  γ, 1  γ

8.1 
1

γ
+ 1

10.8.5. Feretti et al. (2020)

Ferretti et al. (2020) recognise different subgroups of infectiousness, but still condition on above 
outcome of (Tao) Liu et al. (2020), using the early data from China, causing the question whether 
the Western nations haven’t been able to do similar follow up studies.

10.8.6. Summing up

In our setup, R0 = 4 has been given, and a longer 1/γ only means a lower β. The value of 10 days 
seems appropriate because of the etiology of the process of clearing, while we are interested in the 
period before intervention. The SI(EY)A(CD) model comes with the assumption that this is also the 
infectious period. If R0 had not been given, but β, then the longer the period the more infections, 
the higher R0. In itself, a value of 4 seems required for the Dutch record of the Carnival at the end of 
February and the first death in the beginning of March. See the Chapters on intervention and 
estimation below.

11. Comparison with SEYCD studies by others
The literature has common names for variables S, E, I, R, D and parameters β and γ but there are 
differences in others. This notebook hopes to present uniform names, including the quantity q and 
proportion p, and the rebaptising into the acquitted A = C + D and the split of I = E + Y. The following 
makes comparisons also by running the model and reproduce plots.

11.1. Yan and Chowell (2019) on SEIA

Yan & Chowell (2019:168-169) plot both SIA and SEIA (no CD) to show the same levels and delay. 

11.1.1. Names
Our label Their label Value

N[0] m 10 000
Sq Sd

Sp x

Aq Rd, Cd

I P = E + I
Seed x0 = 0.9999 1
SpTop m / R0 4444.4

Sq[∞] # escaped 1466
Ap[∞] η 0.8534

168     2020-06-15-Didactics-SIEYACD.nb



The numerical outcomes actually helped to verify this labeling. The same outcomes are reproduced.

11.1.2. Set options, time horizon, run and plot 

NqSeed = 10^4;

SetOptionsSIA, Nqt0 → NqSeed, Seed → 1 (*not to forget*),

BetaSIA[] → .75, GammaSIA[] → 1  3. , AlphaSEYCD[] → 1  3.,

PhiSICD[] → 0 (*SEYA, not deaths*), R0[] → Null (*not used *)

{Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null,

Nqt0 → 10 000, Onset → 0, Seed → 1, Yqt0 → 0, AlphaSEYCD() → 0.333333,

BetaSIA() → 0.75, GammaSIA() → 0.333333, PhiSICD() → 0, R0() → Null}

SetOptions[SetDatabank, Databank → SEYCD]; (* for Explain *)

f0 = BetaSIA[]  GammaSIA[] /. Options[SIA] (*will be handy*)

2.25

SEYCD[Run, Pr, YC168, t, 150];

The variables are now available in levels and proportions.

Yan & Chowell (2019:169) plot with SIA and identification of the peak prevalence I = E + Y with the 
values at t = 55.6.  

TforTopIq[]

55.6089

SEYCD[Plot, 0, 120]
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11.1.3. Limit values

Yan & Chowell (2019:168-169) have limit values {S, I, A}q[∞] = {1466, 0, 8534}, rounded up, as repro-
duced here. The Sq[∞] is called “the escaped”.
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SIA[Limit] (* selection from SEYCD *)

{0.146556, 0, 0.853444}

SEYCD[Limit]

{0.146556, 0, 0, 0.853444, 0., 1., 0, 0.853444}

TheFormer NqSeed // Explain

{S → 1465.56, E → 0, Y → 0, C → 8534.44, D → 0., N → 10 000., I → 0, A → 8534.44}

The above relies upon setting all options to their proper values.  A direct check on the productlog 
relation is:

SIA[ProductLog, f0, 0.9999, 0]

0.146556

11.1.4. The top of Iq 

Y & C identify Iq as the Peak Prevalence (of the infectious), with the top value of 1951.

SIA[Ip, Top, R0 ] ⩵ SIA[Ip, Top, f0 ] (* starting value for A = 0 *)


1

R0

,
R0 - log(R0) - 1

R0

,
log(R0)

R0

  {0.444444, 0.195142, 0.360413}

The time of the peak prevalence fits their graph as well.

tTopI = TforTopIq[Automatic, 0, 100]

55.6089

pnt = SEYCD[tTopI] // Explain

{S → 4444.44, E → 999.813, Y → 952.053, C → 3603.69, D → 0., N → 10 000., I → 1951.87, A → 3603.69}

11.1.5. Reset options

ResetOptions[SIA] (* best to reset *)

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

11.2. Lin et al. (2010) on SICD

Lin, Muthuraman and Lawley (2010) apply the SICD model with some variants. They also model a 
non-pharmaceutical intervention (NPI) with decision variable u[t], not in our model (here). Their 
paper is interesting for the economic aspects too, not further discussed here. We now only focus on 
their Figure 3 on page 7, and only consider the outcomes without the NPI.

11.2.1. Names
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Our label Their label Value
Sp s

Ip i

Cp r

Dp d

n.a. u[t]
γ γ + τ 0.3
λ γ 0.25
μ τ 0.05
φ 0.05 / 0.3

N[0] 100 × % 100
Seed i0 = 1 × % 1

They first assign x[t] = SICD[t], but then redefine to x[t] = {Sp, Ip}. Subsequently, they consider 
variants x[0] = {.99, .01}, {.67, .33} and {.50, .50}. 

For us, it provides a useful comparison on the starting conditions. We only consider their models (a) 
and (c).

SetOptions[SetDatabank, Databank → SICD]; (* for Explain *)

11.2.2. Their model (a): Set options, time horizon, run and plot 

NqSeed = 100;

SetOptionsSIA, Nqt0 → NqSeed, Seed → 1 (*not to forget*),

BetaSIA[] → .40, GammaSIA[] → 0.3 , AlphaSEYCD[] → Null,

PhiSICD[] → 0.05  0.3, R0[] → Null (*not used*)

{Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 100, Onset → 0, Seed → 1,

Yqt0 → 0, AlphaSEYCD() → Null, BetaSIA() → 0.4, GammaSIA() → 0.3, PhiSICD() → 0.166667, R0() → Null}

f0 = BetaSIA[]  GammaSIA[] /. Options[SIA] (*will be handy*)

1.33333

SICD[Run, Pr, LMLp7fig3, t, 150];

The variables are now available in levels and proportions.

Lin et al. (2010) only plot in a shorter range, and only plot Sp and Ip. Their plot also contains the NPI 
variant, that we neglect.
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SICD[Plot, 0, 100, PlotRange → {0, 0.10}]
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They do not provide other outcomes, but it may be useful to give our limit outcome here.

SICD[Limit] // Explain

{S → 0.526713, I → 0, C → 0.394406, D → 0.0788812, N → 0.921119, A → 0.473287}

11.2.3. Their model (c): Set options, time horizon, run and plot 

NqSeed = 100;

SetOptionsSIA, Nqt0 → NqSeed, Seed → 33 (*not to forget*),

BetaSIA[] → .40, GammaSIA[] → 0.3 , AlphaSEYCD[] → Null,

PhiSICD[] → 0.05  0.3 (**), R0[] → Null (*not used*)

{Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 100, Onset → 0, Seed → 33,

Yqt0 → 0, AlphaSEYCD() → Null, BetaSIA() → 0.4, GammaSIA() → 0.3, PhiSICD() → 0.166667, R0() → Null}

f0 = BetaSIA[]  GammaSIA[] /. Options[SIA] (*will be handy*)

1.33333

SICD[Run, Pr, LMLp7fig3, t, 150];

The variables are now available in levels and proportions.

Lin et al. (2010) only plot in a shorter range, and only plot Sp and Ip. 

172     2020-06-15-Didactics-SIEYACD.nb



SICD[Plot, 0, 100, PlotRange → {0, 0.35}]
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They do not provide other outcomes, but it may be useful to give our limit outcome here.

SICD[Limit] // Explain

{S → 0.244765, I → 0, C → 0.629363, D → 0.125873, N → 0.874127, A → 0.755235}

11.2.4. Reset options

ResetOptions[SIA] (* best to reset *)

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

11.3. Maugeri et al. (2020) using SEYCD on SARS-CoV-2 in China

Maugeri et al. (2020) (published May 5) present both an example of the classic SEYCD model and 
then do a study on China. The first however runs into problems of interpretation of the parameters.  
Their main result on China is that 92.9% of infections were not reported. Their assumption is that 
reported deaths “are less likely to be affected by reporting bias”, but, at least in Holland, many 
“normal” deaths that do not occur in a hospital are not tested on the virus and may still be caused 
by the virus (a phenomenon called “surplus death” compared to earlier years). 

NB. They also take α as “the infection rate and was assumed to be the inverse of the incubation 
period (i.e. the period from infection to the onset of symptoms”. Thus see our discussion above 
about the Kucharski et al. (2020) model. At first it seems that their model concerns symptoms but it 
appears that they concentrate on (unobserved) infections, estimated on death counts.

PlotLegendsSIA[SEYCD]

PM. A nice aspect of their model formulation is the use of μ = γ IFF and λ = γ (1 - IFF), so that it is 
directly clear how to transform from the sCFF to the model (also when γ changes). 
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11.3.1. Their example: Set options, time horizon, run and plot 

This is only an example. Still, their example IFF = 0.2 = 20% still is remarkably high. When we run 
their example, then the other variables are okay but we cannot get the dead to their level. It is more 
likely that their example used a figure closer to 10%.
Our label Their label Value

α σ 0.3
β β 0.8
γ γ 0.2
φ μ 0.2

N[0] N 10 000
Seed 1

NqSeed = 10000;

SetOptions[SIA, Nqt0 → NqSeed, Seed → 1 (*not to forget*),

BetaSIA[] → 0.8, GammaSIA[] → 0.2 , AlphaSEYCD[] → 0.3, PhiSICD[] → 0.1 ]

{Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 10 000, Onset → 0, Seed → 1,

Yqt0 → 0, AlphaSEYCD() → 0.3, BetaSIA() → 0.8, GammaSIA() → 0.2, PhiSICD() → 0.1, R0() → Null}

SetOptions[SetDatabank, Databank → SEYCD]; (* for Explain *)

f0 = BetaSIA[]  GammaSIA[] /. Options[SIA] (*will be handy*)

4.

SEYCD[Run, Pr, Metalex, t, 100];

The variables are now available in levels and proportions.

SEYCD[Plot, 0, 100, PlotRange → All]
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11.3.2. Their finding on China: Set options, time horizon, run and plot 

The reported R0 = 2.43, β = 0.73 and γ = 0.28 do not fit (and their reference needs to be checked). It 
appears that γ has been fixed as a parameter and thus there should be no problem in dividing the 
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values. (If β and γ had been estimates, then the expectation of a ratio is not the same as the ratio of 
the expectations. This ratio is so important for the SI(EY)A(CD) model that it would be wise to 
include the restriction of sameness.)

There is the always awkward rounding of parameters. The authors give both γ and 1/γ values, but γ 
is rounded (and perhaps 1/γ originally was too). In practice it is useful to give six significant digits 
for all, and only round for the abstract or general discussion.

.19, 1  5.2, .28, 1  3.5


0.19 0.192308
0.28 0.285714



Interestingly, the authors comment (p6) about a sensitivity analysis that when γ = 0.1 then R0 = 4.07 
(which fits our choice of parameters in this notebook). They say that the results do not change 
much, but they do not mention the error or what “much” means. They also estimate an IFF of 1.5% 
(as in this notebook).
Our label Their label Value

R0 R0 2.43
α σ 0.19 (fixed as 1 / 5.2 days)
β β 0.73 (estimated)
γ γ 0.28 (fixed as 1 / 3.5 days)
φ μ 0.015 (estimated)
λ γ (1 - μ) 0.28 * (1 - 0.015)

N[0] N 10^9
Seed 1

NqSeed = 10^9;

SetOptions[SIA, Nqt0 → NqSeed, Seed → 1 (*not to forget*),

BetaSIA[] → .73, GammaSIA[] → 0.28 , AlphaSEYCD[] → 0.19, PhiSICD[] → 0.015 ]

{Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null,

Nqt0 → 1 000 000 000, Onset → 0, Seed → 1, Yqt0 → 0, AlphaSEYCD() → 0.19,

BetaSIA() → 0.73, GammaSIA() → 0.28, PhiSICD() → 0.015, R0() → Null}

f0 = BetaSIA[]  GammaSIA[] /. Options[SIA] (*will be handy*)

2.60714

SEYCD[Run, Pr, Metalres, t, 300];

The variables are now available in levels and proportions. Let us make a table for some points along 
the path.

tab = Table[t, {t, 0, 300, 100}];

res = SEYCD /@ tab;

TableForm[res // PopulationForm, TableHeadings → {tab, SEYCD[DataMold]},

TableSpacing → {1, 2}, TableAlignments → Right]

S E Y C D N I A

0 1.×109 1 0 0 0 1.×109 1 0

100 998.×106 680 847 308 088 606 897 9242 1.×109 988 935 616 139

200 95.4×106 1.62×106 1.82×106 888.×106 13.5×106 986.×106 3.43×106 901.×106

300 94.3×106 22 25 892.×106 13.6×106 986.×106 47 906.×106
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Remarkably, the authors do not present a plot of the model with these parameters for China, but 
we can do so. It is sobering that the numbers on the right hand axis have a stepsize of 100 million 
persons. 

SEYCD[Plot, 0, 300, PlotRange → All]
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The authors do not provide other outcomes. The limiting values are rather clear from above figures 
and plot. If unhindered, there would have been 13.6 million deaths per billion inhabitants.

SEYCD[Limit] // Explain

{S → 0.0942981, E → 0, Y → 0, C → 0.892116, D → 0.0135855, N → 0.986414, I → 0, A → 0.905702}

SEYCD[Limit] NqSeed // Explain

S → 9.42981×107, E → 0, Y → 0, C → 8.92116×108,

D → 1.35855×107, N → 9.86414×108, I → 0, A → 9.05702×108

The authors report in their figure 4 that February 2 had a death toll of 300, also right on the esti-
mated model path. We can determine the time when this happened, and calculate back to the date 
of onset.

FindTime[Dq[t] ⩵ 300, {t, 10, 100}]

75.5335

This would be the moment when patient 0 occurred.

DayPlus[{2020, 2, 2}, -Round[TheFormer]]

Day: Mon 18 Nov 2019
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11.3.3. Reset options

ResetOptions[SIA] (* best to reset *)

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

11.4. Kucharski et al. (2020), with use in the “epidemic calculator” by Goh 
(2020) 

Kucharski et al. (2020), now published in The Lancet Infectious Diseases, was used by Goh (2020) for 
basic values in his “epidemic calculator”. The following tries to use the same parameters which Goh 
presents as defaults, May 14 2020. It is easy to just plug in the parameters, but it is a challenge to 
interprete them. The Kucharski et al. (2020) paper namely looks at symptomatic cases, which 
causes questions on the asymptomatic cases. This has been discussed above in section 10.7, and 
here we merely plug in the parameters and reproduce the results (with margins of error) without 
further discussion.

Let us set the plot colours and legends to symptoms lest we forget this later on.

PlotLegendsSIA["Symptoms"]

11.4.1. Goh’s parameters on SEIRD or SI(EY)A(CD) itself

For us, the relevant parameters given by Goh are:

R0 = 2.2
Tincubation = 5.2 days
Tinfectious = 2.9 days
Case fatality rate = 2% (actually the symptomatic Case Fatality Factor, sCFF)

11.4.2. Names
Our label Their label Value

N[0] Population 7 × 10^6
R0 R0 2.2
β R0 * γ
γ 1 / Tinf 1 / 2.9
α 1 / Tinc 1 / 5.2
φ sCFF 0.02

Seed Initial Inf 1
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11.4.3. Set options, time horizon, run and plot 

NqSeed = 7 × 10^6;

SetOptionsSIA, Nqt0 → NqSeed, Seed → 1 (*not to forget*),

BetaSIA[] → 2.2  2.9 ,

GammaSIA[] → 1  2.9,

AlphaSEYCD[] → 1  5.2,

(* remarkably long: not latency but concerns incubation to symptoms *)

PhiSICD[] → 0.02 

{Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null,

Nqt0 → 7 000 000, Onset → 0, Seed → 1, Yqt0 → 0, AlphaSEYCD() → 0.192308,

BetaSIA() → 0.758621, GammaSIA() → 0.344828, PhiSICD() → 0.02, R0() → Null}

SetOptions[SetDatabank, Databank → SEYCD]; (* for Explain *)

f0 = BetaSIA[]  GammaSIA[] /. Options[SIA] (*will be handy*)

2.2

SEYCD[Run, Pr, KetalandGoh, t, 250];

The variables are now available in levels and proportions.

The Goh calculator doesn’t run beyond day 218 and restricts the vertical axis to about 2 million. We 
find the top around day 130, like in his plot. Observe that the high α causes that his “Exposed” are 
now higher than the “Infectious”, or rather that the “Incubating” are higher than the “Symptoma-
tic”. Goh has the time of the first death at day 41. For us:

FindTime[1 == Dq[t], {t, 10, 50}]

35.3905

It would be wrong to reproduce Goh’s legend (i.e. use SI(EY)A(CD) labels while it concerns 
symptoms).
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SEYCDPlot, 0, 218, PlotRange → 0, 2  7
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11.4.4. Numerical outcomes from reading the graph 

Goh’s numerical outcomes on day 218 can be read from the graph:

Goh218 = {Sq → 1 095 195, Eq → 101, Yq → 100, Cq → 5 701 049,

Dq → 111 316, Nq → 7 × 10^6 - 111 316, Iq → 101 + 100, Aq → 5 904604}

{Sq → 1 095 195, Eq → 101, Yq → 100, Cq → 5 701 049,

Dq → 111 316, Nq → 6 888 684, Iq → 201, Aq → 5 904 604}

This compartments add up to the population.

{7 × 10^6, "=?=", Sq + Iq + Aq} /. Goh218

{7 000 000, =?=, 7 000 000}

There is the separate group of hospitalised.

{7 × 10^6, "=?=", Sq + Eq + Yq + Cq + Dq, "hospital" → 85 033} /. Goh218

{7 000 000, =?=, 6 907 761, hospital → 85 033}

{Aq, "=?=", Cq + Dq, "hospital" → 85 033} /. Goh218

{5 904 604, =?=, 5 812 365, hospital → 85 033}

Our outcomes are comparable though.

res = SEYCD[218] // Explain

S → 1.09423×106, E → 429.572, Y → 336.57, C → 5.7869×106,

D → 118 100., N → 6.8819×106, I → 766.141, A → 5.905×106

For direct comparison:
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SetDatabank[SEYCD[DataMold], {Last /@ Goh218, res}, anylabel] ;

ShowData[]

1 2

S 1 095 195 1.09423×106

E 101 429.572
Y 100 336.57
C 5 701 049 5.7869×106

D 111 316 118 100.
N 6 888 684 6.8819×106

I 201 766.141
A 5 904 604 5.905×106

11.4.5. Goh’s parameters on hospitalisation

Goh’s model also contains a part on hospitalisation that is not immediately relevant here (but later 
would be). However, this also involves mortality. Let us quote his explanation on this part:

“Model Details. The clinical dynamics in this model are an elaboration on SEIR that simulates the 
disease’s progression at a higher resolution, subdividing I, R into mild (patients who recover with-
out the need for hospitalization), moderate (patients who require hospitalization but survive) and 
fatal (patients who require hospitalization and do not survive). Each of these variables follows its 
own trajectory to the final outcome, and the sum of these compartments add up to the values 
predicted by SEIR. Please refer to the source code for details. Note that we assume, for simplicity, 
that all fatalities come from hospitals, and that all fatal cases are admitted to hospitals immedi-
ately after the infectious period.”

