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Abstract.—The analysis of ratios of body measurements is deeply ingrained in the taxonomic literature. Whether for plants
or animals, certain ratios are commonly indicated in identification keys, diagnoses, and descriptions. They often provide the
only means for separation of cryptic species that mostly lack distinguishing qualitative characters. Additionally, they pro-
vide an obvious way to study differences in body proportions, as ratios reflect geometric shape differences. However, when
it comes to multivariate analysis of body measurements, for instance, with linear discriminant analysis (LDA) or principal
component analysis (PCA), interpretation using body ratios is difficult. Both techniques are commonly applied for separat-
ing similar taxa or for exploring the structure of variation, respectively, and require standardized raw or log-transformed
variables as input. Here, we develop statistical procedures for the analysis of body ratios in a consistent multivariate statis-
tical framework. In particular, we present algorithms adapted to LDA and PCA that allow the interpretation of numerical
results in terms of body proportions. We first introduce a method called the “LDA ratio extractor,” which reveals the best
ratios for separation of two or more groups with the help of discriminant analysis. We also provide measures for deciding
how much of the total differences between individuals or groups of individuals is due to size and how much is due to
shape. The second method, a graphical tool called the “PCA ratio spectrum,” aims at the interpretation of principal compo-
nents in terms of body ratios. Based on a similar idea, the “allometry ratio spectrum” is developed which can be used for
studying the allometric behavior of ratios. Because size can be defined in different ways, we discuss several concepts of size.
Central to this discussion is Jolicoeur’s multivariate generalization of the allometry equation, a concept that was derived
only with a heuristic argument. Here we present a statistical derivation of the allometric size vector using the method of
least squares. The application of the above methods is extensively demonstrated using published data sets from parasitic
wasps and rock crabs. [Allometry; Chalcidoidea; Hymenoptera; LDA ratio extractor; morphometry; multivariate statistics;
PCA ratio spectrum.]

The use of ratios of measurements (i.e., of body pro-
portions), has a long tradition and is deeply ingrained in
morphometric taxonomy (Reyment et al. 1984; Winston
1999; Lestrel 2000; Schuh and Brower 2009). In many
animal groups, the indication of such ratios is a stan-
dard of species descriptions, diagnoses, or identification
keys (Mayr and Ashlock 1991). This is especially true for
many arthropods, where ratios are a convenient means
for distinguishing between morphologically similar
species which often differ significantly in body pro-
portions but not in qualitative characters. In certain
insect groups, such as parasitic wasps, numerous ra-
tios are routinely reported (e.g., Townes and Townes
1981; Kasparyan 1989; Noyes 2004; Horstmann 2009)
and sometimes up to 30 ratios form the main body of a
species description (see, e.g., Graham 1969, 1991). Often
the use of ratios is rather implicit in descriptive terms,
for instance, when leaves are described as being “nar-
row” or “broad,” both attributes that could be translated
into ratios without loss of information. In fact, botanists
use numerous such terms for various plant parts that
could be partly or wholly substituted by ratios (Stuessy
2009). Ratios are also used for phylogenetic analysis
where they are treated as continuous characters (Thiele
1993; Wiens 2000; Rae 2002; Goloboff et al. 2006).

Besides tradition and ease of application, the
widespread use of ratios is certainly related to a common
way of looking at the shape of organisms. A taxonomist
who notices similarity or dissimilarity in proportions

of two specimens can always adequately translate them
into a series of ratios. Any two individuals are then rec-
ognized as having the same shape (i.e., the same body
proportions), when all measurements differ by a (posi-
tive) constant factor, for instance, when all of them are
doubled. It does not matter if a head length to width
ratio is, say, 2 : 4 mm or 4 : 8 mm, as long as the ratio (0.5)
is the same, the shape (as captured by the ratio) is the
same. The geometric shape expressed by ratios is thus
invariant for a particular measure of size (Mosimann
1970).

Often it is useful to go one step further and analyze
more than two linear distances in a single analysis with
the help of multivariate statistical methods. Over the
past decades, a wide array of tools has been developed
in the field of multivariate morphometry (Reyment et al.
1984; Marcus 1990; Claude 2008). These methods help to
unravel hidden population structure or to arrive at a bet-
ter differentiation of groups, in other words, they give
insights in the multivariate data structure that cannot be
achieved solely by ratio analysis. Standard applications
are principal component analysis (PCA) and Fisher’s
linear discriminant analysis (LDA), both with raw data
(often transformed into logarithmic scale) as the pri-
mary input (see Pimentel 1979 for a readable account
for biologists and Sorensen and Foottit 1992 for illustra-
tive applications in insect systematics). Both methods
aim to transform the original variables into a new sys-
tem of coordinate axes, whereby most of the variance
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is contained in the first two or three axes. Traditionally,
the results are then presented as scatter plots. However,
the geometric meaning of these plots differs from the
one obtained by the analysis of body ratios (Bookstein
1989; Claude 2008).

For this reason, we present versions of the classical
LDA and PCA algorithms that are directly adapted to
body proportions. In particular, we develop tools that
allow us to interpret the numerical results obtained by
these multivariate analyses in terms of the body sizes
and body proportions of the individuals in question.
The first method, adapted to LDA and called the “LDA
ratio extractor,” allows the extraction of the ratios that
are most informative for distinguishing between two or
more groups. In this context, we also introduce a mea-
sure for deciding how much of the variation between
individuals or groups of individuals is due to shape dif-
ferences and how much is due to size differences. The
second tool, called the “PCA ratio spectrum,” allows the
interpretation of principal components in terms of ra-
tios. In a similar manner, the “allometry ratio spectrum”
can be used to assess the extent of allometric behavior
in ratios. Furthermore, we present several concepts of
size and discuss their relation to multivariate allometry
(Klingenberg 1996). Central to this discussion is allo-
metric size (Jolicoeur 1963), a concept that was derived
only heuristically. In the Appendix, we therefore pro-
vide a statistical derivation of Jolicoeur’s allometric size
vector using the method of least squares. Finally, the
above methods are illustrated with a data set from par-
asitic wasps (Baur 2002) and a classic data set from rock
crabs (Campbell and Mahon 1974). The former is ideally
suited for our purpose as ratios are commonly used in
the taxonomy of these wasps (see above). The latter is
often used for testing new statistical methods; it is in-
cluded here because of the strong allometric behavior of
certain variables.

