Pooled Classification¶
A common workflow with longitudinal spatial data is to apply the same classification scheme to an attribute over different time periods. More specifically, one would like to keep the class breaks the same over each period and examine how the mass of the distribution changes over these classes in the different periods.
The Pooled
classifier supports this workflow.
[44]:
import numpy as np
import mapclassify as mc
Sample Data¶
We construct a synthetic dataset composed of 20 cross-sectional units at three time points. Here the mean of the series is increasing over time.
[45]:
n = 20
data = np.array([np.arange(n)+i*n for i in range(1,4)]).T
[46]:
data.shape
[46]:
(20, 3)
[47]:
data
[47]:
array([[20, 40, 60],
[21, 41, 61],
[22, 42, 62],
[23, 43, 63],
[24, 44, 64],
[25, 45, 65],
[26, 46, 66],
[27, 47, 67],
[28, 48, 68],
[29, 49, 69],
[30, 50, 70],
[31, 51, 71],
[32, 52, 72],
[33, 53, 73],
[34, 54, 74],
[35, 55, 75],
[36, 56, 76],
[37, 57, 77],
[38, 58, 78],
[39, 59, 79]])
Default: Quintiles¶
The default is to apply a vec operator to the data matrix and treat the observations as a single collection. Here the quantiles of the pooled data are obtained.
[48]:
res = mc.Pooled(data)
[49]:
res
[49]:
Pooled Classifier
Pooled Quantiles
Interval Count
----------------------
[20.00, 31.80] | 12
(31.80, 43.60] | 8
(43.60, 55.40] | 0
(55.40, 67.20] | 0
(67.20, 79.00] | 0
Pooled Quantiles
Interval Count
----------------------
( -inf, 31.80] | 0
(31.80, 43.60] | 4
(43.60, 55.40] | 12
(55.40, 67.20] | 4
(67.20, 79.00] | 0
Pooled Quantiles
Interval Count
----------------------
( -inf, 31.80] | 0
(31.80, 43.60] | 0
(43.60, 55.40] | 0
(55.40, 67.20] | 8
(67.20, 79.00] | 12
Note that the class definitions are identical with the exception of the lower bound in the first period. Since the first period contains the minimum value in the pooled series, that value defines the closed lower bound in the first period. In subsequent periods, the local minimums are all greater than the closed upper bound on the first interval - in other words the local minimums are not contained in the first class for the second and third periods. Following the policy in
mapclassify, the lower bounds for the second and third periods are both set to -inf
to indicate that their minimum values are not contained in the first class.
[50]:
res = mc.Pooled(data, k=4)
[51]:
res.col_classifiers[0].counts
[51]:
array([15, 5, 0, 0])
[52]:
res.col_classifiers[-1].counts
[52]:
array([ 0, 0, 5, 15])
[53]:
res.global_classifier.counts
[53]:
array([15, 15, 15, 15])
[54]:
res
[54]:
Pooled Classifier
Pooled Quantiles
Interval Count
----------------------
[20.00, 34.75] | 15
(34.75, 49.50] | 5
(49.50, 64.25] | 0
(64.25, 79.00] | 0
Pooled Quantiles
Interval Count
----------------------
( -inf, 34.75] | 0
(34.75, 49.50] | 10
(49.50, 64.25] | 10
(64.25, 79.00] | 0
Pooled Quantiles
Interval Count
----------------------
( -inf, 34.75] | 0
(34.75, 49.50] | 0
(49.50, 64.25] | 5
(64.25, 79.00] | 15
Extract the pooled classification objects for each column
[55]:
c0, c1, c2 = res.col_classifiers
[56]:
c0
[56]:
Pooled Quantiles
Interval Count
----------------------
[20.00, 34.75] | 15
(34.75, 49.50] | 5
(49.50, 64.25] | 0
(64.25, 79.00] | 0
Compare to the unrestricted classifier for the first column
[57]:
mc.Quantiles(c0.y, k=4)
[57]:
Quantiles
Interval Count
----------------------
[20.00, 24.75] | 5
(24.75, 29.50] | 5
(29.50, 34.25] | 5
(34.25, 39.00] | 5
and the last column comparisions
[58]:
c2
[58]:
Pooled Quantiles
Interval Count
----------------------