Thus there are mild (80%, with a recovery time of 11.1 days) vs hospital (20%). The parameter “time 
from end of incubation to death” (32 days) would apparently include the 2.9 days infectious period 
and the 5 days time to hospitalisation. Does this assume that people can be 2.1 days symptomatic 
without being infectious ? There are reports (Gill (2020)) that people clear the virus but that the 
immune system starts attacking the own body. There are moderate and fatal patients (the latter 
apparently stay 27 = 32 - 5 days). The average of 28.6 days in the hospital seems to require that the 
moderate cases require longer to recover (the fatal cases might end faster).

Overall, we reproduce the SI(EY)A(CD) (symptoms) part, and we did not look at the hospitalisation 
part.

11.4.6. Reset options

ResetOptions[SIA] (* best to reset *)

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

PlotLegendsSIA[SEYCD]
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12. Intervention

Clear

SIA[Clear]

ResetOptions[SIA];

SetOptions[SetDatabank, Databank → SEYCDT]; (* for Explain *)

12.1. Introduction

A less challenging but tedious issue here concerns the plot colours and legends. When we plot two 
scenarios in the same graph, the colours and legends must allow for distinction. The routine PlotLeg-
endsSIA allows control of such. The Base scenario is plotted in dot-dashing, so that it remains 
somewhat vague in the background. The Alternative scenario is plotted in drawn lines because it 
has our new interest.

12.1.1. Keeping γ = 1/10 fixed

The discussion in sections 1.5 and 16.13 shows that γ is a tricky parameter and rather should not be 
used for modeling interventions in our current setup. Thus we keep γ = 0.1 fixed in all scenario’s.

12.2. Two methods

The Base scenario in SEYCD is without intervention and the Alternative scenario is with intervention. 
There are two ways to implement the Alternative model: 

(1) By use of a SEYCD model too, but starting at another moment than 0 while using the new parame-
ter values. This is discussed in Chapter 13.

(2) By use of the Mathematica WhenEvent feature to dynamically put the parameter change into the 
model. This method generates the SEYCDT “insert” variant for R0 and SEYCDB for β. It appears that 
this method is useful for estimation. Chapter 14 discusses the data. Estimation must deal with the 
death counts caused by parameters before and after the intervention, and it is useful to have these 
and the overlap available in one single run. Keeping γ fixed, then analytically there should be no 
difference in adapting β or R0. However, there appears to be the practical issue of “conditioning” in 
numerical estimation. This notebook and package have had these phases: (i) first estimating both β 
and γ like in the SEYCD setup, and discovering both that the problem likely was ill-conditioned and 
that γ caused weird effects, (ii) keep γ fixed and switch to using R0 because a larger sized parameter 
ought to improve the conditioning, but discovering that the numerical routines then converged on 
less interesting values than generated by the use of β, (iii) develop the graph shown in section 1.5.3 
how estimates depend upon additional assumptions on the day of onset, (iv) decide to keep both 
approaches available for users, with the suggestion that the use of β, with γ fixed, might still be 
best anyhow. Thus there are now SEYCDT for R0 and SEYCDB for β. Chapter 15 and the Introduction 

section 1.6 present findings with SEYCDT (nicely plotting values for R0), but the starting values for 
those estimation routines were originally found by using SEYCDB (Chapter 16). The routines use 
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FindMinimum (local) and NMinimize (wider) and not FindFit (yet). For our dataset, the use of confi-
dence intervals is out of proportion, and our discussion is only an introduction into the notions of 
intervention and estimation.

12.3. Interpretation of the estimation result

When the onset would be at Carnival February 23 2020 indeed, then the death count till May 20 can 
be explained by R0 = 5.7.  We have been using R0 = 4 throughout this notebook. This value of 4 
appears to better fit the assumption that the onset wasn’t at Carnival, February 23, but nine to ten 
days earlier, at Valentine’s Day, February 14. The FindMinimum and NMinimize routines do not give 
confidence intervals. However, we can check that the difference in outcomes is not so relevant.

Without an intervention, the death toll for R0 = 4 would be 255,000. For R0 = 5.7 it would be 260,000. 

"D" * NqSeed /. Explain[SICD[Limit, BetaSIA[] → 0.4], SICD]

255 825.

"D" * NqSeed /. Explain[SICD[Limit, BetaSIA[] → 0.57], SICD]

260 110.

The difference is remarkably small, and this has the theoretical reason already mentioned in the 
Introduction section 1.6, and shown with a graph: for values of R0 higher than 4, the limit value of 
the share of the acquitted does not change so much anymore. The compartment of the deceased is 
only a proportion of the acquitted. Let us plot directly for the deceased.

"D" * NqSeed /. Explain[SICD[Limit, BetaSIA[] → r0 GammaSIA[]], SICD] // Simplify

261 000. W-0.999994 ⅇ-1. r0 r0

r0
+ 261 000.

Plot[TheFormer, {r0, 1, 8}, AxesLabel → {"R0", "Deceased"},

PlotStyle → {{Dashed, Black}}, AxesOrigin → {0, 0}]
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12.2. Principles for parameters

The intervention - (of March 12-15 of a partial lockdown, with an implementation delay of 3 days till 
March 18 (day 24)) - caused a change in the pandemic parameters. The modeling exercise helps us 
to better understand the meaning of those parameters. 

This was discussed in the Introduction, section 1.4.6. Our base case has β = R0 γ = 4 / 10 = 0.4. Sup-
pose that an intervention on (self-) quarantine reduces the “real infectious period” from 10 to 5 
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days. So we may want to use a new value of γ = 1/5 = 0.2. However, this means that the number of 
acquitted cases rises much faster, and certainly around the day of intervention, and thus also the 
number of deaths contained in them. A simulation causes the paradoxical result of increased death 
in the short run. It might make the estimate look good because it reaches a lower limit indeed, but 
the effect in the short run is illogical. The underlying reason is that SI(EY)A(CD) modeling concerns 
the assignment to compartments, and does not model actual moments of death. For us it makes 
more sense now to regard γ as a normalisation parameter that allows comparison over applica-
tions. It suffices to modify β or R0. The choice is immaterial on content, but in practice estimation is 
influenced by the conditioning of the problem (sensitivity to the step size).

12.3. Principles for routines

Modeling of an intervention can be done in at least two ways. Let Base be the base scenario and 
Alternative be the intervention scenario. We assume that Base has a fully developed model and 
time trajectory.

12.3.1. Method 1. Using two full SEYCD models

The values of Base[tIntervention] at the moment of intervention can be stored, and Alternative[t] can 
be run with Onset → tIntervention, with new parameters and such starting values. This has the advan-
tage that the Options[SIA], when set to the new values of the intervention, also generate the appro-
priate top and limit values. This is the most elegant approach. The implementation below is straight-
forward, and actually only requires (i) a transfer from variable values of Base to starting values of 
Alternative, and (ii) the setting of the new parameter values and onset parameter.

However, this method also required the small computational trick, that the model specifies Nq[t0] = 
Nqt0 - Dqt0, slightly changing our standard interpretation of the option parameter Nqt0. The trick 
leaves unaffected that the ratio’s are still defined w.r.t. Nqt0.

PM. The current model implementation has D = φ A. Other models elsewhere use interdependent 
parameters, e.g. μ and λ that actually depend upon γ. One should take care not to change the 
underlying IFF. For interdependent parameters, the Options[SIA] (in other formats) should also be 
corrected from the moment of intervention onwards.

12.3.2. Method 2. A fast track with SEYCDT and SEYCDB inserts

Mathematica has the feature WhenEvent, such that a model with differential equations can be 
solved with discrete variables that can be changed at a particular moment. See ?WhenEvent and 
?DiscreteVariables. This gives a fast result without little administration at the moment of input. This 
setup seems useful for estimation of the effect on β and γ by an intervention. However, it causes 
additional administration when we want to determine the appropriate top and limit values in 
output, since those routines depend upon starting values. This approach is very elegant for estima-
tion but would be more cumbersome on those other issues. Its implementation has been done as 
follows:

(2.1) The SEYCDT equations have an insert of SEYCD with time-dependent R0[t] and GammaSIA[t], 
with the starting values taken from Options[SIA]. (We do not have a reason for an intervention on 

2020-06-15-Didactics-SIEYACD.nb     183



PhiSICD or AlphaSEYCD. For estimation, it appeared that our parameter φ  includes the non-hospi-
tal deaths while the data concern hospital deaths. The estimate would not be affected by a level 
difference.)

(2.2) Values on the day of intervention and its parameters are stated in the Options[Intervention]. 
Thus those are not in Options[SIA].

(2.3) After a call of SEYCDT[Run, Pr, arbitraryInterventionModelName, t, tmax] we can use the 
environment of SEYCD as usual. As said, this comes with the warning that values for the top and 
limit still use Options[SIA] and not the updated values of the new situation. A quick check is pro-
vided by the routine TopIq. 

(2.4) We can formulate SEYCDT[“RMSE”, ...] expressions of the Root Mean Squared Error (RMSE) of 
the model outcomes on Dq[t] and infection fatality statistics Drec[τ] (with different definition and 
moment of observation). We do not need a separate estimation routine yet but can call Mathemati-
ca’s FindMinimum and NMinimize (without extra’s on confidence intervals etcetera). 

NB. It appeared useful to also have a SEYCDB insert variant that uses BetaSIA[t] and GammaSIA[t]. 
It has the same structure. See Chapter 16.

12.3.3. Comparison of the methods

Both approaches require an administration of the values at the time of the intervention. Eventually 
we want to know about the top and limit values anyhow. Once we are used to method (1), it may 
tend to be as fast as (2).

However, when the intervention causes R0 < 1, then the actual use of routines for SIA appears to be 
rather disappointing. The infection peters out while most of our routines are focused on a developing 

infection. It may well be that the second method is more fruitful, since it facilitates such estimation. 

It remains an important insight that the lack of "interesting results" derives from the properties of 
the new parameters, and not from "some new model". When the old routines generate less interest-
ing outcomes, the routines still work and still are valid for the problem at hand: only the parame-
ters in the problem have changed. (Thus we need not be worried when there would be no interest-
ing outcomes, or when there are many warning messages about out-of-range values.)

13. Intervention using two full SEYCD models
Chapter 12 introduced the first method: this models an intervention by having two full SEYCD 
models.

Clear

SIA[Clear]

ResetOptions[SIA];

SetOptions[SetDatabank, Databank → SEYCD]; (* for Explain *)

13.1. Base case without intervention
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The base case will consist of the SEYCD model with the default parameters in the package, and 
discussed above. We repeat the calculation here without discussion. The only changes are: (a) A 
longer time horizon, to allow for later comparison. (b) A different legend to highlight that this is the 
base case. PM. The other runs will compare with this base case. Commonly, it suffices to compare 
with the plot. If one wishes to compare particular outcomes of variables, then it may be required to 
run the base case again. An advise is to remember this section number or copy the section to a 
separate “base” file.

PlotLegendsSIA[SEYCD, DotDashed] (* an alternative might be Dashed *)

ResetOptions[SIA]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

NqSeed = 17.4 × 10^6;

(* SetOptions[SIA, BetaSIA[] → .6, GammaSIA[] → .1] *)

SEYCD[Run, Pr, newModel, t, 250];

pbase = SEYCD[Plot, 0, 250]
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The values at day 24, the day of the intervention (including 3 days for implementation):

Explain[SEYCD[24], SEYCD]

S → 1.73741×107, E → 4777.44, Y → 14 660.4,

C → 6355.58, D → 96.7855, N → 1.73999×107, I → 19 437.8, A → 6452.37

13.2. Alternative case, with the intervention (SEYCD)

13.2.1. Choosing the intervention parameters

Below we will discuss that we will keep γ = 0.1 and select R0  = 0.99, so that the new β = 0.099. This 
suffices for now, and our focus is upon stitching two models and their runs together: the first run is 
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with the old parameters till t = 24, and the other run is from t = 24 with new parameters.

13.2.2. The model values at t = 24

For the intervention on day 24, the values of the variables of the Base scenario are important as 
starting variables for the new process. They must be transported into the Options[SIA], with the 
new values of β and γ, and the information that t = 24 has become the new Onset. 

SEYCDB[Intervention, 24, .099, .1]

{Seed → 4777.44, Yqt0 → 14 660.4, Cqt0 → 6355.58, Dqt0 → 96.7855,

Aqt0 → 6452.37, BetaSIA() → 0.099, GammaSIA() → 0.1, Onset → 24}

SetOptions[SIA, TheFormer]

Aqt0 → 6452.37, Cqt0 → 6355.58, DataMold → {S, I, A}, Dqt0 → 96.7855,

Iqt0 → Null, Nqt0 → 1.74×107, Onset → 24, Seed → 4777.44, Yqt0 → 14 660.4,

AlphaSEYCD() → 1., BetaSIA() → 0.099, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

Above routine on transferring the values of the variables uses the SEYCDB[DataMold], defined by 
using the names for the starting values. (Not used are Nqt0, Sqt0 and Iqt0.)

13.2.3. Running the Alternative model

The trick is that Options[SIA] has the Onset option. The default value is 0 so that the Base runs from 
t0 = 0. This value has now been set to 24, and the new model will run from t0 = 24.

The following uses standard SEYCD.

The model with the intervention uses the default plotting colours and legends (drawn lines).

PlotLegendsSIA[SEYCD]

(* intervention uses the default plotting colours and legends *)

We saved only the starting values of the variables and not the values of their derivatives. Mathemat-
ica calculates those anew, and gives a warning message. 

We can now run the model. At the day 24 of the intervention, the cumulative death count was 96. In 
the days after the intervention, there was still a rise of the death count because of people “in the 
pipeline”. By day 42, the statistically reported number of “deaths per day” apparently may have a 
peak value. However, the infection is not fully suppressed yet, with β = 0.099, and there will be new 
deaths also in the regime of (partial) lockdown.

SEYCD[Run, Pr, intModelFull, t, 250]; (* uses option Onset as t0 *)

Check that the model has the proper starting values and new parameters. 

intModelFull[t]

HoldSq′(t)  -5.68966×10-9 Sq(t) Yq(t), Eq′(t)  -1. Eq(t) - Sq′(t), Yq′(t)  1. Eq(t) - Aq′(t),

Aq′(t)  0.1 Yq(t), Dq(t)  0.015 Aq(t), Cq(t)  Aq(t) - Dq(t), Nq(t)  1.74×107 - Dq(t),

Iq(t)  Eq(t) + Yq(t), Nq(24)  1.73999×107, Sq(24)  1.73741×107, Eq(24)  4777.44,

Yq(24)  14 660.4, Cq(24)  6355.58, Dq(24)  96.7855, Aq(24)  6452.37, Iq(24)  19 437.8
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Explain[SEYCD[42], SEYCD] (* supposed top of "reported deaths per day" *)

S → 1.73432×107, E → 1713.13, Y → 17 338.6, C → 37 143.6,

D → 565.638, N → 1.73994×107, I → 19 051.7, A → 37 709.2

At first the following plot seems awkward, but, the intervention suppressed the infection, and thus 
there is hardly anything to see.

pintFull = SEYCD[Plot, 24, 250]
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After 250 days, the death toll has developed into some 5100. However, the daily number has been 
dropping and the cumulative figure has been flattening for a long while.

Explain[SEYCD[250], SEYCD]

S → 1.70473×107, E → 1107.8, Y → 11 389.4, C → 335 057.,

D → 5102.39, N → 1.73949×107, I → 12 497.2, A → 340 159.
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Show[pbase, pintFull]
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We see most activity around the day of the intervention. We can clearly see that two models have 
been stitched together. The period till day 24 only shows the base scenario with the dotted lines. 
From day 24 onwards there are also the default lines given by the intervention scenario. (The LHS 
plot range is so small that there are no vertical ticks.)
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Show[pbase, pintFull, PlotRange → {{20, 30}, {0, .002}}]

0 0.

Day

Susceptible

Exposed

Infectious

Cleared

Deceased

Population

Infected

Susceptible

Exposed

Infectious

Cleared

Deceased

Population

Infected

Show[pbase, pintFull, PlotRange → {{20, 150}, {0, .003}}]
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13.2.4. Use of default routines on top and limit
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The advantage of a full (Alternative) model is that the routines on top and limit can now use 
Options[SIA].

However, with R0 < 1, the infection peters out. The standard routines are mostly interesting for 
spreading infections instead, and for domains where the interpolating functions have been defined.

(1) For the limiting values, we see that new β would cause a death count of 4066 at the limit. How-
ever, we have to add the 96 dead from day 24 from the old regime.

Explain[SICD[Limit] * NqSeed, SICD]

S → 1.71289×107, I → 0., C → 267 051., D → 4066.77, N → 1.73959×107, A → 271 118.

(2) For the top, the standard formula is no use for R0  <  1. We might insert the share of the acquitted 
compartment at t = 24, but this doesn’t help much.

Ap[24]

0.000370826

SIA[Ip, Top, .99, Ap[24]]

SIA: The value of R0 = 0.99 must be above 1

{1.0101, -0.000319981, -0.00978103}

We might use NMaximize. However, the effect of the intervention is that the infections immediately 
start falling down from their value at t = 24.

NMaximize[Iq[t], t] // Quiet (* suppresses warning messages about ranges *)

{19 437.8, {t → 24.}}

Much of the same holds for the standard routine TforTopIq.

TforTopIq[] // Quiet

23.996

(3) For the 95% score of the limit values, there are two values, that both fall outside of our interpola-
tion range.  If we neglect the starting values, and assume that Sp = 1 and Ap = 0, then the routine 
looks for a value below t = 24. When we include the starting values from t = 24, then the routine 
looks for a value beyond t = 250.

TforAp95[Not, 0.99] // Quiet (* exclude starting values *)

23.9742

TforAp95[0.99] // Quiet(* standardly include starting values *)

666.21

13.2.5. Conclusion on the comparison of the Base versus Alternative model

The Base and Alternative models provide for models, runs, trajectories for the variables, plots, and 

routines for answering particular questions. They seem a relevant environment for applications of 
SI(EY)A(CD) issues. While these aspects are feasible, section 13.2.4 has indicated what is less feasi-
ble when the intervention forces R0 < 1.
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Let us now proceed with the question how to choose the intervention parameters, with the subse-
quent issue of estimation.

14. Data

14.1. Recorded death data

There is a distinction between the Dq[t] in the model and the recorded death figures Drec[τ]. The 
Dq in the model concern the end of their infectious period. The statistical records mention the 
actual day of dying. This can include a longer period in the hospital, with effective quarantine. Thus 
the recorded days are not directly useful for measuring the end of the infectious period. 

