Molecular Dynamics Primer

Stefan Bringuier

Department of Materials Science and Engineering, University of Arizona

stefanb@email.arizona.edu
http://u.arizona.edu/~stefanb

April 2, 2014

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

Simulation vs. Experiment

Experiment

- Setup experimental conditions
- Measure quantity of interest
- Analyze apply theory

Simulation

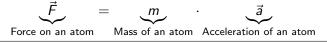
- Setup Model and approximations
- Calculate subject setup to conditions
- Analyze measure, match, possibly predict.

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials


Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

What is Molecular Dynamics? Molecular Dynamics(MD) is classical!

Think Of Pool!

Adapted from http://www.worldofstock.com

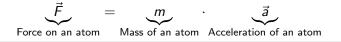
MD-Primer

Stefan Bringuier

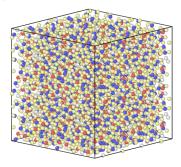
Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion


Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles


Analysis

What is Molecular Dynamics?

Molecular Dynamics(MD) is classical!

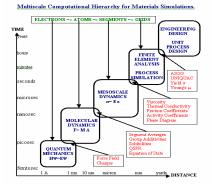
MD As Hard-Spheres

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials


Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

MD is the application of classical mechanics to treat the evolution of atoms interacting via a determined potential at nanometer length and picosecond time scales.

Adapted from www.wag.caltech.edu

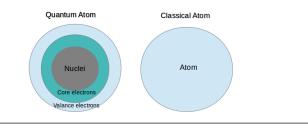
MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion


Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

What Do Atoms Look Like in MD

QM vs. MD Atom

The Approach

- Nuclei and Electrons are not explicitly treated
- Describe atoms with an interatomic potential(i.e. Model)
- Given Newtons laws of motion evolve a system
- Modify equations to include temperature, pressure, etc.

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

Limitations of MD

- Time and length scale: nanoseconds and nanometers
- Interatomic potentials dictate potential energy surface
- Chemistry should be carefully interpreted
- Know the limitations of the MD model

Should You Use Other Methods

- Does your phenomena fall outside the range of time and length scale of MD:
 Spatial - Dislocation Dynamics
 Time - Diffusion
- Do you need the effects of electrons -¿ QM calculations

MD-Primer

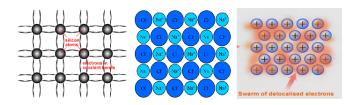
Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list


nitialization & Ensembles

Analysis

Classifying Materials

Since we have eliminated the direct interaction of electrons which are responsible for chemistry (i.e. bonding) are models need to same something about the bonding.

- Dispersion forces
- Ionic bonding
- Covalent bonding
- Metallic bonding

Adapted from http://www.abc.net.au

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

Cohesive Energy

- Potential energy is the sum of all interacting atoms
- Cohesive energy is the energy need to move all the atoms infinitely apart

MD-Primer

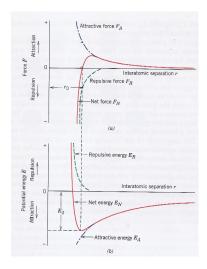
Stefan Bringuier

Overview

Potentials

Pair Potentials Many-body Potentials

Solving Equations of Motion


Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

Pair Potentials

- Energy and force are sum of atom pair interactions
- Only dependent on separation distance
- Some examples are: Lennard-Jones, Buckingham, and Morse

Adapted from Callister, William D. ,Jr. Materials Science And Engineering An Introduction, 7th ed.

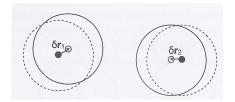
MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion


Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

Dispersion forces

- No directionality to bond
- Pairwise interaction between atoms
- Repulsive nature due need for electron orthogonality (i.e. Pauli exclusion principle)
- Attractive nature from instantaneous electron fluctuations around nuclei

Adapted from LeSar, Richard. Introduction to Computational Materials Science: Fundamentals to Applications, 1st ed.

