
Horizon 2020

Reduced Order Modelling, Simulation and Optimization of Coupled systems

Software-based representation of selected
benchmark hierarchies equipped with

publically available data

Deliverable number: D5.2

Version 2.0

Funded by the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie Grant Agreement No. 765374

Project Acronym: ROMSOC
Project Full Title: Reduced Order Modelling, Simulation and Optimization of Coupled systems
Call: H2020-MSCA-ITN-2017
Topic: Innovative Training Network
Type of Action: European Industrial Doctorates
Grant Number: 765374

Editors: Andrés Prieto, Peregrina Quintela, ITMATI

Deliverable nature: Report (R)

Dissemination level: Public (PU)

Contractual Delivery Date: 30/08/2019

Actual Delivery Date 04/10/2019

Number of pages: 161

Keywords: Benchmarks, Model hierarchies

Authors: Marcus W.F.M. Bannenberg, BUW
Patricia Barral, ITMATI-USC
Jean-David Benamou, INRIA
Andreas Baermann, FAU
Federico Bianco, Danieli
Andres Binder, MathConsult
Riccardo Conte, Danieli
Guillaume Chazareix, INRIA
Sören Dittmer, U-HB
Daniel Fernández, Microflown Technologies
Michele Girfoglio, SISSA
M. Günther, BUW
José Carlos Gutiérrez Pérez, U-HB
Lena Hauberg-Lotte, U-HB
Michael Hintermüller, WIAS Berlin
Wilbert Ijzerman, Signify
Onkar Jadhav, MathConsult
Tobias Kluth, U-HB
Karl Knall, MathTec
Alejandro Lengomin, AMIII
Peter Maass, U-HB
Gianfranco Marconi, Danieli
Alexander Martin, FAU
Marco Martinolli, MOX, PoliMi
Volker Mehrmann, TU Berlin
Pier Paolo Monticone, CorWave SA
Umberto Emil Morelli, ITMATI
Ashwin Nayak, ITMATI
Andreas Obereder, MathConsult
Daniel Otero Baguer, U-HB
Luc Polverelli, CorWave Inc.
Andrés Prieto, ITMATI-UDC
Peregrina Quintela, ITMATI-USC
Ronny Ramlau, Industrial Mathematics Institute JKU
Conte Riccardo, Danieli
Gianluigi Rozza, SISSA
Giorgi Rukhaia, INRIA
Nirav Shah, SISSA
Jonasz Staszek, Giovanni Stabile, SISSA
Bernadett Stadler, Industrial Mathematics Institute JKU
Jonasz Staszek, FAU
Christian Vergara, MOX, PoliMi

Peer review: Andrés Prieto, ITMATI-UDC
Lena Scholz, TU Berlin

Abstract

Based on the multitude of industrial applications, benchmarks for model hierarchies will be created that will
form a basis for the interdisciplinary research and for the training programme. These will be equipped with
publically available data and will be used for training in modelling, model testing, reduced order modelling,
error estimation, efficiency optimization in algorithmic approaches, and testing of the generated MSO/MOR
software. The present document includes a detailed description of the computer implementation of these bench-
marks involving not only the required publically available data but also the used software packages, libraries
and any other relevant information, which guarantee a fully reproducibility of the reported numerical results.
The present document has been structured in three main parts to distinguish those contributions which are
focused on coupling methods, model order reduction methods, and optimization methods.

Disclaimer & acknowledgment
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie Grant Agreement No. 765374.
This document reflects the views of the author(s) and does not necessarily reflect the views or policy of the European
Commission. The REA cannot be held responsible for any use that may be made of the information this document
contains.

Reproduction and translation for non-commercial purposes are authorised, provided the source is acknowledged and the
publisher is given prior notice and sent a copy.

Contents

I. Coupling methods 1

1. Implementing acoustic scattering simulations for external geometries within a porous
enclosure 2

Ashwin Nayak, Andrés Prieto, Daniel Fernández
1.1. Introduction . 2
1.2. Mathematical Formulation . 2

1.2.1. Model Hierarchy . 3
1.2.1.1. Fluid region . 3
1.2.1.2. Porous region . 3
1.2.1.3. Pefectly matched layer . 4

1.2.2. Coupling . 5
1.3. Implementation . 6

1.3.1. Geometry and Meshing . 7
1.3.2. Solver . 8
1.3.3. Post-processing and Visualization . 9

1.4. Computer Requirements . 9
1.5. Case study : Acoustic transmission of a vibrating sphere in a porous enclosure 9

1.5.1. Description of test case sphere . 9
1.5.2. Exact solution . 10
1.5.3. Geometry and Mesh . 11
1.5.4. Solver . 13
1.5.5. Visualization . 16

1.6. Conclusion . 17
Bibliography . 18

2. Multirate time integration and model order reduction for coupled thermal electrical
systems 19

Marcus W.F.M. Bannenberg, Michael Günther
2.1. Introduction . 19

2.1.1. Thermal-Electric Benchmark Circuit . 19
2.2. Mathematical Formulation . 20

2.2.1. Multirate time integration . 20
2.2.2. Model order reduction . 21

2.3. Implementation . 21
2.3.1. Parameters and functions . 22
2.3.2. Setting up the IRK iteration . 22
2.3.3. The IRK iteration . 22
2.3.4. The POD algorithm . 23

2.4. Requirements . 23
2.5. Numerical examples . 23

2.5.1. Results . 24
2.6. Conclusion . 25
Bibliography . 26

3. Validation of fluid-structure interaction simulations in membrane-based blood pumps 27
Marco Martinolli, Christian Vergara, Luc Polverelli

3.1. Introduction . 27
3.2. Mathematical Formulation . 28

3.2.1. The Fluid-Structure Interaction Model . 28
3.2.2. Numerical Method . 30
3.2.3. Hierarchical Modeling . 30

3.2.3.1. Geometry of the domain . 31
3.2.3.2. Meshing . 31
3.2.3.3. Geometric coupling . 32
3.2.3.4. Modeling the Contact . 33

3.3. Implementation . 34
3.4. Computer Requirements . 36
3.5. Numerical Example . 37

3.5.1. Experimental Data . 37
3.5.2. Benchmark Plan . 38

3.A. Appendix . 39
3.A.1. Licences of Use . 39

3.A.1.1. LIFEV (release version) . 39
3.A.1.2. TetGen . 39
3.A.1.3. Triangle . 39

3.A.2. Configuration files . 40
Bibliography . 42

II. Model order reduction methods 44

4. Model order reduction for parametric high dimensional interest rate models in the
analysis of financial risk 45

Andreas Binder, Onkar Jadhav, Volker Mehrmann
4.1. Introduction . 45
4.2. Mathematical Formulation: Model Hierarchy . 47
4.3. Numerical Methods . 48

4.3.1. Parametric Model Order Reduction . 50
4.3.2. Greedy Sampling Method . 52
4.3.3. Adaptive Greedy Sampling Method . 53
4.3.4. Adaptive Greedy Sampling Algorithm . 55

4.4. Numerical Example . 57
4.4.1. Computational cost . 62

4.4.1.1. Floater Scenario Values . 63
4.5. Conclusion . 64
4.A. Relation between a singular value decomposition and a principal component analysis 64
Bibliography . 65

5. Software-based representation of an inverse heat conduction problem 68
Patricia Barral, Federico Bianco, Riccardo Conte, Umberto Emil Morelli, Peregrina Quintela, Gianluigi Rozza,
Giovanni Stabile

5.1. Introduction . 68
5.2. Mathematical Formulation . 70

5.2.1. Computational Domain and Notation . 70

5.2.2. Direct Heat Transfer Problem . 71
5.2.3. Inverse Problem . 72

5.2.3.1. Alifanov’s Regularization . 74
5.3. Implementation . 75

5.3.1. Geometry and Meshing . 75
5.3.2. Direct Problem Solver . 76
5.3.3. Inverse Problem Solver . 76
5.3.4. Post-processing and Visualization . 77

5.4. Computer Requirements . 77
5.5. Benchmark Case . 77

5.5.1. Direct Problem . 78
5.5.2. Inverse Problem . 81

Bibliography . 82

6. Coupled parameterized reduced order modelling of thermo-mechanical phenomena
arising in blast furnaces 85

Nirav Shah, Patricia Barral, Michele Girfoglio, Alejandro Lengomin, Peregrina Quintela, Gianluigi Rozza
6.1. Introduction . 85

6.1.1. Conceptual model . 85
6.1.2. Mathematical problem and Benchmark cases . 86

6.1.2.1. Benchmark for the thermal model . 88
6.1.2.2. Benchmark for the mechanical model . 88
6.1.2.3. Benchmark for the coupling . 88

6.2. Mathematical formulation . 88
6.2.1. Axisymmetric model . 88
6.2.2. Weak formulation for thermal model . 90
6.2.3. Weak formulation of the mechanical model . 91
6.2.4. Finite element method . 93
6.2.5. Parameter space . 94
6.2.6. Model order reduction . 95

6.3. Implementation . 95
6.4. Computer requirements . 96
6.5. Numerical examples . 96

6.5.1. Benchmark tests . 97
6.5.1.1. Thermal model . 98
6.5.1.2. Mechanical model . 99
6.5.1.3. Coupled model . 102
6.5.1.4. Simulation for actual problem . 104

6.5.2. Test problem for reduced basis method . 105
6.5.2.1. Thermal system . 106
6.5.2.2. Mechanical system . 107
6.5.2.3. Coupling system . 107

