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A B S T R A C T   

Recently, with increasing cooling demands, district cooling has assumed an important role as it is more efficient 
than stand-alone cooling systems. District cooling reduces the environmental impact and promotes the use of 
renewable sources. Earlier studies to optimise the production plants of district cooling systems were focused 
primarily on plants with compressor chillers and thermal energy storage devices. Although absorption chillers 
are crucial for integrating renewable sources into these systems, very few studies have considered them from the 
cooling perspective. In this regard, this paper presents the progress and results of the implementation of a virtual 
testbed based on a digital twin of a district cooling production plant with both compressor and absorption 
chillers. The aim of this study, carried out within the framework of INDIGO, a European Union-funded project, 
was (i) to develop a reliable model that can be used in a model predictive controller and (ii) to simulate the plant 
using this controller. The production plant components, which included absorption and compressor chillers, as 
well as cooling towers, were built using the equation-based Modelica programming language, and were cali
brated using information from the manufacturer, together with real operation data. The remainder of the plant 
was modelled in Python. To integrate the Modelica models into the Python environment, a combination of 
machine learning techniques and state-space representation models was used. With these techniques, models 
with a high computational speed were obtained, which were suitable for real-time applications. These models 
were then used to build a model predictive control for the production plant to minimise the primary energy 
usage. The improvements in the control and the resultant energy savings achieved were compared with a 
baseline case working on a standard cascade control. Energy savings up to 50% were obtained in the simulation- 
based experiments.   

1. Introduction 

The building sector accounts for 36% of global energy use [1] and 
28% of the global energy-related CO2 emissions worldwide [2]. The use 
of energy for space cooling has increased faster than for any other end 
use in buildings during the past years [3]. This growth in the cooling 
demand is expected to keep rising in the future as well [4]. Currently, 
the role of district cooling (DC) systems is crucial in this sector as they 
offer a higher efficiency than stand-alone on-site systems. This is owing 
to the concentration effect of cooling loads [5] and higher efficiency of 
the water cooling process of DC systems compared to that of the air 
cooling process used in most stand-alone cooling systems [6]. Moreover, 

DC-based solutions are more flexible in coping with variable loads. They 
have a greater saving potential in peak-periods and can reduce envi
ronmental impact as compared to the stand-alone solutions. This is 
because, the former can reduce greenhouse gas (GHG) emissions as well 
[7]. Another important advantage of DC systems is that they can inte
grate renewable energy sources, such as solar or geothermal energy [8], 
and waste heat, easily, although further technological developments are 
required to reduce their cost and promote their penetration [9]. 

The European Union (EU) has set a target of promoting DC systems 
and conducting studies to maximise the efficiency of these systems [10]. 
Within INDIGO,1 a Horizon 2020 EU-funded project, an improved 
management strategy has been defined for DC systems with the aim of 
reducing the primary energy use and maximising the system efficiency 
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[11]. This strategy involves developing an advanced controller that 
optimises the operation of the production plant. 

1.1. Review of operational optimisation of district cooling production 
plants 

Until now, energy efficiency optimisation in cooling systems has 
been studied primarily at the building level. Advanced techniques have 
been tested to control the heating, ventilation, and air conditioning 
(HVAC) systems of buildings. Among these, model predictive control 
(MPC) has been touted as one of the most predominant and powerful 
control methods, as it considers disturbance predictions, exploits the 
building thermal mass, takes into account electricity price, and calcu
lates the optimised control [12]. In the case of DC production plants, 
similar approaches have been attempted to a limited extent. 

The operation of DC production plants, in most cases, is based on 
classical control methods, with planning or sequencing strategies 
applied in a non-automated manner [13]. These strategies strongly 
depend on the control designer and the operator’s knowledge of the 
plant. More novel methodologies based on advanced predictive con
trollers have yielded important benefits in energy and monetary savings 

[14]. These predictive techniques anticipate the energy demand and 
allow scheduling of the energy production accordingly [15]. Highlights 
the significance of working with cooling load predictions to control DC 
systems and conducting further studies on the control of the chillers 
plants, their coordination with the thermal energy storage (TES), and 
the interaction with the users. Some of the most important studies are 
reviewed below. 

So far, most of the studies, which have focused on DC production 
plant optimisation, have considered only the compressor chillers [16]. 
Formulated an optimal control problem for a cooling system with TES 
and two chillers, without explicitly using the structure of an MPC, but 
working with a perfect weather forecast. It demonstrated a significant 
saving potential in the utility cost and on-peak electrical demand [17]. 
Estimated the optimal number of compressor chillers needed in a DC 
plant and the associated savings potential. In Ref. [18], an MPC to 
schedule a production DC plant with compressor chillers and a TES was 
developed using mixed integer linear programming (MILP), and 
demonstrated good performance within an acceptable computational 
time for its application [19]. Optimised the operation of a DC plant with 
three water-cooled compressor chillers by using a combination of a ge
netic algorithm and MILP. In Ref. [20], the optimal operation of a DC 

Nomenclature 

a Coefficient of matrix A 
A State matrix of state–space model 
b Coefficient of matrix B 
B Input matrix of state-space model 
C Heat Capacity, [J/K] 
d Disturbances of the problem 
G Thermal conductance, [W/K] 
l Term of the cost function 
_m Flow rate of the system, [m3/h] 

n Dimensionality of variables, number 
na, nb Orders of ARX model 
nk Delay of ARX model 
N Prediction horizon 
P Power, [W] 
r References of the problem 
s Slack variables of the problem 
S Feasible subset of s 
t Time instant 
T Temperature, [�C] 
Ts Sampling time 
u Inputs of the problem 
U Feasible subset of u 
V Volume, [m3] 
x States of the problem 
X Feasible subset of x 
y Outputs of the problem 

ABBREVIATIONS 
ARX Autoregressive with exogenous input 
CCHP Combined cooling, heating, and power 
COP Coefficient of performance 
DC District cooling 
DCOL District cooling open-source library 
DH District heating 
DHC District heating and cooling 
EU European Union 
GHG Greenhouse gas 
HVAC Heating, ventilation, and air condition 
HX Heat exchanger 

LTI Linear time invariant 
MIMO Multiple-input multiple-output 
MILP Mixed integer linear programming 
MINLP Mixed integer non-linear programming 
MPC Model predictive control 
MSL Modelica standard library 
NLP Non-linear problem 
NLTI Non-linear time invariant 
NTU Number of transfer units 
PI Proportional-integral 
SS State–space 
TES Thermal energy storage 

GREEK LETTERS 
α Weighting factor in the cost function 

SUBSCRIPTS 
abs Absorber 
amb Ambient 
arx ARX model 
Ch Chiller 
con Condenser 
cons Electrical consumption 
D Distribution (connection with distribution network inlet or 

outlet) 
eva Evaporator 
gen Generator 
i Number of the referred chiller 
in Inlet 
k Controller step 
0 Initial 
out Outlet 
ret Return 
Sto Storage 
th Thermal consumption 
tot Total 

SUPERSCRIPTS 
pred Prediction 
set Set-point  
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plant with compressor chillers and a TES was calculated for a whole 
year, and guidelines were defined for the operation of these systems for 
different periods of the year [21]. and [22] used the Modelica computer 
programming language to model DC production components, namely 
fast response compressor chillers and TES. These models were calibrated 
based on real data and then reduced to look-up tables. This procedure 
successfully produced reliable models for MPC applications. Subse
quently [21], showed improvements of approximately 20% in the 
overall coefficient of performance (COP) of the plant. Some other related 
studies can be found on the optimisation of multi-chiller plants placed 
directly on buildings instead of being used as a component of a DC. This 
was the case with [23], which used particle swarm optimisation algo
rithms to study the effect of different optimisation approaches for the 
sequencing of chillers and the supply conditions in a multi water-cooled 
compressor chiller plant with different performance curves. They ob
tained savings of up to 13.6% in the total energy consumption corre
sponding to a simulation of two days [24]. Presented a real-time 
optimisation of a plant with two chillers, focusing on the enhancement 
of the supply conditions. In Ref. [25], a predictive chiller control for 
scheduling was developed using data-driven models, which achieved an 
average performance increase of 20%. 