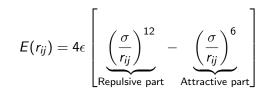
MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion


Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

Lennard-Jones

Very common simple interatomic potential good for noble gases and molecular interactions.

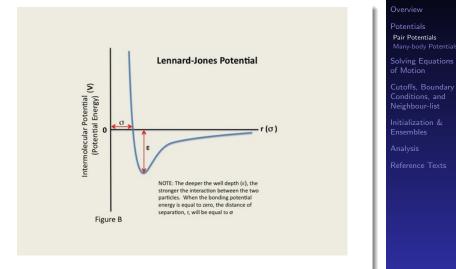
 ϵ : potential well depth

 $\sigma:$ distance were energy is zero

MD-Primer

Stefan Bringuier

Overview


Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

Adapted from http://chemwiki.ucdavis.edu

MD-Primer Stefan Bringuier

How Well Does LJ Do!

		Ne	Ar	Kr	Xe
$r_{o}(A)$	Experiment	3.13	3.75	3.99	4.33
	Theory	2.99	3.71	3.98	4.34
$U_o\left(\frac{eV}{atom}\right)$	Experiment	-0.02	-0.08	-0.11	-0.17
	Theory	-0.027	-0.089	-0.120	-0.172
$B_o(GPa)$	Experiment	1.1	2.7	3.5	3.6
	Theory	1.8	3.2	3.5	3.8

Other Simple Potentials

- Mie Potential adds two more variables for fitting
- Morse Potential approach from diatomic bond potentials

MD-Primer

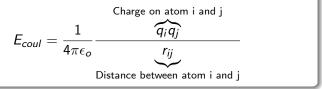
Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list


nitialization & Ensembles

Analysis

Ionic Bonding

Coulombic In Nature

- Atoms in ionic materials behave like point charges
- Simple to describe by Coulomb potential
- Very long-range interactions

Terms Added For Correction

- Usually a repulsive "Wall" is needed
- Also Dipole-Dipole or Multipole expansion added: $\frac{C}{r_{0}^{6}}$
- Referred to as Born or Born-Huggins-Meyer potential

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

Pair Potential Limitations

- Pair Potentials only function of distance
- For pure solids will always produce simple structures (e.g FCC)
- Pair potentials obey Cauchy relations: $c_{12} = c_{44}$
- Predominately make use of empirical data

MD-Primer

Stefan Bringuier

Overview

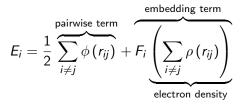
Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis


Many-body Potentials

Types of Systems

Primarily used to describe metallic and covalent materials. Fit using empirical and *ab-initio* data.

Metals

• Embedded atom method/Modified embedded atom method:

- Environment dependent interatomic potentials
- Glue Model/Effective medium theory

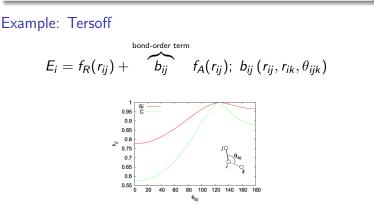
MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion


Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

Covalent Materials

- Stillinger-Weber: 2-body plus 3-body
- Tersoff (Bond-Order)
- REBO/AIREBO adds hydrocarbon descriptions

Umeno, Y., et al. Ideal Shear Strength under Compression and Tension in C, Si, Ge, and Cubic SiC: An Ab Initio Density Functional Theory Study. J. Phys.: Condens. Matter 2011, 23

MD-Primer

Stefan Bringuier

Overview

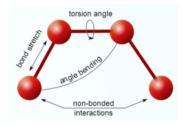
Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis


Other Approaches

Force Fields

- Used predominately is chemistry and biology
- Force Field descriptions:

$$E = E_{bond} + E_{angle} + E_{dihedral} + E_{coul} + E_{vdw}$$

- Force Fields use fixed description of bonds i.e. single, double, triple
- Allows for simulation of mixed interactions