The mathematical framework, especially the
definition of shape and size used in this paper, is
adopted from the work of Mosimann (1970), Darroch
and Mosimann (1985), Sampson and Siegel (1985), and
Rao and Suryawanshi (1996) who has a long and ac-
knowledged history in morphometry (see, e.g., Pimentel
1979; Reyment et al. 1984; Marcus 1990; Klingenberg
1996; Dryden and Mardia 1998; Richtsmeier et al. 2002;
Claude 2008). The papers of Mosimann (1970) and Dar-
roch and Mosimann (1985) established the theoretical
foundation for the use of body ratios in multivariate
analysis and thus provided an ideal starting point for
our methods. Sampson and Siegel (1985) and Rao and
Suryawanshi (1996) were more concerned with partic-
ular definitions of size and shape. In contrast to these
authors, our focus is on interpretation of body propor-
tions rather than mere size and shape. Of course, other
concepts for the analysis of size and shape (e.g., Cadima
and Jolliffe 1996; McCoy et al. 2006; Claude 2008; Hotz
et al. 2010) or the analysis of ratios (e.g., Aitchison
1986 for compositional data) have been proposed, but
these are, in our opinion, less suited in our context (see
below).

METHODOLOGY

The methods presented below consist of a number of
steps that are briefly itemized here. The data are first
standardized and transformed into logarithms, then the
shape space is defined and a suitable size vector cho-
sen. Based on these steps, the best ratios for separation
of groups are extracted using a new algorithm adapted
to LDA, called the LDA ratio extractor. Associated with
this method is a particular measure that allows us to
compare the discriminatory power of size with that of
shape. The second new tool, called the PCA ratio spec-
trum, allows us to interpret the axes of a PCA in terms of
ratios. A related method, the allometry ratio spectrum,
is suitable for examination of the allometric behavior
of ratios. Computation of all examples was done with
the R statistical software, version 2.11.1 (R Development
Core Team 2010) (for obtaining data sets and R files for
all methods presented here, see Supplementary Material
section).

As mentioned in the introduction, the mathematical
framework adopted here originates from Mosimann
(1970) and followers. A statistical framework frequently
used in the Earth Sciences is Aitchison’s analysis of com-
positional data, also called simplicial analysis (Aitchison
1986; Pawlowsky-Glahn and Egozcue 2001). Typically,
compositional data vectors have positive components
that sum up to one: imagine, for instance, a rock com-
posed of three minerals in proportions 20%, 50%, and
30%. The corresponding data points (0.2, 0.5, 0.3) lie on
a so-called simplex. The unit-sum constraint means a
loss of 1 degree of freedom and requires special sta-
tistical tools, many of which have been developed by
John Aitchison and his followers. We chose not to apply
simplicial analysis to morphometric body ratios for two
main reasons: First, ratios do not naturally satisfy the
unit-sum constraint. Second, ratios have a complicated
interrelationship not present in compositional data: the
ratios a/b and b/c completely determine the ratio a/c.
One could, alternatively, renormalize all body measure-
ments to unit sum and thus obtain scale-free data on a
simplex. This would free the path to simplicial analysis.
However, it is not obvious to us how to extract statistical
information about ratios from these renormalized data
in a natural way. Also, our variants of LDA and PCA in
Euclidean space would first have to be adapted to sim-
plicial data, and it is not obvious how to do this, either.
For these reasons, we preferred Mosimann’s framework
to that of Aitchison.

Standardizing the Data

For certain multivariate methods, it is important to
standardize the data beforehand, otherwise, larger vari-
ables will dominate the analysis. As an example, let
u=(u1, . . . , up) represent vectors of body measurements
associated with N individuals of some animal popula-
tion. It may happen that u1, say, is many times larger
than u2 and u3, and so the ratio u2/u3 will be largely
dominated by the ratios u1/u2 and u1/u3. For this reason
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the variables ui should be transformed in a way that they
are all in the same order of magnitude. A convenient
way to achieve this is to divide each variable by its
geometric population mean (Claude 2008). The trans-
formed variables will be called yi. They and their ratios
vary around 1. In this scale, a value of yi = 1.2, for ex-
ample, means that the individual’s corresponding body
trait is 20% larger than the (geometric) average over
the population (strictly speaking, this standardization is
only crucial in PCA but has no impact on LDA).

Space of log-ratios.—Our interpretation of results from
statistical analysis of shape will mainly take place in the
space of ratios (or body proportions)

rij = yi/yj.

For p variables, there are in principle p2 ratios; ob-
serve, however, that only p(p − 1)/2 of these are infor-
mative and that even less, namely p− 1, can vary freely.

The relations between ratios being of multiplicative
nature, it is common in multivariate morphometry to
pass to log-transformed values (Reyment et al. 1984;
Klingenberg 1996; Claude 2008). This transformation
allows the application of linear statistical methods and
furthermore avoids some problems associated with the
statistical analysis of ratios (see Hills 1978, in response
to Atchley et al. 1976).

We thus denote xi = log yi and

dij = log rij = log(yi/yj) = xi − xj. (1)

Following Aitchison (1983), we call the numbers dij log-
ratios. Note that due to our standardization of the orig-
inal data, the mean of the variables xj is zero. Also, if
rij ≈ 1, we have

dij = log
(
1 + (rij − 1)

)
≈ rij − 1

and thus the log-ratios roughly correspond to the devi-
ation of the ratios from 100%.

Shape

As mentioned in the introduction, a ratio can be calcu-
lated from any two body measurements and be used to
describe the form of a specimen. A ratio thus represents
one way for defining shape (Claude 2008). Mosimann
(1970) generalized this particular concept of shape for
many measurements by posing the question, “When do
two individuals have the same shape with respect to a
finite number of measurements?”. His definitions form
the basis for our methods and are in the following for-
mally introduced.