The compressor chillers are widely used, as their COP is 4.7–5.4 
compared to absorption chillers, which have a COP of 0.7–1.3 [26]. 
However, a remarkable advantage of absorption chillers is that they can 
use renewable energy sources such as biomass, solar, or geothermal 
[27]. This reduces not only their dependency on fossil fuels, but also 
their own GHG emissions [28]. The absorption chillers are also used in 
combined cooling, heating and power (CCHP), also known as trigener
ation [29]. The use of CCHP was highlighted in Ref. [30] as having 
achieved significant reduction in CO2 emissions. Furthermore, it was 
stated that the cost-effectiveness of CCHP systems would rely on elec
tricity production. These systems are more widely used in 
heating-dominated areas, where the role of the cooling system is sup
plementary. On the other hand, in cooling dominated areas they are not 
so common because their efficiency becomes lower when the aim is to 
provide a cold climate [15]. Ref. [31] mentioned the importance of 
further integrating renewable energy sources and CCHP to reduce fossil 
fuel dependency, minimise GHG emissions, and improve system stability 
and efficiency. In the same direction [32], also stated the importance of 
system operational enhancement with regard to absorption chillers. 

As for the optimisation of these systems [33], focused on the opti
misation of a CCHP plant using black-box models for the main compo
nents and performing a simulation over one day [34]. studied a 
micro-CCHP operation optimisation with the aim of obtaining a guid
ing principle. In Ref. [35] a district heating and cooling (DHC) system’s 
operation was optimised using a simplified model of the plant, consid
ering a whole year with an hourly sampling, and obtained a direction on 
how the plant should be run [36]. looked for the economic and envi
ronmental optimisation of a CCHP [37]. reported on the optimisation of 
a CCHP powered by solar energy for annual operation study. With re
gard to the feasibility study of different chillers technologies [38], 
investigated a DC production plant with both absorption and 
compressor chillers by developing an integrated multi-period optimi
sation model and showed that economic profits could be achieved when 
optimal operation was simulated. 

1.2. Limitations of existing studies 

From Section 1.1, it can be found that most of the studies on DC 
production plants were focused on plants with only compressor chillers 
[16–20]. In these studies, the systems utilised the inertia introduced by 
the TES, which contributed to economical savings and flexibility [39]. 
However, these studies modelled chillers ideally, without considering 
their dynamics, and assumed that there was no tracking error between 
the controlled variables and the references. This approach could be 
suitable for plants which have only vapour-compression chillers with 

very fast dynamics; however, it would lead to time-response problems 
with slower chillers. This is the case with hybrid plants with absorption 
chillers. These chillers face a lengthy delay before reaching the desired 
capacity. This is due to two characteristics of these systems: (i) the heat 
input to the system, whether from steam, gas or solar thermal sources, is 
regulated with only a single-capacity valve, and (ii) the cooling pro
duction system is chemical-based [40]. 

Absorption chillers were considered in some studies on CCHPs 
[32–37], in which the main purpose was not cooling; therefore, the 
components related to cooling technology were neither modelled nor 
analysed in detail [15]. commented on the importance of further 
research in CCHP for cooling requirement dominated areas, as very few 
studies are currently available. Moreover, most studies optimised the 
operation for an entire year with daily discretisation, to provide certain 
general guidelines regarding operation. 

Thus, there is a lack of research with a real-time application 
approach that aims to develop a predictive controller to optimise a DC 
production plant with different chiller technologies (compressor and 
absorption chillers), considering the detailed dynamic behaviour of 
these technologies. Accordingly [41], highlighted the importance of 
studying coupled thermal and electrical production with respect to 
chillers. 

1.3. Objectives of this study 

The main objective of this study is to develop a testbed for a pro
duction plant of a DC, for building a predictive model to be used by an 
MPC. The model used by the MPC must comply with the following 
requirements: 

1. It should be descriptive enough to capture the most significant dy
namics of the real components, noting that these systems combine 
both fast and slow dynamics, as well as different multi-physics 
behaviours.  

2. It should be computationally economical because the optimisation 
problem to be solved by the MPC optimiser may entail a large 
amount of computation. 

As for the first requirement, Modelica, which is an object-oriented 
programming language, is suitable as it can manage complex systems 
and simulate dynamics [42]. It was previously used to model absorption 
chillers ([43,44]), as well as compressor chillers ([45]). However, 
Modelica models are usually computationally expensive. Therefore, 
detailed models in Modelica are reduced by applying machine learning 
techniques. This approach was successfully applied in Ref. [21,22], 
although with compressor chillers. Similar approaches for absorption 
chillers have not been found in the literature. 

Moreover, this study also aimed to simulate the developed MPC to 
maximise the efficiency of a production plant and compare its perfor
mance with a baseline case involving a cascade-based control operation. 
The energy savings and improvements in the control, which were ach
ieved with the MPC, were estimated through a comparison with the 
baseline case. 

Considering the limitations of existing studies mentioned above, this 
study provided a production plant model with both absorption and 
compressor chillers. Moreover, the procedure to develop the specific 
component models ensured that the dynamic characteristics of each type 
of chillers were adequately represented. 

Compared to most of the studies of operational optimisation, this 
study developed the strategy of operation through a controller designed 
to be used in real-time in the plant and operating with a short control 
period (5 min). 

1.4. Organisation of this paper 

Firstly, the method followed in the study is presented in Section 2. 

L. Zabala et al.                                                                                                                                                                                                                                  



Renewable and Sustainable Energy Reviews 129 (2020) 109920

4

The main characteristics of an MPC are reported in Section 2.1; the 
detailed and reduced models developed for the chillers are presented in 
Section 2.2; the model for the whole production plant is shown in Sec
tion 2.3; and the MPC developed for the aforementioned system is 
introduced in Section 2.4. Next, the main results obtained in the study 
are presented in Section 3, together with a discussion and analysis of the 
same. Finally, Section 4 reports the main conclusions of the study. 

2. Method 

All the developments involved in the design of the MPC for the 
production plant are presented in this section. Firstly, the fundamentals 
of MPC are briefly introduced. Next, the models developed for the 
chillers and the entire production plant are described. Finally, the pro
duction plant’s MPC and its characteristics are presented. 

2.1. Model predictive control 

MPC is an advanced control method, in which the control strategy is 
defined by minimising an objective function based on the dynamics of 
the plant. MPC operates with a receding finite horizon and, typically, 
discretised time. When provided with a reliable model of the plant, it is a 
powerful control technique that anticipates future events and controls 
the system based on the model predictions. Usually, even if the control 
actions are calculated for all the predictions of the MPC horizon, only the 
first control action is applied to the real plant and the optimisation 
problem is solved at every time step [46]. 

The MPC can be represented by an optimal control problem, as 
described in [47]: 

min
u0 ;…;uN� 1

ℓNðxNÞ þ
XN� 1

k¼0
ℓkðxk; yk; uk; rk; skÞ (1a)  

s:t: xkþ1 ¼ f ðxk; uk; dkÞ; k 2 NN� 1
0 (1b)  

yk ¼ gðxk; uk; dkÞ; k 2 NN� 1
0 (1c)  

sk ¼ f ðxk; uk; dkÞ; k 2 NN� 1
0 (1d)  

xk 2X ; k 2 NN� 1
0 (1e)  

uk 2U ; k 2 NN� 1
0 (1f)  

sk 2S ; k 2 NN� 1
0 (1g)  

dk ¼ dðtþ kTSÞ; k 2 NN� 1
0 (1h)  

rk ¼ rðtþ kTSÞ; k 2 NN� 1
0 (1i)  

x0¼ xðtÞ (1j)  

xk 2 Rnx represents the values of the states of the problem; yk 2 Rnx 

represents the outputs; uk 2 Rnx represents the inputs; dk 2 Rnx repre
sents the disturbances; rk 2 Rnx represents the references; and sk 2 Rnx 

represents the slack variables. All of them correspond to the k-th step, 
with N being the horizon length with a sampling time Ts. n represents the 
dimensionality of each variable [47]. 

The objective function, expressed in Eq. (1a) has two terms, the 

Fig. 1. Model of the absorption chiller built in Modelica from DCOL.  
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terminal penalty ℓNðxNÞ and the stage cost ℓkðxk;yk;uk;rk;skÞ. The latter 
assigns a particular cost to each variable. At each step k, the predicted 
state values are obtained from the state update Eq. (1b), while the 
predicted outputs are obtained from the output Eq. (1c). The slack 
values, representing algebraic equations among the inputs, states and 
outputs, are included as additional constraints in Eq. (1d). The states, 
inputs, and slacks should belong to the corresponding feasible subsets 
X ; U ; S of Rn, which are included as constraints, expressed using Eq. 
(1e), Eq. (1f), and Eq. (1g), respectively. Eq. (1h) and Eq. (1i) represent 
the initialisation of the disturbances and references for the whole pre
diction horizon, and Eq. (1j) represents the initial conditions for the state 
variables. 

2.2. Chiller models 

Models of different types of chillers, namely air-cooled and water- 
cooled compressor chillers, and absorption chillers, were developed 
within the INDIGO project. Firstly, detailed models were built using 
Modelica. These models were then reduced using machine learning 
techniques, which allowed for the implementation of the models in the 
development environment of the MPC (Python, in this study). 