Adapted from http://mmb.irbbarcelona.org

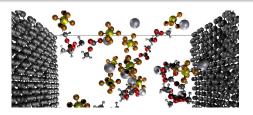
MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion


Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

Advanced Potentials

- Reactive Force Fields
- Multi-component systems
- On-The-fly determination of bond-order
- Also includes charge transfer (IMPORTANT to define chemistry)
- Parametrized from large ab-initio data sets
- 10-100x more computationally expensive

Adapted from http://www.rxffconsulting.com : battery electrolyte with graphite electrodes

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

Integration of Newtons Equations

Verlet Algorithm

• Taylor expansion of position in time:

$$r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{1}{2!}a(t)\Delta t^{2} + \cdots$$
$$r(t + \Delta t) = r(t) - v(t)\Delta t + \frac{1}{2!}a(t)\Delta t^{2} - \cdots$$
$$r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{a(t)}{2}\Delta t^{2}$$

- Accurate $(O(\Delta t^4))$ and simple
- No need to calculate velocity
- Unfortunately need to calculate velocity indirectly:

$$v(t) = rac{r(t + \Delta t) - r(t - \Delta t)}{2\Delta t}$$

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

Velocity Verlet Algorithm

- Most widely used
- Makes use of half time steps:

$$v\left(t+\frac{\Delta t}{2}\right)$$

• Calculates positions from velocity, then updates velocity:

$$r(t + \Delta t) = r(t) + v\left(t + \frac{\Delta t}{2}\right)\Delta t$$
$$v(t + \Delta t) = v\left(t + \frac{\Delta t}{2}\right) + \frac{1}{2}a(t + \Delta t)\Delta t$$

- Simple to implement and stable
- Time reversible as well

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

High-Order Algorithm

- Predictor-corrector algorithm
- Measures error in acceleration and correct
- Gear Predictor-corrector even more accurate
- typical timestep for all algorithms is 1-5 fs

MD-Primer

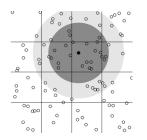
Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list


Initialization & Ensembles

Analysis

Potential Cutoffs & Neighbor Lists

Techniques

- Most computationally expensive part of MD is calculating energy and forces.
- Use cutoffs to reduce computing time, r_c
 - EAM: 5 Å
 - Tersoff: 3-5 Å
 - Coulombic: long-range summation needed
 - Pair potentials: 10-15 Å
- $\bullet\,$ Populate a list of neighbors every Δt

Adapted from http://catalyst.blogs.rice.edu/

Verlet list

Link-cell list

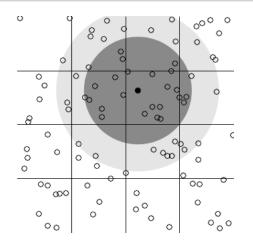
MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion


Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

Boundary Conditions

- Periodic Boundary Conditions make use of images
- Free Surface Boundary Conditions vacuum above surface

Adapted from http://catalyst.blogs.rice.edu/

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

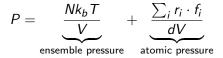
Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

Position and Velocities

- MD requires some knowledge of initial structure
- We can prescribe velocities using a distribution corresponding to a desired temperature


Defining Temperature & Pressure

• Use equipartition theorem:

$$\langle E_{ke} \rangle = \frac{3}{2} N k_b T = \langle \sum_i \frac{1}{2} m v_i^2 \rangle$$

$$T(t) = \frac{1}{3Nk_b} \sum_i mv_i^2$$

• Virial pressure:

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

Ensembles

- Atoms in a simulation box during MD run sample many microstates
- Thermodynamic limit at equilibrium all possible configurations sampled
- We can impose external conditions on ensembles (i.e. Temperature, pressure, volume)

List of Ensembles

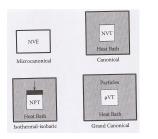
Ensemble Type	Variables	Stat. Mech.			
Microcanonical	N,V,E	Adiabatic $S = k \ln \Omega_{NVE}$			
Canonical	N,V,T	Isothermal $F = kT \ln \Omega_{NVT}$			
Isobaric-Isothermal	N,P,T	$G=-kT\ln\Omega_{NPT}$			
Grand Canonical	μ ,V,T	$\mu = -kT \ln rac{\Omega_{\mu V T}}{N}$			
E-energy, N-atoms/moles, V-volume, P-Pressure, T-Temperature, and μ - Chemical potential.					