To the (standardized) body measurements y=(y1, . . . ,

yp)
T of some individual, we would like to assign a set of

numbers encapsulating the individual’s body shape. We
assume that these numbers can be calculated by formu-

las of the form yb1
1 yb2

2 ∙ ∙ ∙ ∙ ∙ y
bp
p . As shape values should be

invariant under scaling λy, the exponents must satisfy
the shape restriction

b1 + b2 + ∙ ∙ ∙ + bp = 0. (2)

Passing to the log-values xi, we define

βββ(x) = log(yb1
1 ∙ ∙ ∙ ∙ ∙ y

bp
p ) = b

Tx (3)

to be the shape function associated to the vector of co-
efficients b = (b1, . . . , bp) subject to the shape restriction
(2). We will also standardize b to length 1 (‖b‖=1). Geo-
metrically, these constraints mean that b is a unit vector
at right angles to the vector 1 = (1, . . . , 1)T, that is, it lies
in the p − 1 dimensional subspace 1⊥ (“shape space”)
orthogonal to the vector 1. If

P= I− (11T)/p (4)

denotes the orthogonal projection onto the shape space
1⊥, then we calculate the shape values (z1, . . . , zp) ac-
cording to

z=Px. (5)

The vector b represents a direction in shape space,
and the shape function βββ(x) is the scalar product of z
with the vector b:

βββ(x) = bTx= bTz.

Log-ratios dij are represented by the log-ratio vectors

bij = ei − ej, (6)

where ei and ej are the i-th and j-th standard base vector
in Rp. We collect these vectors to a set B = {bij}1≤i<j≤p.
The fact that there are many linearly independent sub-
sets of B spanning 1T reflects the interdependence of
body ratios and poses a major problem for the interpre-
tation of statistical results in terms of body proportions.
We will address this problem below.

Size

Analogous to shape functions, a size function can be
defined. We stipulate a size function to be of the form
ya1

1 ya2
2 ∙ . . . ∙ y

ap
p , but this time the exponents fulfill the size

restriction
a1 + a2 + ∙ ∙ ∙ + ap = 1. (7)

Thus, an individual with all body measurements
doubled, say, will be twice as large. In terms of the
log-values x, we define

ααα(x) = log(ya1
1 ∙ ∙ ∙ ∙ ∙ y

ap
p ) = a

Tx (8)

to be the size function corresponding to the size vector
a= (a1, . . . , ap). Three size vectors have been commonly
proposed in the literature: Isometric size, allometric size,
and shape-uncorrelated size, whose definitions are pre-
sented in the following. Shape-uncorrelated size is dis-
cussed here for the sake of completeness. In developing
the methodology below, our focus will be on isometric
and allometric size.
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Isometric size.—The “democratic” way is to give equal
weight to all body measurements. This is tantamount
to the choice a0 = (1/p)1, and the size ααα0(x) = a

T
0x is

simply the arithmetic mean of x. In many cases, the size
ααα0(x) and the shape values zwill show significant corre-
lation over the population. This is a sign of the presence
of allometry.

Allometric size.—Allometry was first observed by Cuvier
and intensively studied by Huxley and Teissier for bi-
variate data (e.g., body weight vs. some body trait); see
Gayon (2000) for a short history of allometry. A gen-
eralization to multivariate data sets was proposed by
Jolicoeur (1963). He arrived at his definition of allomet-
ric size in a rather heuristic way, whereas we propose
in the Appendix a statistical model that leads to Joli-
coeur’s generalization in a natural manner. One way to
pass from the bivariate to the multivariate case is by
putting forth the question: Which is the measure of body
size fitting optimally into the set of bivariate allometric power
laws

yi = di × (body size)ci , i= 1, . . . ,p,

for suitable coefficients di and exponents ci? A mathemati-
cally more precise formulation is given in the Appendix.
The answer to this question is the size function asso-
ciated to the size vector aJ spanning the first principal
component of the log-values x, a fact that is proved in
the Appendix by means of the least squares method.
More precisely, aJ :=a1/1Ta1 where a1 is the unit eigen-
vector of the population covariance matrix ΣΣΣ = E(xxT)
corresponding to the largest eigenvalue λ1: ΣΣΣa1 = λ1a1.

Shape-uncorrelated size.—A choice of size function that
represents the other extreme to allometric size was pro-
posed by Sampson and Siegel (1985) and by
Rao and Suryawanshi (1996). Their size vector aR has
the property that size and shape over the population
are uncorrelated. The shape-uncorrelated size vector is
given by aR :=ΣΣΣ−11/1TΣΣΣ

−11.
The size vector aR is harder to interpret geomet-

rically than aJ. An interpretation is offered in Rao
and Suryawanshi (1996): A unit increase in shape-
uncorrelated size represents the same average increase
(or decrease) in all the variables x1, . . . , xp. It is also
proved in Rao and Suryawanshi (1996) that aT

Rx is the
only size function that is stochastically independent of
shape if x has a multivariate normal distribution. This
was already shown by Sampson and Siegel (1985) for
linear size functions but it holds even true for nonlinear
size functions.

The LDA Ratio Extractor: Selecting the Best Ratios with
Discriminant Analysis

As mentioned above, LDA is a standard tool in multi-
variate morphometry. It often allows to distinguish most
similar taxa but the numerical results obtained are then
hard to interpret. Our aim is to adapt standard LDA in a

way that its results admit a convenient interpretation in
terms of the body proportions of the specimens under
study. Our algorithm is recursive and the basic idea is
as follows. In a first step, the ratio with the largest dis-
criminating power is determined. Then a ratio is chosen
that has maximal discriminating power but at the same
time is as little correlated as possible to the first ratio.
If needed, further ratios can be picked out in the same
manner.

Suppose that the values x1,x2 stem from two distinct
groups with mean m1,m2, and a common (nonsingu-
lar) within-groups covariance matrix ΣΣΣ. Then Fisher dis-
criminant vector w is determined by

w ∝ ΣΣΣ−1(m1 −m2) (9)

and ‖w‖=1. The vectorw is a mixture of size and shape.
Often taxonomists prefer to perform LDA purely

within shape space 1⊥, that is to ignore the effects of
size. Hence, the method is presented entirely in the
shape space. The common within-groups covariance
matrix of the shape values zi = Pxi, i = 1, 2, is given by
ΣΣΣ1 = PΣΣΣP, which is symmetric and positive definite on
the subspace 1⊥. Because it is singular in Rp, its pseudo-
inverse must be used to perform the LDA. By singular
value decomposition, there exists an orthogonal trans-
formation matrix O in such a way that

ΛΛΛ :=OTΣΣΣ1O= diag(σ1, . . . ,σp−1, 0).