6..3. Hierarchy of thermal model . 107
6..4. Hierarchy of mechanical model . 107

Bibliography . 107

III. Optimization methods 111

7. A benchmark for atmospheric tomography 112
Bernadett Stadler, Ronny Ramlau, Andreas Obereder

7.1. Introduction . 112
7.2. Mathematical formulation . 113

7.2.1. Adaptive optics . 113
7.2.1.1. Guide stars . 113
7.2.1.2. Operating modes . 115
7.2.1.3. Turbulence statistic in the atmosphere . 116
7.2.1.4. Deformable mirror . 116
7.2.1.5. Wavefront sensor . 117

7.2.2. Problem formulation - atmospheric tomography . 118
7.2.3. Solution method - Matrix Vector Multiplication . 120

7.3. Implementation . 120
7.4. Computer requirements . 121
7.5. Numerical example . 121

7.5.1. Input parameters . 121
7.5.2. Ouput - DM commands . 122

Bibliography . 122

8. Acceleration of Sinkhorn Algorithm using ε scaling with applications to the Reflector
Problem 124

Jean-David Benamou, Guillaume Chazareix, Wilbert Ijzerman, Giorgi Rukhaia
8.1. Introduction . 124

8.1.1. Optimal Transport model . 124
8.1.2. Entropic Regularization of Optimal Transport . 126
8.1.3. Sinkhorn Algorithm for Regularized Optimal Transport 127
8.1.4. Benchmark Cases . 127

8.2. Hierarchical approach to Sinkhorn Algorithm . 128
8.2.1. ε scaling . 128
8.2.2. Discretization scaling . 128

8.3. Entropic Bias . 130
8.3.1. Entropic Bias and Sinkhorn Divergences . 130

8.4. Implementation . 130
8.5. Computer Requirements . 131
8.6. Numerical Demonstration . 132
Bibliography . 133

9. Data driven model adaptations of coil sensitivities in magnetic particle imaging 135
Sören Dittmer, José Carlos Gutiérrez Pérez, Lena Hauberg-Lotte, Tobias Kluth, Peter Maass, Daniel Otero
Baguer

9.1. Introduction and literature . 135
9.1.1. Magnetic Particle Imaging . 136

9.1.1.1. Scenarios in MPI . 137
9.1.2. Deep Learning and Inverse Problems . 140

9.1.2.1. A: Learned Penalty Terms . 140
9.1.2.2. B: Plug-and-Play Prior Methods . 141
9.1.2.3. C: Gradient-Descent-by-Gradient-Descent type Methods 141
9.1.2.4. D: Regularization by Architecture . 142

9.1.2.5. E: Image Post-Processing via Deep Learning 143
9.1.3. Applying Deep Learning to Magnetic Particle Imaging 143

9.2. Implementation . 143
9.3. Computer requirements . 145
9.4. Numerical examples . 145
Bibliography . 147

10.A mixed-inter programming (MIP) model for a joint assignment of drivers and loco-
motives to trains at a rail freight company 151

Jonasz Staszek, Andreas Bärmann, Alexander Martin
10.1. Introduction . 151
10.2. Methods . 151
10.3. Implementation . 155
10.4. Results . 156
10.5. Conclusions and Contributions . 158
Bibliography . 160

List of Acronyms

ITMATI Technological Institute of Industrial Mathematics

USC University of Santiago de Compostela

UDC University of A Coruña

JKU Johannes Kepler University Linz

ELT Extremely Large Telescope

MAP Maximum a-posteriori Estimate

AO Adaptive Optics

MVM Matrix-Vector-Multiplication

DM Deformable Mirror

IDE Integrated Development Environment

WFS Wavefront sensor

GS Guide Star

NGS Natural Guide Star

LGS Laser Guide Star

SCAO Single Conjugate AO

LTAO Laser Tomography AO

MOAO Multi Object AO

MCAO Multi Conjugate AO

FWHM Full Width at Half Maximum

CCD Charge-Coupled Device

BLAS Basic Linear Algebra Subprograms

LAPACK Linear Algebra Package

FFTW Fastest Fourier Transform in the West

ADMM alternating direction method of multipliers

CNN convolutional neural network

CT computer tomography

DL deep learning

FFP field free point

FFL field free line

FOV field-of-view

LISTA Learning Fast Approximations of Sparse Coding

LSTM long-short-term-memory network

MPI magnetic particle imaging

MRI magnetic resonance imaging

NN neural networks

PET position emission tomography

RNN recurrent neural network

SPIO superparamagnetic iron oxide nanoparticles

SISSA Scuola Internazionale Superiore di Studi Avanzati

CIP Continuous Interior Penalty

DG Discontinuous Galerkin
FSI Fluid-Structure Interaction
LIFEV LIbrary of Finite Elements V
LVADs Left Ventricular Assist Devices
NS Navier-Stokes Equations
PDEs Partial Differential Equations
HQ Head pressure-Flow
NS Navier-Stokes
XFEM Extended Finite Element Method
3D three dimensions
SISSA Scuola Internazionale Superiore di Studi Avanzati

Part I.

Coupling methods

Deliverable D5.2
1

1. Implementing acoustic scattering simulations for external
geometries within a porous enclosure

Ashwin Nayak1, Andrés Prieto1, Daniel Fernández2

1Instituto Tecnolóxico de Matemática Industrial, Universidade da Coruña

2Microflown Technologies

Abstract. The details in implementing an acoustic scattering simulation on a rigid exterior domain enclosed
in a porous layer are outlined. Acoustic transmission in fluid and porous media require different physical
models and require conditions at interfaces to enable coupling. Time-harmonic models for static acoustic
fluid and rigid-frame porous layers are explained and a coupling strategy is discussed. The coupled system
is implemented using the finite-element method to obtain an approximate solution. An elaborate end-to-end
strategy using open-source software tools is highlighted. The tools used to create meshes, to specify and solve
the variational system of equations and to postprocess the obtained results are thoroughly explained. The
workflow is illustrated for a test case with simple geometry such that the reader may easily be able to reproduce
the results.

Keywords: Scattering, aeroacoustics, porous materials.

1.1. Introduction

Understanding the transmission of sound through different media is key in designing and improving accuracy
of acoustic sensors to filter noise - a critical component in acoustic measurements. Of relevance in the project
is the Microflown sensor, distinguised by their ability to measure both the magnitude and direction of sound.
The sensor is commercially available in a variety of housings and enclosures, suiting different acoustic en-
vironments. Particularly, porous enclosures are used to improve measurement quality in wind although their
effectiveness is sensitive to flow conditions. A coupled computational model can help accurately predict the in-
fluence on an incident sound signal by effectively integrating the influence of sound transmission in porous and
turbulent media. An earlier report [1] proposed a progressive development of such a model in stages, given as
benchmark cases. This article highlights the software implementation of the model-in-development, currently
highlighting the implementation of coupling between a still fluid and a rigid-frame porous media. A similar
procedure is utilized in further developments and will be reported in future.
This article illustrates the implementation of one of the benchmark stages of the project i.e. to solve for the
acoustic scattering effect of a rigid object represented by the external domain ΩS, enclosed entirely by a porous
layer ΩP. The setup is placed in an acoustic field represented by the unbounded domain ΩF, as shown in the
schematic Fig.1.1. To be more generic with possible configurations - a fluid-filled gap is considered between
the structure and the porous enclosure. An acoustic wave of a certain kind (plane wave, spherical etc.) is as-
sumed to be incident on the setup and a model is sought to compute the scattering of the incident wave due to
the object.

1.2. Mathematical Formulation

The problem can be mathematically formulated in various physically-relevant variables e.g., scalar fields like
pressure, displacement potential or velocity potential; or vector fields like displacement or velocity, the choice
often being the vector fields for coupled systems [2]. In this particular implementation, the acoustic oscillations
are chosen to be represented by the displacement vector field.

Deliverable D5.2
2

1.2. Mathematical Formulation

ΩS

ΩF

ΩP

Figure 1.1: Schematic of the original problem configuration on unbounded domain

1.2.1. Model Hierarchy

A series of hierarchical models and associated assumptions are considered to arrive at a feasible overall numer-
ical solution for the problem. The acoustic fluid is assumed to be homogeneous, non-viscous, compressible,
isotropic and isentropic. Also, the porous layer is considered to be made of homogeneous, isotropic and isother-
mal material. The acoustic fields on the domain are assumed to be time-harmonic. The problem configuration
is also posed in an unbounded domain which ensures a complete dissipation of all outgoing waves. This effect
is ensured by with a finite truncation of the domain and an artificial fluid layer enclosing it with absorbing
properties, known in literature as the perfectly matched layers (PML) technique [3, 4].

1.2.1.1. Fluid region

The mathematical model taking into account the transmission of sound oscillations must satisfy the Navier-
Stokes equations. Utilizing the earlier assumptions, the equations reduce to being linear and for the time
harmonic case, it simplifies into the Helmholtz equation. For a given angular frequency ω, it is expressed as,

−∇(ρFc
2
F divuF)− ρFω

2uF = fF in ΩF, (1.1)

where, ρF and cF are the mass density of the acoustic fluid and speed of sound. The forcing function fF

represents any sound sources in the domain.

Boundary conditions may be given as,

uF · n = g, (1.2)

where, g is normal displacement field at ΓS. If the structure is assumed rigid, g = 0 else it may be expressed as
a function. The fluid region has interfaces with porous layer and contact conditions with it will be elaborated
in the following sections.

1.2.1.2. Porous region

Porous materials come in various structural configuration like fibrous, foam or granular kinds, requiring dif-
ferent models to characterize their acoustic behaviour. Considering the simplifying assumptions of isotropy
accounts for the macroscopic behaviour of the material. The structural frame of the layer is also considered
rigid for further simplification allowing for an fluid-equivalent formulation.