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials


Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

Visual Aid

Adapted from Lee, June Gunn. Computational Materials Science: An Introduction; CRC Press, 2012.

Implementation Example: Thermostats

- Berendsen rescale velocities
- Nose-Hoover modify the Hamiltonian of the system
- Langevin force damping
- Barostats are carried out in a similar fashion

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

Analysis

Some Key Aspects

- When running NVE, system must conserve energy!
- The net linear momentum of the simulation cell should be zero
- Try to identify if in a local minimum
- Check for numerical errors: bad dynamics, too large Δt,etc.

Time-Averaging

Since the thermodynamic quantities we calculate are instantaneous we take the time average at equilibrium.

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

Visualization

Inspect For Issues

- Visualize trajectories of atoms
- Color code according to properties (e.g. energy per atom)
- Check for any mistakes in initial structure

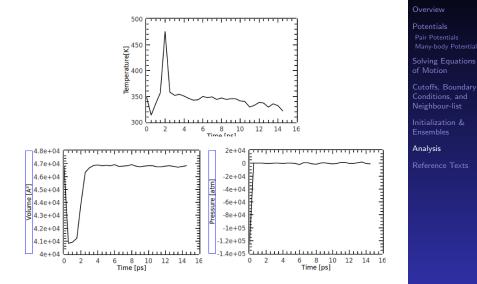
Simply Look!

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

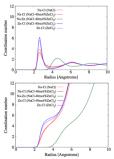

Solving Equations of Motion

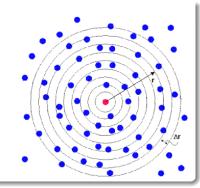
Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

Equilibrium


MD-Primer


Stefan Bringuier

Properties

- Bulk modulus: $B = -V \left(\frac{\partial P}{\partial V}\right)_{NVT}$
- Lattice parameter, a
- Thermal expansion coefficient: $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{NPH}$
- Heat Capacity
- Elastic Constants

Structural Information

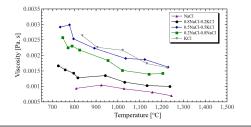
MD-Primer

Stefan Bringuier

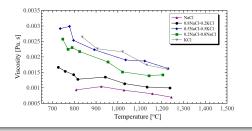
Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion


Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles


Analysis

Other Properties

Viscosity: Green-Kubo Method

Thermal Conductivity: Green-Kubo Method

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

Go To Texts

• Frenkel & Smit, Understanding Molecular Simulation: From Algorithms to Applications.Probably most through text on MD.

• Allen & Tildesley, Computer Simulation of Liquids. Great MD intro and algorithms.

• Rapaport, The Art of Molecular Dynamics Simulation. MD cookbook text, ideal for developing your own code.

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis

User Texts

• J. Fan, Multiscale Analysis of Deformation and Failure of Materials. Nice section on using various codes.

• J.G. Lee, Computational Materials Science: An Introduction. Ideal for quickly using LAMMPS and VASP.

• R. Lesar, Introduction to Computational Materials Science: Fundamentals to Applications.Great multiscale introductory with strong emphasis on understanding and using.

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

Initialization & Ensembles

Analysis

Questions?

If you would like to obtain a copy of this presentation you can email me at *stefanb@email.arizona.edu*

MD-Primer

Stefan Bringuier

Overview

Potentials Pair Potentials Many-body Potentials

Solving Equations of Motion

Cutoffs, Boundary Conditions, and Neighbour-list

nitialization & Ensembles

Analysis