Set ΛΛΛ+ = diag(σ−1
1 , . . . ,σ

−1
p−1, 0) and ΣΣΣ+

1 = OΛΛΛ
+OT. The

shape discrimination vector w1 is now determined by

w1 ∝ ΣΣΣ
+
1P(m1 −m2). (10)

It is hard to interpret w1 in terms of body proportions
because it is a mixture of ratios and, worse, can be writ-
ten in infinitely many ways as a linear combination of
log-ratio vectors (cf., formula 6) from set B. In the next
paragraph, we develop an algorithm that extracts the
most informative body ratios for between-groups dis-
tinction.

Extracting ratios.—Let x denote the combined data set in
which both groups x1 and x2 have been centered to 0 in-
dividually. Thus, E(x)=0 and var(x)=ΣΣΣ. The dominant
log-ratio vector from B with respect to discrimination
between groups is the one that has the largest correla-
tion with w1 in the data set x. More precisely, we con-
sider the correlation coefficients

c(bij,w1) =
|cov(bT

ijx,w
T
1x)|√

var(bT
ijx)var(wT

1x)
=

|bT
ijΣΣΣw1|

√
bT

ijΣΣΣbij ∙wT
1ΣΣΣw1

and set
b1 :=argmax

bij∈B
c(bij,w1). (11)
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The discriminating power of a vector v ∈ Rp can be
measured by the standard distance D(v), that is, the dif-
ference of the means of vTxi, i=1, 2, divided by the com-
mon within-groups standard deviation:

D(v) =
|vT(m1 −m2)|
(vTΣΣΣv)1/2

. (12)

The term “standard distance” was introduced in Flury
and Riedwyl (1986) (the square of D is sometimes called
Rayleigh coefficient). Note that w1 is the vector in 1⊥

that maximizes D(b) among all shape vectors b ∈ 1⊥.
By (10) and because Pw1 =w1, we have for any b ∈ 1⊥:

c(b,w1) =
|bTΣΣΣw1|

(bTΣΣΣb ∙wT
1ΣΣΣw1)1/2

=
|bTΣΣΣ1ΣΣΣ

+
1P(m1 −m2)|

(bTΣΣΣb ∙wT
1ΣΣΣw1)1/2

=
|bTP(m1 −m2)|
(bTΣΣΣb ∙wT

1ΣΣΣw1)1/2
=
|(Pb)T(m1 −m2)|
(bTΣΣΣb ∙wT

1ΣΣΣw1)1/2

=
1

√
wT

1ΣΣΣw1

∙D(b).

Thus, we observe that b1 defined in (11) has the
strongest discriminating power among all log-ratio vec-
tors bij ∈ B. The highest possible standard distance
for discrimination within size-and-shape space Rp is
Dtot :=D(w), where the discrimination vector w is given
by (9). It is necessary to list the values

Dij :=
D(bij)

Dtot
, (13)

in order to get the magnitude of the discriminating
power of each ratio. In this listing, the log-ratio bij with
the second largest value Dij is likely to be already largely
explained by b1 due to the strong correlations between
ratios. For this reason, we restrict the shape space 1⊥ to
the subspace H2 such that the values bTx for b ∈ H2 are
uncorrelated to bT

1x. It is easy to check that H2 is orthog-
onal to the vector ΣΣΣb1. Projection onto H2 is given by
the matrix

P2 = I−M(M
TM)−1MT,

whereM is the p×2-matrixM=[a0|ΣΣΣb1]. Set ΣΣΣ2=P2ΣΣΣP2
and calculate the (unit length) discrimination vector w2
according to

w2 ∝ ΣΣΣ
+
2P2(m1 −m2),

where ΣΣΣ+
2 is the pseudo-inverse of ΣΣΣ2 (which has rank

p − 2). Now, let b2 be the log-ratio vector bij that shows
largest correlation to w2. Iteration of this procedure
leads to the following algorithm to compute the se-
quence of ratios bi, i= 1, . . . , p− 1:

1. LetM1 = a0 and initialize k= 1.
2. Set Pk = I −Mk(M

T
kMk)

−1MT
k and ΣΣΣk = PkΣΣΣPk.

Determine the pseudo-inverse ΣΣΣ+
k and set

wk = ΣΣΣ
+
kPk(m1 −m2).

3. Let bk = argmaxbij∈B c(bij,wk).
4. Add the column ΣΣΣbk to the matrixMk:

Mk+1 = [a0|ΣΣΣb1| . . . |ΣΣΣbk].

5. Increase k by one unit (unless i = p − 1), and
continue at Step 2.

In practice, only a few iterations will be performed
because the first two or three log-ratios b1,b2, . . . will
already explain most of the discrimination between the
two groups.

Extracting ratios for multiple groups.—Suppose we are
given K groups (classes) x1, . . . ,xK with means m1, . . . ,
mK and a common within-groups covariance matrix ΣΣΣ.
The between-groups covariance matrix is defined by

B=

K∑

k=1

nk(mk −m)(mk −m)
T,

where m is the total mean and nk is the number of in-
dividuals in each group. A frequently used criterion for
discrimination in the multiple group case is

Q(v) =
vTBv

vTΣΣΣv
.

The unit vector v1 maximizing Q(∙) is the eigenvector
of ΣΣΣ−1B with largest eigenvalue. The generalization of
our two-group algorithm explained above to the multi-
ple group case is the following:

1. LetM1 = a0 and initialize k= 1.
2. Set Pk = I −Mk(M

T
kMk)

−1MT
k , ΣΣΣk = PkΣΣΣPk and

Bk=PkBPk. Determine the pseudo-inverse ΣΣΣ+
k and

letwk be the eigenvector of ΣΣΣ+
kBwith largest eigen-

value.
3. Determine

bk = argmax
bij∈B

bT
ijΣΣΣwk

bijΣΣΣbij
.