14.2. Back-tracing in linear manner

Assume that both t and τ are measured from the day of onset. The day of death τ follows the day t 

of the end of the infectious period with some constant delay plus some distribution for the duration 
of the death-bed. Currently we have no other indication for the latter duration other than the 
distance τ - t itself. In formula: τ = t + constant + slope (τ - t) with constant 0 and slope 1. However, 
this inspires the approach to back-trace τ to a value t in the model as t = constant + slope τ, for 
some estimated constant and slope values. The constant would be negative (and cannot be more 
negative than the period of the first death). The slope would be below 1. We can try some values 
below, and can include the parameters in the estimation.

14.3. The data, and elimination of the presumed onset

We model the  (partial) lockdown by the Dutch government on March 15 2020. Allowing for a delay 
of some days, the lockdown became effective on March 18, day 24. We can model this by different 
values for both β and γ. 

By April 5 (Day 42) we see a top of the number of recorded deaths per day (not shown here). The 
cumulated death count then is 1766,  and it continues to rise to 5748 by May 20 (Day 87), though in 
ever lower values of deaths per day. The deaths in the weeks immediately following day 24 have 
been caused by the infections before. If we assume that 3000 cases were in the pipeline under the 
old values of β and γ, then the other 3000 cases on May 20 must come from the new regime of the 
lockdown. Even if the new R0 < 1, there will still be some deaths to reckon with, given the many 
(asymptomatic) infectious units still available in the population.
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PlotLine[Take /. Options[SEYCDT],

AxesLabel → {"Day\nsince\nonset", "Obs. Cum. Deceased"}]
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These are very noisy observations: (i) GP's and their patients have become much more reluctant to 
have patients go to the hospital and ICU, because they have learned more about survival options, 
and about the possibility that one could die in an unconscious state in an ICU bed without contact 
with family. (ii) There is the notion of “surplus deaths” compared to the level in normal years. There 
is still no testing of deaths in general, and if the pandemic proceeds then the share of untested 

infection related deaths will first increase and then, when more testing is done, go down again. (iii) 
It is dubious to assume that we can neglect "normal deaths" when normal treatment has collapsed 
because of this pandemic, though it is correct that these do not fall under the Infection Fatality 

Factor as such.

Given this noise, and that estimation will be slower when we include all points, we do not take all 
available data, but select a few points that allow a rough reproduction of the shape of the curve. 
Some 16 points including onset appear to be enough.

Some example dates and values are the following.

{onset = {2020, 02, 23};

DayCount[onset, {2020, 03, 18}],

DayCount[onset, {2020, 03, 25}],

DayCount[onset, {2020, 04, 05}],

DayCount[onset, {2020, 05, 20}]}

{24, 31, 42, 87}

Counting from the presumed day of onset, the following are our data, consisting of #day and #Drec. 
The element with zero deaths will not be included in the estimation, and must be removed. We 
consider days before the recorded days of death, but we cannot look before 0, because the interpo-
lation starts at 0. 
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Take /. Options[SEYCDT]

0 0
12 1
21 8
24 58
31 356
38 1173
42 1766
51 2945
58 3916
67 4795
71 5082
76 5422
79 5510
83 5670
86 5715
87 5748

SEYCDT[Options, Update, Rest]; (* remove the zero date of onset *)

Length /. Options[SEYCDT] (* the number of our data points *)

15

14.4. Comparison with the data

Some 6000 deaths in May compares favourably to the 250,000 deaths that could have occurred. Let 
us compare the recorded deaths to what would have happened without an intervention. 

PM. For comparison, we need to run the base scenario again. This is also useful for the later exercise 
on the ProductLog.

ResetOptions[SIA] ; SEYCD[Run, Pr, newModel, t, 250];

The following plot uses the routine SEYCDT[PlotLine, ...] which takes the onset date from Options[S-
EYCDT], which is regarded as Day 0.

SEYCDT[PlotLine, PlotLabel → "Model without intervention"]

(* same blue line as above, max 6000 *)
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15. Intervention and estimation, using SEYCDT

15.1. Introduction

This chapter has the same structure as the later Chapter 16 on SEYCDB. The only difference is the 
practical problem of numerical estimation with an ill-conditioned problem. After considering both 
approaches, my impression for the current setup is that using β actually is a bit better than using 
R0, but this impression may be caused by that I originally started with β. 

In retrospect, we should better take account of the fact that the data are discrete and defined per 

day. Thus we could make a grid of days for the “actual onset before the chosen onset” and the 
“constant in the back-trace”, and estimate the continuous parameters for the separate values in 
the grid. This ought to reduce the problems that we now have with the conditioning. Then, perhaps 
with more data and a better specification for the back-tracing, we might used FindFit to even 
consider confidence intervals. But we are oriented at didactics now and not at the best estimate (on 
dubious data).

15.2. Find the intervention parameters for SEYCDT

The recorded cumulated number of deaths gives us important information. The curve is bending 
towards some limiting value. This provides information about the implied R0. Let us assume that 
the death toll for the remainder of the year moves gradually to 7000. Assume that 7000 - x deaths 
would be attributed to the new regime, assuming a value of R0 < 1, and x are still accountable to the 
old regime. For the new limit value, the “starting values” at day 24 are important. We have the 
ProductLog rule for the limiting value. Let us substitute an unknown R0 and the values of the vari-
ables at day 24 of the intervention, and assume that γ = 1/10 remains the same. (This requires that 
the Base model in section 13.1 has run.)

startvalues = SEYCDT[Intervention, 24, f0, .1]

{Seed → 4777.44, Yqt0 → 14 660.4, Cqt0 → 6355.58, Dqt0 → 96.7855,

Aqt0 → 6452.37, R0() → f0, GammaSIA() → 0.1, BetaSIA() → 0.1 f0, Onset → 24}

The death toll that has already occurred or is in the pipeline is:

Dqt0 + PhiSICD[] Seed + Yqt0 /. startvalues /. Options[SIA]

388.353

In the SICD[Limit] list, the Dp are in the 4th position. The limiting value applies to the surplus 
deaths, given the startvalues. Let us include a number x that can also be attributed to the Base 
case, above to the latter pipeline (which changes above notion of x).

assign[x_] =

7000 - TheFormer - x  NqSeed ⩵ SICD[Limit, Sequence @@ startvalues][[4]]

5.74713×10-8 (6611.65 - x) 

1. W-0.999355 ⅇ-0.999629 f0 f0

f0
+

0.985 log-
1.00065 W-0.999355 ⅇ-0.999629 f0 f0

f0


f0
+ 0.999635
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For x = 0, the R0 of the new regime would be slightly above 1.

FindRoot[assign[0], {f0, 1}]

{f0 → 1.00207}

It appears that the idea of assigning a death toll to a regime is somewhat simplistic. A clearcut 
number is the recorded death toll and the IFF applied to the already infected. What happens after 
the intervention is not only influenced by the original situation but also by the intervention. We may 
make an arbitrary choice along the following contour. In the end, it are the practical measures that 
determine the β and γ of the new regime. For our exercise, a solution might be to say that x / 2 is 
caused by the old regime and x / 2 by the new regime. Or it might be fairer to say that most deaths 
still apply to the new regime because it will exist for a much longer period. At this stage, all theory is 
arbitrary, and it suffices to take R0 = .99.

r0fromx[x_] := f0 /. FindRoot[assign[x], {f0, 1}]

newR0 ⩵ r0fromx6612  2

newR0  0.98423

Plot[r0fromx[x], {x, 0, 7000},

AxesLabel → {"x deaths\ncaused by\nold regime", "New R0"}, AxesOrigin → {0, 0}]
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A consideration may be that 1/γ would be shorter because of self-quarantine. However, a higher 
value of γ also means a faster development of the acquitted, and thus also a surge of the number of 
deaths in the period just after the intervention. This is illogical. Gamma is best understood as a 
normalisation constant, and we keep it the same. The whole burden of change falls onto β.

SetOptions[Intervention, Time[Intervention] → 24, R0[Intervention] → .99,

BetaSIA[Intervention] → .99 * .1, GammaSIA[Intervention] → .1]

{Time(Intervention) → 24, R0(Intervention) → 0.99,

BetaSIA(Intervention) → 0.099, GammaSIA(Intervention) → 0.1}

15.3. Intervention at t = 24, using SEYCDT

PlotLegendsSIA[SEYCD]

(* intervention uses the default plotting colours and legends *)
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NqSeed = 17.4 × 10^6;

ResetOptions[SIA] (* not uninmportant *)

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

The equations for SEYCDT use R0[] instead of BetaSIA[]. The first reason is conceptually, that we are 
effectively estimating the new reproductive factor when we keep GammaSIA[] constant. The sec-
ond reason is that the estimation relations appear to be a bit ill-conditioned, whence it seems 
better to use a parameter that is ten times larger. 

SetOptions[SIA, R0[] → 4]; (* value before intervention *)

Options[Intervention] (* set above *)

{Time(Intervention) → 24, R0(Intervention) → 0.99,

BetaSIA(Intervention) → 0.099, GammaSIA(Intervention) → 0.1}

See above how this routine could be done in steps.

SEYCDT[Run, Pr, intModel, t, 250]; (* longer period,

but in estimation shorter is faster *)

intModel[t] (* notice the WhenEvent statement *)

HoldSq′(t)  -5.74713×10-8 GammaSIA(t) R0(t) Sq(t) Yq(t), Eq′(t)  -1. Eq(t) - Sq′(t),

Yq′(t)  1. Eq(t) - Aq′(t), Aq′(t)  GammaSIA(t) Yq(t), Dq(t)  0.015 Aq(t),

Cq(t)  Aq(t) - Dq(t), Nq(t)  1.74×107 - Dq(t), Iq(t)  Eq(t) + Yq(t), Nq(0)  1.74×107,

Sq(0)  1.73999×107, Eq(0)  100, Yq(0)  0, Cq(0)  0, Dq(0)  0, Aq(0)  0, Iq(0)  100,

R0(0)  4, GammaSIA(0)  0.1, WhenEvent[t > 24, {R0(t) → 0.99, GammaSIA(t) → 0.1}]

The supposed top of “recorded deaths per day” was on day 42, with a cumulated total of 1766 
deaths. The run of the model of the intervention, see below, mentions 565 deaths. However, we 
must keep in mind that these death counts have different meanings. See the estimation below.

Explain[SEYCD[42], SEYCD] (* day 24: supposed top of "reported deaths per day" *)

S → 1.73432×107, E → 1713.13, Y → 17 338.6, C → 37 143.6,

D → 565.638, N → 1.73994×107, I → 19 051.7, A → 37 709.2

The most useful plot now might be the one on ICU beds.
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seicdplotoptionsICU = SEYCD[Plot, Options, ICU, PlotRange → {0, 10 000}];

Plot @@ {SEYCD[ICU, 1500, t], {t, 0, 150}, seicdplotoptionsICU}
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The values at the end of the 250 days are (some 5000 deaths and not 7000 yet):

Explain[SEYCD[250], SEYCD]

S → 1.70473×107, E → 1107.8, Y → 11 389.4, C → 335 057.,

D → 5102.39, N → 1.73949×107, I → 12 497.2, A → 340 159.

pintv = SEYCD[Plot, 0, 250]
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Combining the two plots of the base case and the intervention.
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Show[pbase, pintv]
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The following is around the day of the intervention, day 24, using a plotrange of 0.2% (no axes 
ticks). This is the same outcome as the separate running of the Base and Alternative scenario’s, 
except that the WhenEvent model allows drawn lines from day 0 too. 
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Show[pbase, pintv, PlotRange → {{20, 30}, {0, .002}}]
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15.4. Estimation: aim and result

For estimation we are interested in the new value of R0. For estimation it however appears to be 
better to also estimate the old value and the day of onset. The number of infected at the day of the 
intervention is not only determined by the old R0 but also by how long the infection has been raging.

The summary of our findings on estimation is as follows. The following graph gives the Root Mean 
Squared Error (RMSE) as a function of both the R0 before the intervention (R0-pre) and the possibil-
ity that the onset of infections happened some days earlier than Carnival, February 23 2020. It 
appears that our choice of R0 = 4 agrees with 9-10 days earlier: Valentine’s Day. With a higher R0 
then there is less need for an earlier onset. We can maintain the onset at Carnival, if R0-pre would 
be 5.7, and then have the same RMSE level as in other cases. In all these cases we maintained γ = 
0.1.
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In all such minimum combinations, we get a graph like below, on the fit of the model estimate of 
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the Dq[t] and the recorded death count Drec[τ]. The following gives the combination of R0-pre = 4 
and the required earlier onset of about 10 days (stated by Plus → 9.847). 
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In all such minimum combinations, the R0 after the intervention drops to about 0.5 (imposed lower 
boundary), and the value of deaths after 250 days is a bit above 7,000. 

15.5. Major routine: the definition of the error

Because of estimation we may restrict the time horizon to the available data.

tEst = 100.;

NqSeed = 17.4 × 10^6;

ResetOptions[SIA] (* not uninmportant *)

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

The equations for SEYCDT use R0[] instead of BetaSIA[]. The first reason is conceptually, that we are 
effectively estimating the new reproductive factor when we keep GammaSIA[] constant. The sec-
ond reason is that the estimation relations appear to be a bit ill-conditioned, whence it seems 
better to use a parameter that is ten times larger. 

SetOptions[SIA, R0[] → 4]; (* value before intervention *)

ResetOptions[SEYCDT];

SEYCDT[Options, Update, Rest]; (* remove the zero date of onset *)

SetOptions[Intervention, Time[Intervention] → 24, R0[Intervention] → .99,

BetaSIA[Intervention] → .99 * .1, GammaSIA[Intervention] → .1]

{Time(Intervention) → 24, R0(Intervention) → 0.99,

BetaSIA(Intervention) → 0.099, GammaSIA(Intervention) → 0.1}

The following is a major routine. The major step in estimation is the definition of the error. There-
after it is only a matter of minimising the error. The following runs the model with the stated inter-
vention parameters, at the day of intervention in Options[Intervention]. It also give the Root Mean 
Squared Error (RMSE) using the data in the Options[SEYCDT] (with the options Day and Count for 
the death counts).

The following sets R0 = 0.99 and keeps γ = 0.1. We set it now, but it will later be done by the estima-
tion routine.

200     2020-06-15-Didactics-SIEYACD.nb



SEYCDT["RMSE", intModel, .99, .1, {t, tEst}]

2869.6

intModel[t]

HoldSq′(t)  -5.74713×10-8 GammaSIA(t) R0(t) Sq(t) Yq(t), Eq′(t)  -1. Eq(t) - Sq′(t),

Yq′(t)  1. Eq(t) - Aq′(t), Aq′(t)  GammaSIA(t) Yq(t), Dq(t)  0.015 Aq(t),

Cq(t)  Aq(t) - Dq(t), Nq(t)  1.74×107 - Dq(t), Iq(t)  Eq(t) + Yq(t), Nq(0)  1.74×107,

Sq(0)  1.73999×107, Eq(0)  100, Yq(0)  0, Cq(0)  0, Dq(0)  0, Aq(0)  0, Iq(0)  100,

R0(0)  4, GammaSIA(0)  0.1, WhenEvent[t > 24, {R0(t) → 0.99, GammaSIA(t) → 0.1}]

The plots shows that the model fits the last weeks of March but it doesn’t explain the observed 
deaths in April and May. A possibility is that the pre-intervention R0 was much higher, but as stated, 
R0 = 4 already is high. We are drawn into an evaluation of the date of onset and the meaning of the 
dates of the death counts.

PM. The PlotLabel informs us of the values of the Constant and Slope in the Options[SEYCDT] about 
the relation between the recorded day of death τ and the end of the infectious period t. The value of 
Plus gives the number of days that should be added to the horizontal axis if we would take onset so 
many days earlier.

SEYCDT[PlotLine]
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15.6. Minimising the RMSE

Given this high RMSE, we may try to minimise it. We might consider that the death counts from the 
early period, say to day 35, are determined by the original R0 and γ, and then exclude these data, to 
estimate the new parameters. However, the SEYCDT model uses the WhenEvent feature and thus 
accurately manages the regime change. The problem does not reside with the Dq[t] that the model 
calculates. The true issue is that the observed death counts concern actual days of death, while the 
model requires the end of the infectious period. 

Thus, we must back-trace the death counts to an earlier moment in time. It is an option to extend 
the model, say with U' = υ D, with the hospital phase (u taken from ICU), like the Goh (2020) "epide-
mic calculator". At this point it seems more logical to work more directly with the data, if only to 
better grasp what the implications are.

The best approach would seem to be to allow the estimation routine to determine both model 
parameters and the time shift between Dq and the actually recorded deaths. It takes some care to 
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find the proper interpretation and minimum. We may consider to actually also estimate R0 and γ 
for the period before the intervention. Also, the assumption of the day of onset is only an 
assumption.

For example, consider a fixed back-tracing of 7 days and a proportional reduction of 80%. The first 
recorded death on day 12 then actually ended its infectious period at day -7 + 0.8 * 12 ≈ 3. We drop 
the first observation, which is the day of onset (with no death count). In above chart, the model 
looked like a good fit for the first weeks of March, but taking account of back-tracing shows that it 
would actually be a bad fit for the whole period.

Let us see how the error looks when we impose these changes. The error is large and there is still a 
wide gap between the model and the data.

ResetOptions[SEYCDT];

SEYCDT[Options, Update, Rest]; (* remove the zero date of onset *)

SetOptions[SEYCDT, Constant → -7, Slope → .8];

SEYCDT["RMSE", intModel, .99, .1, {t, tEst}]

(* uses both model output and the data values of the options *)

3310.02

SEYCDT[PlotLine]
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Taking advantage of some estimations not shown, it appears that the estimation routine has a 
tendency to take a positive constant in the back-tracing, instead of a negative one, as we actually 
required. However, our assumption of the onset may be wrong. Above graph shows that the model 
is still in the exponential phase and still far away from the slowing down towards peaking. Allowing 
a positive shift in the model actually means that the onset must have been earlier in the year. 

Let us use a positive constant as a proxy for an earlier date of onset. (Setting the value of Plus has 
no effect, since this option is controlled by the estimation routine on the onset, and we don’t do an 
estimation on onset yet.)

SetOptions[SEYCDT, Constant → 14];

SEYCDT["RMSE", intModel, .99, .1, {t, tEst}]

2883.9

This has a lower RMSE but the growth of infections in the model remains low due to the fixed 
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intervention date at “day 24”. When the onset was earlier in the year, then also the day number of 
intervention shifts ...

SEYCDT[PlotLine]
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15.7. Combined estimate of new onset, pre-intervention R0, intervention R0, 
and back-tracing

This subsection forms the core of the chapter. The following routine combines above separate 
statements. When we have a RMSE then we can apply FindMinimum and NMinimize to it.

15.7.1. Calculating RMSE given numerical parameter values

The following only calculates a RMSE given numerical parameter values. Let us assume that onset 
happened 14 days earlier. Let the pre-intervention R0 = 6 and the intervention value R0 = 0.99.

SEYCDT["RMSE", 14, -7, 0.8, intModel, R0, 6, 0.99, {t, tEst}]

157 155.

