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Abstract— Recently, smart grids have become a vector of 

the energy policy of many countries. Due to structural and 
operation features, smart grids are a constant target of 
combined and simultaneous cyberattacks. To maximize security 
and to optimize existing network schemes to prevent cyber 
intrusion, in this paper, we propose an approach to decision 
support in finding and identifying the most potent attack 
combinations that can set the system to maximum damage. The 
main purpose is to identify the most severe combinations of 
attacks on smart grid components that potentially can be 
implemented from the perspective of the attacker. In this 
context, the problem of finding weaknesses points in the 
network configuration of a smart grid and assessing the impact 
of events on cyberinfrastructure is considered. The technique 
for detecting and investigating the strongest combinations of 
cyberattacks on the smart grid network is given with an 
example of the analysis of the spread of pandemic software in a 
system with arbitrary structure. 

Keywords—smart grid, cyber-physical system, cyberattack, 

network, graph, malware, virus  

I. INTRODUCTION 

Cyber risk is a unique problem for the smart grid 
infrastructure since a cyberattack can easily move from the 
cyber sphere to the physical world. Talking about the 
cyberattacks in distributed intelligent electrical power 
systems, the following notes should be taken into account: 

 Several types of attacks can be launched 
simultaneously in the cyber-physical system of the 
smart grid infrastructure. 

 Cybercriminals create various attacks depending on 
the simplicity of actions, the course of events, and 
less complexity in creating an attack to maximize 
harm. 

 Given this, existing cyber threats should be 
considered both in the plane of physical components 
and in terms of related ICT components.  

The most representative recent examples of the 
implementation of cyber threats are the blackouts in Ukraine 
in 2015 and 2016. They occurred as a result of a series of 
cyberattacks, as well as successful attacks by a group of 
hackers Dragonfly 2.0, which in 2017 gained access to 
several network interfaces of energy companies that are 
leveraged by operators for transmitting commands to 
equipment, such as circuit breakers.   

A list of the most prominent known cybersecurity 
incidents in the last 15 years is given in Table I. 

TABLE I. KNOWN CYBERSECURITY INCIDENTS AGAINST ENERGY 

GRID INFRASTRUCTURE 

Year 
Name of the 

object or malware 
Type/Method  Target/ Impact 

2003 NPP Davis-Bessie  Worm  Network Disruption  

2003 
Venezuela 
Maritime 

Terminal 

Virus  Disruption of service 

2007 
Tehanama Kolusa 
Channel 

Management 

Compromise 

threat    
Unknown 

2008 

Attack on Power 

Supply of four US 
Cities 

Unknown  
Service Disruption, 

Money Demand 

2009 
US Electrical 

Network  

Infrastructure 

Mapping 
Unknown  

2010 Stuxnet  Worm, Trojan 

Unauthorized access 

to SCADA,  

Service disruption, 

Destruction of 
equipment 

2011 Night Dragon 

Social 

engineering, user 
compromise, 

Phishing, 

Windows exploits  

Unauthorized access 

to the control system 

and information 
system  

2011 Duqu 
Virus, Windows- 

exploits  

Data theft, 

Information assets of 

industrial control 
systems 

2012 
Greek oil 

company 

Trojan, Social 

Engineering 
Cyber-espionage  

2012 
Aramco oil 
company  

Virus Cyber-espionage 

2012 Flame 
Worm, Windows- 

exploits 
Cyber-espionage 

2013 

US energy 

companies in the 

Middle East  

Multiple attacks, 

details not 

available 

Sabotage 

2013 

Austrian and 

German power 
grids  

Unexpected DDoS 
Operations were not 

affected 

2014 Dragonfly 

Worm, Windows- 

exploits, Trojan, 
Backdoors 

Cyber-espionage 

2015-
2016 

Ukrainian 

electricity 

networks  

Compromise 

threat   Trojan, 

Worm 

Service disruption 

2017 Dragonfly 2.0 Phishing, Data collection and 
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malicious email 
attachments, 

Trojan  

exploration, 
unauthorized access 

2017 

Maersk.  

Companies and 
port terminals 

around the world  

NotPetya,  
Windows exploits 

Service disruption.  