4. Add the column ΣΣΣbk to the matrixMk:

Mk+1 = [a0|ΣΣΣb1| . . . |ΣΣΣbk].

5. Increase k by one unit and continue at Step 2.

The philosophy behind this algorithm is exactly the
same as in the two-group case: First, we determine the
linear discriminant wk and choose the log-ratio vector
bij with strongest correlation to wk. Then we project to
a subspace of shape vectors that are uncorrelated to all
log-ratio vectors that have already been chosen. Again,
two or three iterations will be sufficient in practice.

Judging the influence of size.—As mentioned above, the
LDA ratio extractor was developed in the shape space
that is convenient for most circumstances. Sometimes,

 at F
achbereichsbibliothek B

uhlplatz on O
ctober 18, 2011

sysbio.oxfordjournals.org
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


818 SYSTEMATIC BIOLOGY VOL. 60

however, it might be informative to know how well par-
ticular groups are separated in relation to size. In order
to assess how much of the total separation is due to size,
we define Dsize : =D(a0)/Dtot and Dshape = D(w1)/Dtot.
One can then view the number

δ=
Dsize

Dsize + Dshape
, (14)

as a measure of how well size discriminates in compari-
son with shape.

The PCA Ratio Spectrum: Interpreting Principal
Components with Ratios

PCA is a very widely used method in multivariate
statistics (Jolliffe 2004). In contrast to LDA, specimens
are not assigned to different groups for a PCA but are
treated as a single group. The resulting scatterplots can
then be used to explore the structure of variation in this
group. It might be the case that the pattern recovers
groupings based on other sets of characters (qualitative
morphology, molecular markers, etc.), which would
give them additional weight. Usually, individual princi-
pal components are interpreted in terms of the original
variables (see Jolicoeur and Mosimann 1960 and Manly
2005 for lucid examples). The method developed below
allows an interpretation using ratios. The main ingre-
dient of this method is a diagram that we call the PCA
ratio spectrum. It allows the user to immediately read
off the dominant ratios as well as their interrelationships
(recall that ratios are always interdependent in a com-
plex fashion as their number is larger than the degree of
freedom in the data).

The technical details of this method and its theoret-
ical justification are presented below. Let the random
vector x with E(x) = 0 and cov(x) = ΣΣΣ (assumed to be
nonsingular) represent body measurements of a given
population. The first principal components vector u1 =
(ui)i=1,...,p of the shape values z = Px is the eigenvector
of ΣΣΣ1 =PΣΣΣP corresponding to the largest eigenvalue λ1
of ΣΣΣ1:

ΣΣΣ1u1 = λ1 ∙ u1.

For a log-ratio vector bij, we have

cov(bT
ijx,u

T
1x) = b

T
ijΣΣΣ1u1 = λ ∙ b

T
iju1 = λ ∙ (ui − uj). (15)

This fact allows a simple graphical interpretation of the
first principal component u in terms of body propor-
tions: The numerical values (coefficients) of the com-
ponents of u1 are drawn as points on the real line.
We call this diagram the PCA ratio spectrum of the
vector u1. To a pair of points ui, uj on the spectrum
with a large difference corresponds a body proportion
log(yi/yj) that contributes substantially to the first prin-
cipal component; on the other hand, close points on
the spectrum contribute little. The PCA ratio spectrum
represents a mixture of all body proportions and shows
how much each of them contributes to the variation in

relation to the others. This can be illustrated with the
example given in Figure 2b. As can be seen by their
comparable separation in the spectrum, the ratios gaster
breadth:gaster length and postmarginal vein:tergum 7 length
have similar explaining power for the variance. On the
other hand, the ratio eye breadth:scape length has no ex-
planatory power because the corresponding points are
very close in the spectrum.

If desired, the same procedure can be applied to the
second and following principal components. Let us em-
phasize again that the method can only be applied in
a statistically consistent manner when a PCA is per-
formed within the shape space.

Statistical stability of the PCA ratio spectrum.—Sometimes
it might be useful to test whether the PCA ratio spec-
trum is statistically stable. Instability occurs when the
largest eigenvalue λ1 is not sufficiently distinct from
the smaller eigenvalues of ΣΣΣ1, though this rarely might
be the case in practice. In order to obtain confidence
intervals for the points ui on the PCA ratio spectrum
we assume that the values x and hence z are normally
distributed. More precisely: Let ẑ1, . . . , ẑn be a random
sample created from a multivariate normal distribution
N (0,ΣΣΣ1). Denote by Σ̂ΣΣ1 the sample covariance matrix
and by û1 the standardized first principal components
vector of Σ̂ΣΣ1, pointing in the same half-space as u1.
The sampling distribution of û1 is complicated but An-
derson has established its large-sample distribution
(see theorem 13.5.1 in Anderson 2003). It follows from
this result that for sufficiently large sample size n, the
marginal distribution of the i-th component of the ran-
dom vector ûi is approximatively normally distributed
according to ûi ∼ N (ui,σ

2
i ) where

σ2
i =
λ1

n

p−1∑

k=2

λk

(λ1 − λk)2
u2

i,k. (16)

Here, λ1 > λ2 ≥ ∙ ∙ ∙ ≥ λp−1 are the positive eigen-
values of the matrix ΣΣΣ1 (which has rank p − 1) and
ui,k are the elements of the matrix U = (u1| . . . |up−1)
formed by the corresponding standardized eigenvec-
tors u1, . . . ,up−1. (The eigenvector up corresponding to
λp = 0 is proportional to the isometric size vector a0.)
Graphically, we represent the 68% confidence intervals
[ui − σi, ui + σi] as perpendicular bars of length 2σi at
the corresponding point ui on the spectrum (Fig. 2b).
If the interval lengths are not too large compared with
the separation of the points on the spectrum—as is the
case in Figure 2b—then the spectrum can be considered
as statistically stable. Even when the normal assump-
tion is violated, the confidence intervals still give some
indication of the stability of the spectrum.