2.2.1. Modelica models for the chillers 
Both absorption and compressor chillers were modelled using the 

Generation package of the district cooling open-source library (DCOL) 
[48], developed within INDIGO. They are parametric thermo-fluid dy
namic models. Moreover, models of an open and a closed cooling tower 
were developed, to be integrated with the models of the water-cooled 
chillers. 

2.2.1.1. Absorption chiller Modelica model. The model was based on an 

absorption cycle-based chiller with aqueous lithium-bromide (LiBr þ
H2O) as the refrigerant solution. The properties of the solution were 
defined using [49] as reference, in which the generic thermodynamic 
properties of LiBr þ H2O were presented. In addition [50], was referred 
to for the properties at higher temperatures corresponding to the oper
ation temperatures of the triple effect absorption chillers [51]; was 
consulted for the values of specific enthalpy, entropy, and heat capacity 
over a wide range of temperatures; , and [52] was used for the models 
and equations for other thermodynamic properties. The configuration of 
the absorption chiller model is shown in Fig. 1. 

The model consisted of four volumes representing the Condenser 
(VconÞ, Generator (Vgen), Evaporator (Veva), and Absorber (Vabs). These 
volumes comprised the absorber generator vessel and the evaporator 
condenser vessel, which considered two media (liquid and vapour) 
that would be in equilibrium with mass and energy balance. Each vol
ume would be connected to a heat exchanger (HX) represented by two 
thermal conductors with thermal conductance G, a heat capacitor with 
capacity C (both of which were assumed constant and were model pa
rameters), and a dynamic pipe. 

The control signals included in the model were the openings of the 
refrigerant valve (Refrigerant_valve_opening) and chilled water valve 
(Valve_opening_solution), and the signal for the pump of the absorber 
generator vessel (Pump_solution). The inlet and outlets of each pipe of the 
system were represented by port_a and port_b, respectively. In addition, 
the flow was assumed to be laminar. 

2.2.1.2. Compressor chiller Modelica model. A physics-based model 
based on a typical vapour-compression cycle was used to model a 
compressor chiller. The structure of the model is represented in Fig. 2. 

This model was constructed by integrating four main components, 
namely a compressor, condenser, thermal expansion valve, and 

Fig. 2. Model of the controlled compressor chiller built in Modelica from DCOL.  
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evaporator. These component models were directly taken from the 
Modelica standard library (MSL). The compressor model was based on 
the model of a controlled pump. Both the condenser and evaporator 
were represented together with a heat exchanger, modelled by two 
thermal conductors of conductance G, thermal capacitor C, and the 
model of a dynamic pipe, The inlet of the pipe was represented by port_a 
and the outlet by port_b. 

The vapour compressor system model included a proportional inte
gral (PI) controller, which would modulate the compressor power; 
therefore, the temperature of the outlet water at the evaporator would 
match a set point given as an input (T_eva_set). The gain of the PI is 
k_controller and the time constant of the integrator block is Ti_controller. 
Moreover, another PI controller was included to emulate the feedback 
loop, which would control the evaporator outlet temperature, actuating 
on the expansion valve; however, this controller was not amenable to 
parameterisation. 

2.2.1.3. Counter-flow open cooling tower Modelica model. This model 
represents a completely open cooling tower, as shown in Fig. 3. 

The air was blown from the lower part through the tower, and it 
cooled the water sprayed at the top of the tower. The inlet flows of air 
and water were represented by the inlets port_a_air and port_a_water, 
respectively, and the outlet flows by port_b_air and port_b_water, respec
tively. Both sensible heat (owing to the increase of the air temperature) 
and latent heat (owing to the evaporation of part of the water) were 
transferred. 

The chilled water was stored in a basin at the bottom of the tower. 
The heat loss through the storage wall from the floor was represented by 
port_a_floor, and the heat loss to the surroundings was denoted by por
t_a_ambient. The water basin was characterised by parameters related to 

its dimensions. The level of the tank was obtained as an output of the 
system. An overflow water fluid was included (port_a_Owater). 

Some references from the earlier studies were used to build the 
model. Among these references, [53] presented a generic and universal 
model for cooling towers that could be used for the counter-flow case 
[54]; developed a model that considered, in detail, the dynamics of the 
counter-flow cooling towers; and [55] included a detailed method to 
obtain an equation for the performance of the cooling tower. 

The main assumptions of the model were as follows:  

- A part of the water flow is evaporated during the cooling process.  
- The pressure drop of the air is considered.  
- All the heat is transferred from the water to the air; i.e., heat losses 

during the water cooling are not considered.  
- The number of transfer units (NTU) is used to calculate the amount of 

heat transferred from the water to the air. The design parameters of 
the tower need to be defined in the model. 

2.2.1.4. Counter-flow closed cooling tower Modelica model. This model 
represents a completely closed cooling tower, as shown in Fig. 4. 

In this case, both sprayed water and air were used to cool the fluid 
flowing through the pipe in the tower. The inlet and outlet of the air fluid 
were represented by port_a_air and port_b_air, respectively, and those of 
the cooling water by port_a_Cwater and port_b_Cwater, respectively. The 
sprayed water would extract heat of the chilled fluid, when it was in 
contact with the external layer of the pipe; at the same time, the air was 
heated when it was in contact with the sprayed water (i.e., sensible heat 
and latent heat are transferred to the air). 

As in the case of the open cooling tower, a water basin was included, 
in which the heat losses to the surroundings (port_a_ambient) and to the 

Fig. 3. Counter-flow open cooling tower model in Modelica from DCOL.  
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floor (port_a_floor) were integrated. 
The same assumptions as for the counter-flow open cooling tower in 

Section 2.2.1.3 were made, in addition to the following:  

- The chilled fluid flows through a pipe.  
- The pressure drop of the chilled fluid is also considered. 

2.2.2. Inputs and outputs of the models of the chillers 
The inputs and outputs considered for the required models depend 

on the chiller type, and these are shown in Table 1. 

2.2.3. Machine learning techniques to build reduced models 
The models from Modelica were used as data generators to train 

machine learning algorithms, which were computationally more 
economical and still captured the necessary dynamics for the MPC. The 
machine learning techniques used in this study are explained below. 

Calibration of the detailed models: The models created in Mod
elica were calibrated with the datasheets of each chiller provided by the 

manufacturer, together with data obtained from the test-site. The 
different parameters of the system were defined according to these data. 

Virtual data generation: Once the Modelica models were cali
brated, a set of virtual experiments were conducted to generate virtual 
data for each chiller. The inputs of the model were varied randomly 
across their valid ranges and with the frequencies expected in a real 
system, following the Latin hypercube sampling method. This would 
allow characterising the system over the whole input space, which 
would not be possible if real data were used directly (defined by oper
ating conditions). 

Autoregressive with exogenous input (ARX) model identifica
tion: Different types of complex models were tested; however, finally, 
linear estimators based on ARX architecture were used. They were 
identified using the least squares method, which was proven to be 
adequately accurate. 

The resulting reduced models were multiple-input multiple-output 
(MIMO) ARX matrices. The models have the structure shown in Eq. (2a): 

Fig. 4. Counter-flow closed cooling tower model in Modelica from DCOL.  

Table 1 
Inputs and outputs for each chiller type model.  

CHILLER TYPE INPUTS OUTPUTS 

AIR-COOLED COMPRESSOR CHILLER Outlet temperature set-point of chilled water Tset
Gi [�C]  Outlet temperature of the chilled water TGi [�C]  

Chilled water flow rate _mGi [m3/h]  Consumed electrical power Pcons i [W]  
Inlet temperature of the chilled water TinG [�C]   
Inlet temperature of the cooling air (ambient temperature) TinAmb [�C]   

WATER-COOLED COMPRESSOR CHILLER Outlet temperature set-point of chilled water Tset
Gi [�C]  Outlet temperature of the chilled water TGi [�C]  

Chilled water flow rate _mGi [m3/h]  Consumed electrical power Pconsi [W]  
Inlet temperature of the chilled water TinG [�C]  
Cooling water flow rate _mcon [m3/h]   
Inlet temperature of the cooling water TinCon [�C]TinCond   

ABSORPTION CHILLER Outlet temperature set-point of chilled water Tset
Gi [�C]  Outlet temperature of the chilled water TGi [�C]   

Consumed thermal power Pthi [W]   
Consumed electrical power Pcons [W]   
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yðtÞ þ a1⋅yðt � 1Þ þ…þ ana⋅yðt � naÞ

¼ b1⋅uðt � nkÞ þ…þ bnb⋅uðt � nb � nk þ 1Þ (2a) 

The orders of the ARX model are na (number of poles) and nb 
(number of zeros plus one). The delay of the system (number of input 
samples that occur before the input affects the output) is nk. The inputs 
of the system are u; the outputs are y; and t is the corresponding time 
instant. This structure can be written in a more compact form by using 
the ARX matrices [56]. 

yðtÞ¼Aarx⋅YðtÞ þ Barx⋅UðtÞ (2b)  

YðtÞ¼ yðt � 1Þ…yðt � naÞ (2c)  

UðtÞ ¼ uðt � nkÞ…uðt � nb � nkþ 1Þ (2d)  

� Aarx ¼ a1…ana (2e)  

Barx ¼ b1…bnb (2f)  

where Aarx and Barx are the ARX matrices of the model; a1…ana represent 
all the coefficients of the Aarx matrix; and b1…bnb, are the coefficients of the 
Barx matrix. 