−∇(KP(ω) divuP)− ρP(ω)ω2uP = fP in ΩP, (1.3)

where, ρP(ω) and KP are the equivalent dynamic density and the equivalent dynamic bulk modulus of the
porous material. The material properties are frequency dependent and are determined either through experi-
ments conducted apriori or through suitable models. A wide range of porous material models provide the ma-
terial response along a range of frequencies e.g the Zwikker-Kosten model, Miki model, Johnson-Champoux-

Deliverable D5.2
3

1.2. Mathematical Formulation

Allard-Lafarge Model, the Johnson-Champoux-Allard-Pride-Lafarge model, among others [4, 5] .

The fairly detailed six-parameter Johnson-Champoux-Allard-Lafarge (JCAL) model is chosen in the current
article to obtain the dynamic porous mass density and bulk modulus, given by equations,

ρP(ω) =
ρF

φ
α∞

(
1− i

σφ

ωρFα∞

√
1 + i

4α2
∞ηρFω

σ2Λ2φ2

)
, (1.4)

KP(ω) =
γPF/φ

γ − (γ − 1)

1− i
ηφ

ρFk′0ωPr

√
1 + i

4k′0
2ρFωPr

ηΛ′2φ2

−1 . (1.5)

The JCAL model is reliable for porous materials with arbitrarily shaped pores. The parameters in the model:
porosity φ, flow resistivity σ, tortuosityα∞, viscous characteristic length Λ, thermal characteristic length Λ′ and
static thermal permeability k0

′; effectively capture the macroscopic thermal, viscous and inertial characteristics
of the porous material. The fluid state properties like density ρF, specific heat ratio γ, Prandtl Number Pr, and
equilibrium fluid pressure PF encapsulate the properties of the saturating fluid.

Contact conditions between the fluid and porous layers ensure continuity in normal-direction displacement and
pressure fields. Hence,

uF · n = uP · n, (1.6)

extand ρFc
2 divuF = KP divuP. (1.7)

1.2.1.3. Pefectly matched layer

ΩS

ΩF

ΩP

ΩPML

Figure 1.2: Schematic of the domain with the perfectly matched layer

The unbounded domain of the acoustic fluid implies a complete dissipation of all outgoing waves. Since an
actual computation needs a finite domain, the outer boundary needs to absorb any outward incident waves.
In theory, this is expressed as the Sommerfeld boundary condition given as the limiting condition at large
distances,

lim
|x|→∞

|x|
(

divuF − ikFuF ·
x

|x|

)
= 0. (1.8)

This condition is realistically hard to impose and is typically accomplished by a ”sponge” layer with dissipating
properties known as the perfectly matched layer (PML). The Helmholtz-like governing equation with auxiliary
complex stretching factors within the PML are imposed to replicate this as (see [6]),

−div(ρFc
2
FC̃(∇uPML))− ρFω

2M̃uPML = 0. (1.9)

Deliverable D5.2
4

1.2. Mathematical Formulation

Here, C̃ and M̃ are fourth-order and second-order tensors given by,

C̃(∇w) =

 3∑
j=1

1

γj

∂wj
∂xj

 I, (1.10)

extand M̃ =
3∑
j=1

γjej ⊗ ej , (1.11)

with I being the fourth-order identity tensor and ej’s being the unit vectors along the spatial directions. The
optimally-tuned functions provided by Bermudez et al. [7] are chosen among the various choices for the com-
plex stretching functions γj’s, giving,

γj(xj) =

1, if |xj | ≤ Lj ,
1 + i

cF

ω(L∞j − |xj |)
, if Lj ≤ |xj | ≤ L∞j . (1.12)

Here, Lj and L∞j are respectively the lengths of the Cartesian box of the truncated fluid domain and the PML
domain, along the direction xj from the origin. The piece-wise definition of γj ensures the absorption of waves
only along the outward direction of propagation. The interface conditions between the PML and fluid layers
are just the continuity in displacement and pressure fields, namely,

uF · n = uPML · n, (1.13)

extand ρFc
2 divuF = ρFc

2 divuPML. (1.14)

1.2.2. Coupling

The entire formulation for the coupled problem is given by the following system of equations: for a particular
frequency, ω,

−∇(ρFc
2
F divuF)− ρFω

2uF = fF in ΩF, (1.15)

−∇(KP(ω) divuP)− ρP(ω)ω2uP = 0 in ΩP, (1.16)

−div(ρFc
2
F C̃(∇uPML))− ρFω

2M̃uPML = 0 in ΩPML, (1.17)

uF · n = g on ΓS, (1.18)

uF · n− uP · n = 0 on ΓC, (1.19)

ρFc
2
F divuF −KP(ω) divuP = 0 on ΓC, (1.20)

uF · n− uPML · n = 0 on ΓPML, (1.21)

divuF − divuPML = 0 on ΓPML. (1.22)

The coupling between different layers occurs only at interfaces, and the displacement vector fields, uF, uP

and uPML, are defined in exclusive domains with different smoothing requirements. It can be unified to be a
member of a functional space V introduced as,

V =
{
v ∈ [L2(Ω)]3 : v|ΩF

∈ H(div,ΩF), v|ΩP
∈ H(div,ΩP), M̃v|ΩPML

∈ [L2(ΩPML)]3,

3∑
j=1

1

γj

∂vj
∂xj

∣∣∣
v∈ΩPML

∈ L2(ΩPML),v · n = 0 on Γ∞

}
, (1.23)

provided the necessary continuity and differentiable properties are satisfied at the interfaces. The variational

Deliverable D5.2
5

1.3. Implementation

form can then be deduced from Equations (1.15)-(1.9) by multiplying a test function v ∈ V and utilizing the
Green’s theorem : Find u ∈ V such that,∫

ΩF

ρFc
2(divu)(div v) dV −

∫
ΩF

ρFω
2u · v dV

+

∫
ΩP

KP(ω)(divu)(div v) dV −
∫
ΩP

ρP(ω)ω2u · v dV

+

∫
ΩPML

ρFc
2C̃(∇u) : ∇v dV −

∫
ΩPML

ρFω
2M̃u · v dV =

∫
ΩF

fF · v dV (1.24)

holds for all v ∈ V and also, v = 0 at ΓS. This equation maybe more conveniently expressed in the general
form of a linear variational problem with A and L being the sesquilinear and linear functionals as,

A(u,v) = L(v). (1.25)

A practical implementation of this model would require the approximation of the infinite dimensional functional
space V, with a discrete n-dimensional space Vh with a finite set of basis functions ψh, h = 1, 2, ..., n. This
reforms Equation (1.25) as,

n∑
r=1

A(ψr, ψs)µr = L(ψs) for s = 1, 2..., n; (1.26)

with µr ’s as coefficients of the basis functions. A solution may then be obtained by solving this linear system
of equations. The following sections describe the implementation of this model along with a specific example
of acoustic transmission across a porous layer around a vibrating sphere.

1.3. Implementation

Mesh

+

Mesh

Conversion Tools

Geometry

+ Mesh Parameters

Solver

Model

Parameters

Visualization

Solution Analysis

.xdmf

Simulation

Data

.xml.gz

Mesh file

Figure 1.3: Workflow representing implementation stages and their interfaces.

Deliverable D5.2
6

1.3. Implementation

The implementation follows the requirements of the model and may be divided into three main stages viz.,
mesh generation, solving equations and visualizing solutions. The different stages of the implementation and
the overall workflow is illustrated in Fig.1.3. The mesh generation stage requires the user inputs on geometrical
configuration of the setup. This includes the exact dimensions of the structure, porous layer, fluid domain
and PML. Considering that the variational form includes integrals which differ in sub-domains, it is necessary
to mark the mesh cells according to region requiring conformality of the mesh with the geometry of sub-
domains. Furthermore, user inputs may be needed to suggest local refining of the mesh in a particular region
or surface to capture the geometry accurately. The generated mesh also needs to be adapted to the file format
compatible with the solver. The solver imports the mesh data and categorizes cells according the sub-domain
regions. It is responsible for implementing the finite-element method - defining the discrete functional space
with chosen basis functions and assembling the system of equations before solving them. The solution obtained
may also include processing for analysis before being saved in a memory-efficient storage format. Finally, the
visualization tool reads the simulated solution from the disk to provide graphical representations aiding the user
in deriving information and performing analysis. The following sections explain the usage of each of the stages
and the related tools in detail.

1.3.1. Geometry and Meshing

The digital representation of the setup is first done by modeling the geometry and then discretizing it to form a
mesh. While several tools and techniques are available for this, the open-source modules offered by SALOME
are used in this article, which provides capabilities for interfacing with various numerical simulation tools. It
has a flexible cross-platform architecture made of reusable components allowing for customized integration and
handling of complex geometrical objects. It allows for creation of geometry and meshes using either (or both)
the graphical user interface (GUI) and a text user interface (TUI). The following sections explains the usage
of creating geometries and meshes using the TUI, a powerful Python-based scripting interface. The same may
also be achieved either in part or entirety by using the GUI. The GUI also allows for exporting the equivalent
state in a TUI script.

The TUI provides geomBuilder class for the creating and editing geometry. The class instance contains a
list of function attributes for operations useful in creating complex geometrical objects. It allows for creating
basic objects and primitives in 1D, 2D, 3D; perform boolean operations like fuse, common, cut and section
operations; execute extrusion, rotation and other linear operations; create higher order topological objects like
solids and compounds grouped from primitives; and implement an advanced partition or gluing between geo-
metrical structures, among others. Table 1.1 lists some useful TUI commands available as function attributes,
whereas a detailed description along with other functions are available in the documentation [8].