2018 DisTrack Virus Service disruption 

 

In 2017, the distribution of the NotPetya ransomware 
occurred at a transnational level.  This intervention was 
recognised as the act of a full-scale cyber-war. A few hours 
after its first appearance, the worm went beyond Ukraine and 
intervened in many machines around the world "from a 
hospital in Pennsylvania to the Tasmanian chocolate factory" 
[1].  Recent attacks on Maersk (2017) and DisTack (2018) 
lead to immense losses disrupting services in company 
networks all around the world. In April 2018, as a result of a 
cyberattack, four U.S. pipeline companies experienced a 
shutdown of their electronic systems that lasted for several 
days.  

The list of ICT components of smart energy networks 
that should be considered as a potential source of 
vulnerabilities should include [2]: 

 Operating systems and components: generators, 
transformers, supervisory control and data acquisition 
systems (SCADA), energy management / distribution 
systems (EMS / DMS), programmable logic 
controllers (PLCs), substations, smart meters and 
other smart electrical devices. 

 Classic IT systems: PCs, servers, mainframes, 
applications, databases, websites, web services, etc. 

 Networks and communication protocols: Ethernet, 
Wi-Fi, PRIME, DLMS / COSEM, Zigbee, 4G, 
DNP3, etc. 

 Endpoints: smart meters, EV, smartphones and other 
mobile devices. 

II. MODELS OF MALWARE  

Table II presents the types of cyber-physical attacks on 
smart grid components in terms of their impact on integrity, 
privacy, and accessibility. 

TABLE II.  CLASSIFICATION OF CYBER-PHYSICAL ATTACKS 

Attack model  Cyber  Physical The target feature 

Denial of Service (DoS) + + Availability 

Listening  +  Confidentiality 

False Data Injection (FDI) + + Integrity 

Insert malware + + Authentication 

Людина в середині 
+ + 

Integrity, 

Confidentiality 

Enemy device  
 + 

Integrity, 

Confidentiality 

Unauthorized access  
 + 

Authorization, 

Confidentiality 

Wireless scrambling 

(encryption, capture)  
+  

Integrity  

According to the classification given in [3], the 
characteristics and parameters of malware could be 
represented in terms of the pandemic, endemic, and 
infectious types. (see Table III). Contrary to [3], where the 
characteristics of malware distribution in networks are 

studied based on mathematical modeling, this study defines 
the components used to model the initial stages of malware 
distribution in such networks to analyze the availability of 
network branches to cyberattacks. 

TABLE III.  MODELS OF MALWARE 

Characteristics  

 

Types of malware 

Pandemic Endemic Infectious 

Scan type  
Aggressive 

topological  

Hit-list  Passive  

Distribution  

Infected Node 
Scans the 

Whole Subnet 

Infected Node 
Scans Part of 

the Subnet  

Infected Node 
infects the network 

through an 

established 
communication 

channel 

Scanning 

velocity, sec 

100 1 - 

Load, byte  500 5000 5000 

Morphism  Oligomorphic  Polymorphic Metamorphic 

Complexity  Simple  Complex  Complex  

Distribution   
Self-spreading Self- 

spreading  

Built-in 

Examples  

Red 1, 2 [4,5],  
Nimda [4], 

Slammer [6, 7], 

Conficker [8,9] 

Regin [10], 
Duqu [11,12],  

Flame [11]. 

Gauss [11],  
Equation [13], 

AdWind [14,15],  

Grey Energy [16] 

It is worth noting that the taxonomy presented in Table 
III is conditional since malware can combine different types 
of characteristics, for example, Stuxnet virus [17] has many 
functions similar to the endemic category, but it does not use 
hit lists. The speed and scale of distribution of WannaCry 
[18] and NotPetya [19], which in 2017 infected more than 
200,000 devices in more than 100 countries, causing more 
than $ 4 billion in losses in just 24 hours [20], makes it 
pandemic in while they use more sophisticated 
implementation and anti-tampering methods, such as XOR 
encryption and fake Microsoft digital signatures [21]. The 
same statement applies to their predecessor, Petya, whose 
developers used the methods commonly used by penetration 
testers and hackers and built sophisticated multi-threaded 
automation of these methods in one piece of code. 

The malware of GreyEnergy currently has no destructive 
capabilities and seems to focus on spyware and intelligence 
operations on control system workstations that work with 
SCADA software and servers, giving it a reason to classify it 
as a third category. However, GreyEnergy has a modular 
architecture, which means that its capabilities can be 
expanded [22]. Also, ESET experts note that GreyEnergy has 
been involved in attacks on energy companies and other 
Ukrainian and Polish value units over the last three years. 