This overshoots, which gives confidence that an estimation should be able to find values in-
between.

Check that the model indeed has R0[0] == 6 and that the WhenEvent is at day 24 + 14 = 38.

intModel[t]

HoldSq′(t)  -5.74713×10-8 GammaSIA(t) R0(t) Sq(t) Yq(t), Eq′(t)  -1. Eq(t) - Sq′(t),

Yq′(t)  1. Eq(t) - Aq′(t), Aq′(t)  GammaSIA(t) Yq(t), Dq(t)  0.015 Aq(t),

Cq(t)  Aq(t) - Dq(t), Nq(t)  1.74×107 - Dq(t), Iq(t)  Eq(t) + Yq(t), Nq(0)  1.74×107,

Sq(0)  1.73999×107, Eq(0)  100, Yq(0)  0, Cq(0)  0, Dq(0)  0, Aq(0)  0, Iq(0)  100,

R0(0)  6, GammaSIA(0)  0.1, WhenEvent[t > 38, {R0(t) → 0.99, GammaSIA(t) → 0.1}]

15.7.2. FindMinimum on the RMSE

The following is somewhat involved: (i) we shift the onset and intervention, and (ii) we estimate R0 
before and after the intervention, and (iii) we relate the death counts to the infectious periods. 
Apparently it works nicely, but we lack information about confidence intervals. PM. Estimation time 
can be reduced by taking tmax = 100, which is the interval for which there are data. But it can be 
useful to project to t = 250.
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Unfortunately, FindMinimum is sensitive to starting values. The following takes advantage of earlier 
runs.

FindMinimum[SEYCDT["RMSE", onsetplus, c, s, intModel, R0, r0pre, r0, {t, 250}],

{{onsetplus, 7, 0, 21},

{c, -3, -4, 0}, {s, .75, .1, 1}, {r0pre, 4.37, 1., 6.}, {r0, 0.55, 0.5, 4.}}]

FindMinimum: The line search decreased the step size to within the tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances.

{75.1128, {onsetplus → 7.33732, c → -1.27676, s → 0.682958, r0pre → 4.36302, r0 → 0.509851}}

Observe that the model now uses the latter parameters.

intModel[t]

HoldSq′(t)  -5.74713×10-8 GammaSIA(t) R0(t) Sq(t) Yq(t), Eq′(t)  -1. Eq(t) - Sq′(t),

Yq′(t)  1. Eq(t) - Aq′(t), Aq′(t)  GammaSIA(t) Yq(t), Dq(t)  0.015 Aq(t), Cq(t)  Aq(t) - Dq(t),

Nq(t)  1.74×107 - Dq(t), Iq(t)  Eq(t) + Yq(t), Nq(0)  1.74×107, Sq(0)  1.73999×107,

Eq(0)  100, Yq(0)  0, Cq(0)  0, Dq(0)  0, Aq(0)  0, Iq(0)  100, R0(0)  4.36302,

GammaSIA(0)  0.1, WhenEvent[t > 31.3373, {R0(t) → 0.509851, GammaSIA(t) → 0.1}]

The death toll will rise to some 7000 over the course of the year.

Explain[SEYCD[250], SEYCD]

S → 1.693×107, E → 0.293306, Y → 5.62931, C → 462 981.,

D → 7050.47, N → 1.73929×107, I → 5.92262, A → 470 031.

Reading below chart requires the following explanation.

(a) The time axis below specifies that February 23 is day 0. This applies to the recorded death 
counts. 

(b) The value of option Plus gives above estimate that the day of onset was actually a week earlier. 
Thus the model started a week before t = 0 in the plot, and also the intervention was later.

(c) The back-tracing of the death counts to the end of the infectious period has used the formula t = 
constant + slope τ, with the stated values, with t the value in the model (using the plus value) and τ 
the recorded day since 2020-02-23 (thus without the plus value). Thus the Constant in below plot 
(6.06) is the value of Plus (7.33) + the value of the constant in the estimate (-1.27).

SEYCDT[PlotLine]
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15.7.3. Indication of lack of sensitivity to small changes

Above estimate of pre-intervention R0 = 4.4 gives us some worry about our choice of R0 = 4. In 
another run, not shown, a value was fixed with R0 = 4. For these values, the RMSE hardly changes 
and the plot and limit values remain quite the same.

SEYCDT["RMSE", 9.847, -3.5585, 0.754, intModel, R0, 4, 0.595, {t, 250}]

78.9544

SEYCDT[PlotLine]
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The implications towards later in the year:

Explain[SEYCD[250], SEYCD]

S → 1.69144×107, E → 1.92206, Y → 31.9096, C → 478 297.,

D → 7283.71, N → 1.73927×107, I → 33.8316, A → 485 581.

The conclusion seems warranted that onset in Holland was some 9-10 days before Carnival Febru-
ary 23, our earlier choice of the onset. Ah, yes, Valentine’s day, February 14. Potentially people 
returned to Holland to celebrate Valentine’s day.

15.7.4. FindMinimum with a condition

Let us fix onsetplus = 0, so that the onset was really at Carnival, and we want to know what R0 
would have been needed. For this, we use the possibility of a condition.

FindMinimum[{SEYCDT["RMSE", onsetplus, c, s, intModel, R0, r0pre, r0, {t, tEst}],

{onsetplus ⩵ 0} },

{{onsetplus, 7, 0, 21},

{c, -3, -4, 0}, {s, .75, .1, 1}, {r0pre, 5.7, 1, 6}, {r0, .55, .5, 4}}]

FindMinimum: Failed to converge to the requested accuracy or precision within 500 iterations.

{79.1202, {onsetplus → 0., c → -0.0000777267, s → 0.675223, r0pre → 5.68902, r0 → 0.517493}}
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SEYCDT[PlotLine]
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The implications towards later in the year are yet unclear since we used tEst = 100.

Explain[SEYCD[tEst], SEYCD]

S → 1.69319×107, E → 302.136, Y → 5716.88, C → 455 187.,

D → 6931.79, N → 1.73931×107, I → 6019.02, A → 462 119.

15.8. Variant of startvalues from 1 to 6

Mathematica’s FindMinimum has a known sensitivity to starting values.  We might also use NMini-
mize, that is more robust in this respect, but in this case it is helpful to see the various outcomes in 
fairly quick manner.

Check the sensitivity of FindMinimum to starting values, and that our choice based upon the litera-
ture on R0 ≈ 4 and 1/γ ≈ 10 was not unwise. A consideration is that the linear scheme for back-
tracing might influence the outcome too much, but this can only be tested when there would be 
relevant other schemes.
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Table[

FindMinimum[SEYCDT["RMSE", onsetplus, c, s, intModel, R0, r0pre, r0, {t, tEst}],

{{onsetplus, 7, 0, 21},

{c, -1, -4, 0}, {s, .75, .1, 1}, {r0pre, test, 1, 8}, {r0, 0.55, 0.5, 4}}],

{test, 1, 6, 1}]

FindMinimum: The point {7.01156, -0.996157, 1., 1.98066, 0.765377} is at the edge of the search region {0.1, 1.} in

coordinate 3 and the computed search direction points outside the region.

FindMinimum: The point {7.04332, -0.996187, 1., 2.6822, 0.751079} is at the edge of the search region {0.1, 1.} in

coordinate 3 and the computed search direction points outside the region.

FindMinimum: The point {7.04081, -0.996208, 1., 3.51968, 0.766233} is at the edge of the search region {0.1, 1.} in

coordinate 3 and the computed search direction points outside the region.

General : Further output of FindMinimum::reged will be suppressed during this calculation.

FindMinimum: The line search decreased the step size to within the tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances.

3905.02 {onsetplus → 7.01156, c → -0.996157, s → 1., r0pre → 1.98066, r0 → 0.765377}
3720.64 {onsetplus → 7.04332, c → -0.996187, s → 1., r0pre → 2.6822, r0 → 0.751079}
2613.12 {onsetplus → 7.04081, c → -0.996208, s → 1., r0pre → 3.51968, r0 → 0.766233}
100.349 {onsetplus → 7.0481, c → -1.00749, s → 0.707694, r0pre → 4.3179, r0 → 0.646773}
5250.47 {onsetplus → 6.98213, c → -1.00105, s → 0.68387, r0pre → 4.89226, r0 → 0.5}
39 281.4 {onsetplus → 6.97927, c → -1.00131, s → 0.670628, r0pre → 5.91791, r0 → 0.5}

15.9. NMinimize, but the problem is not so well-behaved

NMinimize would tend to give us a global minimum for well-behaved problems. The cell is locked 
because of the execution time. The parameter values and the outcome of the RMSE make us won-
der whether the problem is well-behaved.

ResetOptions[SEYCDT];

SEYCDT[Options, Update, Rest]; (* remove the zero date of onset *)

tEst = 100;

NMinimize[{

SEYCDT["RMSE", onsetplus, c, s, intModel, R0, r0pre, r0, {t, tEst}],

{c <= 0}},

{{onsetplus, 0, 21},

{c, -4, 0}, {s, .1, 1}, {r0pre, 1, 6}, {r0, .5, 4}}]

{81.825, {onsetplus → 8.56545, c → -1.86302, s → 0.710459, r0pre → 4.16219, r0 → 0.585631}}

Using the latter value of R0 before the intervention, we actually get a slightly lower outcome by 
using FindMinimum again.

FindMinimum[{SEYCDT["RMSE", onsetplus, c, s, intModel, R0, r0pre, r0, {t, tEst}],

{r0pre ⩵ 4.16, c <= 0}} ,

{{onsetplus, 8.56, 0, 21},

{c, -1.86, -4, 0}, {s, .71, .1, 1}, {r0pre, 4.16, 1, 6}, {r0, .586, .5, 4}}]

FindMinimum: Failed to converge to the requested accuracy or precision within 500 iterations.

{75.2685, {onsetplus → 8.76736, c → -2.77884, s → 0.722734, r0pre → 4.16, r0 → 0.537232}}
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15.10. The lowest value found

In the various runs, the following value was found to be the lowest. Given the other properties we 
cannot attach much value to this.

NMinimize[{SEYCDT["RMSE", onsetplus, c, s, intModel, R0, r0pre, r0, {t, 120}],

{c <= 0}},

{{onsetplus, 6.06359, 21},

{c, -.5141, 0}, {s, .665523, 1}, {r0pre, 4.55, 6}, {r0, .5, 4}}]

{74.9765, {onsetplus → 5.52779, c → -0.211321, s → 0.658037, r0pre → 4.63632, r0 → 0.492405}}

15.11. Contours

Let us plot some contours of combinations of the earlier onset and values of R0 before the interven-
tion. The accuracy and numbers of iterations can be reduced because we only wish to have a rough 
indication.

contour[rb_, op_] := contour[rb, op] =

Results[contour, rb, op] =

FindMinimum[{SEYCDT["RMSE", onsetplus, c, s, intModel, R0, r0pre, r0, {t, tEst}],

{r0pre ⩵ rb, onsetplus ⩵ op, c <= 0}},

{{onsetplus, 5, 0, 21},

{c, -3, -4, 0}, {s, .8, .1, 1},

{r0pre, 4, 1, 6}, {r0, 0.55, .5, 4}}, AccuracyGoal → 4,

MaxIterations → 100]

pnt = 4.;

listab[pnt] = {0, 4, 6, 9, 10, 11};

tab[pnt] = contour[pnt, #] & /@ listab[pnt]

FindMinimum: Failed to converge to the requested accuracy or precision within 100 iterations.

FindMinimum: Failed to converge to the requested accuracy or precision within 100 iterations.

FindMinimum: Failed to converge to the requested accuracy or precision within 100 iterations.

General : Further output of FindMinimum::cvmit will be suppressed during this calculation.

1084.92 {onsetplus → 0., c → -0.0000194853, s → 1., r0pre → 4., r0 → 1.45255}
499.929 {onsetplus → 4., c → -0.00116596, s → 0.999976, r0pre → 4., r0 → 1.15234}
294.125 {onsetplus → 6., c → -2.83313, s → 1., r0pre → 4., r0 → 0.987921}
114.08 {onsetplus → 9., c → -3.99999, s → 0.813062, r0pre → 4., r0 → 0.719199}

75.4312 {onsetplus → 10., c → -3.99984, s → 0.756323, r0pre → 4., r0 → 0.563462}

203.372 onsetplus → 11., c → -2.726×10-7, s → 0.593483, r0pre → 4., r0 → 0.5

pnt = 4.37;

listab[pnt] = {0, 4, 7, 9};

tab[pnt] = contour[pnt, #] & /@ listab[pnt]

FindMinimum: Failed to converge to the requested accuracy or precision within 100 iterations.

745.806 {onsetplus → 0., c → -0.0000335252, s → 0.999999, r0pre → 4.37, r0 → 1.27888}
232.16 {onsetplus → 4., c → -4., s → 0.981113, r0pre → 4.37, r0 → 0.918376}

75.5744 {onsetplus → 7., c → -2.85448, s → 0.733904, r0pre → 4.37, r0 → 0.55227}

690.91 onsetplus → 9., c → -2.1302×10-7, s → 0.489079, r0pre → 4.37, r0 → 0.5
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pnt = 4.55;

listab[pnt] = {0, 4, 5, 6, 7};

tab[pnt] = contour[pnt, #] & /@ listab[pnt]

FindMinimum: Failed to converge to the requested accuracy or precision within 100 iterations.

FindMinimum: Failed to converge to the requested accuracy or precision within 100 iterations.

570.787 {onsetplus → 0., c → -0.0000481244, s → 0.999999, r0pre → 4.55, r0 → 1.18818}
153.719 {onsetplus → 4., c → -3.99959, s → 0.881768, r0pre → 4.55, r0 → 0.808408}
93.0472 {onsetplus → 5., c → -3.99999, s → 0.807496, r0pre → 4.55, r0 → 0.672654}
75.1005 {onsetplus → 6., c → -0.884901, s → 0.677291, r0pre → 4.55, r0 → 0.510108}

452.897 onsetplus → 7., c → -2.36983×10-7, s → 0.547174, r0pre → 4.55, r0 → 0.5

pnt = 5.7;

listab[pnt] = {0, 1, 2};

tab[pnt] = contour[pnt, #] & /@ listab[pnt]

79.3334 {onsetplus → 0., c → -0.0000392834, s → 0.672531, r0pre → 5.7, r0 → 0.504915}

620.949 onsetplus → 1., c → -2.36358×10-7, s → 0.530617, r0pre → 5.7, r0 → 0.5

1093.48 onsetplus → 2., c → -2.06263×10-7, s → 0.439888, r0pre → 5.7, r0 → 0.5

ListLinePlot[{Legended[Transpose[{ listab[4.], First /@ tab[4.]}], "R0-pre = 4"],

Legended[Transpose[{ listab[4.37], First /@ tab[4.37]}], "R0-pre = 4.37"],

Legended[Transpose[{ listab[4.55] , First /@ tab[4.55]}], "R0-pre = 4.55"],

Legended[Transpose[{ listab[5.7] , First /@ tab[5.7]}], "R0-pre = 5.7"]

}, AxesLabel → {"Earlier onset\nbefore Feb 23", "RMSE"}]
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16. Intervention and estimation using SEYCDB

16.1. Introduction

This chapter has the same structure as Chapter 15 on SEYCDT. The only difference is the practical 
problem of numerical estimation with an ill-conditioned problem. After considering both 
approaches, my impression for the current setup is that using β actually is a bit better than using 
R0, but this impression may be caused by that I originally started with β. 

In retrospect, we should better take account of the fact that the data are discrete and defined per 

day. Thus we could make a grid of days for the “actual onset before the chosen onset” and the 
“constant in the back-trace”, and estimate the continuous parameters for the separate values in 
the grid. This ought to reduce the problems that we now have with the conditioning. Then, perhaps 
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with more data and a better specification for the back-tracing, we might used FindFit to even 
consider confidence intervals. But we are oriented at didactics now and not at the best estimate (on 
dubious data).

16.2. Find the intervention parameters for SEYCDB

The recorded cumulated number of deaths gives us important information. The curve is bending 
towards some limiting value. This provides information about the implied R0. Let us assume that 
the death toll for the remainder of the year moves gradually to 7000. Assume that 7000 - x deaths 
would be attributed to the new regime, assuming a value of R0 < 1, and x are still accountable to the 
old regime. For the new limit value, the “starting values” at day 24 are important. We have the 
ProductLog rule for the limiting value. Let us substitute an unknown R0 and the values of the vari-
ables at day 24 of the intervention, and assume that γ = 1/10 remains the same. (This requires that 
the Base model in section 13.1 has run.)

startvalues = SEYCDB[Intervention, 24, f0 * .1, .1]

{Seed → 4777.44, Yqt0 → 14 660.4, Cqt0 → 6355.58, Dqt0 → 96.7855,

Aqt0 → 6452.37, BetaSIA() → 0.1 f0, GammaSIA() → 0.1, Onset → 24}

The death toll that has already occurred or is in the pipeline is:

Dqt0 + PhiSICD[] Seed + Yqt0 /. startvalues /. Options[SIA]

388.353

In the SICD[Limit] list, the Dp are in the 4th position. The limiting value applies to the surplus 
deaths, given the startvalues. Let us include a number x that can also be attributed to the Base 
case, above to the latter pipeline (which changes above notion of x).

assign[x_] =

7000 - TheFormer - x  NqSeed ⩵ SICD[Limit, Sequence @@ startvalues][[4]]

5.74713×10-8 (6611.65 - x) 

1. W-0.999355 ⅇ-0.999629 f0 f0

f0
+

0.985 log-
1.00065 W-0.999355 ⅇ-0.999629 f0 f0

f0


f0
+ 0.999635

For x = 0, the R0 of the new regime would be slightly above 1.

FindRoot[assign[0], {f0, 1}]

{f0 → 1.00207}

It appears that the idea of assigning a death toll to a regime is somewhat simplistic. A clearcut 
number is the recorded death toll and the IFF applied to the already infected. What happens after 
the intervention is not only influenced by the original situation but also by the intervention. We may 
make an arbitrary choice along the following contour. In the end, it are the practical measures that 
determine the β and γ of the new regime. For our exercise, a solution might be to say that x / 2 is 
caused by the old regime and x / 2 by the new regime. Or it might be fairer to say that most deaths 
still apply to the new regime because it will exist for a much longer period. At this stage, all theory is 
arbitrary, and it suffices to take R0 = .99.

210     2020-06-15-Didactics-SIEYACD.nb



r0fromx[x_] := f0 /. FindRoot[assign[x], {f0, 1}]

newR0 ⩵ r0fromx6612  2

newR0  0.98423

Plot[r0fromx[x], {x, 0, 7000},

AxesLabel → {"x deaths\ncaused by\nold regime", "New R0"}, AxesOrigin → {0, 0}]

1000 2000 3000 4000 5000 6000 7000

x deaths
caused by
old regime

0.2

0.4

0.6

0.8

1.0

New R0

A consideration may be that 1/γ would be shorter because of self-quarantine. However, a higher 
value of γ also means a faster development of the acquitted, and thus also a surge of the number of 
deaths in the period just after the intervention. This is illogical. Gamma is best understood as a 
normalisation constant, and we keep it the same. The whole burden of change falls onto β.