The meshing section is again accessed through another Python module, smeshBuilder. It presents differ-
ent algorithms to create meshes on the basis of geometrical models created by geomBuilder.The module
also provides control on mesh generation like maintaining conformality between subgroups, splitting, edit-
ing, boolean operations and marking. These are handy in segregating subdomains accurately in a mesh. The
NETGEN-1D2D3D algorithm is utilized for the purpose of the project which provides a range of control pa-
rameters like tetrahedral or hexahedral mesh elements, specifying the global maximum or minimum size of the
edges and also control locally-permissible edge sizes on a lower-order geometrical construct - useful in refining
the mesh near a point or a face.

The instance of the smeshBuilder class is provided with the geometrical object to mesh and the algorithm
specifications. The snippet code below illustrates access to the parameters of NETGEN-1D2D3D algorithm
and specify the relevant conditions for the mesh. The most useful functions are listed in table 1.1. The mesh is
computed after all the parameters are set.

from salome.smesh import smeshBuilder
smesh = smeshBuilder.New() #Instantiate the smeshBuilder class
domain_mesh = smesh.Mesh(Domain) #Domain is a geometrical object

Deliverable D5.2
7

1.3. Implementation

Select type of elements and algorithm to compute them
NETGEN_3D = domain_mesh.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D)
NETGEN_3D_Params = NETGEN_3D.Parameters() #Access parameters.

GeomBuilder

MakeVertex Creates a vertex
MakeVectorDXDYDZ Creates a vector
MakeBoxTwoPnt Creates a Cuboid defined by ends of a body diagonal
MakeSphereR Creates a Sphere at origin given the radius
MakeCylinder Creates a Cylinder
TranslateDXDYDZ Linear translation of a geometrical object
MakeCutList Boolean operation between two geometrical object
MakePartition Group various sub-shapes into one geometrical object
SubShapeSortedCentres Obtain sub-structures of a complex object

Mesh
Tetrahedron Set cells to be tetrahedral
Compute Compute the Mesh
Reorient2DBy3D Order the cell normals to face either outward or inward

NETGEN Parameters
SetMaxSize Limit global maximum edge length in mesh
SetMinSize Set global minimum edge length in mesh
SetLocalSizeOnShape Set local size on a sub-shape

Table 1.1: Useful functions in SALOME’s geom and smesh modules

The SALOME classes are provided only in its own environment and the scripts are executed through a wrapper
offered as,

$ salome -t script.py # Runs script.py in SALOME's shell

1.3.2. Solver

The solver of choice is FEniCS, a popular open-source finite-element library for solving partial differential
equations(PDEs). It offers a rich interface with data-structures and optimized algorithms for finite-element
code which makes it easy to write PDEs. The library is hardware-optimized and parallel by design and is easily
deployed to high-performance computing clusters. With its Python and C++ interfaces, FEniCS offers powerful
capabilities to integrate into various scientific computing workflows.

The FEniCS library offers a number of component modules and the interfacing is done mainly through its
DOLFIN and UFL modules. DOLFIN is a highly optimized computational back-end responsible for finite-
element machinery and offers a rich Python interface. It provides abstract data-structures similar to mathemat-
ical terms such as mesh, finite element, function spaces and functions. It also includes compute-intensive algo-
rithms such as finite-element assembly and mesh refinement, and, interfaces to various linear algebra solvers
and libraries like PETSc and Eigen. UFL, on the other hand, provides an abstract mathematical language to
express variational problems which are interpreted automatically and connected to DOLFIN classes.

The powerful feature of the solver is its ability to interpret the variational form in an easily readable framework.
The Python module also allows for finer control through a detailed interface to the underlying C++ code en-
abling sub-classing and base class overloading. Among others, it provides an Expression class which can
be used for user-defined expressions specified by C++ code and compiled during execution by a just-in-time
(JIT) compiler for efficiency. A detailed documentation along with numerous examples are offered by Lang-
tangen et al. [9] and at the official FEniCS documentation webpage [10]. It is to be noted that, curretly the

Deliverable D5.2
8

1.4. Computer Requirements

solver is limited by its inability to handle complex numbers and needs additional care to ensure that the real
and imaginary parts of the equations and function spaces are represented separately.

1.3.3. Post-processing and Visualization

Visualization of generated simulation data is critical in understanding the physical process. Implementing and
representing this data in a simple and effective manner is extremely useful for deriving information, presenting
results, and also in testing and debugging. The post-processing operations on the solution is dependent on
the study undertaken by the user. In this specific use case, some routine cases of analysis include validation
of the solver for a test case, measure of a field at a particular point in space and directivity patterns of fields
around the object amongst many others. The implementation of these could either be included in the solver
phase or during the visualization phase. Within the solver phase, these could just be operations on the solution
data done using Python and plotted using some common user preferred graphing libraries like Matplotlib [11].
The approach quickly gets overwhelming while dealing with 3D datasets and it is useful to use a dedicated
visualization tool like ParaView. It is a widely used open-source visualization tool for plotting and viewing
solutions and graphs. It offers a powerful and an intuitive 3D visualization interface allowing for heavy in-situ
customization and processing of simulation data. Furthermore, it also provides a Python scripting interface to
automate visualization for batch processing.

ParaView uses a three-stage procedure for visualization of data: reading, filtering and rendering, all done
using the user interface. The simulation data from the solver is read into memory through many supported
file formats. The dataset being typically large, the XDMF (eXtensible Data Model and Format) file format is
used for storage, which is able to manage extremely large datasets and is scalable for parallel systems. Filters
provide the ability to extract or analyze this data into information. There are a wide range of filters available for
analysis and visualization including plotting graphs, contours, surface plots, vector field plots etc. In addition,
it is also possible to define user-defined filters to perform customized operations. The rendering stage deals
with generating images or interactive plots from the filtered information. ParaView provides a user guide [12]
and many tutorials [13] highlighting the usage and relevance of each of the stages along with the available
functionalities to fully exploit its potential.

1.4. Computer Requirements

The software tools used in the implementation of the project require a minimal UNIX system with atleast
1GB of memory and about 500MB of disk space (swap) for execution. It is recommended to have some
higher configuration that would ease the workflow and be capable of handling problems of larger order. The
requirements however are decided by the finite-element solver, which handles assembling and solving Equation
(1.26). The matrix in the equation is dependent on the mesh configuration and in a typical 3D use-case scenario
with an unstructured tetrahedral mesh, the author suggests a system with 64GB memory for 1 million cells.

1.5. Case study : Acoustic transmission of a vibrating sphere in a porous enclosure

The implementation considered is a test case to validate our model, the acoustic transmission of a vibrating
sphere placed in a spherical porous enclosure. The example illustrates the use of the tools described in the
earlier sections. The solution for the case can also be computed analytically.

1.5.1. Description of test case sphere

A sphere of radius R0 is placed at the origin within an acoustic fluid of density ρF. It is enclosed in a hollow
spherical porous disk with an inner radius of R1 and an outer radius of R2. Given that the surface of the sphere
vibrates at a constant rate producing oscillations of frequency ω, the problem is then to compute the distortion
of the acoustic field due to the porous layer.

Deliverable D5.2
9

1.5. Case study : Acoustic transmission of a vibrating sphere in a porous enclosure

ΩF ΩP

R0R1

R2

ΩF ΩP ΩPML

R0R1

R2

Figure 1.4: Schematic of the spherical test case posed in an unbounded domain (left)
and modeled using perfectly matched layers (right).

1.5.2. Exact solution

The exact solution maybe obtained by enforcing a constant Neumann boundary condition on the surface of
the sphere. The radial symmetry of the configuration ensures that the Helmholtz equation has only radially
dependent solutions which may be expressed as a linear combination of incoming and outgoing waves. Writing
in term of pressure fields the exact solution is obtained as,

p(r) =

A1
exp(ikFr)

r
+ B1

exp(−ikFr)

r
, r ∈ [R0, R1],

A2
exp(ikPr)

r
+ B2

exp(−ikPr)

r
, r ∈ [R1, R2],

B3
exp(−ikFr)

r
, r ∈ [R2,∞).

(1.27)

where the Al’s correspond to the coefficients of incoming waves (for l = 1, 2), and Bm’s to the coefficients of
outgoing waves(for m = 1, 2, 3). In an unbounded domain, since there are no incoming waves from infinity,
the coefficient of the incoming component is zero. Considering that the pressure and displacement field needs
to satisfy conditions on structure boundary (at R0) and continuity conditions at fluid-porous media interfaces
(R1 and R2), it follows that,

∂p

∂r
(R0) = ρFω

2g0, g0 = constant, (1.28)

p(R−1) = p(R+
1), (1.29)

ρP
∂p

∂r
(R−1) = ρF

∂p

∂r
(R+

1), (1.30)

p(R−2) = p(R+
2), (1.31)

ρF
∂p

∂r
(R−2) = ρP

∂p

∂r
(R+

2). (1.32)

Substituting the general solution (1.27) in (1.28)-(1.32) and rewriting in terms of the coefficients, Al’s and
Bm’s, a 5 × 5 system of equations is obtained and is solved to compute the exact solution.