A script was coded using Python to automatically generate the 
reduced models of the components from the virtually generated data. 

State Space (SS) model representation: From the ARX matrices, 
the SS model representation was obtained, based on [57]. This repre
sentation was used in the MPC implementation in Python. 

2.3. Production plant model 

A model of the production plant configuration in the case study is 
presented. Next, the main assumptions of the model are enumerated. 
Finally, the baseline case used for the results analysis is introduced. 

2.3.1. Production plant model based on the configuration of the test-site 
The production plant considered for the study was based on the DC 

plant in Basurto Hospital in Bilbao (Spain), which is the test-site of the 
INDIGO project [58]. Four chillers were modelled, which included one 
absorption chiller and three compressor chillers. Each chiller has a 
dedicated pump to control the flow rate through itself. The hospital also 
has a district heating (DH) system, with cogeneration motors. The excess 
heat obtained from the cogeneration is used in the absorption chillers of 

the DC. The absorption chiller can be used only when there is available 
heat from the cogeneration. Moreover, the system also has a small TES, 
which is connected in parallel. The general configuration is shown in 
Fig. 5. 

The variables represented in Fig. 5 are the outlet temperatures of the 
chillers (TChi stands for the outlet temperature of the i-th chiller), flow 
rate through each chiller _mChi, the consumed power by each chiller 
Pcons ​ i, production outlet temperature TCh, return temperature to the 
production entering the chillers TretCh, flow rate through all the chillers 
_mCh, TES outlet temperature TSto, TES flow rate _mSto, temperature sup

plied to the distribution network TD, return temperature coming from 
the distribution network TretD, distribution network flow rate _mD, and 
the total delivered power to the distribution PDtot (to the consumers). 

The types of chillers and their characteristics are specified in Table 2. 
The dynamics of the chillers were fixed by setting different values for the 
parameters in the Modelica model representing the inertia of the 
chillers. 

To complete the model of the production plant, the corresponding 
mass and energy balances were included in the plant model equations. 
The plant has a TES consisting of a water tank. Owing to its reduced size, 
the tank has a very limited capacity to store cold water and hence, acts 
only as a buffer. 

This TES was represented by a non-linear time invariant (NLTI) 
system that simulated the charging and discharging of the TES consid
ering the capacity, thermal characteristics, and operating temperatures 
of the tank. 

At each control period, the MPC would specify whether the TES was 
charging or discharging. Thus, the flow rate _mSto > 0 when the TES was 
discharging and < 0 when it was charging. Consequently, the resulting 
model for the production plant was non-linear. This switching behaviour 
of the TES (i.e., changing from one operation mode to another) was 
modelled using CasADi1 operators without having to explicitly introduce 
hybridity into the optimisation problem. 

The low-level controllers of the chillers and cooling towers would 
oversee their operation to ensure that the requested set-points of tem
perature and mass flow rate were achieved properly. The operation of 
this low-level control was compatible with the high-level control in the 
MPC. 

In several MPC implementations, the on/off status of the chillers was 
represented by integer variables [9,10,13]. The drawback of introducing 
integers was that the resulting problem is a mixed integer non-linear 
programming (MINLP) problem, which is difficult to solve. In this 

Fig. 5. Schematic of the production plant.  
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study, the following assumptions were made to avoid integer variables:  

- The charging/discharging operations of the tank were modelled with 
CasADi operators, as explained above.  

- The chillers were not completely turned off; however, a minimum 
stand-by mass flow rate was established to ensure that the mass flow 
rate through the system would be a continuous variable. 

Thus, a non-linear problem (NLP) was obtained, which was easier to 
solve. 

2.3.2. Assumptions of the production model 
The following assumptions were made in the model: 

� The absorption chiller had infinite efficiency (i.e., the power con
sumption during its operation was considered to be nearly zero, as 
heat was available from cogeneration and because the electricity 
consumption of the chiller was negligible [59]).  
� Heat was always available for the absorption chiller; thus, it had an 

infinite capacity.  
� The chillers were set in the stand-by mode instead of being 

completely switched off, as is the norm in a real operation. A mini
mum stand-by mass flow rate would pass through the chillers when 
they were in stand-by mode with negligible power consumption.  
� The pumps were modelled as ideal pumps (i.e., their losses and 

power consumption were considered to be negligible). It should be 
noted that their power consumption was low compared with the 
electrical consumption of the chillers for the test-site.  
� The network return temperature was assumed to be well-controlled; 

therefore, it was limited between 12 and 14 �C.  
� The ambient temperature, which was the system’s main disturbance, 

randomly changed from 20 to 40 �C (three different values were 
taken during the entire simulation). 

2.3.3. Baseline: cascade-based operation mode 
As a baseline, a conventional cascade sequence was defined ac

cording to the actual operation in the test-site. The characteristics of the 
baseline operation were as follows: 

� The sequence to turn on the chillers proceeded from the most effi
cient equipment to the least efficient one. As it was assumed that 
thermal energy was always available for the absorption chiller, this 
chiller was always the first one to be turned on.  
� The criterion to decide how many chillers were to be turned on was 

based on some flow rate ranges for the demanded flow, as the chillers 
were currently operated in a real plant.  
� The supply temperature set-point for each chiller was set to its 

nominal value.  
� The flow rate through the chillers was fixed and was equal to its 

nominal value. 

The MPC-based control strategy implies certain important changes 
that affect the way the plant was controlled in contrast to the baseline. 

These changes are as follows:  

� There was no pre-defined sequence in which the chillers should be 
turned on. The MPC calculated the optimal combination based on the 
demand predictions and the model of the plant.  
� The chillers worked at a variable supply temperature. The MPC 

calculated the optimal supply temperature of the chillers and the 
chillers temperature set-point changed accordingly.  
� The mass flow rate through the chillers could also be regulated to 

ensure that the MPC would calculate the mass flow rate for each 
chiller. 

Being able to change the supply temperature and mass flow rate 
conditions of the chillers allowed the plant to operate at a higher effi
ciency than in the case in which the cascade-based control was consid
ered (i.e., with the imposition of fixed conditions). To guarantee these 
new set-points, low-level controllers consisting of PIs integrated in the 
chillers were used. 

2.4. Production model predictive control 

The MPC developed for the production plant is described in this 
section by presenting the input and output variables of the controller, 
the main objective of the controller, and its general structure. 

2.4.1. Variables of the production model predictive control 
The variables involved in the MPC resolution are shown in Table 3. 
The consumption demand (from the buildings connected to the DC) 

was predicted by the simulation models. The supply conditions in the 
network were also assumed to be optimal. Both demand predictions and 
optimal network conditions were, respectively calculated by data-driven 
models and other controllers developed within the INDIGO project, and 
these are out of the scope of this study. Thus, the predictions that the 
MPC manages were the supply conditions at the inlet of the distribution 
network. These thermal conditions were defined by three independent 
variables, namely the total power demand in the network, supply tem
perature, and mass flow rate. It is important that the MPC would guar
antee the thermal condition imposed by these variables, as this would 
influence the performance of the rest of the DC system. 

The weather forecast was obtained through on-site measurements at 
Basurto Hospital and from the “C039 – Deusto” weather station of the 
Basque Agency of Meteorology.2 

Table 2 
Characteristics of the chillers from the production plant.  

Model of the 
chiller 

Type Dynamics Efficiency 

York Water cooled absorption 
chiller 

Slow (~3 h) High 

Trane Water cooled compressor 
chiller 

Medium (~15 
min) 

Medium 

McQuay 1 Air cooled compressor 
chiller 

Fast (~5 min) Low 

McQuay 2 Air cooled compressor 
chiller 

Fast (~5 min) Low  

Table 3 
Variables of the production MPC.  