SetOptions[Intervention, Time[Intervention] → 24, R0[Intervention] → .99,

BetaSIA[Intervention] → .99 * .1, GammaSIA[Intervention] → .1]

{Time(Intervention) → 24, R0(Intervention) → 0.99,

BetaSIA(Intervention) → 0.099, GammaSIA(Intervention) → 0.1}

16.3. Intervention at t = 24, using SEYCDB

For comparison to the base scenario, the latter plot (“pbase”) must have been produced in the 
above.

PlotLegendsSIA[SEYCD]

(* intervention uses the default plotting colours and legends *)

NqSeed = 17.4 × 10^6;

ResetOptions[SIA] (* not uninmportant *)

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

The equations for SEYCDB use BetaSIA[]. The pre-intervention β is the default provided in the 
options. The intervention parameters are entered in Options[Intervention] now.

Options[Intervention] (* set above *)

{Time(Intervention) → 24, R0(Intervention) → 0.99,

BetaSIA(Intervention) → 0.099, GammaSIA(Intervention) → 0.1}

See above how this routine could be done in steps.
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SEYCDB[Run, Pr, intModel, t, 250];

intModel[t] (* notice the WhenEvent statement *)

HoldSq′(t)  -5.74713×10-8 BetaSIA(t) Sq(t) Yq(t), Eq′(t)  -1. Eq(t) - Sq′(t),

Yq′(t)  1. Eq(t) - Aq′(t), Aq′(t)  GammaSIA(t) Yq(t), Dq(t)  0.015 Aq(t), Cq(t)  Aq(t) - Dq(t),

Nq(t)  1.74×107 - Dq(t), Iq(t)  Eq(t) + Yq(t), Nq(0)  1.74×107, Sq(0)  1.73999×107,

Eq(0)  100, Yq(0)  0, Cq(0)  0, Dq(0)  0, Aq(0)  0, Iq(0)  100, BetaSIA(0)  0.4,

GammaSIA(0)  0.1, WhenEvent[t > 24, {BetaSIA(t) → 0.099, GammaSIA(t) → 0.1}]

The values are now available as SEYCD[t] (and not as SEYCDB[t], that only includes the parameters).

The supposed top of “recorded deaths per day” was on day 42, with a cumulated total of 1766 
deaths. The run of the model of the intervention, see below, mentions 565 deaths. However, we 
must keep in mind that these death counts have different meanings. See the estimation below.

Explain[SEYCD[42], SEYCD] (* day 24: supposed top of "reported deaths per day" *)

S → 1.73432×107, E → 1713.13, Y → 17 338.6, C → 37 143.6,

D → 565.638, N → 1.73994×107, I → 19 051.7, A → 37 709.2

The most useful plot now might be the one on ICU beds.

seicdplotoptionsICU = SEYCD[Plot, Options, ICU, PlotRange → {0, 10 000}];

Plot @@ {SEYCD[ICU, 1500, t], {t, 0, 150}, seicdplotoptionsICU}
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The values at the end of the 250 days are (some 5000 deaths and not 7000 yet):

Explain[SEYCD[250], SEYCD]

S → 1.70473×107, E → 1107.8, Y → 11 389.4, C → 335 057.,

D → 5102.39, N → 1.73949×107, I → 12 497.2, A → 340 159.
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pintv = SEYCD[Plot, 0, 250]
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Combining the two plots of the base case and the intervention.

Show[pbase, pintv]
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The following is around the day of the intervention, day 24, using a plotrange of 0.2% (no axes 
ticks). This is the same outcome as the separate running of the Base and Alternative scenario’s, 
except that the WhenEvent model allows drawn lines from day 0 too. 
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Show[pbase, pintv, PlotRange → {{20, 30}, {0, .002}}]
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16.4. Estimation: aim and result

For estimation we are interested in the new value of β. This value however depends upon the old 
value, while the old value depends upon our choice of the day of onset.

The summary of our findings on estimation is as follows. The following graph gives the Root Mean 
Squared Error (RMSE) as a function of both the β before the intervention (β-pre) and the possibility 
that the onset of infections happened some days earlier than Carnival, February 23 2020. It appears 
that our choice of β = 0.4 agrees with 9-10 days earlier, Valentine’s Day. With a higher β then there is 
less need for an earlier onset. We can maintain the onset at Carnival, if β-pre would be 0.57, and 
then have the same RMSE level as in other cases. In all these cases we maintained γ = 0.1.
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Earlier onset
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β-pre = 0.4

β-pre = 0.437

β-pre = 0.455

β-pre = 0.57

In all such minimum combinations, we get a graph like below, on the fit of the model estimate of 
the Dq[t] and the recorded death count Drec[τ]. The following gives the combination of β-pre = 0.4 
and the required earlier onset of about 9-10 days. 
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In all such minimum combinations, the β after the intervention drops to about 0.05 (imposed lower 
boundary), and the value of deaths after 250 days is a bit above 7,000. 

16.5. Major routine: the definition of the error

Because of estimation we may restrict the time horizon to the available data.

tEst = 100.;

NqSeed = 17.4 × 10^6;

ResetOptions[SIA] (* not uninmportant *)

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.4, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

ResetOptions[SEYCDB]; (* difference with SEYCDT is only the datamold on BetaSIA[] *)

SEYCDB[Options, Update, Rest]; (* remove the zero date of onset *)

SetOptions[Intervention, Time[Intervention] → 24, R0[Intervention] → .99,

BetaSIA[Intervention] → .99 * .1, GammaSIA[Intervention] → .1]

{Time(Intervention) → 24, R0(Intervention) → 0.99,

BetaSIA(Intervention) → 0.099, GammaSIA(Intervention) → 0.1}

The following is a major routine. The major step in estimation is the definition of the error. There-
after it is only a matter of minimising the error. The following runs the model with the stated inter-
vention parameters, at the day of intervention in Options[Intervention]. It also give the Root Mean 
Squared Error (RMSE) using the data in the Options[SEYCDB] (with the options Day and Count for 
the death counts).

The following sets β = 0.099 and keeps γ = .1. 

SEYCDB["RMSE", intModel, .099, .1, {t, tEst}]

2869.6

The plots shows that the model fits the last weeks of March but it doesn’t explain the observed 
deaths in April and May. 

PM. The PlotLabel informs us of the values of the Constant and Slope in the Options[SEYCDB] about 
the relation between the recorded day of death τ and the end of the infectious period t. The value of 
Plus gives the number of days that should be added to the horizontal axis if we would take onset so 
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many days earlier.

SEYCDB[PlotLine]
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16.6. Minimising the RMSE

Given this high RMSE, we may try to minimise it. We might consider that the death counts from the 
early period are determined by the original β and γ, and then drop these data, to estimate the new 
parameters. However, the SEYCDB model uses the WhenEvent feature and thus accurately manages 
the regime change. The problem does not reside with the Dq[t] that the model calculates. The true 
issue is that the observed death counts concern actual days of death, while the model requires the 
end of the infectious period. 

Thus, we must back-trace the death counts to an earlier moment in time. It is an option to extend 
the model, say with U' = υ D, with the hospital phase (u taken from ICU), like the Goh (2020) "epide-
mic calculator". At this point it seems more logical to work directly with the data, if only to better 
grasp what the implications are.

The best approach would seem to be to allow the estimation routine to determine both model 
parameters and the time shift between Dq and the actually recorded deaths. It takes some care to 
find the proper interpretation and minimum. We may consider to actually also estimate β and γ for 
the period before the intervention. Also, the assumption of the day of onset is only an assumption.

For example, consider a fixed back-tracing of 7 days and a proportional reduction of 80%. The first 
recorded death on day 12 then actually ended its infectious period at day -7 + 0.8 * 12 ≈ 3. We drop 
the first observation, which is the day of onset (with no death count). In above chart, the model 
looked like a good fit for the first weeks of March, but taking account of back-tracing shows that it 
would actually be a bad fit for the whole period.

ResetOptions[SEYCDB];

SEYCDB[Options, Update, Rest]; (* remove the zero date of onset *)

SetOptions[SEYCDB, Constant → -7, Slope → .8];

SEYCDB["RMSE", intModel, .099, .1, {t, tEst}]

(* uses both model output and the data values of the options *)

3310.02
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SEYCDB[PlotLine]
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Taking advantage of some estimations not shown, it appears that the estimation routine has a 
tendency to take a positive constant in the back-tracing, instead of a negative one, as we actually 
required. However, our assumption of the onset may be wrong. Above graph shows that the model 
is still in the exponential phase and still far away from the slowing down towards peaking. Allowing 
a positive shift in the model actually means that the onset must have been earlier in the year. 

Let us use a positive constant as a proxy for an earlier date of onset. (Setting the value of Plus has 
no effect, since this option is controlled by the estimation routine, and we do not do an estimation 
on onset yet.)

SetOptions[SEYCDB, Constant → 14];

SEYCDB["RMSE", intModel, .099, .1, {t, tEst}]

2883.9

This has a lower RMSE but the growth of infections in the model remains low due to the fixed 
intervention date. When the onset was earlier in the year, then also the day number of intervention 
shifts.

SEYCDB[PlotLine]
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16.7. Combined estimate of new onset, pre-intervention beta, intervention 
beta, and back-tracing

This subsection forms the core of the chapter. The following routine combines above separate 

2020-06-15-Didactics-SIEYACD.nb     217



statements. When we have a RMSE then we can apply FindMinimum and NMinimize to it.

16.7.1. Calculating RMSE given numerical parameter values

The following only calculates a RMSE given numerical parameter values. Let us assume that onset 
happened 14 days earlier. Let the pre-intervention β be 0.6, thus F0 = 6.

SEYCDB["RMSE", 14, -7, 0.8, intModel, BetaSIA, 0.6, 0.099, {t, tEst}]

157 155.

This overshoots, which gives confidence that an estimation should be able to find values in-
between.

Check that the model indeed has BetaSIA[0] == 0.6 and that the WhenEvent is at day 24 + 14 = 38.

intModel[t]

HoldSq′(t)  -5.74713×10-8 BetaSIA(t) Sq(t) Yq(t), Eq′(t)  -1. Eq(t) - Sq′(t),

Yq′(t)  1. Eq(t) - Aq′(t), Aq′(t)  GammaSIA(t) Yq(t), Dq(t)  0.015 Aq(t), Cq(t)  Aq(t) - Dq(t),

Nq(t)  1.74×107 - Dq(t), Iq(t)  Eq(t) + Yq(t), Nq(0)  1.74×107, Sq(0)  1.73999×107,

Eq(0)  100, Yq(0)  0, Cq(0)  0, Dq(0)  0, Aq(0)  0, Iq(0)  100, BetaSIA(0)  0.6,

GammaSIA(0)  0.1, WhenEvent[t > 38, {BetaSIA(t) → 0.099, GammaSIA(t) → 0.1}]

16.7.2. FindMinimum on the RMSE

The following is somewhat involved: (i) we shift the onset and intervention, and (ii) we estimate β 
before and after the intervention, and (iii) we relate the death counts to the infectious periods. 
Apparently it works nicely, but we lack information about confidence intervals. PM. Estimation time 
can be reduced by taking tmax = 100, which is the interval for which there are data. But it can be 
useful to project to t = 250.

Unfortunately, FindMinimum is sensitive to starting values. The following takes advantage of earlier 
runs.

FindMinimum[SEYCDB["RMSE", onsetplus, c, s, intModel, BetaSIA, bpre, b, {t, 250}],

{{onsetplus, 7, 0, 21},

{c, -3, -4, 0}, {s, .8, .1, 1}, {bpre, .4, .1, .6}, {b, .1, .05, .4}}]

FindMinimum: The line search decreased the step size to within the tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances.

{75.6131, {onsetplus → 6.99788, c → -3.00216, s → 0.737404, bpre → 0.436991, b → 0.0551216}}

Observe that the model now uses the latter parameters.

intModel[t]

HoldSq′(t)  -5.74713×10-8 BetaSIA(t) Sq(t) Yq(t), Eq′(t)  -1. Eq(t) - Sq′(t),

Yq′(t)  1. Eq(t) - Aq′(t), Aq′(t)  GammaSIA(t) Yq(t), Dq(t)  0.015 Aq(t), Cq(t)  Aq(t) - Dq(t),

Nq(t)  1.74×107 - Dq(t), Iq(t)  Eq(t) + Yq(t), Nq(0)  1.74×107, Sq(0)  1.73999×107,

Eq(0)  100, Yq(0)  0, Cq(0)  0, Dq(0)  0, Aq(0)  0, Iq(0)  100, BetaSIA(0)  0.436991,

GammaSIA(0)  0.1, WhenEvent[t > 30.9979, {BetaSIA(t) → 0.0551216, GammaSIA(t) → 0.1}]
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The death toll will rise to some 7000 over the course of the year.

Explain[SEYCD[250], SEYCD]

S → 1.69283×107, E → 0.692471, Y → 12.3457,

C → 464 615., D → 7075.36, N → 1.73929×107, I → 13.0381, A → 471 691.

Reading below chart requires the following explanation.

(a) The time axis below specifies that February 23 is day 0. This applies to the recorded death 
counts. 

(b) The above estimate is that the day of onset was actually a week earlier, which is the day 0 in the 
model. This has been specified by the option Plus.

(c) The back-tracing of the death counts to the end of the infectious period has used the formula t = 
constant + slope τ, with the stated values, with t the value in the model (using the plus value) and τ 
the recorded day since 2020-02-23 (thus without the plus value). Thus the Constant in below plot is 
Plus + the c value in the estimate.

(c) The back-tracing of the death counts to the end of the infectious period has used the formula t = 
constant + slope τ, with the stated values, with t the value in the model (using the plus value) and τ 
the recorded day since 2020-02-23 (thus without the plus value). Thus the Constant in below plot 
(3.99) is the value of Plus (6.99) + the value of the constant in the estimate (-3.00).

SEYCDB[PlotLine]
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16.7.3. Indication of lack of sensitivity to small changes

Above estimate of pre-intervention β = 0.44 gives us some worry about our choice of β = 0.4. In 
another run, not shown, a value was fixed with β = 0.4. For these values, the RMSE hardly changes 
and the plot and limit values remain quite the same.

SEYCDB["RMSE", 9.847, -3.5585, 0.754, intModel, BetaSIA, 0.4, 0.0595, {t, 250}]

78.9544
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SEYCDB[PlotLine]
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The implications towards later in the year:

Explain[SEYCD[250], SEYCD]

S → 1.69144×107, E → 1.92206, Y → 31.9095, C → 478 297.,

D → 7283.71, N → 1.73927×107, I → 33.8316, A → 485 581.

The conclusion seems warranted that onset in Holland was some 7-10 days before Carnival Febru-
ary 23, our earlier choice of the onset. Ah, yes, Valentine’s day, February 14. Potentially people 
returned to Holland to celebrate Valentine’s day.

16.7.4. FindMinimum with a condition

Let us fix onsetplus = 0, so that the onset was really at Carnival, and we want to know what β would 
have been needed. For this, we use the possibility of a condition.

FindMinimum[{SEYCDB["RMSE", onsetplus, c, s, intModel, BetaSIA, bpre, b, {t, tEst}],

{onsetplus ⩵ 0} },

{{onsetplus, 7, 0, 21},

{c, -3, -4, 0}, {s, .8, .1, 1}, {bpre, .4, .1, 1}, {b, .1, .05, .4}}]

FindMinimum: Failed to converge to the requested accuracy or precision within 500 iterations.

{79.1203, {onsetplus → 0., c → -0.00015925, s → 0.675232, bpre → 0.568898, b → 0.0517535}}

SEYCDB[PlotLine]
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The implications towards later in the year:
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Explain[SEYCD[ tEst], SEYCD]

S → 1.69319×107, E → 302.238, Y → 5718.36,

C → 455 197., D → 6931.93, N → 1.73931×107, I → 6020.6, A → 462 129.

16.8. Variant of startvalues from 0.1 to 0.6

Mathematica’s FindMinimum has a known sensitivity to starting values.  We might also use NMini-
mize, that is more robust in this respect, but in this case it is helpful to see the various outcomes in 
fairly quick manner.

https://reference.wolfram.com/language/tutorial/ConstrainedOptimizationOverview.html

Check the sensitivity of FindMinimum to starting values, and that our choice of β around 0.40 based 
upon the literature on R0 ≈ 4 and 1/γ ≈ 10 was not unwise. A consideration is that the linear scheme 
for back-tracing might influence the outcome too much, but this can only be tested when there 
would be relevant other schemes.

Table[

FindMinimum[SEYCDB["RMSE", onsetplus, c, s, intModel, BetaSIA, bpre, b, {t, tEst}],

{{onsetplus, 7, 0, 21},

{c, -3, -4, 0}, {s, .8, .1, 1}, {bpre, test, .1, .8}, {b, .1, .05, .4}}],

{test, .1, .6, .1}]

FindMinimum: The point {6.99857, 0., 0.722138, 0.34779, 0.170131} is at the edge of the search region {-4., 0.} in

coordinate 2 and the computed search direction points outside the region.

FindMinimum: The point {7.15878, -4., 0.913819, 0.403589, 0.0876309} is at the edge of the search region {-4., 0.} in

coordinate 2 and the computed search direction points outside the region.

FindMinimum: The point {6.99538, -3.00005, 0.77177, 0.434057, 0.05} is at the edge of the search region {0.05, 0.4} in

coordinate 5 and the computed search direction points outside the region.

General : Further output of FindMinimum::reged will be suppressed during this calculation.

FindMinimum: The line search decreased the step size to within the tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances.

FindMinimum: The line search decreased the step size to within the tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances.

FindMinimum: The line search decreased the step size to within the tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances.

General : Further output of FindMinimum::lstol will be suppressed during this calculation.

1278.92 {onsetplus → 6.99857, c → 0., s → 0.722138, bpre → 0.34779, b → 0.170131}
204.389 {onsetplus → 7.15878, c → -4., s → 0.913819, bpre → 0.403589, b → 0.0876309}
280.552 {onsetplus → 6.99538, c → -3.00005, s → 0.77177, bpre → 0.434057, b → 0.05}
75.6135 {onsetplus → 6.99697, c → -3.00226, s → 0.737417, bpre → 0.437001, b → 0.0551245}
75.5908 {onsetplus → 7.06619, c → -3.0101, s → 0.737263, bpre → 0.436116, b → 0.0550712}
1159.75 {onsetplus → 6.96573, c → -3.00235, s → 0.558729, bpre → 0.424127, b → 0.146957}

16.9. NMinimize, but the problem is not so well-behaved

NMinimize would tend to give us a global minimum for well-behaved problems. The cell is locked 
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because of the execution time. The parameter values and the outcome of the RMSE make us won-
der whether the problem is well-behaved.

ResetOptions[SEYCDB];

SEYCDB[Options, Update, Rest]; (* remove the zero date of onset *)

tEst = 100;

NMinimize[SEYCDB["RMSE", onsetplus, c, s, intModel, BetaSIA, bpre, b, {t, tEst}],

{{onsetplus, 0, 21},

{c, -4, 0}, {s, .1, 1}, {bpre, .1, .6}, {b, .05, .4}}]

{75.3063, {onsetplus → 5.89458, c → -1.42644, s → 0.693891, bpre → 0.455377, b → 0.0521679}}

Using the latter value of β before the intervention, we actually get a slightly lower outcome by using 
FindMinimum again.