( -inf, 34.75] | 0
(34.75, 49.50] | 0
(49.50, 64.25] | 5
(64.25, 79.00] | 15
[59]:
mc.Quantiles(c2.y, k=4)
[59]:
Quantiles
Interval Count
----------------------
[60.00, 64.75] | 5
(64.75, 69.50] | 5
(69.50, 74.25] | 5
(74.25, 79.00] | 5
Non-default classifier: BoxPlot¶
[60]:
res = mc.Pooled(data, classifier='BoxPlot', hinge=1.5)
[61]:
res
[61]:
Pooled Classifier
Pooled BoxPlot
Interval Count
------------------------
( -inf, -9.50] | 0
( -9.50, 34.75] | 15
( 34.75, 49.50] | 5
( 49.50, 64.25] | 0
( 64.25, 108.50] | 0
Pooled BoxPlot
Interval Count
------------------------
( -inf, -9.50] | 0
( -9.50, 34.75] | 0
( 34.75, 49.50] | 10
( 49.50, 64.25] | 10
( 64.25, 108.50] | 0
Pooled BoxPlot
Interval Count
------------------------
( -inf, -9.50] | 0
( -9.50, 34.75] | 0
( 34.75, 49.50] | 0
( 49.50, 64.25] | 5
( 64.25, 108.50] | 15
[62]:
res.col_classifiers[0].bins
[62]:
array([ -9.5 , 34.75, 49.5 , 64.25, 108.5 ])
[63]:
c0, c1, c2 = res.col_classifiers
[64]:
c0.yb
[64]:
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2])
[65]:
c00 = mc.BoxPlot(c0.y, hinge=3)
[66]:
c00.yb
[66]:
array([1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4])
[67]:
c00
[67]:
BoxPlot
Interval Count
----------------------
( -inf, -3.75] | 0
(-3.75, 24.75] | 5
(24.75, 29.50] | 5
(29.50, 34.25] | 5
(34.25, 62.75] | 5
[68]:
c0
[68]:
Pooled BoxPlot
Interval Count
------------------------
( -inf, -9.50] | 0
( -9.50, 34.75] | 15
( 34.75, 49.50] | 5
( 49.50, 64.25] | 0
( 64.25, 108.50] | 0
Non-default classifier: FisherJenks¶
[69]:
res = mc.Pooled(data, classifier='FisherJenks', k=5)
[70]:
res
[70]:
Pooled Classifier
Pooled FisherJenks
Interval Count
----------------------
[20.00, 31.00] | 12
(31.00, 43.00] | 8
(43.00, 55.00] | 0
(55.00, 67.00] | 0
(67.00, 79.00] | 0
Pooled FisherJenks
Interval Count
----------------------
( -inf, 31.00] | 0
(31.00, 43.00] | 4
(43.00, 55.00] | 12
(55.00, 67.00] | 4
(67.00, 79.00] | 0
Pooled FisherJenks
Interval Count
----------------------
( -inf, 31.00] | 0
(31.00, 43.00] | 0
(43.00, 55.00] | 0
(55.00, 67.00] | 8
(67.00, 79.00] | 12
[71]:
c0, c1, c2 = res.col_classifiers
mc.FisherJenks(c0.y, k=5)
[71]:
FisherJenks
Interval Count
----------------------
[20.00, 23.00] | 4
(23.00, 27.00] | 4
(27.00, 31.00] | 4
(31.00, 35.00] | 4
(35.00, 39.00] | 4
Non-default classifier: MaximumBreaks¶
[72]:
data[1, 0] = 10
data[1, 1] = 10
data[1, 2] = 10
data[9, 2] = 10
data
[72]:
array([[20, 40, 60],
[10, 10, 10],
[22, 42, 62],
[23, 43, 63],
[24, 44, 64],
[25, 45, 65],
[26, 46, 66],
[27, 47, 67],
[28, 48, 68],
[29, 49, 10],
[30, 50, 70],
[31, 51, 71],
[32, 52, 72],
[33, 53, 73],
[34, 54, 74],
[35, 55, 75],
[36, 56, 76],
[37, 57, 77],
[38, 58, 78],
[39, 59, 79]])
[73]:
res = mc.Pooled(data, classifier='MaximumBreaks', k=5)
[74]:
res
[74]:
Pooled Classifier
Pooled MaximumBreaks
Interval Count
----------------------
[10.00, 15.00] | 1
(15.00, 21.00] | 1
(21.00, 41.00] | 18
(41.00, 61.00] | 0
(61.00, 79.00] | 0
Pooled MaximumBreaks
Interval Count
----------------------
[10.00, 15.00] | 1
(15.00, 21.00] | 0
(21.00, 41.00] | 1
(41.00, 61.00] | 18
(61.00, 79.00] | 0
Pooled MaximumBreaks
Interval Count
----------------------
[10.00, 15.00] | 2
(15.00, 21.00] | 0
(21.00, 41.00] | 0
(41.00, 61.00] | 1
(61.00, 79.00] | 17
[75]:
c0, c1, c2 = res.col_classifiers
[76]:
c0
[76]:
Pooled MaximumBreaks
Interval Count
----------------------
[10.00, 15.00] | 1
(15.00, 21.00] | 1
(21.00, 41.00] | 18
(41.00, 61.00] | 0
(61.00, 79.00] | 0
[77]:
mc.MaximumBreaks(c0.y, k=5)
Insufficient number of unique diffs. Breaks are random.