Inputs On/off (standby) status of the chiller 
Outlet temperature of the chillers set-point Tset

Gi [�C]  
Flow rate of the chillers set-point _mGi [m3/h]  

States Outlet temperature of the chillers TGi [�C]  
TES temperature Tsto [�C]  

Predictions Predicted power demand in the distribution Ppred
Dtot [W]  

Predicted supply temperature at the distribution network inlet Tpred
D 

[�C]  

Predicted flow rate at the distribution inlet _mpred
D [m3/h]  

Predicted ambient temperature Tpred
amb [

�C]  
Outputs Supply power to the distribution PDtot [W]  

Supply temperature at the distribution inlet TD [�C]   

2 http://www.euskalmet.euskadi.net/s075853x/es/meteorologia/estacion. 
apl?e¼5&campo¼C039. 
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2.4.2. Objective of the production model predictive control 
The objective of the production MPC is to appropriately account for 

the energy while maximising the efficiency of the system. 
Controlled operation: The desired distribution supply conditions 

that properly satisfy the energy demand were obtained using hard 
constraints imposed on the optimisation problem, which were as 
follows:  

� The flow rate requirement at the distribution network was assumed 
to be fully satisfied by the flow rate from the chillers and the TES flow 
rate.  
� The supply temperature to the distribution network was strictly 

constrained to have minimum deviations. The allowed error in the 
temperature can be fixed for the entire horizon or uniformly modi
fied to ensure that only very small errors were permitted at the first 
horizon points; however, this constraint was relaxed for further 
points.  
� As the return temperature from the distribution was known (from 

plant measurements), the power delivered would be achieved with 
only an error derived from the supply temperature error. 

Optimised operation: The efficiency of the system was defined as 
the ratio of the power delivered to the power consumed by the plant. 
Thus, an optimised operation could be achieved by minimising the 
primary energy used by the chillers. This energy usage was included in 
the cost function (as a term that depends on the primary power con
sumption), together with the error in the supplied temperature to the 
distribution, and the variation in the temperature set-point (used to 
avoid large changes in the temperature requested to the chillers). The 
objective function including these terms is presented in Eq. (3). 

minα1

XN� 1

t¼0
Tpred

D ðtÞ � TDðtÞ þα2

XN� 1

t¼0

XnG

i¼1
Pcons iðtÞ

þα3

XN� 1

t¼1

XnG

i¼1
Tset

Gi ðtÞ � Tset
Gi ðt � 1Þ (3)  

where Tpred
D is the predicted distribution temperature; TD is the real 

temperature achieved at the distribution inlet; Pcons i Pcons,i is the power 

consumed by the i-th chiller; Tset
Gi is the chiller outlet temperature set- 

point; N is the prediction horizon; nG ng is the number of chillers in 
the production plant; and α1, α2, α3 are, respectively the weighting 
factors for each term included in the cost function. 

2.4.3. Structure of production model predictive control 
To build the MPC, a single-shooting structure was used. The pre

dictive model of the production plant was built from the production 
plant model shown in Section 2.3.1. All the constraints related to the 
limitations of the operation were included in the problem, and the 
production model was discretised. Next, a program was coded in Python 
language using CasADi [60] to define the model and the optimisation 
problem, which was solved by Ipopt. 

3. Results and discussion 

The results of this study comprise the results of the numerical veri
fication of the models of the chillers and the results of the production 
MPC. A discussion of these results is presented below. 

3.1. Results from the verification of the models for the test-site chillers 

Fig. 6 presents the outputs of the simulation of one of the chillers, 
namely McQuay 1, which is an air-cooled compressor chiller. The 
chiller’s outlet temperature and consumed power obtained with both the 
Modelica model (blue line) and the SS linear time invariant (LTI) model 
(red line) are presented. The simulation was performed for 24 h in both 
the cases, and they led to almost identical results. Similar results were 
obtained for the remaining chillers at the test-site. 

3.2. Results from the production model predictive control 

The production MPC and the baseline operation were simulated for 
several days with different loads taken from the real demand data. A 
representative day was selected to show the results clearly. Thus, the 
results included in this section correspond to a simulation of 24 h with a 
control period of 5 min and a prediction horizon of 4 h. White noise was 
introduced in the predictions to simulate any uncertainty (1–10%). 

The plant currently operates at constant supply temperature, fixed at 

Fig. 6. Comparison of McQuay compressor chiller model simulation results with data from detailed Modelica model.  
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7 �C. The variation in the demand from the consumers was considered by 
defining a variable mass flow rate request to the production plant, as 
shown in Fig. 7. The maximum allowed error for the supply temperature 
was 0.1 �C in the whole horizon. 

The supply temperatures for both the MPC and the baseline opera
tion, along with the improvements achieved by the MPC, are shown in 
Table 4. The consumed power by the chillers in both operation modes 
and the energy savings achieved during the whole simulation time are 
summarised in Table 5. In both the cases, the Pandas3 library for Python 
was used to calculate the mean, minimum, and maximum values; the 
standard deviation; and the 25th, 50th, and 75th percentiles from the 

results of the simulation. The improvement in the supply temperature 
tracking was calculated as the ratio of the difference between the errors 
obtained without and with the MPC, to the maximum error without the 
MPC. The savings were obtained by calculating the difference between 
the power consumption without and with the MPC compared with the 
maximum power consumption without MPC. 

A comparison between the two operation modes with regard to the 
supply temperature is shown in Fig. 8, and a comparison of the power 
consumption in Fig. 9. 

3.3. Discussion 

The MPC’s performance depends significantly on the model’s reli
ability. The production component models presented in this study were 
based on Modelica models that captured, in detail, the plant’s dynamics. 
These models were reduced by generating synthetic data and applying 
machine learning techniques to calibrate data-driven ARX models, 
which were then transformed into an SS representation, thus obtaining 
computationally cheaper models. The reduced models performed 
similar to their Modelica counterparts. This provides an assurance of the 
reliability of the model for the controller. 

Fig. 7. Production mass flow rate demand during the simulation period.  

Table 4 
Supply temperature (Tout) with MPC and baseline operation, and improvements 
achieved.  

Tout MPC [K] Baseline operation [K] Improvements [%] 

mean 280.15 279.32 81.30 
std 0.02 0.22 22.72 
min 280.06 279.14 � 3.33 
25% 280.14 279.20 80.32 
50% 280.15 279.22 92.06 
75% 280.16 279.28 93.90 
max 280.24 280.10 98.59  

Table 5 
Power consumption with MPC and baseline operation, and energy savings.  

Consumed power MPC [W] Baseline operation [W] Savings [� ] 

mean 37864.27 80626.35 50.09 
std 7082.52 28215.24 6.40 
min 25666.09 41043.97 6.70 
25% 32053.90 57604.91 50.97 
50% 38088.89 74783.50 51.71 
75% 44021.40 113404.93 52.50 
max 59812.87 119131.54 54.10  

Fig. 8. Reference temperature, supply temperature with MPC, and supply 
temperature without MPC. 

Fig. 9. Consumed power with and without MPC, and energy savings.  

3 https://pandas.pydata.org/pandas-docs/stable/index.html. 
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The model reduction process presented in this study was verified 
only virtually. The next step with regard to this aspect would be the 
validation of the entire workflow of the reduction methodology in a 
relevant environment. This entails numerical validation of the reduced 
models, considering a real system’s operational data directly. 

Along with the validation of the reduction methodology, a thorough 
investigation on the impact of the prediction deviations (owing to data 
collection and modelling errors) in the MPC performance must be per
formed. As consequence of the proposed investigations, a further 
development should be the inclusion of a prediction error emulator into 
the testbed. This will provide a more robust tool for the development of 
an MPC for DC production plants by significantly increasing the reli
ability of the results obtained during the MPC development. 

The use of the MPC improved the tracking of the desired temperature 
supplied by the production plant. Table 4 shows that this could be 
estimated from an 81% mean improvement using the MPC compared 
with the baseline scenario. Moreover, the standard deviation in the 
baseline case was higher than that in the MPC case, and the percentiles 
in the baseline scenario presented a greater difference. The MPC, in 
contrast, had a low standard deviation, and all the percentiles had very 
similar values. This means that the MPC, apart from having smaller er
rors in the tracking, was able to maintain them at low values during the 
whole simulation. In contrast, the baseline operation had points, in 
which the tracking error increased significantly compared to the mean 
error. Therefore, the largest improvements in the tracking could be seen 
at specific points. In the baseline case, comparing the errors in Fig. 8 
with the demand in Fig. 7, it can be seen that the cascade actuation 
generated large errors when a significant demand increase appeared. In 
the case of small or moderate increases in the demand, the storage was 
able to cope with them; however, this was not the case with a high in
crease in the demand. One of the most meaningful reasons for the 
improvement with the MPC was the predictive capability of the 
controller, which allowed anticipating changes in the energy demand 
and scheduling the production to fit the demand better. This would be 
more relevant for systems with absorption chillers with slow time 
response, like the one presented in this research work. As for the small 
deviations on the MPC tracking, these could be owing to the uncertainty 
introduced in the predictions. As the demand used by the MPC was not 
the real one, errors appeared in the tracking. 