FindMinimum[{SEYCDB["RMSE", onsetplus, c, s, intModel, BetaSIA, bpre, b, {t, tEst}],

{bpre ⩵ 0.455} },

{{onsetplus, 7, 0, 21},

{c, -3, -4, 0}, {s, .8, .1, 1}, {bpre, .4, .1, .6}, {b, .1, .05, .4}}]

{75.0092, {onsetplus → 6.06359, c → -0.5141, s → 0.665523, bpre → 0.455, b → 0.0500001}}

16.10. The lowest value found

In the various runs, the overall lowest value was found by using SEYCDT. Given the other properties 
we cannot attach much value to this.

When we use the SEYCDT point but only using some first six digits, then the error is still a bit larger 
than said minimum.

SEYCDB["RMSE", 5.52779, -0.21132, .658057,

intModel, BetaSIA, .46363, .04944, {t, tEst}]

75.2173

However, NMinimize on SEYCDB using the latter starting point does not find the minimum as 
SEYCDT does (though the starting points are not the same since we now took SEYCDT’s somewhat 
rounded outcome).
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NMinimize[{SEYCDB["RMSE", onsetplus, c, s, intModel, BetaSIA, bpre, b, {t, tEst}],

{c <= 0}},

{{onsetplus, 5.52779, 21},

{c, -0.21132, 0}, {s, .658057, 1}, {bpre, .46363, .6}, {b, .04944, .4}}]

(*locked*)

InterpolatingFunction: Input value {102.829} lies outside the range of data in the interpolating function. Extrapolation will

be used.

InterpolatingFunction: Input value {105.803} lies outside the range of data in the interpolating function. Extrapolation will

be used.

InterpolatingFunction: Input value {106.794} lies outside the range of data in the interpolating function. Extrapolation will

be used.

General : Further output of InterpolatingFunction::dmval will be suppressed during this calculation.

{75.045, {onsetplus → 5.12303, c → -0.221474, s → 0.660199, bpre → 0.469651, b → 0.0495565}}

16.11. Contours

Let us plot some contours of combinations of the earlier onset and values of β before the interven-
tion. The accuracy and numbers of iterations can be reduced because we only wish to have a rough 
indication.

contour[bp_, op_] := contour[bp, op] =

Results[contour, bp, op] = FindMinimum[

{SEYCDB["RMSE", onsetplus, c, s, intModel, BetaSIA, bpre, b, {t, tEst}],

{bpre ⩵ bp, onsetplus ⩵ op}},

{{onsetplus, 5, 0, 21},

{c, -3, -4, 0}, {s, .8, .1, 1},

{bpre, .4, .1, .6}, {b, .1, .05, .4}}, AccuracyGoal → .4,

MaxIterations → 100]

listab[0.4] = {0, 4, 6, 9, 10, 11};

tab[0.4] = contour[.4, #] & /@ listab[0.4]

FindMinimum: Failed to converge to the requested accuracy or precision within 100 iterations.

FindMinimum: Failed to converge to the requested accuracy or precision within 100 iterations.

FindMinimum: Failed to converge to the requested accuracy or precision within 100 iterations.

General : Further output of FindMinimum::cvmit will be suppressed during this calculation.

1084.95 {onsetplus → 0., c → -0.000444557, s → 0.999989, bpre → 0.4, b → 0.145257}

499.869 onsetplus → 4., c → -3.83539×10-7, s → 1., bpre → 0.4, b → 0.115231

294.126 {onsetplus → 6., c → -2.8331, s → 0.999998, bpre → 0.4, b → 0.0987922}
114.08 {onsetplus → 9., c → -4., s → 0.813064, bpre → 0.4, b → 0.0719196}

75.4328 {onsetplus → 10., c → -3.99708, s → 0.756262, bpre → 0.4, b → 0.0563488}

203.372 onsetplus → 11., c → -2.73954×10-7, s → 0.593483, bpre → 0.4, b → 0.05

listab[0.437] = {0, 4, 7, 9};
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tab[0.437] = contour[.437, #] & /@ listab[0.437]

FindMinimum: Failed to converge to the requested accuracy or precision within 100 iterations.

745.804 onsetplus → 0., c → -9.25962×10-6, s → 1., bpre → 0.437, b → 0.127888

232.16 {onsetplus → 4., c → -4., s → 0.981114, bpre → 0.437, b → 0.0918376}
75.5744 {onsetplus → 7., c → -2.85448, s → 0.733904, bpre → 0.437, b → 0.055227}

690.91 onsetplus → 9., c → -2.13943×10-7, s → 0.489079, bpre → 0.437, b → 0.05

listab[0.455] = {0, 4, 5, 6, 7};

tab[0.455] = contour[.455, #] & /@ listab[0.455]

FindMinimum: Failed to converge to the requested accuracy or precision within 100 iterations.

570.784 {onsetplus → 0., c → -0.0000131116, s → 1., bpre → 0.455, b → 0.118818}
153.715 {onsetplus → 4., c → -4., s → 0.881781, bpre → 0.455, b → 0.0808401}
93.0471 {onsetplus → 5., c → -4., s → 0.807496, bpre → 0.455, b → 0.0672654}
75.1005 {onsetplus → 6., c → -0.884902, s → 0.677291, bpre → 0.455, b → 0.0510108}

452.897 onsetplus → 7., c → -2.37777×10-7, s → 0.547174, bpre → 0.455, b → 0.05

listab[0.57] = {0, 1, 2};

tab[0.57] = contour[.57, #] & /@ listab[0.57]

InterpolatingFunction: Input value {-1.92631} lies outside the range of data in the interpolating function. Extrapolation will

be used.

InterpolatingFunction: Input value {-0.954094} lies outside the range of data in the interpolating function. Extrapolation

will be used.

InterpolatingFunction: Input value {-0.630022} lies outside the range of data in the interpolating function. Extrapolation

will be used.

General : Further output of InterpolatingFunction::dmval will be suppressed during this calculation.

FindMinimum: Failed to converge to the requested accuracy or precision within 100 iterations.

79.3352 {onsetplus → 0., c → -0.000763437, s → 0.672546, bpre → 0.57, b → 0.0504912}

620.949 onsetplus → 1., c → -2.3739×10-7, s → 0.530617, bpre → 0.57, b → 0.05

1093.48 onsetplus → 2., c → -2.07552×10-7, s → 0.439888, bpre → 0.57, b → 0.05

ListLinePlot[{Legended[Transpose[{ listab[0.4], First /@ tab[0.4]}], "β-pre = 0.4"],

Legended[Transpose[{ listab[0.437], First /@ tab[0.437]}], "β-pre = 0.437"],

Legended[Transpose[{ listab[0.455] , First /@ tab[0.455]}], "β-pre = 0.455"],

Legended[Transpose[{ listab[0.57] , First /@ tab[0.57]}], "β-pre = 0.57"]

}, AxesLabel → {"Earlier onset\nbefore Feb 23", "RMSE"}]
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16.12. Earlier finding on the need to perhaps move the date of onset
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Above analysis has a clear summary in the first subsection of this chapter. Before we got there, 
there were some preliminary results, that caused us to think into that direction. It may be useful to 
maintain some of these earlier results.

The following two estimation runs do not move the day of onset, but they allow the constant in the 
back-tracing to have positive rather than negative values, which is an indication of earlier onset. 
The drawback is that the day of intervention remains fixed at 24. The error term appears to be ill-
conditioned. In the first run, the constant jumps from starting value 0 to the edge 20. In the second 
run, the constant hardly moves from the given startvalue 14. The infection still is in its exponential 
phase, even after the intervention. The new β still is relatively high, in order to meet with the 
number of deaths at the end of the observations. 

ResetOptions[SEYCDB]; SEYCDB[Options, Update, Rest];

FindMinimum[SEYCDB["RMSE", c, s, intModel, BetaSIA, b, {t, tEst}],

{{c, 0, -4, 20}, {s, .5, .1, 1}, {b, .05, .001, .4}}]

FindMinimum: The point {20., 0.433442, 0.238955} is at the edge of the search region {-4., 20.} in coordinate 1 and the

computed search direction points outside the region.

{1502.82, {c → 20., s → 0.433442, b → 0.238955}}

SEYCDB[PlotLine]
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FindMinimum[SEYCDB["RMSE", c, s, intModel, BetaSIA, b, {t, tEst}],

{{c, 14, -4, 20}, {s, .5, .1, 1}, {b, .05, .001, .4}}]

{725.838, {c → 14.0754, s → 1., b → 0.132167}}

SEYCDB[PlotLine]
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16.13. Post mortem on γ: intervention at t = 24 - variant

16.13.1. Why changing γ is tricky

In the Introduction section 1.5 it was argued that changing γ can be problematic. This also holds 
when estimating a new value following the intervention. The following shows why this is. 

We first set a base, now with β = 0.6 and γ = 0.1. Thus R0 = 6.

Subsequently we do an intervention with β = 0.4 and γ = 2. Thus R0 = 0.2.

16.13.2. Choosing base values with β = 0.6 and γ = 0.1

The SEYCD model discussed above will be the base case. We repeat the calculation here without 
discussion. The only changes are: (a) A longer time horizon, to allow later comparison. (b) A differ-
ent legend to highlight that this is the base case.

PlotLegendsSIA[SEYCD, DotDashed]

ResetOptions[SIA];

NqSeed = 17.4 × 10^6;

SetOptions[SIA, BetaSIA[] → .6, GammaSIA[] → .1]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.6, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

SEYCD[Run, Pr, newModel, t, 250];

pbase = SEYCD[Plot, 0, 250]
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16.13.3. Intervention

PlotLegendsSIA[SEYCD]

(* intervention uses the default plotting colours and legends *)
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NqSeed = 17.4 × 10^6;

SetOptions[SIA, Nqt0 → NqSeed]

Aqt0 → 0, Cqt0 → 0, DataMold → {S, I, A}, Dqt0 → 0, Iqt0 → Null, Nqt0 → 1.74×107, Onset → 0, Seed → 100,

Yqt0 → 0, AlphaSEYCD() → 1., BetaSIA() → 0.6, GammaSIA() → 0.1, PhiSICD() → 0.015, R0() → Null

SetOptions[Intervention, Time[Intervention] → 24,

BetaSIA[Intervention] → .4, GammaSIA[Intervention] → 2]

{Time(Intervention) → 24, R0(Intervention) → 0.99,

BetaSIA(Intervention) → 0.4, GammaSIA(Intervention) → 2}

SEYCDB[Run, Pr, intModel, t, 250];

intModel[t]

HoldSq′(t)  -5.74713×10-8 BetaSIA(t) Sq(t) Yq(t), Eq′(t)  -1. Eq(t) - Sq′(t),

Yq′(t)  1. Eq(t) - Aq′(t), Aq′(t)  GammaSIA(t) Yq(t), Dq(t)  0.015 Aq(t), Cq(t)  Aq(t) - Dq(t),

Nq(t)  1.74×107 - Dq(t), Iq(t)  Eq(t) + Yq(t), Nq(0)  1.74×107, Sq(0)  1.73999×107,

Eq(0)  100, Yq(0)  0, Cq(0)  0, Dq(0)  0, Aq(0)  0, Iq(0)  100, BetaSIA(0)  0.6,

GammaSIA(0)  0.1, WhenEvent[t > 24, {BetaSIA(t) → 0.4, GammaSIA(t) → 2}]

Explain[SEYCD[42], SEYCD] (* supposed top of "reported deaths per day" *)

S → 1.69412×107, E → 0.444803, Y → 0.342246,

C → 451 909., D → 6881.86, N → 1.73931×107, I → 0.787048, A → 458 791.

The most useful plot now might be the one on ICU beds.

seicdplotoptionsICU = SEYCD[Plot, Options, ICU, PlotRange → {0, 10 000}];

Plot @@ {SEYCD[ICU, 1500, t], {t, 0, 150}, seicdplotoptionsICU}
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The values at the end of the 250 days are:

Explain[SEYCD[250], SEYCD]

S → 1.69412×107, E → -3.20474×10-13, Y → -2.46583×10-13,

C → 451 910., D → 6881.88, N → 1.73931×107, I → -5.67057×10-13, A → 458 792.

2020-06-15-Didactics-SIEYACD.nb     227



pintv = SEYCD[Plot, 0, 250]
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Combining the two plots.

Show[pbase, pintv]
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This is around the day of the intervention, day 24, using a plotrange of 0.2% (no axes ticks).

The following to graphs show the problem. Because of γ = 2, there is a large wave from the infec-
tious Y into the acquitted A, and a fixed proportion of those are the deaths D. 

Thus, while the intervention is supposed to reduce the R0 from 6 to 0.2 and while the infectious 
period has been reduced from 10 days to 1/2 day, we see a surge of infections and deaths in the few 
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days after the intervention. However, what happens is that when the new infectious period has 
ended, the units are allocated to their respective compartments, and for the deaths there still is a 
longer personal path towards the actual day of dying. Thus we should keep in mind what the 
definitions are. Also, our estimate would be much influenced by how we have formulated the path 
for Dq[t] to Drec[τ] now. For out setup it is best to keep γ constant.

Show[pbase, pintv, PlotRange → {{20, 30}, {0, .002}}]
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Show[pbase, pintv, PlotRange → {{20, 30}, {0, .008}}]
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16.13.4. One of the earlier estimation efforts

The following includes γ and a condition that R0 = 0.99 as above, and we do not accept a β that is 
larger than in the pre-intervention period. This cell has been locked since it takes more than 500 
iterations.

FindMinimum[{SEYCDB["RMSE", c, s, intModel, b, g, {t, 250}],

{b < .99 g}}, {{c, -3, -4, 0}, {s, .5, .1, 1}, {b, .3, .001, .4}, {g, .2, .05, .4}}]

FindMinimum: Failed to converge to the requested accuracy or precision within 500 iterations.

981.421, c → -2.4521×10-6, s → 1., b → 0.396, g → 0.4

Thus it seemed a good idea to include back-tracing into the estimation, and the idea paid-off since 
we are now better aware of complications. It seems that we would also have to include the β from 
before the invention, and the date of onset, before we can properly explain the shape of the 
observed death count. We actually did so in the earlier section. 

Appendix A. Recall exponential decay, reliability, survival

A.1 Introduction

It will be useful to give a short review of survival, reliability analysis and event analyses. Analyses of 
these aspects are quite similar, but there are differences, for example w.r.t. (1) durations (ages) 
versus calendar time, (2) homogeneous or heterogenous populations (which matters for the denomi-
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nator). One might argue that these aspects differ so much from SI(EY)A(CD) modeling that an effort 
at comparison might be confusing. However, the meaning of an assumption would be better 
understood by looking at cases when the assumption does not apply. (Though, it is not argued 
here, that the best understanding of SI(EY)A(CD) is achieved by looking at all cases where its assump-
tions do not apply.) This appendix only discusses the Success vs Failure model in short.

A.2 Half-life and doubling period

For any growth process, it is useful to have this rule of thumb available.

Consider growth over a period p, for which the outcome at the beginning is a and and the outcome 
at the end is b. Let us assume that the growth process is (approximately) exponential. This means 
that we assume that a and b are on a curve f[t] = f[0] Exp[g t]. From this, we can find the starting 
value and the average growth rate. With this estimated growth rate, we can also determine the half-

life or doubling period, depending upon whether there is decay or growth. The values of double or 
half are only convenient. We might also take 10 times as much, or whatever. For example, with 
observation levels 23 and 56 that are 5 units of time apart:

HalfLife[23, 56., 5] (* default factor 2 *)

56.  23 ⅇ0.177971 time, Coefficient → 0.177971, Factor → 2,
1

2
, Period → 3.89471

HalfLife[23, 56., 5, 10] (* a different factor, here 10 *)

56.  23 ⅇ0.177971 time, Coefficient → 0.177971, Factor → 10,
1

10
, Period → 12.9379

In fact, for any factor h:

If f[t] = f[0] Exp[g t] then f[t] =  h f[0]  iff  t = Ln[h] / g.

For h = 2 there is the doubling time for Ln[2] / g. 

The half-life has Ln[1/2] / -g = Ln[2] / g too.

Ln[2] ≈ 0.70 and for percentage growth rates p% the rule 70 / p is used. 

The above can be done for any factor, e.g. 10 or 1/10 times as much.

? HalfLife

Symbol

HalfLife[a, b, t, factor:2] assumes that b/a = Exp[g t], or g = Log[b/a] / t. Given g, we can find the

halftime (g < 0) or doubling time (g > 0), or this actually for any factor as t = Log[factor] / g

A.3 Two compartments, one with exponential decay. Duration vs calendar 
time (stocks and flows)

Consider a Population with compartments Success versus Failure. Success has exponential decay. 

Failure thus grows, but its growth cannot be exponential growth as such. While this model is 
dynamic, there is a key difference between use of calendar time (decay or mortality by incidents 
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over time) or ages (e.g. mortality per age or by duration of disease). We will use the same symbol t 

whenever there is a fundamental similarity, but it is best to switch to age a or duration d or period p 

when the use of t might cause confusion.

In all cases we might work with factors or rates. Success can be modeled with factor 0 ≤ S ≤ 1 as s[t] 
= St = (1 - r)t, for the share in the population at time t and r the perunage decay rate. Thus also s[t] 
= Exp[Log[S] t] = Exp[Log[1 - r] t] = Exp[- λ t], with exponential failure rate λ = -Log[S] ≈ r  ≥ 0 in which 
the negative sign is used since 0 ≤ S ≤ 1. Recall that Log[1 - r] ≈ -r for small values of r, or Lim-
it[Log[1+r] / r, r → 0] = 1. Thus λ and r hardly differ but better be distinguished for accuracy. The 
growth rate of s[t] is dLog[St] / dt = d(t Log[S]) / dt = Log[S] = -λ, actually the rate of decay.

Failure has no constant factor like Success. Failure is just the opposite f[t] = 1 - s[t] = 1 - Exp[- λ t], so 
that s[t] + f[t] = 1. Observe that s[0] = 1 and f[0] = 0, and that Failure thus cannot grow exponentially 
from 0. A property is that f’[t] = -s’[t] = λ s[t].

The expected value of a moment of decay or the “mean time to failure” (MTTF) is μ = 1/λ, see below.

Success and Failure always intersect at the value s[t] = f[t] = 1/2. The involved t is the half-life, and 
regarded sometimes as more informative than the rate. We have St1/2 = 1/2. Using logarithms we find 
t1/2 = Log[2] / Log[S] = Log[2] / λ = μ Log[2]. This allows for quick calculation. With Log[2] ≈ 0.7, half-
life is about 70% of the mean, or the mean is about 1.4 of half-life. Failure doesn’t have a constant 
doubling time since it is not exponential.

The following plots for λ = -Log[S] = 0.25, so that μ = 1/λ = 4. There is little need to explain this, since 
it shows in the graph.