Identification of potential high-risk vulnerabilities is a 
vital component of an advanced security strategy and should 
be part of the overall smart grid infrastructure management 
program. Early warning systems, risk management analytics, 
security monitoring systems and digital audit systems enable 
businesses and researchers to make better decisions. 
Traditional decision support techniques rely heavily on data 
analytics algorithms for security, cyberattack capabilities and 
vectors, data breaches, and more.  

However, the regulatory analysis showed that due to the 
technical difference between the IEs and the CVSS used by 
NIST, threat assessment could only be performed on 
IEC61850 computer nodes such as database servers, 
engineering stations, human-machine interfaces and 



gateways. Therefore, it is necessary to develop and use a new 
metric scheme capable of taking into account different levels 
of threats and auditing the security of smart energy systems 
under metric schemes. 

In view of the above, in this work, we assumed that 
several simultaneous attacks on the similar smart grid system 
components could occur. The main purpose is to identify the 
strongest combinations of attacks on smart grid components 
that potentially can be implemented from the perspective of 
the attacker.  

III. BASIC ASSUMPTIONS  

One of the most challenging issues caused by cyber 
intrusions is cascading network outages due to the 
simultaneous attack on several nodes of a distributed power 
system. In this case, the goal of a cyberattack is to disconnect 
or switch network branches from an operational state to 
shutdown. Potential attacks on the network ci form the 
combination vector C: C = {c1, c2, c3, c4 ..., cm}. The 
elements of this vector include the sets of sequences of 
simultaneous disconnection of certain network branches and 
enable calculating the damage caused to the system due to 
the implementation appropriate combinations of 
cyberattacks. Then the time to turn off the power system t(ci) 
forms another vector: T = {t (c1), t (c2), t (c3), t (c4), ..., t 
(cm)}. 

Using the introduced notations, a combinational attack is 
considered as powerful if a maximum number of 
disconnections of the branches of the system k → E can be 
achieved in a minimum time t (ci) → min. 

For further consideration, the following assumptions are 
made: 

 Assumption 1: Any type of attack can be used to 
attack simultaneously. 

 Assumption 2: All an attacker needs is to manipulate 
a relay or switch. A line switching attack can, for 
example, be triggered by initiating an emergency 
protection scheme or a corrective action scheme. 

 Assumption 3: Attackers have the resources to attack 
multiple lines at the same time to initiate a 
simultaneous attack. 

 Assumption 4: For n-k unforeseen circumstances, 
there should be a kmax value of N. It is assumed that 
the maximum kmax branches will fire simultaneously 
with a simultaneous attack. 

 Assumption 3: The largest attack combination is 
considered for the minimum time required to achieve 
a power outage, calculated as a percentage of power 
lost (MW). 

 Assumption 4: The maximum blackout is 100% 
power loss. 

In this case, the percentage of lost MW is calculated 
using the formula below: 

%  MW lost  = 100%,
a b

a


  

where a is the total number of MW before the attack and 
b is the total number of MW after the attack. 

The problem of finding weaknesses in the configuration 
of a distributed electricity network is formulated in the form 
of a connection prediction problem in its cyber graph. 

For a non-directional graph G (V, E), where V is the set 
of nodes i, E is the set of edges e (i, j) connecting the nodes i 
and j, it is necessary to determine the distance function 
between nodes of the graph, which will guarantee for the 
structure of the graph G (t0, t0*), given in the interval of time 
(t0, t0*), to predict the structure of G (t1, t1*) in the interval 
(t1, t1*). 

Due to the features of smart grid involve a dynamic 
network structure the PageRank importance indicator, which 
is commonly used for various social network prediction tasks 
[23], on the Internet, and cyber threat detection through link 
analysis [24] can be used for assessing the impact of events 
on cyber infrastructure of distributed power grids. The 
reasons for using the PageRank algorithm for calculating 
node criticality are: 

 The results are calculated using a stochastic approach 
that reflects the randomness in the evolution of the 
model. With regard to cyber-threat infrastructures, we 
assume that there is a constant evolution of smart grid 
cyberspace, in the form of new organizations, owners, 
IPs, servers, malware samples, domains, and 
registrars. This emergence of new peaks influences 
the evolution of network accessibility estimates for 
cybercriminals. 

 The random model illustrates the access to the nodes 
of the graph with probability (damping factor). 

Similar to changing cyber-threats infrastructure, the use 
of a probabilistic approach model is interesting because it 
enables to track potential actions taken through infected 
machines. For example, it is assumed that the compromised 
domain can be visited by the infected machine, the IP 
address can be connected to infected machines or connected 
to the server of the compromised domain, the FTP server can 
be used to download the stolen information, the SMTP server 
can be used to start spam or phishing campaigns, you can use 
the IRC channel to instruct bots to launch DDoS attacks, 
distribute malware, or other malicious activity, and more. 