The improvement of the temperature tracking of the outlet produc
tion temperature means that the conditions supplied to the distribution 
network could adjust the demand better and therefore, could also result 
in enhancements in other parts of the system. The desired supply tem
perature could be calculated to optimise the network distribution (i.e., 
the optimal supply conditions that would minimise the losses in the 
network) or ensure that the demand at each consumer was guaranteed. 
In these cases, obtaining the calculated temperature at the production 
outlet is essential to achieve the other objectives. 

In the case of the energy savings, the mean value was estimated to be 
50% in the performed simulations. In this case, the standard deviations 
for both the cases (with and without MPC) shown in Table 5 were 
higher, which meant that greater energy savings could be achieved at 
certain simulation points. The percentiles also demonstrated this point, 
and when Figs. 7 and 9 are compared, it can be seen that the biggest 
energy savings were achieved at greater demands, and that the energy 
savings were proportional to the demand. One of the key aspects in 
reducing the power consumption in the studied case was the use of the 
absorption chiller. As was explained in Section 2.3.2, the absorption 
chiller was always available and it was assumed that it did not consume 
any power; therefore, it is not only desirable to always use the absorp
tion chiller, but also operate it suitably. In the baseline operation, this 
chiller was always the first one to be turned on; however, its operation 
point was fixed. In the case of the MPC also, it was decided to turn it on 
in the first case; however, furthermore, it would actuate over the mass 
flow rate and the supply temperature so that it could cover the predicted 
demand better. As for the compressor chiller, it would act in both the 

control scenarios as a back-up unit, as was explained in Ref. [15]; 
however, the way it was operated was different. The baseline operation 
would actuate them at fixed supply conditions and consequently, with a 
fixed efficiency. Nevertheless, the MPC would calculate the operation 
conditions, at which the efficiency was better, as this could reduce the 
power consumption as explained in Ref. [23]. Moreover, when the 
chillers were working at fixed operation points, the charging/di
scharging profile of the TES was fixed according to the energy demand. 
In contrast, controlling the mass flow rate of the chillers would allow for 
deciding how the TES was used, thus imparting flexibility to the system. 
In the case study, the TES was small, and the handling capacity was 
limited; therefore, only a “limited” flexibility was achieved. However, if 
larger TESs were available, the flexibility obtained would be very sig
nificant, and the TESs could also contribute to important economical 
savings [14]. Therefore, further studies should be directed towards the 
simulation of this production plant, by including a TES with a higher 
capacity. Implementing the option to have a variable mass flow rate and 
supply temperature was not exclusive to the MPCs; these improvements 
could also be integrated with other types of controllers. However, to 
optimally define their set-points, an optimisation-based solution should 
be used, as was the case with the MPCs. 

4. Conclusions 

This paper has presented the definition of detailed models based on 
real data of chillers installed in a DC plant, along with the design of an 
MPC to control the production plant. The conclusions drawn from each 
part of the developments are presented below. 

4.1. Modelica use 

Modelica was used to create detailed models of the absorption and 
compressor chillers and the cooling towers. Modelica enables describing 
complex systems with multi-physics behaviour and different dynamics. 
Thus, its results are suitable to model chillers, capturing all the main 
physical characteristics. 

In addition, Modelica has an object-oriented approach that allows 
the reuse of the models. Thus, the chiller models can be used for other 
studies or applications with different operating conditions or charac
teristics, by merely modifying some parameters. 

Finally, another remarkable advantage of using Modelica is that the 
models are built following the physical structure; therefore, they are 
easier to understand. 

4.2. Machine learning techniques for Modelica model reduction 

The detailed models in Modelica were reduced by applying machine 
learning techniques, which essentially involved calibration of data- 
driven ARX models based on data generated through Latin hypercube 
simulations. 

The calibration processes based on data collected directly from the 
plant operation usually present some limitations. The available data are 
often limited and do not cover all the operational ranges of the variables. 
In addition, they can be difficult to obtain. The calibration method 
explained in this study presented some compelling advantages in this 
sense. The Modelica models can be used to generate virtual data to 
calibrate the models in the entire input space in a non-invasive manner. 

Moreover, this methodology enables achieving simpler models that 
can be integrated into the MPC and can be used in real-time applications 
without being computationally very demanding. Through the validated 
models, the controllers developed can also be tested before being inte
grated in a non-invasive way and thus, can facilitate the testing phase. 

Although only virtual verification was performed for the reduced 
models, the simulation results showed only small deviations from the 
detailed models developed in Modelica, indicating that the model 
reduction methodology followed in this research may be suitable for 
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supporting the development and testing of MPCs for DC systems. Further 
investigations may be conducted to validate the performance of the 
reduced models in more detail, and analyse the possible deviations. 

4.3. Improvements in the control with a production model predictive 
control 

An MPC was developed to control the production of the DC. This type 
of controller can schedule the energy supply foreseeing the demand 
conditions. This is of special interest for components with slower dy
namics, as their actuation time is considered when the energy supply is 
scheduled. This is the case with TESs and absorption chillers. Most of 
optimisation studies in the literature focused on the TES, with only a few 
considering the absorption chillers’ dynamics. The MPC allows solving 
an optimisation problem, and in this study, the power consumption in 
the production plant was minimised. 

A comparison of the performance of the MPC with a standard control 
based on a cascade sequence was made by simulating the same demand 
conditions on the plant and controlling them with an MPC and with the 
standard control. The relative error in the supply temperature showed 
that the MPC controlled the temperature better than the cascade-based 
operation. This was due to the capacity of the predictive controller to 
anticipate substantial changes in the demand. Moreover, the power 
consumed by the chillers was significantly reduced with the MPC, 
resulting in an average saving of 50% in the power consumption 
compared to the baseline operation. 

Further research should be directed towards an investigation of other 
aspects that could be optimised with the MPC, such as the economical 
operation cost or the environmental impact of the production plant of 
the DC, by using the developed models and partially modifying the MPC. 

Credit author statement 

Laura Zabala: Investigation, Formal Analysis, Writing - original 
draft preparation. Jesús Febres: Methodology, Software, Validation, 
Writing - review & editing. Raymond Sterling: Supervision, Writing - 
review & editing, Funding acquisition. Susana L�opez: Project admin
istration, Conceptualization, Investigation, Funding acquisition. Marcus 
Keane: Supervision, Writing - review & editing, Funding acquisition. 

Acknowledgements 

The work leading to this research paper was out within the frame
work of the Project INDIGO, which had received funding from European 
Union’s Horizon 2020 research and innovation programme, under grant 
agreement n� 696098. 

References 

[1] IEA. Global status report for buildings and construction 2019. 2019. https://doi. 
org/10.1038/s41370-017-0014-9. 

[2] International Energy Agency I. Tracking buildings. 2019. Paris. 
[3] (IEA). IEA. The future of cooling. Opportunities for efficient air conditioning. 2018. 
[4] Jakubcionis M, Carlsson J. Estimation of European Union residential sector space 

cooling potential. Energy Pol 2017;101:225–35. https://doi.org/10.1016/j. 
enpol.2016.11.047. 

[5] Gang W, Augenbroe G, Wang S, Fan C, Xiao F. An uncertainty-based design 
optimization method for district cooling systems. Energy 2016;102:516–27. 
https://doi.org/10.1016/j.energy.2016.02.107. 

[6] IDEA. District cooling best practices guide. Westborough; 2008. 
[7] Eveloy V, Ayou DS. Sustainable district cooling systems: status, challenges, and 

future opportunities, with emphasis on cooling-dominated regions. Energies 2019; 
12:235. https://doi.org/10.3390/en12020235. 

[8] Rezaie B, Rosen MA. District heating and cooling: review of technology and 
potential enhancements. Appl Energy 2012;93:2–10. https://doi.org/10.1016/j. 
apenergy.2011.04.020. 

[9] Eisentraut A, Adam B, International Energy Agency I. Heating without global 
warming. Featur Insight 2014:92. 

[10] European Commission. An EU strategy on heating and cooling 2016, vol. 53; 2016. 
p. 1689–99. https://doi.org/10.1017/CBO9781107415324.004. 

[11] Sterling R, Febres J, Costa A, Mohammadi A, Carrillo RE, Schubnel B, et al. 
A virtual test-bed for building Model Predictive Control developments. In: Proc 
13th int model conf regensburg, ger march 4–6, 2019, vol. 157; 2019. p. 17–24. 
https://doi.org/10.3384/ecp1915717. 