SuccessFailurePlot[.25 , E → False]
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A.4. Factors and rates

The reason to work with rates is twofold. The minor one is that it reduces clutter in derivatives. The 
main one is that the focus is on decay of success and growth of failure, which processes may be 
better grasped by rates per time. However, the use of factors cannot be avoided. Rates are not 
observed directly.  We only count events and measure lengths and durations, then turn these into 
factors, and then turn those into rates. Working with factors can sometimes be illuminating, also 
because they remind us where the rates come from.  
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For example, when we have two processes in sequence, then the joint success requires the two of 
them, which satisfies the logical "and" notion, which means multiplication. The joint success is s = 
s1s2 with λ = λ1 + λ2 and f = 1 - s = 1 - (1 - f1)(1 - f2). 

When we have two processes in parallel, then the whole system fails when both fail. Thus joint 

failure satisfies the logical "and" notion, so that f = f1f2 and s = 1 - (1 - s1)(1 - s2). The relation for λ is 
more involved. We can find this by looking at the mean durations. For example (1), with n units in 
parallel and each with same MTTF 1/λ, then the whole has a MTTF of 1/λ ∑i=1

n (1 / i) ≈ Log[n] / λ. If we 
were to increase n, then the rate of increase of the MTTF is 1/(nλ). For example (2), with two systems 
in parallel with different service times, then the joint MTTF is 1/λ1 +  1/λ2 -  1/(λ1 + λ2). 

FailurePr["ParallelMTTF", Identity, m, 2] ⩵ FailurePr["ParallelMTTF", m1, m2]

3 m

2
 -

1

1

m1
+ 1

m2

+ m1 + m2

TheFormer /. {m1 → m, m2 → m}

True

See https://reference.wolfram.com/language/ref/ReliabilityDistribution.html. PM. Within this 
approach it is advisable to speak about the rate of decay of success and the rate of growth of failure. 
Sometimes λ is called the failure rate, which is okay when there is no confusion, but it is only the 
rate of decay of success. The growth of failure is dLog[f[t]] / dt = f’[t] / f[t] = λ s[t] / f[t]. 

To translate SIA to the Success & Failure model, we regard I in SIA as the success that is decaying, 
and A as the failure that collects the decay. The rate of decay λ in the Success and Failure model 
links to the γ in SIA as the rate of decay of I.

For SICD, we have D = φ A. Thus here D = φ f[t] = φ (1 - s[t]). Thus D' = - φ s'[t] = -φ Log[S] s[t] = φ λ s[t]. 
The latter translates back to SIA again as D' = φ γ I, which is the formulation in the conventional 
format of SIA. 

SIA SIA S & F S & F
I A s[t] f[t]

A' = γ I f'[t] = -s'[t] = λs[t]
D = φA D = φf[t]

D' = φ γI D' = -φs'[t] = φ λs[t]

PM. The addition in SIA of A = C + D with A' = C' + D' = ((1 - φ ) γ + φ γ) I = γ I applies to the (additive) 
proportions in failure, and must not be confused with a multiplicative split of success s[t] and 
addition λ = λ1 + λ2 in the joint success. It is also possible to split I in proportions φ I and (1 - φ) I and 
have each decay with γ. (Some readers might not see this as acceptable without the first explana-
tion that D' = - φ s'[t] translates into D' = φ γ I.)

For SEYCD, the exposed E and infectious Y are in time sequence but not as a product of decay. Here, 
the model of queueing theory with two sequential service units applies (we add the periods as 1/α + 
1/γ).
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? SumTwoExp

Symbol

SumTwoExp[gamma, alpha, t] gives the PDF of the sum of one exponentially

distributed phase with parameter gamma (mean 1/gamma) and another such phase

with parameter alpha (mean 1/alpha). The expected value of the sum of both outcomes

is 1/gamma + 1/alpha. If gamma == alpha, then this is PDF[ErlangDistribution[2, alpha], t]

A.5. One point of observation suffices

The setup is determined by only one observation different from 0. If we observe {T, SObs} for T the 
time of observation, then SObs = s[T] = STso that S = SObs

1/T  gives a direct estimate of the unknown 
factor S per period. Alternatively SObs = Exp[-λ T], and λ = -Log[SObs] / T.  In the above we actually 
used T = 1.

Having more points of observation causes the idea that the last observation may be the most 
relevant. A possibility is to transform the data to Log[s[t]] and apply linear regression, if one 
assumes that the error around the path of decay is lognormal. There is also the consideration that 
the mean duration of failure times better be accurate. Curve-fitting then is replaced by finding the 
best estimate for μ.

(In a SIA model, the infection grows by r = β - γ in the first phase. If we find a prevalence of 100 in 
one week, and indeed started from 1 person, then this has a rate of 100 = (1 + r)7, or r = 1001/7 - 1 ≈ 
-Log[100]/7 = 34% per day. If the infectious period is 3 days, then β = .342 + 1/3 = .675 and R0 = β / γ 
= 3 * .675 = 2, which suggests a serious outbreak.)

A.6. Dynamic growth versus probability. CDF, PDF, and properties

For T the random variable for the time to an event of decay, the CDF of the exponential distribution 
is P[T < t] = 1 - Exp[- λ t] while t ≥ 0 and undefined elsewhere. This is exactly the same form as above 

growth process for Failure. This means that we can sometimes use interpretations and analogies, 
while keeping in mind that a (perhaps even deterministic) growth process is not the same as a 
probability distribution. However, the useful interpretation is that T is the period to failure, and we 
may observe that it has an exponential distribution (though in reality we don’t check for eternity). 

The expectation or mean μ of the exponential distribution has the value μ = 1 / λ.  As said, we can 
now interprete it as the “mean time to failure” or MTTF. It may sometimes make for better under-
standing of the CDF by writing P[T < t] = 1 - Exp[- t / μ], and s[t] = Exp[- t / μ]. However, it seems that 
the human inclination to count is stronger than the inclination to measure, so that many might 
regard “6 items per minute” as having more impact than “10 seconds per item”. It obviously 
depends upon context whether the count or the period is in focus.

Observe that s[μ] = Exp[-1] = 1 / ⅇ ≈ 0.37 and f[μ] ≈ 0.63. Thus μ on the horizontal axis can be identi-
fied not only by the half-life but also by using these values on the vertical axis.
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SuccessFailurePlot[.25 , HalfLife → False]
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A.7. Subject areas: duration or calendar time

Let us now consider calendar time versus two types of durations.

(1.a) Periods of a homogenous population, only information about periods

This concerns phenomena like ages, life-spans, or clearing, recovery and acquittal periods, where 
the time axis concerns durations or the age of the items.  We assume that there is no cut-off or 
censoring point, and that the longest observation has indeed been made. The n items are consid-
ered comparable and only the durations differ. The main parameter is the mean duration μ = Σ 
durations / n = D / n. This parameter suffices for the exponential distribution. The assumption for 
this distribution would be based upon the histogram of the observations and other considerations. 
However, there is no other information why the durations differ, they just differ. We may say that 
the durations are characterised by the event of their ending, but then there still is a difference with 
a heterogenous population.

(1.b) Periods of a heterogenous population, also with information on events

This concerns phenomena like incidents in a population, in which we relate counts to item-dura-

tions, e.g. getting a disease divided by person-years. There are at least two groups here. We are 
modeling a process of separation from a common source. With N the total population or sample 
size, there are n incidents with their period to an incident, and N - n unaffected. This distinction is 
missing in the above (having n = N).

There is the issue of censoring. For now we assume a cut-off at the latest incident, and all infer-
ences are conditional to this. The item-durations of the unaffected are also included in the denomi-
nator. The main parameter is the mean period to an incident μ = Σ durations / n = D / n. Again we 
have λ = 1 / μ. There is an implication for the prevalence f = n / N, but this is less in focus. Often N is 
only the sample size, and the focus is on properly measuring the durations, so that the sample 
outcomes can be confronted with another study on the actual prevalence.

Alternatively, we split the durations of the Success (unaffected) and Failure (diseased) groups. Then 
μF  = DF / n would be the estimate under (1.a) for said homogenous group who all contacted the 
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disease. Then μS = DS / (N - n) is the mean period for those without an incidence, in some cases 
merely the duration of the study. Thus μ = μF  + μS (1 - f) / f. It would seem that prevalence cannot be 
neglected, but that would be another topic of discussion.

(2) Calendar time

In this case Failure also stands for the prevalence of a disease, when a population starts unaffected, 
and meets with exponential decay because of the event, e.g. a disease. The notion of a prevalence 
can be relevant for cases (1ab) too, but the issue of prevalence does not really occur in the discus-
sion above yet. However, prevalence has direct relevance for the discussion for calendar time. 
Namely, when f = n / N is the prevalence at time T, then we may have a single observation, that 
allows the estimate of exponential decay of Success. 

For example, when it is observed that a disease has spread to 10% of the population in a period of 5 
years, then linear increments of 2% per year might underestimate developments in the first 5 years 
and overestimate developments after 5 years. If we assume exponential decay, s[T] = S5 = 90% then 
the failure rate λ = Log[S] = -Log[1 - 10%] / 5 = 2.1% could give a more reliable estimate, not quite 
because of its value but because of its modeling of exponential growth. 

Thus in this case prevalence information is used, and there are only implied assumptions for mean 
duration and person-years. A rough estimate of the person-years involved are D = T N. The linear 
mean rate λlinear= n / D = f N / (T N) = f / T = 10% / 5 = 2% differs hardly from the exponential estimate, 
but, as said, linear and exponential interpolation and extrapolation have quite different outcomes. 
In actuality we might use the model (1 - 0.02)t as a rough estimate so that the switch to Exp is 
accurate but perhaps less clear about its actual meaning. The actual factor 0.91/5 ≈  0.979148 is 
accurate though.

The routine allows us to plug in a moment of observation, when the rate of decay was estimated 
from. We have been using the failure rate of 0.25 above. There the prevalence of 50% is already 
reached in the half-life of around three periods. The following supposes that the rate was deter-
mined by an observation at time 6. The routine does not give a warning when the data of rate, Tobs 
and Fobs do not match: the user might have a reason for wanting no match.
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SuccessFailurePlot[.25, Level → {6, 1 - Exp[- 0.25 * 6]},

PDF → False, HalfLife → False, E → False]
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A.8. Comparison with SICD and SEYCD

The Success & Failure model is important to understand the basics of exponential decay, and for 
the consequences of sequential or parallel processes (also when those do not apply). For compari-
son to the SICD and SEYCD models, there remains a pitfall.

(1) For SICD, the distinction between C and D seems “parallel”, but the setup is different. To trans-
late SIA to the Success & Failure model, we regard I in SIA as the success that is decaying, and A as 
the failure that collects the decay. The rate of decay λ in the Success and Failure model links to the 
γ in SIA as the rate of decay of I. For SICD, we have D = φ A. Thus here D = φ f[t] = φ (1 - s[t]). Thus D’ = 
- φ s’[t] = -φ Log[S] s[t] = φ λ s[t]. The latter translates back to SIA again as D’ = φ γ I, which is the 
formulation in the conventional format of SIA. The addition in SIA of A = C + D with A’ = C’ + D’ = ((1 - 
φ ) γ + φ γ) I = γ I applies to the proportions in failure, and must not be confused with the addition λ 
= λ1 + λ2 above in the joint success. 

(2) For SEYCD, the exposed E and infectious Y are in time sequence but not as a product of decay. 
Here, the model of queueing theory with two sequential service units applies (we add the periods 
as 1/α + 1/γ).

? SumTwoExp

Symbol

SumTwoExp[gamma, alpha, t] gives the PDF of the sum of one exponentially

distributed phase with parameter gamma (mean 1/gamma) and another such phase

with parameter alpha (mean 1/alpha). The expected value of the sum of both outcomes

is 1/gamma + 1/alpha. If gamma == alpha, then this is PDF[ErlangDistribution[2, alpha], t]
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Appendix B. Recall Poisson, Erlang and exponential

B.1. Toolkit

This Appendix is not intended to directly contribute  to the analysis of the SI(EY)A(CD) model, but 
only concerns the toolkit level. This Appendix identifies the general analytical environment on the 
exponential distribution, with links to routines available in Mathematica.

My background is from queueing theory. SI(EY)A(CD) models look like queueing. The renewal 

equation concerns exponential population growth with birth and death. The interpretation in 
contacts and possible infections could be a Poisson process in the virginal period before the sig-
moid takes over. When writing this notebook it seemed useful to recall some of this queueing 
theory, simply because it was my background. 

Hillier & Lieberman (1967, 1972) discuss queueing theory and underlying birth-death processes. The 
basic case is when counts follow the Poisson process, or equivalently when the interarrival periods 
(IAP) are distributed by the exponential distribution. For example, when cars run in a street, we 
count the cars and may find the arrival rate of AR = 100 cars per day (always a mean), and then the 
most practical random variable concerns the IAP with a (mean) MIAP = 24 hours / (100 cars). A 
recent online restatement is by Hossein Pishro-Nik: https://www.probabilitycourse.com/chap-
ter11/11_1_2_basic_concepts_of_the_poisson_process.php

Comparing SIA and queueing theory, my main finding is:

- There is indeed the same toolkit. Rate γ and period 1 / γ are related by definition (inviting the 
exponential distribution).

- There might be some application of queueing theory for some non-infectious disease with Poisson 
arrivals. The queueing modeling requires that the service rate γ is larger than the arrival rate β, or 
that the utilisation rate ρ = β / γ < 1, otherwise the queue explodes. This reminds of R0 < 1. However, 
there is a clear distinction between infectious and non-infectious disease.  For infections, there is 
no “joint server with a queue”, since all infections “have their own server system” (natural immu-
nity or quarantine).

- The modeling of E + Y is the same as the sequential server model, with the sum of two exponential 
distributions with total mean 1/α + 1/γ, which for equal values collapses into the Erlang 2 distribu-
tion. The expected time in the system W is the sum of the time in the queue Wq plus this mean 
service time, W = Wq + (1/α + 1/γ), but for infections Wq = 0.

Thus, the modeling issues of queueing theory and SI(EY)A(CD) are different. Key summary statistics 
on queueing, like the number of units in the system (line length) as L = β W (using exponential 
arrival β in the initial phase) require a steady state, and there is a clear conflict between “initial 
phase” and “steady state”. An effort at comparison tends to be distracting. The models on queue-
ing and SI(EY)A(CD) use the same toolkit but build something else. Thus this appendix only con-
cerns the toolkit.

B.2. Basics
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When we follow convention that μ is the symbol for the expected value of a distribution (like in the 
Normal Distribution with mean μ and spread σ), and when we model the distribution of the IAPs, 
then the mean IAP is μ = MIAP and the arrival rate (always a mean) is AR = λ = 1 / μ.

For example, for cars running in a street, you wait till the first car, but you do not include this in the 
count, because you have no observation on its IAP. When the first car has been spotted, you start 
the stopwatch, count cars, and when car n has been counted then you stop the watch, giving time 
T. Then you have n interarrival periods, and the mean interarrival period is MIAP = μ = T / n (all 
excluding the first (censored) car). The (always mean) arrival rate AR λ = 1 / μ = n / T. Indeed, you 
also spotted the first car, but it does not not count as “a car within the time window of observa-
tion”, since it only indicated the beginning of the counting process.

Hillier & Lieberman (1967, 1972) p302 have another parameterisation of the Erlang distribution than 
in Mathematica. Below reproduces their form and plots for μ = MIAP = 10, comparable with the 
mean acquittal period of say μ = 10 days for SARS-CoV-2.

For the Hillier & Lieberman parameterisation it holds: If T1, ..., Tk are i.i.d. with exponential distribu-
tion with mean μ = 1/(λ k), then the sum T has an Erlang (Gamma) distribution with parameters λ 
and k. For k = 1 the Erlang distribution gives the exponential distribution.

For the sum of a Poisson process for any k it holds:  for a particular arrival rate AR = λ we have the 
expectation or mean interarrival period MIAP = μ = 1 / λ. 

NB. It makes more sense to parameterise these functions in such manner that the stated parameter 
is the mean, like for the normal distribution.  In that case it is clearer what variable is being mod-
eled: IAPs and not counts. This is discussed in the next subsection. Now it suffices that we have a 
clear distinction about the meanings of μ and λ. As a general rule: do not use μ as a parameter in 
these functions  unless it really is the expected value.

ErlangHillierLieberman[k, λ]

ErlangDistribution[k, k λ]

ehl[k_, λ_, t_] = ErlangHillierLieberman[PDF, k, λ, t]

kk λk tk-1 ⅇ-k λ t

Γ(k)
t > 0

0 True

Expectation[x, x  ErlangHillierLieberman[k, λ]]

1

λ

StandardDeviation[ErlangHillierLieberman[k, λ]]

1

k λ

For k = 1 we get the exponential distribution. 

ehl[1, λ, t]

λ ⅇλ (-t) t > 0
0 True

For the following MIAP = μ = 10.
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mu = 10; labda = 1  mu;

plotoptshere = Sequence[ImageSize → Medium, BaseStyle → {FontSize → 13},

PlotRange → All, AxesOrigin → {0, 0}, AxesLabel → {"Time", "Prob. density"}];

The conventional parameterisation has the advantage that the exponential distribution starts for t 

= 0 at the value of the parameter. The expected value of the IAPs can be found as MIAP = μ = 1 / λ. 
For example, for μ = 10 and k = 3, there would be three servers with each a service time of 1 / (λ 3) = 
1 / .3 = 3.33 so that the mean (expected) service time is 10.

ErlangHillierLieberman[Plot, labda, 3, plotoptshere]

{1 / λ, λ}
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Time
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? ErlangHillierLieberman

Symbol

ErlangHillierLieberman[k, labda] is the parameterisation of the Erlang distribution as used by

Hiller and Lieberman (1967), "Introduction to Operations Research", Holden-Day, p302

ErlangHillierLieberman[PDF, k, labda, t] gives the PDF for t

ErlangHillierLieberman[Plot, labda, x:3] reproduces their plot for k in {1, 2, 3} for (t, 0, x * 1 / labda}

B.3. Parameterisation such that μ = expected value

Awkwardly, the standard functions in the literature and programming for the Poisson process are 
parameterised with λ while the expectation of the interarrival periods is given as  1 / λ. For our 
purposes it would be more convenient if the parameter were μ and the expectation were μ, like we 
have for the Normal Distribution. 

For who considers these issues for the first time, the question is whether λ must be taken as MIAP or 
AR. Given how these functions are conventionally denoted in the literature and programmed in 
computer codes, we must input the AR, to force that the expected value, which we want to see, 
becomes the MIAP.

In the parameterisation by Hillier & Lieberman, it are the IAP that have a distribution and expecta-
tion, and their expected value is MIAP = (1/λ) / k, but not λ / k. 

It is clearer to define the distribution such that the mean becomes the parameter. Since Mathema-

tia has a pre-defined ErlangDistribution with a stated parameterisation, we make a small routine 
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that translates from the mean to their conventional “inverted” use.