Deliverable D5.2
10

1.5. Case study : Acoustic transmission of a vibrating sphere in a porous enclosure

1.5.3. Geometry and Mesh

The scripting interface of SALOME is utilized to prepare the geometry and mesh for the problem. The pa-
rameters of the sphere is set initially in the script. Once the geometry building module is instantiated, it
is conventional to create an origin and the axes. The volumetric spherical object may be created using the
MakeSphereR function. The porous layer is then created by an intersection of two concentric spheres using
the MakeCutList function to perform a boolean deletion of the volume of one by another. The two-part fluid
region is also made using a similar boolean operation on a Cartesian box where the ”unbounded” domain is
truncated.

from salome.geom import geomBuilder

Parameters
L_0 = L_1 = L_2 = 0.2
R_0 = 0.5
R_1 = 2 * R_1
R_2 = 2.25 * R_2

Create an instance of the geometry builder class
geompy = geomBuilder.New()

Origin and Axes
O = geompy.MakeVertex(0, 0, 0)
OX = geompy.MakeVectorDXDYDZ(1, 0, 0)
OY = geompy.MakeVectorDXDYDZ(0, 1, 0)
OZ = geompy.MakeVectorDXDYDZ(0, 0, 1)

Sphere
Sphere = geompy.MakeSphereR(R_0)

Porous Layer
porous_in = geompy.MakeSphereR(R_1)
porous_out = geompy.MakeSphereR(R_2)
porous_layer = geompy.MakeCutList(porous_out, [porous_in], True)

Fluid Domain
b0 = geompy.MakeVertex(L_0, L_1, L_2)
b1 = geompy.MakeVertex(-L_0, -L_1, -L_2)
B = geompy.MakeBoxTwoPnt(b0, b1)
Fluid1 = geompy.MakeCutList(B, [porous_out], True)
Fluid2 = geompy.MakeCutList(porous_in, [Sphere], True)

While the basic domains of interest are created in an obvious manner outlined above, care is taken in construct-
ing the PML layer. The integration of the variational form (1.24) within the PML domain contains the terms
C̃ and M̃ which are dependent on the axial orientation. To ensure mesh conformality , the layer is formed
by blocked subdomains along each axis. Highlighted below is creation of one such layer enveloping the fluid
domain on the x0 direction,

x0-direction subdomain
be0 = b0

Deliverable D5.2
11

1.5. Case study : Acoustic transmission of a vibrating sphere in a porous enclosure

be1 = geompy.MakeVertex(L_0+L_pml, -L_1, -L_2)
Be = geompy.MakeBoxTwoPnt(be0,be1)

Similar such blocks are created enveloping the fluid domain along all the directions - two each along the x0, x1

and x2 directions, four each along x0x1, x1x2 and x2x0 directions and eight along the corners i.e. the x0x1x2

direction. All the layers formed are unified in a single geometrical object achieved by the function attribute
MakePartition as,

Domain = geompy.MakePartition(Domainlist)

where, Domainlist is a Python list of all the separate subdomains. The function
SubShapeSortedCentres is then used to obtain any sub-structure identifiers, useful in specifying
local mesh refinements. Figure 1.5a shows a cross-section of the generated geometry.

(a) (b)

Figure 1.5: View of the geometry(left) and the cross-section of the Mesh(right).

The meshing operation is then carried out using the smesh module of SALOME as was similarly suggested
in 1.3.1 . Figure 1.5b shows a cross-sectional view of the computed mesh volume along with local refinements
within the porous layers and around the spherical boundary using the SetLocalSizeOnShape function.
The Reorient2DBy3D function was also used to ensure that all boundary face normals pointed outwards of
the enclosure. The step is crucial considering that the boundary condition is specified across these faces using
expressions. The computed mesh is then be exported to file in .unv file format using function attributes of
the mesh object. Conversion to .xml.gz for interfacing with the solver is achieved using FEConv [14] and
dolfin-convert (provided by FEniCS) utilities as,

$ feconv -gm mesh.unv mesh.msh
$ dolfin-convert mesh.msh mesh.xml
$ gzip mesh.xml

Deliverable D5.2
12

1.5. Case study : Acoustic transmission of a vibrating sphere in a porous enclosure

1.5.4. Solver

The solver section handles details of the finite element implementation of the model and is made concise only
due to the features of the FEniCS library. The geometrical parameters regarding the physical dimensions of
the various subdomains and the model parameters related to frequency of choice, the user-defined boundary
parameters etc are provided. Subsequently, the mesh is read into memory and each of the subdomains are
marked by different identifiers, which is illustrated below.

Fluid domain lengths : L[0], L[1], L[2] in x,y,z directions
Porous domain radii : r_min (inner) and r_max (outer)
Mesh object : mesh

Obtain list of all cell identifiers
subdomains = MeshFunction("size_t", mesh, mesh.topology().dim())

Sub-domain specifications
tol = DOLFIN_EPS_LARGE

pml_cond = "fabs(x[0])>Lx-tol || fabs(x[1])>Ly-tol || fabs(x[2])>Lz-tol"
pml_layer = CompiledSubDomain(pml_cond,

Lx=L[0], Ly=L[1], Lz=L[2], tol=tol)

por_cond = "x.norm() > r_min-tol && x.norm() < r_max + tol"
por_layer = CompiledSubDomain(por_cond,

r_min=r_min, r_max=r_max, tol=tol)

Mark Sub-domains
subdomains.set_all(0) # Fluid_Marker = 0
pml_layer.mark(subdomains, 1) # PML_Marker = 1
por_layer.mark(subdomains, 2) # Porous_Marker = 2

A similar procedure is also used to mark the boundary faces by different identifiers so as to specify boundary
conditions. The function space is initialized with Raviart-Thomas finite elements, which define basis functions
as unit vectors along the normals of the faces. To substitute a complex function space, it is necessary to initialize
a hybrid function space made of two real parts,

Define function space (1st order Raviart-Thomas elements)
RT = d.FiniteElement("RT", mesh.ufl_cell(), 1)
Q = d.FunctionSpace(mesh, RT)

Define 2-part real function spaces to substitute for complex space
V = d.FunctionSpace(mesh, RT * RT)

(u_re, u_im) = d.TrialFunctions(V)
(v_re, v_im) = d.TestFunctions(V)

The variational form maybe expressed in three separate stages - one each for the fluid, porous and PML subdo-
mains. The primary task is to represent each term on the Equation (1.24) in real and imaginary portions. This
may be achieved easily by splitting Equations (1.15)-(1.22) into real and imaginary parts and following in the

Deliverable D5.2
13

1.5. Case study : Acoustic transmission of a vibrating sphere in a porous enclosure

same process to achieve a similar variational form like (1.24). The wave equations being linear help separate
each of the term into two,∫

ΩF

ρFc
2Re(divu)Re(div v) dV −

∫
ΩF

ρFω
2Re(u) ·Re(v) dV∫

ΩF

ρFc
2Im(divu)Im(div v) dV −

∫
ΩF

ρFω
2Im(u) · Im(v) dV

+

∫
ΩP

Re(KP(ω) divu)Re(div v) dV −
∫
ΩP

Re(ρP(ω)ω2u) ·Re(v) dV

+

∫
ΩP

Im(KP(ω) divu)Im(div v) dV −
∫
ΩP

Im(ρP(ω)ω2u) · Im(v) dV

+

∫
ΩPML

ρFc
2Re(C̃(∇u)) : Re(∇v) dV −

∫
ΩPML

ρFω
2Re(M̃u) ·Re(v) dV

+

∫
ΩPML

ρFc
2Im(C̃(∇u)) : Im(∇v) dV −

∫
ΩPML

ρFω
2Im(M̃u) · Im(v) dV = 0. (1.33)

Note that the right-hand term is null since there are no source terms in the configuration. The Equation (1.33)
can be easily specified in FEniCS using UFL. Since the subdomains are marked with identifiers already, the
bilinear form within the fluid layer maybe specified directly as,

FLUID LAYER : SubDomain Marker 0
Define Bilinear form within the fluid layer
a = (rho * c**2 * div(u_re) * div(v_re) * dx(0)

+ rho * c**2 * div(u_im) * div(v_im) * dx(0)
- rho * omega**2 * inner(u_re, v_re) * dx(0)
- rho * omega**2 * inner(u_im, v_im) * dx(0))

The PML and the porous layer require operating between complex arithmetic and UFL operations. These are
made simpler by declaring a complex container class with the necessary operations like multiplication, division
and conjugation. This reduces the complex arithmetic into UFL operations and increases readability of the
code. The Complex class declared below shows a simple structure of such a container class which contains
member functions to return just the real or imaginary parts of the common operations. The return values of
each of them translates the arithmetic into UFL operations.

class Complex(object):
def __init__(self,real_part, imag_part):

self.real=real_part
self.imag=imag_part

Define inner-(conjugated) product
def dot_re(f, g):

return f.real*g.real + f.imag*g.imag

def dot_im(f, g):
return f.imag*g.real - f.real*g.imag

Define product
def prod_re(f, g):

return f.real*g.real - f.imag*g.imag

Deliverable D5.2
14

1.5. Case study : Acoustic transmission of a vibrating sphere in a porous enclosure

def prod_im(f, g):
return f.imag*g.real + f.real*g.imag

Define division
def div_re(f, g):

return dot_re(f, g)/dot_re(g, g)

def div_im(f, g):
return dot_im(f, g)/dot_re(g, g)

Further consideration is needed to specify piece-wise functions (γj’s) into the variational form. A direct ap-
proach would be segregating the PML domain into smaller domains defined by intervals where γj’s are resolved,
and specify the operations separately. While this approach saves the assembling time, it can quickly get tedious
and instead be expressed using logical operators offered by UFL [15], specifically the conditional opera-
tor. This leaves the evaluations to be performed during the assembling phase. The following code illustrates the
bilinear form expression using the Complex class and the UFL logical operators. The real and imaginary parts
of the tensor product C̃(∇u) : ∇v and the inner product M̃u · v are expressed by simplifying the operation.