 

IV. TECHNIQUE FOR ASSESSING THE IMPACT OF EVENTS 

ON SMART GRID CYBER INFRASTRUCTURE 

  
Given the scale and constantly changing the structure of 

smart grid networks, it is additionally suggested that 
attackers have the ability to attack any line by infecting the 
target node. Therefore, it is believed that both the purpose of 
the attack and the purpose of protection is to find the peaks 
that have the greatest impact on the infrastructure. Decisions 
about the strongest combinations of attacks capable of giving 
the system maximum damage are made by calculating the 
importance of the nodes of the graph and redistributing them 
according to the values obtained. 

The analysis can be based on cyber graph models or a 
topological network diagram, which is also extrapolated as a 
graph.  

Step 1. Create a matrix of branches. 



The adjacency matrix of graph G with a finite number of 
nodes n is a square matrix of size n × n, which is formed 
from the elements of nodes whose values are equal to the 
weight ωij of the edge e (i, j). 
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Step 2. Generate a combinational vector of attacks. 

For k disconnections with E edges, the number of 
possible combinations is calculated by the following formula 
[25]: 
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k k E k

 
  

 

 

 
Step 3. Create a combination matrix of transitions. 

A stochastic matrix is created for each attack vector, in 
which all columns are rows of real numbers from 0 to 1, 
giving in the sum 1: 
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where the value of each element of the matrix is 

determined by: 
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Step 4. Calculate the importance of the nodes 

The importance of PR (vi) of the node associated with 
node vj and do(vi) - the number of output edges from node vi 
is calculated as [26]: 
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where d is the damping factor (0.85). 

In this case, it is assumed that if the attacker has reached 
node vj with probability d, then the probability of reaching 
another node vi is 1/do(vj). 

As a result, one equation for a node with the 
corresponding number of unknown values of PR (vi) can be 
obtained in one step. 

Assuming that 
1

( ) 1



n

i
i

PR v , the algorithm iteratively 

finds different values for each t until the values converge, i.e. 

 

| (PR (vi), t) - (PR (vi), t – 1) | 1 <ε, 

 
where ε is the permissible error. 

Step 5. Redistribute the nodes of the graph by their 
criticality for the invasion. 

At this stage, the nodes of the graph are sorted by PR and 
decisions are made on what to do next. 

The resulting model reflects access to elements of 
cyberinfrastructure and can be used to analyze potential 
attacks through infected channels. 

Step 6. Analyze the impact of cyberattack combinations 
on the smart grid infrastructure.  

The analysis calculates the possible damage and 
identifies the strongest combinations of attacks. 

V. CASE STUDY 

The proposed approach was tested for analysis of the 
distribution of pandemic software in the smart grid network 
with arbitrary structure. To evaluate the possibilities and 
potential of the proposed method, we consider a hypothetical 
network diagram (Fig. 1). 
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Figure 1 – An example of a network diagram  

The network structure has 10 buses, 6 transformers and 
14 transmission lines, which are given unique numbers 
corresponding to the connection points of the respective i-j 
buses. Taking into account accepted assumptions, this 
scheme can be represented in the form of a graph (Fig. 2) for 
which the corresponding adjacency and incident matrix is 
formed. 
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Figure 2 - Graph of the system under study 

The adjacency matrix of the graph 

vi 
1 2 3 4 5 6 7 8 9 10 

1 0 0 1 0 1 0 0 0 0 0 



2 0 0 0 0 0 1 1 0 0 0 

3 1 0 0 1 1 0 0 0 0 1 

4 0 0 1 0 0 1 0 1 1 0 

5 1 0 1 0 0 0 0 0 0 0 

6 0 1 0 1 0 0 0 0 0 1 

7 0 1 0 0 0 0 0 0 0 1 

8 0 0 0 1 0 0 0 0 1 0 

9 0 0 0 0 0 0 0 1 0 1 

10 0 0 1 0 0 1 1 0 1 0 

 
Input incidence matrix  

vi 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 1 1 0 0 0 

3 1 0 0 1 0 0 0 0 0 0 

4 0 0 1 0 0 1 0 1 1 0 

5 1 0 1 0 0 0 0 0 0 0 

6 0 1 0 0 0 0 0 0 0 1 

7 0 0 0 0 0 0 0 0 0 1 

8 0 0 0 0 0 0 0 0 1 0 

9 0 0 0 0 0 0 0 0 0 0 

10 0 0 1 0 0 1 0 0 1 0 

 
Then, for the graph shown in Fig. 2, the sets of reach of 

each node can be represented as follows: 