ErlangMean[k, μ]

ErlangDistributionk,
k

μ


ErlangMean[PDF, k, μ, t]

kk μ-k tk-1 ⅇ
-

k t

μ

Γ(k)
t > 0

0 True

Expectation[x, x  ErlangMean[k, μ]]

μ

StandardDeviation[ErlangMean[k, μ]]

μ

k

We now can now use MIAP as the parameter of the function,  and see how the random draws of the 
IAPs are distributed with this expectation.

mu = 10; (* mean interarrival period *)

ErlangMean[Plot, mu, 3, plotoptshere]

{μ, 1/μ}
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Once you have noticed the (awkward) convention in the literature, it can become an automated 
habit though. One may simply follow convention and put in the AR in order to model the IAPs with 
their MIAP.

B.4. The exponential distribution

The Mathematica documentation provides an example of a Poisson process, stating: “The times 

between events are independent and follow ExponentialDistribution [μ].” 

The Mathematica parameterisation of the exponential distribution generates the same plot as we 
have seen above, with the same inversion of AR and MIAP. Potentially it is more convenient to 
follow the literature and standard programming. 
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PDF[ExponentialDistribution[λ], t]

λ ⅇλ (-t) t ≥ 0
0 True

Expectation[x, x  ExponentialDistribution[λ]]

1

λ

StandardDeviation[ExponentialDistribution[λ]]

1

λ

mu = 10;

PlotPDFExponentialDistribution1  mu, t, {t, 0, 3 mu}, Evaluate[plotoptshere]
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B.5. A random simulation with a Poisson process

The Mathematica documentation provides an example of a Poisson process, stating: 

(a) “PoissonProcess  at time t is the number of events in the interval 0 to t.”

(b) "The times between events are independent and follow ExponentialDistribution [μ]." 

Their μ is not the expected value and they better write λ.

The Mathematica specification of the Poisson process requires us to specify a time window. How do 
the random draws fit within that window ? For this simulation, the stopwatch starts properly at 0, 
and thus the first count is made after a proper interarrival period. However, the last observation is 
tricky. A random draw might generate an interarrival period that extends over the time horizon for 
the simulation. It appears for this particular routine that the final observation is truncated to fit the 
simulation period. It actually is no observation. Thus we must drop the last element.

When we use the Poisson process with our μ = MIAP = 10, then we get the following. 

mu = 10; labda = 1  mu;

A short run

data = RandomFunction[PoissonProcess[labda], {0, 5 mu}];
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The simulated interarrival periods are the following. The option False means that we do not elimi-
nate the last element yet.

iaps = InterArrivalPeriod[Data, data, False]

{8.53136, 1.8443, 13.3736, 9.53722, 4.1882, 8.86907, 3.65626}

"Observation period" → Total[iaps]

Observation period → 50.

In Mathematica’s ListStepPlot a count is a vertical line upwards. The plot doesn’t show the last 
(truncated) observation anyway. The plot extends the horizontal timeline of the penultimate obser-
vation, which is a bit confusing (as if there is a long last iap), but after some thought we grow aware 
that the programmers might have had some problem in cutting off the plot at exactly the last line 
upwards.

ListStepPlot[data, Filling → Axis,

AxesLabel → {"Time", "Count"}, BaseStyle → {FontSize → 13}]

10 20 30 40 50
Time

1
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3

4

5

6

Count

obs = Drop[iaps, -1];

N → nn = Length[obs], Time → tt = Total[obs], MIAP → tt  nn, AR → nn  tt

{N → 6, Time → 46.3437, MIAP → 7.72396, AR → 0.129467}

{Mean[obs], StandardDeviation[obs]}

{7.72396, 4.10467}

This is an alternative plot. The iap per count are light grey blocks. The time axis now stops at the 
final count.
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InterArrivalPeriod[Plot, obs]
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A long run

We must run the simulation for a long period to get a smoother overall view.

horizon = 3 mu^2

900

Let us also plot n[t] = t / 10 = t / μ = λ t. 

plabda = Plot[labda * t , {t, 0, horizon}, PlotRange → All,

AxesLabel → {"Time t", "λ t"}, BaseStyle → {FontSize → 13}];

data = RandomFunction[PoissonProcess[labda], {0, horizon}];

p0 = ListStepPlot[data, Filling → Axis,

AxesLabel → {"Time", "Count"}, BaseStyle → {FontSize → 13}];

Show[p0, plabda]
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Since this is random, we can only hope for roughly μ = MIAP = 900 / 90. The graph will tend to be 
almost linear, with the formula for the cumulated count n[t] = t / 10 = t / μ = λ t. In the long run, in 
theory, the estimate of AR λ = n / T is fair for large values. However, there can be random walks such 
that the estimate is off for long periods of time (and taking long to get back to the expected value).

iaps = obs = InterArrivalPeriod[Data, data]; (* now drops the last element *)
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N → nn = Length[obs], Time → tt = Total[obs], MIAP → tt  nn, AR → nn  tt

{N → 79, Time → 875.48, MIAP → 11.082, AR → 0.0902362}

{Mean[obs], StandardDeviation[obs]}

{11.082, 9.23728}

The histogram of the interarrival periods generally looks like an exponential density.

Histogram[iaps, AxesLabel → {"Period\nLengths", "Count"},

BaseStyle → {FontSize → 13}]
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B.6. Poisson process (exponential IAP) versus exponential process

The Poisson process on counts (with exponentially distributed periods) should not be confused with 
an exponential growth process on counts. Also, SI(EY)A(CD) has exponential phases at the beginning 
and the end but not in the middle.

Comparison with the former longer run simulation

The Poisson count process is almost linear. If we want to approximate it by an exponential count 
process, then we know that this cannot work. At the end of the period we would get Exp[c T] = n, so 
that we have an estimate for the value of this growth coefficient c.

Clear[coef]; Exp[coef horizon] ⩵ nn

ⅇ900 coef  79

coef = Log[nn]  horizon // N

0.00485494

p1 = Plot[Exp[coef t], {t, 0, horizon}];
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Show[p0, p1, plabda]
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Normalising to another period

If we run Exp[λ t] till t = 100, then we get a sizeable number.

mu = 10; labda = 1  mu;

num = Exp[labda * horizon] , N[num] 

ⅇ90, 1.2204×1039

We can somewhat normalise to the value at the horizon.

PlotExp[labda * t]  Exp[labda * horizon ], {t, 0, horizon}, PlotRange → All,

AxesLabel → {"Time t", "E[labda t] / Last value"}, BaseStyle → {FontSize → 13}
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0.4

0.6

0.8

1.0

E[labda t] / Last value

While we take μ as a mean acquittal period of 10 days, we might also make it 10 / 30 of a month. 
Then λ becomes 30 / 10 = 3 acquittals per month. We may now normalise to the value at the end of 
the month. 
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coef = 30;

PlotExp[coef labda * t]  Exp[coef labda] , {t, 0, 1}, PlotRange → All,

AxesLabel → {"Time t", "E[labda t] / Last value"}, BaseStyle → {FontSize → 13}
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However, the main point is that we should not confuse the exponential distribution for the interar-

rival times with an exponential growth process for the number of cases. The number of cases in the 
SI(EY)A(CD) models are generated by another process, though there are exponential (-like) phases.

B.7. Package on queueing

Colignatus (1995, 2020e) “The Economics Pack”, has routines for queueing theory, based upon 
Hillier & Lieberman. See e.g. the online User Guide pdf. 

Economics[Queue]

Cool`Queue`

AdjustedRates MeanNQueue MultipleServersContours QueueSymbols

BerthOccupancyPlot MeanNSystem MultipleServersModel R

FiniteSourceSS MeanProcessTime NBeingServed SingleServer

L MeanQueueWait NQueue SingleServerModel

Lq MeanSacrificeRatio NServers ToQueueSymbols

Ls MeanServiceRate NSystem W

MeanArrivalRate MeanServiceTime QueueBasics Wq

MeanArrivalTime MeanUtilisationRate QueueDataAnalysis λ

MeanNBeingServed MultipleServers QueueDataToGantt ρ

Superficially there are (“SIR”) compartments, namely the general population (S), the customers in 
the queue and at a service station (I), and the customers served (A). However, an effort at compari-
son can be rather distracting, since the questions differ about what is actually being modeled.

Appendix C. Recall Survival analysis
The Economics Pack, see Colignatus (1995, 2020e), has some packages about epidemiology and 
survival analysis. They are documented by notebooks in the Pack. The functionality may be seen as 
somewhat comparable to David Kleinbaum (2015) “ActiveEpi”, but then for the environment of 
Mathematica, and then again extended for my purposes at the time. I much appreciated the teach-
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ing by Kleinbaum in 2002-2004.

The intention was to document these packages in a separate book, like the other books ALOE, 
COTP and VTFD, but there was no time. If there is time, I intend to see whether the following pack-
ages could still be used for an educational book. 

Over time, WRI has included much survival analysis by default within Mathematica, see  https://refer-

ence.wolfram.com/language/guide/SurvivalAnalysis.html. The following does not yet take advan-
tage of this wealth. Indeed, there is a learning curve, and it would not be unwise to follow it, to first 
find out what already is available in Mathematica before one writes a routine oneself. It is likely that 
there will be an increasing overlap of what Mathematica and these packages in The Economics Pack 
provide. In the mean time I myself regard them as having been useful at one time, and perhaps I will 
find time to see whether eventually there will be such book that uses them, or not.

C.1. Load packages

ToFileName[{$TEPDirectory[], "Applications",

"Economics", "Documentation", "English", "LifeSciences"}]

C:\Users\Eigenaar\AppData\Roaming\Mathematica\Applications\Economics\Documentation\English\

LifeSciences\

Economics[Survival]
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The following packages concern the area of survival statistics and epidemiology:

Survival`CEA`: cost-effectiveness analysis in epidemiology

Survival`Common`: terms for the life table and its functions

Survival`BioStatistics`: calculate m or q from observations

Survival`Criteria`: life gain, time trade off, patient cost

Survival`Data`: see ??DataSymbols

Survival`Disease`: survival in health or disease state

Survival`Epidemiology`: test statistics

Survival`Graphics`: plotting routines

Survival`JointTest`: test that consists of two other tests

Survival`LifeTable`: life table construction and listing

Survival`LifeTableByChiang`: idem, method Chiang

Survival`MetaAnalysis`: pooled Relative Risk

Survival`Screening`: detection phases and lead times

Survival`TreatmentControl`: a.k.a. case-control studies

Survival`BMI`: body mass index example

Survival`SIA`: SI(EY)A(CD) version of S(E)IR(D)

Survival`ApplySIA`: record keeping of such application

Symbol

SurvivalPackages[] gives an overview of the packages in survival statistics and epidemiology.

These packages aren't supported with palettes yet.

Mathematica's I is the imaginary number (complex operator), but the String "I" may be used for Incidence

? Sp

Symbol

Sp is a Symbol for specificity

*** AddedUsage by Cool`Survival`SIA`: ***

Sp[t] is the proportion of S susceptible units at time t, see Economics[Survival`SIA]

Sp is a Symbol for specificity, see Economics[Survival`Epidemiology]
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C.2. Some spare examples

Example 1

Economics[Survival`Common]

Cool`Survival`Common`

Age DeathDis HazardRate L$ PeriodHazard

AgeGroupLabels DeathOC h$ m Population

Alive DegreeOfLiving Intervention Male PopulationForm

b Disability l MidSurvival q

Birth DiscLifeExp L Mortality QALE

b$ DiscQALE LastLifeExp MortalityQuotient QALY

Cohort d$ LExample MortalityRate QualityOfLife

CohortEnd e LifeExpectancy m$ q$

CohortNPeriod e$ LifeTable n SetSurvival

CohortPeriod Female LifeTableSymbols n$
ToLifeTableSymbo-
ls

d h LifeYears Onset

DALE H Living Options$Cohort

DALY Hazard l$
Options$Interventi-
on

ListOfSymbols[LifeTable]

Birth b

Death d

Hazard H

LifeExpectancy e

LifeYears L

Living l

MortalityQuotient q

MortalityRate m

Period n

PeriodHazard h

Survival S
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Example 2

SetSurvival["Explain"]

The formulas for the SetSurvival model are:

H[t] = Integrate[μ[τ], {τ, 0, t}]

S[t] = - Log[H[t]]

d[t, n] = S[t] - S[t+n]

q[t, n] = d[t, n] / S[t] = 1 - S[t+n]/S[t]

h[t, n] = H[t+n] - H[t] = - Log[1 - q[t, n]]

L[t, n] = Integrate[ S[τ], {τ, t, t+n}]

e[t] = L[t, ∞] / Survival[t]

Default option is Function -> Simplify. Otherwise use Identity

Mortality[t_] = .5

0.5

SetSurvival[t]

Mortality → 0.5, Survival → ⅇ-0.5 t, LifeExpectancy → 2.

The function Mortality in this package may also be called MortalityRate.

MortalityRate[t]

0.5

Plot[Survival[t], {t, 0, 10}]
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0.2

0.4

0.6

0.8

1.0
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? SetSurvival

Symbol

SetSurvival[t, opts] sets continuous function Survival[t] and its implied functions Death, MortalityQuotient,

MortalityRate, LifeYears, Hazard, PeriodHazard, LifeExpectancy, all as functions of a (predefined)

Mortality[t]. For example, first defining Mortality[t_] = μ gives exponential death, with constant

life expectancy 1 / μ. The option Clear -> True (default False) first clears these functions (use

this in doubt only: clear also concerns lists Survival[] etc.!). The option Function may be used

to remove possible "If" clauses and such, e.g. use (Re[μ] > 0) -> True. Default Function ->

Simplify simplifies. Use Identity if you want to trace how the expressions relate to each other.

Note: For display purposes, the routine runs in the Global` context and does Clear[tt, nn, T,

τ]. Note: Survival[0] = 1; for Living[t] values: multiply all results by Birth[]. Output only shows

the list {Mortality[t], Survival[t], LifeExpectancy[t]} though the other functions are available.

SetSurvival[Clear] clears the parameters; advisable to do when you have used SetSurvival[t] and then

want to use LifeTableEquations[]. Note: the equations use t, n and τ in the global context, and

these will be cleared too. Note, this is also called first when SetSurvival[..., Clear -> True] is used.

See SetSurvival["Explain"] for the formula overview

Appendix D. Example of not using the package

D.1. Needless learning curve for experienced users

This present notebook and package have the purposes of improved didactics, accessibility and 

userfriendliness. The target is a novice level of entry. The notebook and package provide a path 
towards better understanding of modeling of infections with SI(EY)A(CD) and computable writing 
on this. A major task is learning how to use the package itself. 

However, when one already understands such modeling and programming, then this “userfriendl-
iness” could very well be a barrier, with needless extra learning of what already is known. 

The following are examples of quick results, adapted from Antonov (2020) on Stack Exchange. See 
Smith & Moore (2001, 2004) on the modeling. This was actually my starting point. It were the other 
considerations on didactics that caused this notebook and package. 

Smith, David, and Lang Moore (2001, 2004), “https://www.maa.org/press/periodicals/loci/joma/the-

sir-model-for-spread-of-disease-the-differential-equation-model

Antonov, Anton (2019), https://mathematica.stackexchange.com/questions/208357/solving-and-

plotting-an-sir-epidemiology-model
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D.2. A model

ClearAll[Sus, Inf, Recov, beta, gamma, tmax, totN, suscol, infcol, reccol, soln, p2, p4]

suscol = Cyan;

infcol = Blue;

reccol = Green;

tmax = 20;

soln = First@NDSolve

Sus'[t] ⩵ -beta * Sus[t] * Inf[t],

Inf'[t] ⩵ beta * Sus[t] * Inf[t] - gamma * Inf[t],

Recov'[t] ⩵ gamma * Inf[t],

Sus[0] ⩵ 761  762,

Inf[0] ⩵ 1  762,

Recov[0] ⩵ 0, beta ⩵ 762 × 0.00218, gamma ⩵ 0.44036,

{Sus, Inf, Recov}, {t, 0, tmax}

Sus → InterpolatingFunction
Domain: ( 0. 20. )
Output: scalar

,

Inf → InterpolatingFunction
Domain: ( 0. 20. )
Output: scalar

,

Recov → InterpolatingFunction
Domain: ( 0. 20. )
Output: scalar



Plot[{Sus[t] /. soln, Inf[t] /. soln, Recov[t] /. soln},

{t, 0, tmax}, PlotRange → All, PlotLegends → {"Sus", "Inf", "Recov"},

ImageSize → Medium, PlotStyle → {suscol, infcol, reccol}]
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D.3. A model with an intervention

ClearAll[Sus, Inf, Recov, beta, gamma, tmax]
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tmax = 150;

totN = 17 × 10^6;

gamma = 1  12;

soln = First@NDSolve

Sus'[t] ⩵ -beta[t] * Sus[t] * Inf[t]  totN,

Inf'[t] ⩵ beta[t] * Sus[t] * Inf[t]  totN - gamma * Inf[t],

Recov'[t] ⩵ gamma * Inf[t],

Sus[0] ⩵ totN - 50,

Inf[0] ⩵ 50,

Recov[0] ⩵ 0,

beta[0] ⩵ 4 gamma,

WhenEvent[t > 30, beta[t] → 2 gamma] ,

{Sus, Inf, Recov, beta}, {t, 0, tmax}, DiscreteVariables → {beta}

Sus → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Inf → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Recov → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

beta → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar



sus[t_] = Sus[t] /. soln;

inf[t_] = Inf[t] /. soln;

rec[t_] = Recov[t] /. soln;

p2 = Plot[{sus[t], inf[t], rec[t]}, {t, 0, tmax},

PlotRange → All, PlotLegends → {"Sus SD", "Inf SD", "Rec SD"},

ImageSize → Medium, PlotStyle → {suscol, infcol, reccol}]
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Plot[{inf[t], rec[t]}, {t, 0, 60}, PlotRange → All, PlotLegends → {"Inf SD", "Rec SD"},

ImageSize → Medium, PlotStyle → {infcol, reccol }] (* detail only *)
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800000

Inf SD

Rec SD

tmax = 150;

totN = 17 × 10^6;

gamma = 1  12;

soln = First@NDSolve

Sus'[t] ⩵ -beta * Sus[t] * Inf[t]  totN,

Inf'[t] ⩵ beta * Sus[t] * Inf[t]  totN - gamma * Inf[t],

Recov'[t] ⩵ gamma * Inf[t],

Sus[0] ⩵ totN - 50,

Inf[0] ⩵ 50,

Recov[0] ⩵ 0,

beta ⩵ 4 gamma , {Sus, Inf, Recov}, {t, 0, tmax}

Sus → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Inf → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar

,

Recov → InterpolatingFunction
Domain: ( 0. 150. )
Output: scalar



sus[t_] = Sus[t] /. soln;

inf[t_] = Inf[t] /. soln;

rec[t_] = Recov[t] /. soln;
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p4 = Plot[{sus[t], inf[t], rec[t]}, {t, 0, tmax}, PlotRange → All,

PlotLegends → {"Sus", "Inf", "Recov"}, ImageSize → Medium,

PlotStyle → {{Dashed, suscol}, {Dashed, infcol}, {Dashed, reccol}}]
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Show[p2, p4]
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ClearAll[Sus, Inf, Recov, beta, gamma, tmax, totN, suscol, infcol, reccol, soln, p2, p4]
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