PML LAYER : SubDomain Marker 1
def s(j):
return conditional(gt(abs(x[j]), L[j] + tol),

c / abs(abs(x[j]) - (L[j] + Lpml)) / omega,
Constant("0."))

def gamma(j):
return Complex(Constant("1.0"), s(j))

def du_dx(u_re, u_im, i):
return Complex(Dx(ure[i], i), Dx(uim[i], i))

Divergence operator in the PML domain
Div_re = sum(prod_re(Complex(1., 0.) / gamma(i), du_dx(u_re, u_im, i))

for i in range(3))
Div_im = sum(prod_im(Complex(1., 0.) / gamma(i), du_dx(u_re, u_im, i))

for i in range(3))

Scaled PML displacement vector to be used in the mass matrix
def coef(ure, uim, i)
return Complex(ure[i], uim[i])

u_scaled_re = as_vector([prod_re(gamma(i), coef(u_re, u_im, i))
for i in range(3)])

u_scaled_im = as_vector([prod_im(gamma(i), coef(u_re, u_im, i))
for i in range(3)])

dx_pml = dx(1, scheme='default', degree=6)

Define bilinear form in the PML layer
a += (rho * c**2 * Div_re * d.div(v_re) * dx_pml

Deliverable D5.2
15

1.5. Case study : Acoustic transmission of a vibrating sphere in a porous enclosure

+ rho * c**2 * Div_im * d.div(v_im) * dx_pml
- rho * omega2 * inner(u_scaled_re, v_re) * dx_pml
- rho * omega2 * inner(u_scaled_im, v_im) * dx_pml)

The expression for porous layer requires the porous density and bulk modulus obtained from the JCAL model.
These are easily computed from expressions (1.4) and (1.5) using Python’s inbuilt complex arithmetic support
and the results are subsequently cast into Complex class type. The resulting bilinear expressions can then be
specified as,

POROUS LAYER : SubDomain Marker 2
div_u = Complex(div(u_re), div(u_im))
a += (prod_re(BulkMod_P, div_u) * div(v_re) * dx(2)

+ prod_im(BulkMod_P, div_u) * div(v_im) * dx(2)
- omega**2 * inner(prod_re(Rho_P, u), v_re) * dx(2)
- omega**2 * inner(prod_im(Rho_P, u), v_im) * dx(2))

The boundary conditions at the structure are also divided into real and imaginary parts and the expressions
are specified using the Expression class. They can then be applied over the relevant faces using the
DirichletBC class.

BC at Structure Boundary (Marker 2)
bc = [DirichletBC(V.sub(0), g_re, bdry_markers, 2), # Real subspace

DirichletBC(V.sub(1), g_im, bdry_markers, 2)] # Imag subspace

The system is now completely determined and can be assembled and solved using the MUMPS (MUltifrontal
Massively Parallel Sparse direct Solver) linear algebra solver. The resulting solution is separated into real and
imaginary parts using the split attribute of the Function class and are then written into XDMF files using
the DOLFIN provided XDMFFile class.

1.5.5. Visualization

The saved XDMF file are directly compatible and can be easily visualized using ParaView. The user interface
is very intuitive and once a file is opened it allows the user to select the solution fields to import into memory.
Once the datasets are imported, it renders the volumetric data on the viewer. The toolbar offers some commonly
used filters and are also accessible from the menu options. Initially, the dataset is bifurcated into truncated fluid
domain and the PML. This can be achieved using the ExtractCellsByRegion filter used with its ’box’
configuration scaled appropriately to omit the cells in the PML. To obtain cross-sections of the volumetric data,
as shown in Fig. 1.6, the filter Clip or Slice is used and the specifications of the cutting plane is provided.
It is also possible to compute from the saved fields on the interface directly by using the filter Calculator.
This filter allows the user to define an expression using the fields in memory and compute a derived field. It
is useful in computing the total displacement field putting together the real and imaginary portions. The same
filter can also be used to compute the errors provided the exact solution is also in memory. Figure 1.7 shows the
contours of obtained error fields on a plane passing through the origin. ParaView offers a lot more features like
plotting, thresholding etc. which can help the user gain further understanding from the simulation data. Certain
computations like pressure-at-a-point and directivity computations are better handled in the solver stage and
can then be visualized using other Python graphing libraries.

Deliverable D5.2
16

1.6. Conclusion

Figure 1.6: Cross-sectional contour views of the magnitude of the real part (left)
and the magnitude of the imaginary part (right) of the computed displacement field.

Figure 1.7: Cross-sectional contour views of the errors in the magnitude of the real part (left)
and magnitude of the imaginary part (right) of the displacement field.

1.6. Conclusion

The objective of developing a coupled model for fluid-porous media interactions in designing an acoustic sensor
is approached in stages. One such benchmark case with a porous coupling under no-flow conditions has been
highlighted and a model has been developed. The porous layer is represented in the model by a fluid-equivalent

Deliverable D5.2
17

Bibliography

layer with absorption properties and certain interface conditions. The material properties of the porous medium
is modeled by a fairly detailed 6-parameter Johnson-Champoux-Allard-Lafarge (JCAL) model. The perfectly-
matched layers (PML) technique is also utilized to replicate the behaviour of an unbounded domain.

A comprehensive implementation of the model is provided in the article entirely using open-source software.
The scripting interface interlace with the graphical interface for mesh generation provided by SALOME is
useful in meshing complex geometry and automating the procedure either entirely or partly. The intricate finite
element machinery of the solver stage is handled by the FEniCS library offering ease-of-use to the user while
helping focus their attention towards model development and prototyping. The visualization tool, ParaView is
feature-rich, providing access to many post-processing algorithms along with an intuitive interface. The entire
toolchain can also be controlled on Python scripts allowing for easier development and future customization.

The workflow is meticulously described in solving for acoustic transmission of a vibrating sphere within a
porous enclosure. The implementation of this benchmark case sheds light into every detail on running a sim-
ulation and obtaining and visualizing results, and hopes to enable the reader to reproduce the results in its
entirety.

Bibliography

[1] N. Auer, P. Barral, J.-D. Benamou, D. F. Comesaña, M. Girfoglio, L. Hauberg-Lotte, M. Hintermüller,
W. Ijzerman, K. Knall, P. Maass, G. Marconi, M. Martinolli, P. P. Monticone, U. Morelli, A. Nayak,
L. Polverelli, A. Prieto, P. Quintela, R. Ramlau, C. Riccardo, G. Rozza, G. Rukhaia, N. Shah, B. Stadler,
and C. Vergara, “Reports about 8 selected benchmark cases of model hierarchies,” Sep. 2018, project
Deliverable D5.1. [Online]. Available: https://doi.org/10.14279/depositonce-7412

[2] S. Marburg and B. Nolte, Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary
Element Methods. Springer-Verlag Berlin Heidelberg, 2008.

[3] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Com-
putational Physics, vol. 114, no. 2, pp. 185 – 200, 1994.

[4] X. Sagartzazu, L. Hervella-Nieto, and J. M. Pagalday, “Review in sound absorbing materials,” Archives
of Computational Methods in Engineering, vol. 15, no. 3, pp. 311–342, Sep 2008.

[5] J. Allard and N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
2e. Wiley, 2009.

[6] A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodrı́guez, “Perfectly matched layers for time-
harmonic second order elliptic problems,” Archives of Computational Methods in Engineering, vol. 17,
no. 1, pp. 77–107, Mar 2010.

[7] A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodrı́guez, “An optimal perfectly matched
layer with unbounded absorbing function for time-harmonic acoustic scattering problems,” Journal
of Computational Physics, vol. 223, no. 2, pp. 469 – 488, 2007. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0021999106004487

[8] “SALOME documentation.” [Online]. Available: https://www.salome-platform.org/user-section/
documentation/current-release

[9] H. P. Langtangen and A. Logg, Solving PDEs in Python. Springer, 2017.

[10] “FEniCS documentation.” [Online]. Available: https://fenicsproject.org/documentation/

[11] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science & Engineering, vol. 9,
no. 3, pp. 90–95, 2007.

[12] U. Ayachit, The ParaView Guide: A Parallel Visualization Application. USA: Kitware, Inc., 2015.

[13] “ParaView tutorials.” [Online]. Available: https://www.paraview.org/Wiki/The ParaView Tutorial

[14] “FEConv project page.” [Online]. Available: http://victorsndvg.github.io/FEconv/

[15] “UFL documentation.” [Online]. Available: https://fenics.readthedocs.io/projects/ufl/en/latest/

Deliverable D5.2
18

https://doi.org/10.14279/depositonce-7412
http://www.sciencedirect.com/science/article/pii/S0021999106004487
http://www.sciencedirect.com/science/article/pii/S0021999106004487
https://www.salome-platform.org/user-section/documentation/current-release
https://www.salome-platform.org/user-section/documentation/current-release
https://fenicsproject.org/documentation/
https://www.paraview.org/Wiki/The_ParaView_Tutorial
http://victorsndvg.github.io/FEconv/
https://fenics.readthedocs.io/projects/ufl/en/latest/

2. Multirate time integration and model order reduction for coupled
thermal electrical systems

Marcus W.F.M. Bannenberg1, Michael Günther1

1Bergische Universität Wuppertal

Abstract. The coupled multiphysics systems arising in circuit simulation are both high dimensional and exhibit
different internal time scales. These two properties can be exploited by numerical techniques. The high dimen-
sional systems can be reduced by model order reduction. Then the different intrinsic time scales are efficiently
handled by a multirate time integration scheme. The combination of these techniques is applied to coupled
differential-algebraic circuit equations and a nonlinear thermal system. The result is a significant decrease in
the computational effort.