Alternatively, one can also sample the original val-
ues z directly from the empirical distribution and obtain
similar intervals with a bootstrap. The latter was used
for estimating the confidence intervals in Figure 2b.
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The Allometry Ratio Spectrum: Assessing Allometric
Behavior of Ratios

The idea of a ratio spectrum introduced above is also
useful for extracting body ratios that show allometric
behavior. For a given size vector (like a0 or aJ), the body
ratio that shows the most distinctive allometric growth
can be interpreted as the one whose covariance with the
body sizes aTx is maximal. We obtain

cov(bT
ijx,a

Tx) = bT
ijΣΣΣa= di − dj,

where we have set ΣΣΣa= :d=(di)i=1,...,p. Hence, exactly as
in the preceding paragraph, the body proportions with
strongest allometric growth along the size vector a can
be read off the allometry ratio spectrum of d. A rea-
sonable choice of a size vector is Jolicoeur’s size vector
aJ. In that case, we have d ∝ aJ and thus the allomet-
ric body proportions can be directly determined by the
spectrum of aJ. An illustration of such a spectrum is
given in Figure 4.

RESULTS

Discriminating Species

As an illustration of how to apply the LDA ratio ex-
tractor, we revisit a statistical analysis from Baur (2002)
where morphometric data from two species of parasitic
wasps were examined, namely the species Pteromalus
albipennis Walker, 1835 and P. solidaginis Graham and Gi-
jswijt, 1991 from the Pteromalus albipennis group (Insecta:
Hymenoptera: Chalcidoidea). The analysis is based on
p = 23 characters (called “head breadth,” “OOL,” “eye
height,” etc.) measured on n1 = 32 individuals from
P. albipennis (Group 1) and n2 = 19 individuals from

P. solidaginis (Group 2), see Baur (2002) for a complete
description. The common within-group variance is esti-
mated by

Σ̂ΣΣ=
n1

n1 + n2
Σ̂ΣΣ1 +

n2

n1 + n2
Σ̂ΣΣ2,

where Σ̂ΣΣ1, Σ̂ΣΣ1 are the estimated covariance matrices of
the two groups.

Before performing LDA, we would like to add a word
of caution rarely mentioned in the textbooks: If the to-
tal number of individuals n = n1 + n2 is not distinctly
larger than the number p of body traits, the results from
an LDA can be completely spurious. The reason is that
the dimension is large enough that a separating plane is
likely to exist between the two groups even if the sam-
ple points are completely random. As a rule of thumb,
one should always have n > 2p +

√
p. A theoretical justi-

fication of this rule is given in MacKay (2003, p. 490).
By applying the LDA ratio extractor introduced in the

Methodology section, we obtain OOL:gaster length as
the most discriminating ratio. We get Dsize = 0.064 and
Dshape = 0.964, hence δ = 0.063 (cf., formula 14). Thus,
discrimination between the groups stems mostly from
shape differences. The next discriminating body ratio
being as little correlated as possible with OOL:gaster
length is eye breadth:marginal vein. Its standard distance
Dij (see formula 13) is 2.1 as compared with the standard
distance Dij = 5.6 for the first ratio. As can also be seen
from the scatterplot in Figure 1a, the discriminating
power as compared with the first ratio is already much
lower. Figure 1b shows the next two ratios extracted
from the algorithm, funicle 1 length:propodeum length and
scape length:postmarginal vein, with standard distances
Dij = 2.3 and Dij = 1.7, respectively. By looking at the
plots in Figure 1a and b, one could be tempted to simply

FIGURE 1. Scatter plots of the four most discriminating ratios for Pteromalus albipennis (dots) and P. solidaginis (triangles). Plot (a) shows first
versus second ratio, plot (b) third versus fourth ratio.
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combine the first (OOL:gaster length) with the third ratio
(funicle 1 length:propodeum length) to arrive at an even
better separation of groups. However, one should bear
in mind that these ratios are highly correlated and there-
fore stand for more or less the same information.

Interpreting Principal Components

Figure 2a shows the results of a PCA on the same
data set, but this time the two Pteromalus species were
entered in the analysis as a single group. A PCA is

always useful for examining the structure of variation
in a single population, for instance, when it is diffi-
cult to assign specimens to different groups beforehand
(Pimentel 1979; Reyment et al. 1984; Claude 2008). It
can also give additional weight for groupings based
on other features. In this case, the specimens in the
scatterplot were labeled as either P. albipennis or P. sol-
idaginis according to qualitative character differences,
such as coloration or forewing pilosity, and host plant
association (see Graham and Gijswijt 1991). As can be
seen from Figure 2a, the first principal component is
fully congruent with the separation of species. For the

FIGURE 2. Application of the PCA ratio spectrum using the Pteromalus data, with Pteromalus albipennis (dots) and P. solidaginis (triangles). (a)
Scatterplot of a principal component analysis (PCA) in shape space. (b) PCA ratio spectrum of the first principal component. The ratio formed
from the extremal points (i.e., gaster breadth:tergum 7 length) explains a large part of the variation of the first component. In contrast, ratios
formed from characters lying close to each other in the spectrum (e.g., marginal vein:postmarginal vein) explain very little. This is apparent in the
scatterplot (c). Confidence intervals (horizontal bars in (b), see Methodology section) were estimated with a bootstrap.
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FIGURE 3. Scatterplot of isometric size versus first principal
component in shape space for the Pteromalus data set, with Pteroma-
lus albipennis (dots) and P. solidaginis (triangles). The mean size of P.
solidaginis is obviously smaller but it still lies within the range of Ptero-
malus albipennis.

interpretation of this component, the PCA ratio spec-
trum is displayed in Figure 2b. Most of the variation
is explained by ratios like gaster breadth:tergum 7 length
that correspond to points lying at the opposite end of
the spectrum. On the other hand, ratios formed from
characters lying adjacent to each other in the spectrum,
like marginal vein:postmarginal vein, explain very little.
This is visualized in the scatterplot of the two ratios
(Fig. 2c). Of course, also the ratio spectra of the second
and third principal component could be drawn and
sometimes this might be illuminating as well, for in-
stance, for explaining the structure of variation within
each species.