[12] Shaikh PH, Nor NBM, Nallagownden P, Elamvazuthi I, Ibrahim T. A review on 
optimized control systems for building energy and comfort management of smart 
sustainable buildings. Renew Sustain Energy Rev 2014;34:409–29. https://doi. 
org/10.1016/j.rser.2014.03.027. 

[13] Wiltshire R, editor. Advanced district heating and cooling (DHC) systems. first ed. 
Woodhead Publishing; 2016. https://doi.org/10.1016/c2014-0-01422-0. 

[14] Reynolds J, Rezgui Y, Hippolyte JL. Upscaling energy control from building to 
districts: current limitations and future perspectives. Sustain Cities Soc 2017;35: 
816–29. https://doi.org/10.1016/j.scs.2017.05.012. 

[15] Gang W, Wang S, Xiao F, Gao DC. District cooling systems: technology integration, 
system optimization, challenges and opportunities for applications. Renew Sustain 
Energy Rev 2016;53:253–64. https://doi.org/10.1016/j.rser.2015.08.051. 

[16] Henze GP, Felsmann C, Knabe G. Evaluation of optimal control for active and 
passive building thermal storage. Int J Therm Sci 2004;43:173–83. https://doi.org/ 
10.1016/J.IJTHERMALSCI.2003.06.001. 

[17] Huang S, Zuo W, Sohn MD. Amelioration of the cooling load based chiller 
sequencing control. Appl Energy 2016;168:204–15. https://doi.org/10.1016/J. 
APENERGY.2016.01.035. 

[18] Deng Kun, Sun Yu, Chakraborty A, Lu Yan, Brouwer J, Mehta PG. Optimal 
scheduling of chiller plant with thermal energy storage using mixed integer linear 
programming. In: 2013 Am. Control conf., Washington DC; 2013. p. 2958–63. 
https://doi.org/10.1109/acc.2013.6580284. 

[19] Chiam Z, Easwaran A, Mouquet D, Fazlollahi S, Mill�as JV. A hierarchical 
framework for holistic optimization of the operations of district cooling systems. 
Appl Energy 2019;239:23–40. https://doi.org/10.1016/j.apenergy.2019.01.134. 

[20] S€oderman J. Optimisation of structure and operation of district cooling networks in 
urban regions. Appl Therm Eng 2007;27:2665–76. https://doi.org/10.1016/j. 
applthermaleng.2007.05.004. 

[21] Ma Y, Borrelli F, Hencey B, Coffey B, Bengea S, Haves P. Model predictive control 
for the operation of building cooling systems. IEEE Trans Contr Syst Technol 2012; 
20:796–803. https://doi.org/10.1109/TCST.2011.2124461. 

[22] Coffey B, Haves P, Hencey B, Ma Y, Borrelli F, Bengea S. Development and testing 
of model predictive control for a campus chilled water plant with thermal storage. 
ACEEE Summer Stud Energy Eff Build 2010;40–52. 

[23] Karami M, Wang L. Particle Swarm optimization for control operation of an all- 
variable speed water-cooled chiller plant. Appl Therm Eng 2018;130:962–78. 
https://doi.org/10.1016/j.applthermaleng.2017.11.037. 

[24] Mu B, Li Y, House JM, Salsbury TI. Real-time optimization of a chilled water plant 
with parallel chillers based on extremum seeking control. Appl Energy 2017;208: 
766–81. https://doi.org/10.1016/j.apenergy.2017.09.072. 

[25] Sala-Cardoso E, Delgado-Prieto M, Kampouropoulos K, Romeral L. Predictive 
chiller operation: a data-driven loading and scheduling approach. Energy Build 
2020:208. https://doi.org/10.1016/j.enbuild.2019.109639. 

[26] American Society of Heating Refrigeration and Air-Conditioning Engineers 
(ASHRAE). ASHRAE district cooling guide. 2014. 

[27] Inayat A, Raza M. District cooling system via renewable energy sources: a review. 
Renew Sustain Energy Rev 2019;107:360–73. https://doi.org/10.1016/j. 
rser.2019.03.023. 

[28] Alghool DM, Elmekkawy TY, Haouari M, Elomri A. Optimization of design and 
operation of solar assisted district cooling systems. Energy Convers Manag X 2020; 
6:100028. https://doi.org/10.1016/j.ecmx.2019.100028. 

[29] Wu DW, Wang RZ. Combined cooling, heating and power: a review. Prog Energy 
Combust Sci 2006;32:459–95. https://doi.org/10.1016/j.pecs.2006.02.001. 

[30] Trygg L, Amiri S. European perspective on absorption cooling in a combined heat 
and power system - a case study of energy utility and industries in Sweden. Appl 
Energy 2007;84:1319–37. https://doi.org/10.1016/j.apenergy.2006.09.016. 

[31] Li Y, Rezgui Y, Zhu H. District heating and cooling optimization and enhancement 
– towards integration of renewables, storage and smart grid. Renew Sustain Energy 
Rev 2017;72:281–94. https://doi.org/10.1016/j.rser.2017.01.061. 

[32] Lake A, Rezaie B, Beyerlein S. Review of district heating and cooling systems for a 
sustainable future. Renew Sustain Energy Rev 2017;67:417–25. https://doi.org/ 
10.1016/j.rser.2016.09.061. 

[33] Facci AL, Andreassi L, Ubertini S. Optimization of CHCP (combined heat power and 
cooling) systems operation strategy using dynamic programming. Energy 2014;66: 
387–400. https://doi.org/10.1016/j.energy.2013.12.069. 

[34] Wei D, Chen A, Sun B, Zhang C. Multi-objective optimal operation and energy 
coupling analysis of combined cooling and heating system. Energy 2016;98: 
296–307. https://doi.org/10.1016/j.energy.2016.01.027. 

[35] Doroti�c H, Puk�sec T, Dui�c N. Multi-objective optimization of district heating and 
cooling systems for a one-year time horizon. Energy 2019;169:319–28. https://doi. 
org/10.1016/j.energy.2018.11.149. 

[36] Burer M, Tanaka K, Favrat D, Yamada K. Multi-criteria optimization of a district 
cogeneration plant integrating a solid oxide fuel cell-gas turbine combined cycle, 
heat pumps and chillers. Energy 2003;28:497–518. https://doi.org/10.1016/ 
S0360-5442(02)00161-5. 

[37] Sanaye S, Sarrafi A. Optimization of combined cooling, heating and power 
generation by a solar system. Renew Energy 2015;80:699–712. https://doi.org/ 
10.1016/j.renene.2015.02.043. 

[38] Al-Noaimi F, Khir R, Haouari M. Optimal design of a district cooling grid: structure, 
technology integration, and operation. Eng Optim 2019;51:160–83. https://doi. 
org/10.1080/0305215X.2018.1446085. 

L. Zabala et al.                                                                                                                                                                                                                                  

https://doi.org/10.1038/s41370&hyphen;017&hyphen;0014&hyphen;9
https://doi.org/10.1038/s41370&hyphen;017&hyphen;0014&hyphen;9
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref2
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref3
https://doi.org/10.1016/j.enpol.2016.11.047
https://doi.org/10.1016/j.enpol.2016.11.047
https://doi.org/10.1016/j.energy.2016.02.107
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref6
https://doi.org/10.3390/en12020235
https://doi.org/10.1016/j.apenergy.2011.04.020
https://doi.org/10.1016/j.apenergy.2011.04.020
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref9
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref9
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.3384/ecp1915717
https://doi.org/10.1016/j.rser.2014.03.027
https://doi.org/10.1016/j.rser.2014.03.027
https://doi.org/10.1016/c2014-0-01422-0
https://doi.org/10.1016/j.scs.2017.05.012
https://doi.org/10.1016/j.rser.2015.08.051
https://doi.org/10.1016/J.IJTHERMALSCI.2003.06.001
https://doi.org/10.1016/J.IJTHERMALSCI.2003.06.001
https://doi.org/10.1016/J.APENERGY.2016.01.035
https://doi.org/10.1016/J.APENERGY.2016.01.035
https://doi.org/10.1109/acc.2013.6580284
https://doi.org/10.1016/j.apenergy.2019.01.134
https://doi.org/10.1016/j.applthermaleng.2007.05.004
https://doi.org/10.1016/j.applthermaleng.2007.05.004
https://doi.org/10.1109/TCST.2011.2124461
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref22
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref22
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref22
https://doi.org/10.1016/j.applthermaleng.2017.11.037
https://doi.org/10.1016/j.apenergy.2017.09.072
https://doi.org/10.1016/j.enbuild.2019.109639
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref26
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref26
https://doi.org/10.1016/j.rser.2019.03.023
https://doi.org/10.1016/j.rser.2019.03.023
https://doi.org/10.1016/j.ecmx.2019.100028
https://doi.org/10.1016/j.pecs.2006.02.001
https://doi.org/10.1016/j.apenergy.2006.09.016
https://doi.org/10.1016/j.rser.2017.01.061
https://doi.org/10.1016/j.rser.2016.09.061
https://doi.org/10.1016/j.rser.2016.09.061
https://doi.org/10.1016/j.energy.2013.12.069
https://doi.org/10.1016/j.energy.2016.01.027
https://doi.org/10.1016/j.energy.2018.11.149
https://doi.org/10.1016/j.energy.2018.11.149
https://doi.org/10.1016/S0360-5442(02)00161-5
https://doi.org/10.1016/S0360-5442(02)00161-5
https://doi.org/10.1016/j.renene.2015.02.043
https://doi.org/10.1016/j.renene.2015.02.043
https://doi.org/10.1080/0305215X.2018.1446085
https://doi.org/10.1080/0305215X.2018.1446085