Keywords: Model Order Reduction, Multirate, Differential Algebraic Equations, Coupled Systems, Circuit
Simulation.

2.1. Introduction

In the simulation of nanoelectronics there are a great many things to consider. Trying to accurately model the
natural phenomena happening inside a microchip leads to very large coupled systems. Which can become un-
feasible to solve numerically. As specific type of coupled system this project focuses on systems with different
intrinsic time scales i.e. due to thermal-electric coupling. The objective of this project is to combine multirate
time integration and model order reduction to drastically improve the simulation speed. By using MR one can
exploit the different intrinsic time scales of subsystems as to improve the overall computation efficiency, whilst
preserving a level of global accuracy. MOR aims to reduce the size of large subsystems and decrease the nu-
merical effort for each time step, again within a certain level of global accuracy. The outline of the report is as
follows: First the benchmark problem is described. Next a mathematical definition of both techniques is given,
followed by a detailed description of the implementation. Then to demonstrate the effect of this combination
this new approach will be applied to generate a numerical example.

2.1.1. Thermal-Electric Benchmark Circuit

For this benchmark a test circuit is needed which contains both coupling and different intrinsic time scales. To
this end the thermal-electric test circuit as described in [1] is used, Figure 2.1.

v(t)

u1 u2

R(T)

u3 u4

C RL

Figure 2.1: Electric description of the benchmark circuit.

This circuit consists of an operational amplifier, two resistors, a diode and a capacitor. The resistor R(T)
produces and transports heat and is temperature dependent. The amplifier is a heat source and the diode has a
temperature dependent characteristic curve. The electric behaviour of the circuit is modelled by nodal analysis

Deliverable D5.2
19

2.2. Mathematical Formulation

yielding from Kirchhoff’s laws. Following the discretisation as done in the original paper we arrive at the
following thermal-electric system:

Electric network:

0 = (Av(t)− u3)/R(T) + idi(u3 − u4, Tdi),

Cu̇4 = idi(u3 − u4, Tdi)− u4/RL,

Coupling interfaces:

Pop = |(vop − |v(t)| · (Av(t)− u3)/R|, Pw = (Av(t)− u3)2/R,

R(T) =

(
1

2
(ρ(0, T0) +

N−1∑
i=1

ρ(Xi, Ti) +
1

2
ρ(l, TN)

)
· h,

Heat equation:

M ′w,ihṪi, = Λ
Ti+1 − 2Ti + Ti−1

h
+ Pw

ρ̃(Xi, Ti)

R
h,

− γS′w,ih(Ti − Tenv), (i = 1, ..., N − 1).,

(M ′w,0 ·
h

2
+Mop)Ṫ0 = Λ

T1 − T0

h
+ Pw

ρ̃(0, T0)

R

h

2

− γ(S′w,0
h

2
+ Sop) · (T0 − Tenv) + Pop,

(M ′w,N ·
h

2
+Mdi)ṪN = Λ

TN−1 − TN
h

+ Pw
ρ̃(XN , TN)

R

h

2

− γ(S′w,N
h

2
+ Sdi) · (TN − Tenv)

2.2. Mathematical Formulation

2.2.1. Multirate time integration

To efficiently integrate the thermal-electric system through time we use a multirate scheme, [2]. First consider
a more general notation of the thermal-electric system:

Meu̇ = fe(t,u,T),

MtṪ = ft(t,u,T).

We can distinguish a natural partition by splitting the system into thermal and electric equations. Note that
the coupling between the two systems is handled by a coupling interface which is omitted from the general
notation. Now the multirate scheme starts by integrating the whole system with a macro-step H . This yields
solutions for time t0 + H . From these solutions only one for the slow changing subsystem is accepted. Then
the fast changing subsystem is integrated from t0 to t0 + H with micro-steps h. For the coupling linearly
interpolated values from the slow subsystem are used. As the system total system is an index 1 DAE it can be
integrated by implicit Runge-Kutta schemes, following the approach as outlined in chapter VI of [3]. In this
report the stiffly accurate implicit Runge-Kutta schemes are used as means to use the State Space Form Method.

Deliverable D5.2
20

2.3. Implementation

This results in the system, where A and c are obtained from the Butcher Tableau,

ku =

{
u0 +H · f(t0 + c ·H,ku,kT) ·A Differential,
f(t0 + c ·H,ku,kT) Algebraic,

kT = T0 +H · f(t0 + c ·H,ku,kT) ·A,

Which has to be solved with respect to ku and kT . For the macro-step the complete system is solved. Then for
the intermediate micro-steps the system is solved with interpolated values k̄u for ku in the coupling interface.
To solve this system different methods are available. In this implementation the multidimensional root finder
algorithm by GSL is used for this system of nonlinear equations, [4].

2.2.2. Model order reduction

As the discretised number of thermal equations can be made arbitrarily large model order reduction is applied to
this part of the system. To avoid linearisation of the thermal part the proper orthogonal decomposition (POD)
method is chosen as it can handle nonlinear systems. Following [5], POD starts out with a snapshot matrix
X = [x(t0), ...,x(tNs)] ∈ Rn×Ns of collected state evolutions of the whole system. From this snapshot matrix
an orthonormal basis V is derived. This is done by computing the singular value decomposition ofX:

X = UΣT T

From the scaled singular values matrix Σ = diag(σ1, ..., σn)/
∑
σi the degree of truncation r can be obtained

by a threshold value ε. To construct basis V , POD chooses the left singular vectors corresponding to the r
largest singular values.

V = [u1, ...,ur].

With this orthonormal basis the reduced system is given by

W TMtV
˙̃
T = W T ft(t,u,V T̃).

And thus the total system with the reduced thermal subsystem is

Meu̇ = fe(t,u,V T̃),

W TMtV
˙̃
T = W T ft(t,u,V T̃).

2.3. Implementation

The code for the implementation of the problem sketched in the introduction is written in C++. In this section
of the report an overview of the structure of the software is given.

Deliverable D5.2
21

2.3. Implementation

Benchmark

Output

Eigen

solver.cpp

pod.cpp

pod.hpp

problem.hpp

RootFinder.cpp

RootFinder.hpp

utils.hpp

2.3.1. Parameters and functions

In the Benchmark folder the main function is in the file solver.cpp, compiled this results in main that can
to be run. In this file first all the numerical parameters of the benchmark problem are declared. These are de-
clared as global variables for accessibility and for single allocation purposes. The problem specific parameters
are declared in the file problem.hpp which is included in solver.cpp, see below. After the numerical pa-
rameter declaration the objective function declaration takes place. As these are linked to the numerical scheme
they are declared in solver.cpp and use the problem specific functions from problem.hpp. Following
the declaration style of solver.cpp the thermal and circuit parameter declarations in problem.hpp¿ are
defined as globals. Then the following functions are defined:

• v, i di, rho, a, S prime: Declared for their respective functions in the system.

• coupling update: Function for updating the coupling parameters. Note that there are multiple ver-
sions depending on the integration rate.

• f: Function values of the DAEs, again there are several depending on activity and MOR.

2.3.2. Setting up the IRK iteration

In the main function, solver.cpp, first the fifth order Radau IIA Butcher Tableau is set up by filling matrix
A and vector c. Then index arrays, iA and iD, for the algebraic and dynamic equations are filled. Next the fast
and slow index arrays are constructed and their local counterparts, indices A/L and iA/D local. This is
done for ease of index access in the objective f A function. The solution destination array, y tot, is then
setup and filled with the initial conditions, y 0, of this specific problem. Then the IRK iteration is started. For
the IRK iteration a RootFinder object is used to solve the ki. This solver is encapsulated in its own class.

2.3.3. The IRK iteration

In this for-loop the computation of the solution for each time-step takes place. As the goal is to use the
multirate IRK loop this is the one that will be described in the section below. The loop starts with initialising
the seed of the solver, for which the current state is used. Then a macro-step ofmmicro steps is performed. For
this large step size the solution is calculated and stored in the the destination matrix. Then the interpolated m
values and if needed extrapolated values are constructed by linear interpolation of the current state value and the
received solution. Note that this is only done for the latent values. Then the internal loop for the m micro-steps
is started. This begins again with the construction of a seed vector for the RootFinder object. However this time

Deliverable D5.2
22

2.4. Requirements

the seed is only the size of the active dimension. The needed interpolated values is stored in the global array to
be accessible for the objective function. The active subsytem is then solved for the seed value and the results
are stored in the destination matrix. Then the time and global state values are updated.

2.3.4. The POD algorithm

To encapsulate this process this functionality is stored in the POD class as defined by pod.cpp and pod.hpp.
The class is first initiated with the desired reduction number as to allocate global storage arrays. Then once
the snapshot matrix is obtained from the solution matrix the POD object is updated. The update starts by
constructing the SVD of the snapshot matrix. This is done by a EIGEN subroutine, for which two types can be
chosen. Note that one of them is commented in the file. After the SVD the necessary matrices are constructed
an stored in the POD object for ease of access.

2.4. Requirements

The program is compiled by the running the make command inside the Benchmark folder. For this the follow-
ing libraries are used: -lgsl -lgslcblas. Furthermore the folder of the 3.3.4 version of third party library Eigen,
[6], must be included in the the Benchmark folder. The program is currently compiled with g++ version 4.2.1.
Note that the -03 optimiser flag is used for a faster runtime. The specs of the computer which is used for the
numerical examples are:

• 2,6 GHz Intel Core i5.

• 8 GB 1600 Mhz DDR3.