 

       1 2{ } ... .     p

i i i i iR v v v v v  

 Out

1 1R v {v }.  
 Out

2 2 2 6 2 7 2 7 10 2 7 10 9 2 7 10 3

2 7 10 3 4 2 7 10 3 4 6 2 7 10 3 4 9

2 7 10 3 4 8 2 7 10 3 1 1 2 3 4 6 7 8 9 10

R v {v } {v ,v } {v ,v } {v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v }

{v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v }

{v ,v ,v ,v ,v ,v } {v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v ,v ,v ,v }



 .  

 
 Out

3 3 3 1 3 4 3 4 3 1 3 4 6 3 4 6 2

3 4 6 2 7 3 4 6 2 7 10 3 4 6 2 7 10 9

3 4 6 2 7 10 3 3 4 6 2 7 10 3 1 3 4 8 3 4

R v {v } {v ,v } {v ,v } {v ,v ,v ,v } {v ,v ,v } {v ,v ,v ,v }

{v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v ,v }

{v ,v ,v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v ,v ,v } {v ,v ,v } {v ,v ,



9

1 2 3 4 6 7 8 9 10

v }

{v ,v ,v ,v ,v ,v ,v ,v ,v }.



  

 
 Out

4 4 4 3 4 3 1 4 6 4 6 2 4 6 2 7

4 6 2 7 10 4 6 2 7 10 9 4 6 2 7 10 3

4 6 2 7 10 3 1 4 8 4 9

1 2 3 4 6 7 8 9 10

R v {v } {v ,v } {v ,v ,v } {v ,v } {v ,v ,v } {v ,v ,v ,v }

{v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v }

{v ,v ,v ,v ,v ,v ,v } {v ,v } {v ,v }

{v ,v ,v ,v ,v ,v ,v ,v ,v }.





  

 
 Out

5 5 5 1 5 3 5 3 4 5 3 4 6 5 3 4 8

3 4 9 1 3 4 5 6 8 9

R v {v } {v ,v } {v ,v } {v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v }

{v ,v ,v } {v ,v ,v ,v ,v ,v ,v }.





 

 6 6 6 2 6 10 6 2 7 6 2 7 10 6 2 7 10 9

6 2 7 10 3 6 2 7 10 3 4 6 2 7 10 3 4 9

6 2 7 10 3 4 8 6 2 7 10 3 4 8 9 6 2 7 10

R v {v } {v ,v } {v ,v } {v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v , v }

{v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v ,v }

{v ,v ,v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v ,v ,v } {v ,v ,v ,v ,



3 1

1 2 3 4 6 7 8 9 10

v ,v }

{v ,v ,v ,v ,v ,v ,v ,v ,v }.





 

 Out

7 7 7 10 7 10 6 7 10 6 2 7 10 9 7 10 3

7 10 3 4 7 10 3 4 9 7 10 3 4 8 7 10 3 4 8 9

7 10 3 1 1 2 3 4 6 7 8 9 10

R v {v } {v ,v } {v ,v ,v } {v ,v ,v ,v } {v ,v ,v } {v ,v ,v }

{v ,v ,v ,v } {v ,v ,v ,v ,v } {v ,v ,v ,v ,v } {v ,v ,v ,v , v ,v }

{v ,v ,v ,v } {v ,v ,v ,v ,v ,v ,v ,v ,v }.



  

 Out

8 8 8 9R v {v } {v ,v }.  

 Out

9 9R v {v }.  

 Out

10 10 10 6 10 9 10 3 10 6 2 10 6 2 7

10 3 1 10 3 4 10 3 4 9 10 3 4 8 10 3 4 8 9

1 2 3 4 6 7 8 9 10

R v {v } {v ,v } {v ,v } {v ,v } {v ,v ,v } {v ,v ,v ,v }

{v ,v ,v } {v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v ,v }

{v ,v ,v ,v ,v ,v ,v ,v ,v }.