The above analysis exemplifies the use of our method-
ology in the shape space. Sometimes a researcher might
be interested to examine differences in the size of the
specimens, for instance, for investigating the influence
of ecological parameters or different food regimes on
populations (McCoy et al. 2006). Here, one could sim-
ply plot the isometric size axis (see Size section above)
against the first principal component in shape space.
From Figure 3 it is evident that the mean size of Ptero-
malus solidaginis is smaller, but that its range still lies
within P. albipennis.

Assessing Allometry

We will illustrate the use of the allometry ratio spec-
trum on a classical data set of specimens of the purple
rock crab Leptograpsus variegatus (Fabricius, 1793) (Crus-
tacea: Brachyura: Grapsidae) from Western Australia
(see Campbell and Mahon 1974). These occur in two

FIGURE 4. The allometry ratio spectrum for the Leptograpsus varie-
gatus data set for blue type males (a) and for orange type males (b) re-
spectively. The characters shown are carapace length (CL) and width
(CW), width of frontal lobe (FL), rear width (RW), and body depth
(BD) (see Results section). The bars do not represent confidence inter-
vals here.

color forms, blue and orange. Mahon collected 50 in-
dividuals from each color form and from each sex and
made five body measurements: carapace length (CL)
and width (CW), width of frontal lobe (FL), rear width
(RW), and body depth (BD). We calculated the allomet-
ric size vectors aJ for the body measurements of the
males of both the blue and the orange morph. Figure 4
shows the corresponding allometric ratio spectra for
both morphs. As can be seen, the ratio BD:RW shows
the largest allometric growth whereas for CL:CW al-
lometry is negligible in both groups. Figure 5 confirms
this conclusion: There we display a scatter plot for the
orange type males of the isometric sizes versus the log-
ratios of BD:RW and CL:CW, respectively. Whereas the
first ratio (Fig. 5a) visibly has a strong correlation with
isometric size, as is characteristic for allometry as ex-
plained in the Methodology section, this is much less
the case for the second ratio (Fig. 5b).

It is useful to test allometry versus isometry, that is, to
test the null hypothesis that aJ = a0. Such a test, under
the hypothesis of normality and relatively large sam-
ple size, was developed by Anderson (2003) (see section
11.6.2). Adapted to our situation, the P value of the null
hypothesis is given by Prob(χ2

p−1 > κ) where the test
value κ is determined by

κ= n(pλ1a
T
0ΣΣΣ
−1a0 + pλ−1

1 a
T
0ΣΣΣa0 − 2).

Here, ΣΣΣ is the covariance matrix of the sample x of size
n and λ1 is its largest eigenvalue. For the male Leptograp-
sus, the P values are virtually zero for both color types,
hence the null hypothesis that no allometry is present
can safely be rejected.

DISCUSSION

As initially mentioned, a number of body measure-
ments are commonly collected in taxonomic research.
This mainly serves two purposes. First, the raw or
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FIGURE 5. Scatter plots of isometric size versus log-ratios body depth:rear width (a) and carapace length:width (b) for the orange type males in
the Leptograpsus variegatus data set.

log-transformed variables are entered in some kind
of standard multivariate statistical analysis (MVA) for
studying character variation and for discrimination of
taxa. PCA and LDA are among the methods of choice
in this respect and are the ones we refer to with MVA
below. Second, the same measurements are integrated
in descriptive works, but this time by calculating ratios
(indeed, the numerical output from MVA would be far
too awkward for inclusion in descriptions and identifi-
cation keys). Of course, it would be most useful if, say,
a discriminant function could be interpreted in terms
of ratios that then could be directly used for a species
description. One could, for instance, expect some guide-
lines for the choice of ratios. So far, this was not possible
because the two kinds of analysis were not directly com-
parable (see below). Thus, ratio analysis usually adheres
to certain standards established for a particular group,
rather than following the insights gained from MVA.
A case in point is the study of the Encarsia meritoria
species complex (Insecta: Hymenoptera: Aphelinidae)
by Polaszek et al. (2004), where some of the best ratios
used for species discrimination were not even included
in their elaborate PCA and LDA.

The incompatibility of MVA and ratio analysis results
from the way, size and shape functions are defined for
each method (see Fig. 6 for further details). However,
the methods presented here, namely the newly devel-
oped LDA ratio extractor and the PCA ratio spectrum,
solve these problems by using the same definitions for
size and shape. Therefore, the results from MVA can
now be interpreted in terms of ratios that, in turn, can
be directly incorporated in a variety of descriptive taxo-
nomic works. In fact, a more sophisticated use of ratios
may be achieved, as is demonstrated by our application
of the LDA ratio extractor to the data set from parasitic
wasp species of the family Pteromalidae. Here, the best

ratios found for separating the two Pteromalus species
were OOL (distance of lateral ocellus to eye margin):gaster
(abdomen) length, funicle 1 (antenna) length:propodeum
length, etc. (see Results section and Fig. 1). These ratios
relate characters from widely separated body parts and
differ from those commonly used in the taxonomy of
pteromalid wasps. For instance, in Graham (1969), still
the standard reference in the field (Grissell and Schauff
1997), ratios are exclusively formed from characters ly-
ing adjacent to each other, like eye height:breadth or thorax
length:breadth (see also Graham and Gijswijt 1991). Ev-
idently, the variation of such ratios among specimens
can—to a certain extent—be judged by eye. However, as
demonstrated here, these ratios are apparently not the
best ones for discrimination. It is of course very diffi-
cult if not impossible to judge by eye the discriminating
power of ratios based on widely separated characters,
a task that is best done analytically with the help of an
algorithm such as the one presented in this paper.