Renewable and Sustainable Energy Reviews 129 (2020) 109920

14

[39] Vandermeulen A, van der Heijde B, Helsen L. Controlling district heating and 
cooling networks to unlock flexibility: a review. Energy 2018;151:103–15. https:// 
doi.org/10.1016/j.energy.2018.03.034. 

[40] Jenkins N, Carrier C. Absorption chiller control logic. US006658870B1; 2003. 
[41] Palomba V, Dino GE, Frazzica A. Coupling sorption and compression chillers in 

hybrid cascade layout for efficient exploitation of renewables: sizing, design and 
optimization. Renew Energy 2020;154:11–28. https://doi.org/10.1016/j. 
renene.2020.02.113. 

[42] Wetter M. Modelica-based modelling and simulation to support research and 
development in building energy and control systems. J Build Perform Simul 2009; 
2:143–61. https://doi.org/10.1080/19401490902818259. 

[43] Fu DG, Poncia G, Lu Z. Implementation of an object-oriented dynamic modeling 
library for absorption refrigeration systems. Appl Therm Eng 2006;26:217–25. 
https://doi.org/10.1016/j.applthermaleng.2005.05.008. 

[44] Fleßner C, Petersen S, Ziegler F. Simulation of an absorption chiller based on a 
physical model. In: Proc 7 Int Model Conf Como, Italy, vol. 43; 2009. p. 312–7. 
https://doi.org/10.3384/ecp09430071. 

[45] Bonilla J, Yebra LJ, Dormido S, Cellier FE. Object-oriented library of switching 
moving boundary models for two-phase flow evaporators and condensers. In: Proc 
9th int model conf sept 3-5, 2012, munich, ger, vol. 76; 2012. p. 71–80. https:// 
doi.org/10.3384/ecp1207671. 

[46] Borrelli F, Bemporad A, Morari M. Predictive control for linear and hybrid systems. 
New York: Cambridge University Press; 2015. 

[47] Figueroa IC. MPC formulation description template. 2018. p. 1–8. 
[48] Febres J, Ubieta E, Sterling R, del Hoyo I, L�opez S. District cooling open source 

library. Zenodo 2017. https://doi.org/10.5281/zenodo.818289. 
[49] McNeely Lowell A. PH-79-03-3 – thermodynamic properties of aqueous solutions of 

lithium bromide. PHILADELPHIA: ASHRAE; 1979. 

[50] Kaita Y. Thermodynamic properties of lithium bromide–water solutions at high 
temperatures. Int J Refrig 2001;24:374–90. https://doi.org/10.1016/S0140-7007 
(00)00039-6. 

[51] Chua H, Toh H, Malek A, Ng K, Srinivasan K. Improved thermodynamic property 
fields of LiBr–H2O solution. Int J Refrig 2000;23:412–29. https://doi.org/ 
10.1016/S0140-7007(99)00076-6. 

[52] Consortium, Sorption Systems N d. LiBrSSC (aqueous lithium bromide) property 
routines. [Maryland, USA: n.d]. 

[53] Lu L, Cai W. A universal engineering model for cooling towers. Int Refrig Air Cond 
Conf 2002. 

[54] Li X, Li Y, Seem JE. Dynamic modeling of mechanical draft counter-flow wet 
cooling tower with modelica. In: ASME 2010 Dyn Syst Control Conf DSCC2010, 
vol. 2; 2010. p. 687–94. https://doi.org/10.1115/DSCC2010-4147. 

[55] Baker DR, Shryock HA. A comprehensive approach to the analysis of cooing tower 
performance. J Heat Tran 1961;83:339–49. https://doi.org/10.1115/1.3682276. 

[56] MathWorks. ARX n.d. https://es.mathworks.com/help/ident/ref/arx. 
html#bt1v0y1-2 (accessed April 2, 2019). 

[57] Hill RJ, Brillante S, Leonard PJ. Transactions on the built environment, vol. 18. 
WIT Press; 1996. ISSN 1743-3509 1996;18, www.witpress.com. 

[58] Passerini F, Bassani A, De Cinque P, Sterling R, Febres J, Magrini A, et al. 
Integrated energy modelling to support district cooling optimisation: 
methodological approach. In: Build. Simul. Appl. 2017, Bolzano, Italy; 2017. 

[59] Masood E, Keshavarz A. Combined cooling, heating and power: decision-making, 
design and optimization. Elsevier; 2014. https://doi.org/10.1016/C2013-0-18763- 
6. 

[60] Andersson J, Åkesson J, Diehl M. CasADi: a symbolic package for automatic 
differentiation and optimal control. Berlin, Heidelberg: Springer; 2012. 
p. 297–307. https://doi.org/10.1007/978-3-642-30023-3_27. 

L. Zabala et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.energy.2018.03.034
https://doi.org/10.1016/j.energy.2018.03.034
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref40
https://doi.org/10.1016/j.renene.2020.02.113
https://doi.org/10.1016/j.renene.2020.02.113
https://doi.org/10.1080/19401490902818259
https://doi.org/10.1016/j.applthermaleng.2005.05.008
https://doi.org/10.3384/ecp09430071
https://doi.org/10.3384/ecp1207671
https://doi.org/10.3384/ecp1207671
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref46
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref46
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref47
https://doi.org/10.5281/zenodo.818289
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref49
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref49
https://doi.org/10.1016/S0140-7007(00)00039-6
https://doi.org/10.1016/S0140-7007(00)00039-6
https://doi.org/10.1016/S0140-7007(99)00076-6
https://doi.org/10.1016/S0140-7007(99)00076-6
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref53
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref53
https://doi.org/10.1115/DSCC2010-4147
https://doi.org/10.1115/1.3682276
https://es.mathworks.com/help/ident/ref/arx.html#bt1v0y1-2
https://es.mathworks.com/help/ident/ref/arx.html#bt1v0y1-2
http://www.witpress.com
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref58
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref58
http://refhub.elsevier.com/S1364-0321(20)30211-2/sref58
https://doi.org/10.1016/C2013-0-18763-6
https://doi.org/10.1016/C2013-0-18763-6
https://doi.org/10.1007/978-3-642-30023-3_27

	Virtual testbed for model predictive control development in district cooling systems
	1 Introduction
	1.1 Review of operational optimisation of district cooling production plants
	1.2 Limitations of existing studies
	1.3 Objectives of this study
	1.4 Organisation of this paper

	2 Method
	2.1 Model predictive control
	2.2 Chiller models
	2.2.1 Modelica models for the chillers
	2.2.1.1 Absorption chiller Modelica model
	2.2.1.2 Compressor chiller Modelica model
	2.2.1.3 Counter-flow open cooling tower Modelica model
	2.2.1.4 Counter-flow closed cooling tower Modelica model

	2.2.2 Inputs and outputs of the models of the chillers
	2.2.3 Machine learning techniques to build reduced models

	2.3 Production plant model
	2.3.1 Production plant model based on the configuration of the test-site
	2.3.2 Assumptions of the production model
	2.3.3 Baseline: cascade-based operation mode

	2.4 Production model predictive control
	2.4.1 Variables of the production model predictive control
	2.4.2 Objective of the production model predictive control
	2.4.3 Structure of production model predictive control


	3 Results and discussion
	3.1 Results from the verification of the models for the test-site chillers
	3.2 Results from the production model predictive control
	3.3 Discussion

	4 Conclusions
	4.1 Modelica use
	4.2 Machine learning techniques for Modelica model reduction
	4.3 Improvements in the control with a production model predictive control

	Credit author statement
	Acknowledgements
	References