  

The output incidence matrix 

vi 1 2 3 4 5 6 7 8 9 10 

1 0 0 1 0 1 0 0 0 0 0 

2 0 0 0 0 0 1 0 0 0 0 

3 0 0 0 0 1 0 0 0 0 1 

4 0 0 0 0 0 1 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 1 0 0 0 0 0 1 

7 0 1 0 0 0 0 0 0 0 0 

8 0 0 0 1 0 0 0 0 0 0 

9 0 0 0 1 0 0 0 1 0 0 

10 0 0 0 0 0 1 1 0 0 0 

 
Sets for input streams: 

 In

1 1 3 1 5 1 4 3 1 10 3 1 6 10 3 1

2 6 10 3 1 7 10 3 1 2 7 10 3 1

1 2 3 4 5 6 7 10

R v {v } {v ,v } {v ,v } {v ,v ,v } {v ,v ,v } {v ,v ,v ,v }

{v ,v ,v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v ,v }

{v ,v ,v ,v ,v ,v ,v ,v }.







 

 In

2 2 6 2 4 6 2 10 6 2 3 4 6 2

10 3 4 6 2 5 3 4 6 2 2 3 4 5 6 10

R x {x } {x , x } {x , x , x } {x , x , x } {x , x , x , x }

{x , x , x , x , x } {x , x , x , x , x } {x , x , x , x , x , x }.



  

 In

3 3 4 3 5 3 10 3 6 10 3

2 6 10 3 4 6 10 3 2 3 4 5 6 10

R v {v } {v ,v } {v ,v } {v ,v } {v ,v ,v }

{v ,v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v ,v ,v }.



  

 In

4 4 3 4 5 3 4 10 3 4 6 10 3 4

2 6 10 3 4 2 7 3 4 2 3 4 5 6 7 10

R v {v } {v ,v } {v ,v ,v } {v ,v ,v } {v ,v ,v ,v }

{v ,v ,v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v ,v ,v ,v }.





 

 In

5 5 5 1 5 3 5 3 4 5 3 4 6 5 3 4 8

3 4 9 1 3 4 5 6 8 9

R v {v } {v ,v } {v ,v } {v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v }

{v ,v ,v } {v ,v ,v ,v ,v ,v ,v }.





 

 In

6 6 4 6 10 6 2 6 7 10 6 2 7 10 6

3 4 6 10 3 4 6 7 10 3 4 6 2 7 10 3 4 6

5 3 4 6 2 3 4 5 6 7 10

R v {v } {v ,v } {v ,v } {v ,v } {v ,v ,v } {v ,v ,v ,v }

{v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v }

{v ,v ,v ,v } {v ,v ,v ,v ,v ,v ,v }.



  

 In

7 7 2 7 6 2 7 10 6 2 7 4 6 2 7

3 4 6 2 7 10 3 4 6 2 7 5 3 4 6 2 7

2 3 4 5 6 7 10

R v {v } {v ,v } {v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v }

{v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v }

{v ,v ,v ,v ,v ,v ,v }.





  

 In

8 8 4 8 3 4 8 5 3 4 8 10 3 4 8

6 10 3 4 8 2 6 10 3 4 8 2 7 3 4 8

2 3 4 5 6 7 8 10

R v {v } {v ,v } {v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v }

{v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v } {v ,v ,v ,v ,v }

{v ,v ,v ,v ,v ,v ,v ,v }.





  
 In

9 9 4 8 10 9 3 4 9 5 3 4 9 10 3 4 9

6 10 3 4 9 2 6 10 3 4 9 2 7 3 4 9

2 3 4 5 6 7 9 10

R v {v } {v ,v } {v ,v } {v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v }

{v ,v ,v ,v ,v } {v ,v ,v ,v ,v ,v } {v ,v ,v ,v ,v }

{v ,v ,v ,v ,v ,v ,v ,v }.





  



 In

10 10 7 10 6 10 2 7 10 6 2 7 10

4 6 10 3 4 6 10 3 4 6 2 7 10 5 3 4 6 2 7 10

2 3 4 5 6 7 10

R v {v } {v ,v } {v ,v } {v ,v ,v } {v ,v ,v ,v }

{v ,v ,v } {v ,v ,v ,v } {v ,v ,v ,v ,v ,v } {v ,v ,v ,v ,v , v ,v }

{v ,v ,v ,v ,v ,v ,v }.





  

As can be seen from the above, the sets of reachability 
alone do not make it possible to decide on the importance of 
the peaks in terms of their availability for the pandemic 
distribution of malicious software. 

For the scheme in Fig. 1, the second step gives us 24 
combinations of attacks for a single shutdown. Considering 
the unpredictability of E-2 (assuming k = 2), the number of 
possible combinations of simultaneous attacks will be [27]: 

  2 21! 14 14
( 2) 189,

2!( 2)! 2 2 2

E EE E E
c E

E

  
     



 

which actually proves how much damage can be done to 
power systems using well-planned attacks. 