The present methodology can thus easily be embed-
ded in a consistent statistical frame work for the mul-
tivariate analysis of morphometric data. In particular,
it allows us to interpret the results of a PCA and LDA
entirely in terms of ratios, which themselves form the
core information of most quantitative taxonomic works.
The important point of the new methodology is to de-
termine the shape values and to choose a particular
size vector beforehand. For the size function, we mainly
considered the isometric size vector a0, except for the
allometry ratio spectrum, which relates to Jolicoeur’s
allometric size vector aJ. Of course, other definitions
of shape and size are possible (see Bookstein 1989 for
a review). By using the “back-projection” method of
Burnaby (1966), some authors (e.g., Klingenberg 1996;
McCoy et al. 2006) choose to define their shape values
by projecting the log-data x on the space orthogonal to
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FIGURE 6. Scatterplots of principal component analyses (PCA) of a single species of Pteromalus (n = 32 specimens of Pteromalus albipennis,
p = 23 variables of body measurements; data from Baur 2002), showing the effect of different definitions of size and shape. Specimen labeled
y is a clone of specimen x but with all variables scaled by a factor of 1.4. The two specimens have therefore equal values for all their ratios
and are only separated along the isometric size axis, as indicated by the line connecting x with y. (a) Scatterplot of first against second and (b)
of second against third component respectively of a standard PCA on the covariance matrix of log-transformed data. The first component is
considered as a general size measure because its coefficients have the same sign and are of similar magnitude for all variables. However, they
are not exactly the same, thus the first component of a standard PCA is usually considered as the allometric size axis (Jolicoeur 1963; Claude
2008). The remaining components define the shape space in this analysis. Note that the line of isometry is not parallel to the first component,
and, thus, reflects the different size measures. As a result, specimens x and y are also widely separated points in the shape space, although
viewed from their body proportions they are identical. For (c) and (d) the same data were used, but here they were subjected to a PCA after
removal of isometric size (for details of computation, see the Methodology section). Now, the line of isometry connecting x with y lies of course
parallel to the isometric size axis (c). In the shape space (d) the two specimens form a single point, because only those specimens appear distinct
which also differ in body proportions.

the allometric vector aJ. The reason for this is to trans-
form away shape effects related to allometric growth.
According to this view, size is represented by the first,
shape by all the following principal components of the

log-data. It is, however, unclear how these shape values
could be properly interpreted in terms of body propor-
tions; in particular, no ratio-spectrum can be assigned
in a mathematically consistent way to “shape” vectors
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orthogonal to aJ. Moreover, the allometric growth law in
its bivariate or multivariate versions is just a convenient
statistical model and by no means a “law of nature”
(Gould 1966). In our opinion, allometry should rather
be treated as a hypothesis to be tested after the size
values are determined rather than be incorporated into
the framework from the very beginning. We therefore
prefer to analyze allometric variation with help of the
allometry ratio spectrum, as demonstrated above (see
Results section).

Our new methods are obviously rooted in the field of
multivariate morphometrics (Reyment et al. 1984). The
latter is occasionally dubbed traditional morphometrics
(Marcus 1990), as opposed to “modern morphometrics”
(Claude 2008) such as the analysis of landmarks (geo-
metric morphometrics, Adams et al. 2004; Zelditch et al.
2004) or outlines (e.g., elliptic Fourier analysis, Lestrel
1989, 2000). The main reason why we stay within multi-
variate morphometrics is simply given by the nature of
our data. Landmark and outline data are ideally suited
for fixed objects, such as a skull or the body of a fish.
For an insect with articulated extremities, those meth-
ods are of limited use unless one is willing to study the
form of the head, thorax, or wings in separate analyses.
This can and should be done. Nevertheless, it is often
useful to include measurements from all over the body
in a single analysis. For instance, a taxonomist trying
to distinguish between two most similar species will be
happy about any discriminating character. What if they
are best separated by the ratio of, say, the length of the
hind leg and the eye height? As we have shown above, it
is here where methods of multivariate morphometrics,
adapted for the analysis of ratios, could play a major
role.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at http://www.
sysbio.oxfordjournals.org/.
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APPENDIX
Statistical Derivation of the Allometric Size Vector

We would like to arrive at an estimation of the allometric size vector start-
ing from a statistical model of the allometric growth hypothesis. Let y be the

original data and α(y) =
∏p

k=1 y
ak
k a size function. According to Huxley (1932),

each trait yi when graphed against the individual’s size α(y) should satisfy the
power law

yi = di ∙ α(y)
ci , i= 1, . . . , p. (A1)

Here we consider di as positive random variables and ci as constant coefficients.
We shall use the approach of least squares to statistically estimate the coefficients
ai and ci. Taking logarithms on both sides of (A1), we get

xi = ci

p∑

k=1

akxk + μi + εi,

where μi = E(log di) and E(εi) = 0. In vector notation, this reads

x= (a
T
x)c + μμμ + εεε

with E(εεε) = 0. Because E(x) = 0, we conclude μμμ= 0. We estimate a and c in a
way that the sum of squares is minimal:

(â, ĉ) = argmina,cS(a, c),

where S(a, c) = E‖εεε‖2. We have

S(a, c) = E‖x− (aT
x)c‖2

= E[xT
x + (aT

x)
2
(c

T
c)− 2(aT

x)(c
T
x)]

= E(xT
x) + (cT

c)a
T
ΣΣΣa− 2aT

ΣΣΣc.

Calculating vector derivatives with respect to a and c we get

∂

∂a
S(a, c) = 2(cT

c)ΣΣΣa− 2ΣΣΣc

and
∂

∂c
S(a, c) = (aT

ΣΣΣa)c− ΣΣΣa.

Setting both equations equal to 0 and dropping the hats over â and ĉ, we arrive
at the system of equations:

(a
T
ΣΣΣa)c = ΣΣΣa,

(c
T
c)ΣΣΣa = ΣΣΣc.

Multiplying the second equation from the left by ΣΣΣ−1, solving for c and plug-
ging the result into the first equation, one can see that a is an eigenvector of ΣΣΣ
with eigenvalue

λ=
aTΣΣΣa

‖a‖2

and c= a/‖a‖2. Replacing these results in S(a, c) one gets:

S(a, c) = E(xT
x)− λ.

Evidently, this expression is minimal if λ is the largest eigenvalue of ΣΣΣ. Let a1

denote the unit vector representing the first principal component of the data x.
Imposing the size restriction, we arrive at the solution

aJ = a1/1T
a1

and cJ=aJ/‖aJ‖
2. Historically, Jolicoeur (1963) was the first to introduce a mul-

tivariate generalization of Huxley’s allometric power law and he proposed our
aJ as a measure of size (or rather a1 to be precise). He did not, however, give a
statistical model to motivate his definition.
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