[77]:
MaximumBreaks
Interval Count
----------------------
[10.00, 15.00] | 1
(15.00, 21.00] | 1
(21.00, 22.50] | 1
(22.50, 28.50] | 6
(28.50, 39.00] | 11
[78]:
res = mc.Pooled(data, classifier='UserDefined', bins=mc.Quantiles(data[:,-1]).bins)
[79]:
res
[79]:
Pooled Classifier
Pooled UserDefined
Interval Count
----------------------
[10.00, 62.80] | 20
(62.80, 66.60] | 0
(66.60, 71.40] | 0
(71.40, 75.20] | 0
(75.20, 79.00] | 0
Pooled UserDefined
Interval Count
----------------------
[10.00, 62.80] | 20
(62.80, 66.60] | 0
(66.60, 71.40] | 0
(71.40, 75.20] | 0
(75.20, 79.00] | 0
Pooled UserDefined
Interval Count
----------------------
[10.00, 62.80] | 4
(62.80, 66.60] | 4
(66.60, 71.40] | 4
(71.40, 75.20] | 4
(75.20, 79.00] | 4
[80]:
mc.Quantiles(data[:,-1])
[80]:
Quantiles
Interval Count
----------------------
[10.00, 62.80] | 4
(62.80, 66.60] | 4
(66.60, 71.40] | 4
(71.40, 75.20] | 4
(75.20, 79.00] | 4
[81]:
data[:,-1]
[81]:
array([60, 10, 62, 63, 64, 65, 66, 67, 68, 10, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79])
Pinning the pooling¶
Another option is to specify a specific subperiod as the definition for the classes in the pooling.
Pinning to the last period¶
As an example, we can use the quintles from the third period to defined the pooled classifier:
[82]:
pinned = mc.Pooled(data, classifier='UserDefined', bins=mc.Quantiles(data[:,-1]).bins)
[83]:
pinned
[83]:
Pooled Classifier
Pooled UserDefined
Interval Count
----------------------
[10.00, 62.80] | 20
(62.80, 66.60] | 0
(66.60, 71.40] | 0
(71.40, 75.20] | 0
(75.20, 79.00] | 0
Pooled UserDefined
Interval Count
----------------------
[10.00, 62.80] | 20
(62.80, 66.60] | 0
(66.60, 71.40] | 0
(71.40, 75.20] | 0
(75.20, 79.00] | 0
Pooled UserDefined
Interval Count
----------------------
[10.00, 62.80] | 4
(62.80, 66.60] | 4
(66.60, 71.40] | 4
(71.40, 75.20] | 4
(75.20, 79.00] | 4
[84]:
pinned.global_classifier
[84]:
UserDefined
Interval Count
----------------------
[10.00, 62.80] | 44
(62.80, 66.60] | 4
(66.60, 71.40] | 4
(71.40, 75.20] | 4
(75.20, 79.00] | 4
Pinning to the first period¶
[85]:
pinned = mc.Pooled(data, classifier='UserDefined', bins=mc.Quantiles(data[:,0]).bins)
[86]:
pinned
[86]:
Pooled Classifier
Pooled UserDefined
Interval Count
----------------------
[10.00, 23.80] | 4
(23.80, 27.60] | 4
(27.60, 31.40] | 4
(31.40, 35.20] | 4
(35.20, 39.00] | 4
(39.00, 79.00] | 0
Pooled UserDefined
Interval Count
----------------------
[10.00, 23.80] | 1
(23.80, 27.60] | 0
(27.60, 31.40] | 0
(31.40, 35.20] | 0
(35.20, 39.00] | 0
(39.00, 79.00] | 19
Pooled UserDefined
Interval Count
----------------------
[10.00, 23.80] | 2
(23.80, 27.60] | 0
(27.60, 31.40] | 0
(31.40, 35.20] | 0
(35.20, 39.00] | 0
(39.00, 79.00] | 18
Note that the quintiles for the first period, by definition, contain all the values from that period, they do not bound the larger values in subsequent period. Following the mapclassify policy, an additional class is added to contain all values in the pooled series.