The next step of the proposed method is to create 
combinatorial matrices. The formation of combinational 
transition matrices is performed according to the incident 
matrices obtained in the previous step. As a result, we get the 
following distributions of conversion values. 

Input transition matrix 

vi 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 1/3 1 0 0 0 

3 0,5 0 0 1 0 0 0 0 0 0 

4 
0 0 

1/3 
0 0 1/3 0 1 1/3 0 

5 0,5 0 1/3 0 0 0 0 0 0 0 

6 0 1 0 0 0 0 0 0 0 0,5 

7 0 0 0 0 0 0 0 0 0 0,5 

8 0 0 0 0 0 0 0 0 1/3 0 

9 0 0 0 0 0 0 0 0 0 0 

10 0 0 1/3 0 0 1/3 0 0 1/3 0 

 
Output transition matrix 

vi 1 2 3 4 5 6 7 8 9 10 

1 0 0 1 0 0,5 0 0 0 0 0 

2 0 0 0 0 0 1/3 0 0 0 0 

3 0 0 0 0 0,5 0 0 0 0 0,5 

4 0 0 0 0 0 1/3 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 1/3 0 0 0 0 0 0,5 

7 0 1 0 0 0 0 0 0 0 0 

8 0 0 0 1/3 0 0 0 0 0 0 

9 0 0 0 1/3 0 0 0 1 0 0 

10 0 0 0 0 0 1/3 1 0 0 0 

 
The next step is computing the importance of the nodes, 

which is determined by the number of output edges, taking 
into account their connectivity. This task is iterative and 
causes the use of granulation to achieve maximum 
processing speed with the maximum degree of systematic 
abstraction [28]. 

According to [29], the granular processing principle 
involves solving a problem for a single node and then 
extrapolating the output to the nodes of the entire graph. The 
algorithm of calculation thus coincides with six stages [30]. 

Stage 1. Select a random node vi. 

Stage 2. Compute all edges included in this node: 

1

( ) ,



k

i ij
j

PR v e
 

where ei,j = 1 if node vi is the end of an arc joining nodes 
vi and vj, and ei,j = 0 otherwise. 

Stage 3. For each source of input edges, the total number 
of output edges d0(vj) is calculated: 

0
1

( ) ,



k

j ij
j

d v e  

where ei,j = 1, if node vj is the beginning of an arc 
connecting nodes vi and vj, and ei,j = 0 otherwise. 

Stage 4. Compute the importance of the PR (vi) of the 
node associated with the node vj, where do(vj) is the number 
of output edges from the node vj. 

Stage 5. For all nodes repeat Stages 1-3. 

Stage 6. Check the convergence of results. The 
calculations are completed when the conditions are reached 

1

( ) 1



n

i
i

PR v
, otherwise stages 1-5 are repeated. It is 

believed that convergence occurs when all ranks are within 

the error boundary 1
( ) ( ) ,


 

i t i t
PR v PR v 

where ε is the 
error limit, an arbitrary value from 0 to 1. The smaller the 
error limit, the more accurate the result. 

TABLE IV.  THE RESULT OF CALCULATING THE IMPORTANCE OF 

NODES BY PR 

vi In-

Deg 

Out-

Deg 

Deg Weighted 

In-Deg 

Weighted 

Out-Deg 

Weighted 

Degree 

PR(vi) 

1 2 0 2 2 0 2 0.077145 

2 1 2 3 1 2 3 0.077640 

3 3 2 5 3 2 5 0.138118 

4 1 4 5 1 4 5 0.134641 

5 0 2 2 0 2 2 0.077145 

6 3 2 5 3 2 5 0.105522 

7 1 1 2 1 1 2 0.076924 

8 1 1 2 1 1 2 0.072951 

9 3 0 3 3 0 3 0.103558 

10 2 3 5 2 3 5 0.136356 

 
After ordering the vertices by PR, we obtain the 

following sequence AR  (see Table V): 

3 10 4 6 9 2 1 5 7 8v v v v v v v v v v
 

TABLE V.   RESULT OF THE REDISTRIBUTION OF NODES BY 

THEIR IMPORTANCE 

AR vi In-

Deg 

Out-

Deg 

Deg Weight 

In-Deg 

Weight 

Out-

Deg 

Weight 

Degree 

PageRank 

1 3 3 2 5 3 2 5 0.138118 

2 10 2 3 5 2 3 5 0.136356 

3 4 1 4 5 1 4 5 0.134641 

4 6 3 2 5 3 2 5 0.105522 



5 9 3 0 3 3 0 3 0.103558 

6 2 1 2 3 1 2 3 0.07764 

7 1 2 0 2 2 0 2 0.077145 

8 5 0 2 2 0 2 2 0.077145 

9 7 1 1 2 1 1 2 0.076924 

10 8 1 1 2 1 1 2 0.072951 

VI. DISCUSSION  

As a result of the redistribution, it becomes possible to 
determine the order of verification of nodes by their 
importance / criticality for the system as a whole. Another 
option to apply the proposed approach and its natural 
evolution is to evaluate the strongest combinations of 
network attacks. In this context, it is possible to utilise 
relatively recently presented approaches [25, 31], which 
enable the modeling of attacks on individual branches of the 
graph and assessing the potential harm from their 
implementation. 

As a rule, the electrical topological structure of the 
energy system is static (updated only when new elements are 
included) and contains detailed information about system 
assets, their characteristics and configurations. The only 
dynamically changing parameter is the state of the network 
switching equipment. Obviously, in a power system, the 
status of network switches only changes when the system is 
reconfigured, which also does not happen often, while the 
modules of the power management system perform their 
operations very often, even every few minutes, depending on 
the program. With this in mind, the best target for 
cyberattacks is to disable or switch branches from working 
state to off state. This, in turn, can cause an overload and a 
series of successive (cascading) system shutdowns. Thus, 
after investigating the most important peaks and fixing the 
types of attacks that may be attacked by the system, it is 
necessary to measure the changes in the system's power 
supply parameters (load, percentage of lost MW, etc.). Then, 
from the data obtained, the damage level can be calculated, 
and the strongest combinations of attack determined. Fig. 3 
illustrates a situation where simultaneous switching off of 
lines {3-4, 3-5, 3-10} will cause cascade shutdown of lines 
{3-5, 10-7, 10-6, 4-8, 4-9} (shown by a dashed line). 
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10

9 8
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3 5
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Figure 3 – Scheme of cascade shutdowns for branches 3-

4, 3-5, 3-10. 

A fragment of data with variants of cascading 
disconnections for the topological scheme shown in Fig. 1 is 
presented in Table VI. 

TABLE VI.  DATA SNIPPET WITH CASCADE SHUTDOWN OPTIONS 

No Initial combination Cascade combination 

1 2-6, 2-7 6-10, 7-10, 10-3 

2 2-6, 7-10 6-10, 2-7, 10-3 

3 3-4, 3-10 3-1, 3-5, 10-6, 10-7, 4-8, 4-9 

4 4-9, 6-10 4-8, 4-3, 10-3, 10-7, 6-2 

5 3-4, 3-5, 3-10 3-5, 10-7, 10-6, 4-8, 4-9 

.. ... ... 

 
As can be seen from the Table VI, one of the key points 

of this analysis is that from the point of view of the attacker, 
it is enough to overload several lines to cause maximum 
damage. For example, a nozzle to cause a cascade shutdown 
of branches 3-1, 3-5, 10-6, 10-7, 4-8, 4-9 is enough to turn 
off two lines 3-4, 3-10, instead of a set of 3-4, 3- 5, 3-10. 

More detailed analysis, using flow directions, gives 
another interesting observation - a line overloaded during a 
particular line cutoff (N-1) may not be overloaded for a 
combination of previous line cutouts. But it is obvious that 
N-2 outages are more harmful to the system than N-1 when 
considering their overall impact. 

VII. CONCLUSIONS 

The results of testing the method determined that one of 
the key points of the proposed approach is that from the point 
of view of the attacker, it is enough to overload several lines 
to cause maximum damage to the system. A more detailed 
analysis, using the flow directions, provided another 
observation - a line overloaded during a particular line cutoff 
(N-1) may not be overloaded for a combination of previous 
line cutoffs. However, it has been confirmed that N-2 
outages are more harmful to the system than N-1 when 
considering their overall impact. 

The simulation results allow us to conclude that the 
proposed structures can be used to find and identify the 
strongest combinations of attacks capable of causing the 
maximum system damage. To solve higher-level decision-
making problems, such as obtaining realistic data on changes 
to system characteristics in the presence of cyber-
interference, it is useful to use another type of model that 
directly describes physical processes in the system. 
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