2.5. Numerical examples

To get an impression of the impact of applying model order reduction and multirate time integrating a numerical
experiment is done. For this test case the following simulation parameter values are chosen:

t0 = 0 tend = 0.025,

Hsr = 1.25e− 4 Hmr = 2.5e− 4,

hmr = 2.5e− 5 m = 10,

N = 100 r = 8,

Butcher Tableau

2
5 −

√
6

10
11
45 − 7

√
6

360 − 37
225 − 169

√
6

1800 − 2
225 +

√
6

75
2
5 +

√
6

10 − 37
225 + 169

√
6

1800
11
45 + 7

√
6

360 − 2
225 −

√
6

75

1 4
9 −

√
6

36
4
9 +

√
6

36
1
9

4
9 −

√
6

36
4
9 +

√
6

36
1
9

The experiment is setup in following way. First the full system is simulated with single rate time integration.
Then the full system is simulated with multirate time integration. The singlerate solution is then used to con-
struct the snapshot matrix for the POD procedure. Then lastly the reduced system is simulated using multirate
time integration.

Deliverable D5.2
23

2.5. Numerical examples

2.5.1. Results

To give an impression of the solution of the circuit a reference solution is shown in Figure 2.2. This solution is
obtained by a very coarse time and spatial discretisation and using the singlerate time integration. Shown is the
desired output, the voltage at u3 and the development of the heat in the middle voxel of the thermal resistor.

0 0.005 0.01 0.015 0.02 0.025

Time

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

V
o

lt
a

g
e

 i
n

 u
3

290

295

300

305

310

315

320

325

T
e

m
p

e
ra

tu
re

 i
n

 T
m

id

Reference solution u
3
 and T

mid

Figure 2.2: Reference solution

To measure the impact of the multirate time integration and model order reduction the error between the refer-
ence solution and the experiment solution is defined as the difference between the voltage at node u3 of both
solutions, as this would be the desired output of the circuit simulation. In Figure 2.3 the results of the experi-
ments are shown. First we see that the solutions for u3 overlap nicely and thus that the simulations are correct.
Then below the first plot the error introduced by the singlerate and multirate time integration techniques are
shown for the full system, the second and third plot. We see that although the error in the multirate plot is
slightly higher, the errors are within the same magnitude. Then the fourth and final plot illustrates the error
induced by the multirate time integration and POD methods combined. Here we see that due to the POD re-
duction the error is increased and more irregular. However, the error does not stray from the previous errors’
magnitudes.

Lastly, in Table 2.1 the computation time of the three different approaches is shown. These times have been
measured for 20 runs and then the average is shown. It now shows that the multirate approach roughly dou-

SR MR MR+MOR
Time 54.8243 28.3296 4.0325

Table 2.1: Computation time of the solver.

Deliverable D5.2
24

2.6. Conclusion

0 0.005 0.01 0.015 0.02 0.025

Time

-0.2

0

0.2

V
o

lt
a
g
e

The solution at u
3

0 0.005 0.01 0.015 0.02 0.025

Time

0

0.5

1

1.5

D
if
fe

re
n

c
e

10
-11 Singlerate error

0 0.005 0.01 0.015 0.02 0.025

Time

0

0.5

1

1.5

D
if
fe

re
n
c
e

10
-11 Multirate error

0 0.005 0.01 0.015 0.02 0.025

Time

0

1

2

D
if
fe

re
n
c
e

10
-11 Multirate POD error

Figure 2.3: The results of the simulations

bles the integration speed whilst maintaining accurate. If this is combined with the POD the solver is amost
fourtheen times as fast for the same error magnitude.

2.6. Conclusion

From the numerical example it shows that the combination of multirate time integration and model order reduc-
tion looks quite promising. A decrease of computation time can be seen by applying the two methods whilst
the accuracy is preserved. These preliminary results are a positive indicator for further research. As only one
type of nonlinear model order reduction has been introduced in this benchmark there is much to gain in this
territory. Furthermore different types of coupling need to be elaborated on.

Deliverable D5.2
25

Bibliography

Bibliography

[1] A. Bartel, M. Günther, and M. Schulz, “Modeling and discretization of a thermal-electric test circuit,” in
Modeling, Simulation, and Optimization of Integrated Circuits. Springer, 2003, pp. 187–201.

[2] M. Günther, A. Kvaernø, and P. Rentrop, “Multirate partitioned runge-kutta methods,” BIT Numerical
Mathematics, vol. 41, no. 3, pp. 504–514, 2001.

[3] G. Wanner and E. Hairer, Solving ordinary differential equations II. Springer Berlin Heidelberg, 1996.
[4] B. Gough, GNU scientific library reference manual. Network Theory Ltd., 2009.
[5] A. Verhoeven, J. Ter Maten, M. Striebel, and R. Mattheij, “Model order reduction for nonlinear ic models,”

in IFIP Conference on System Modeling and Optimization. Springer, 2007, pp. 476–491.
[6] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.

Deliverable D5.2
26

3. Validation of fluid-structure interaction simulations in
membrane-based blood pumps

Marco Martinolli1, Christian Vergara1, Luc Polverelli2

1MOX, Dipartimento di Matematica, PoliMi
2CorWave Inc.

Abstract. The benchmark consists in the validation of a numerical model for the fluid-structure interaction
arising in membrane-based blood pumps against experimental data obtained by in vitro testings at CorWave Inc.
The goal is to numerically reproduce the pump system under the same working conditions of the documented
experimental sessions, in order to predict the pump outflow rates and the hydraulic power for different pressure
conditions in the pump and finally compare the results with the experimental HQ curves. The software for
the solution of the benchmark will be implemented in the C++ parallel library of finite elements LIFEV using
the Extended Finite Element Method. The report includes the plan for the Docker installation of the LIFEV
environment and the third-part packages, information on the future online availability of the software, the
licences of use of the main libraries and the computer requirements to run the benchmark.

Keywords: Fluid-structure interaction, blood pumps, model validation, HQ curves.

3.1. Introduction

Blood pumps are medical devices used to support cardiac function in patients affected by end-stage heart
failure. These devices are implanted at the apex of the heart, where they expel the oxygenated blood collected
in the left ventricle into the ascending aorta via a flexible outlet cannula. Hence, these devices are called
Left Ventricular Assist Devices (LVADs). In this case, we will focus on a novel prototype of blood pumps
that is under development at CorWave Inc.(Paris), said progressive wave blood pumps [1]. Progressive wave
blood pumps are based on the interaction between an undulating elastic membrane and the blood, resulting
in a pumping mechanism that ejects blood in a physiologic pulsatile regime without exerting high forces on
the blood cells [2, 3]. In the left panel of Figure 3.1, we show the cross sectional view of the pump device
that works as follows: the electromagnetic actuator at the center drives the oscillatory motion of the mobile
magnet ring; the latter transfers the motion to the most external part of the membrane; as a consequence, the
motion propates along the elastic membrane causing a wave-like displacement that propels the blood, coming
from the inlet channel, towards the outlet. Thanks to this progressive wave propagation, the membrane can
push and tranport the blood without causing blood trauma (unlike standard rotary blood pumps). Notice
that, being a pump system, the pressure at the outlet is higher than at the inlet; therefore the role of the
wave membrane is to win the adverse pressure gradient acting across the pump. The possibility to simulate
this complex dynamics inside the pump allows to predict the device performance under different operating
conditions (changing parameters like the amplitude or the frequency of the membrane oscillation or the
velocity of the blood entering in the device) and in different pump designs (varying geometrical features, like
membrane diameter or thickness, or inlet/outlet section). In addition, computational simulations can be used
to predict blood adverse events, like hemolysis or thrombosis, and improve the hemocompatibility of the device.

Hence, from the mathematical point of view, the problem at hand is a time-dependant Fluid-Structure
Interaction (FSI) problem with two moving structures: the wave membrane and the magnet ring. Therefore,
we need to study the mutual interaction dynamics between the blood flow and the two structures. In particular,
we are interested to check computationally the membrane wave pumping technology under different working
conditions of the pump device. The operating point of the pump is identified by three parameters: (i) the
excitation frequency f of the magnet ring and the membrane; (ii) the amplitude Φ of their oscillations; and (iii)

Deliverable D5.2
27

3.2. Mathematical Formulation

Figure 3.1: Left: Cross section of the implantable progressive wave pump. The blood enters from the superior
inlet channel, it flows down along the sides of the central actuator body, it interacts dynamically with the wave

silicon membrane and it is ejected into the inferior outlet channel. Right: Sketch of the pump domain.

the pressure difference ∆P < 0 between the pump inlet and the outlet.

However, notice that the solution of this problem can be very tricky. In particular, during the wave motion
of the membrane, the structure approaches very closely to the pump housing, potentially reaching a contact
configuration with the surrounding pump walls. Therefore, our solution for the benchmark needs to address the
possible conditions and the numerical issues arising during the mesh deformation in standard fitted methods
for FSI problems. In the next section, we will propose a possible solution to these problems, based on the
unfitted Extended Finite Element Method (XFEM).

The benchmark consists in the validation of a numerical method to solve the FSI problem in membrane-based
blood pumps against real hydraulic data provided by CorWave Inc. Specifically, the goal is to predict the
outflow volume rate Qsim given a certain operating point of the pump (f,Φ,∆P) and compare the numerical
result with the measured flow data Qdata.

The remaining of the report is structured as follows: in Section 3.2, we describe the FSI model, with a focus on
its hierarchical features, and we propose a numerical strategy to solve the benchmark; in Section 3.3, we detail
the required numerical libraries and software packages and the installation concept via Docker; in Section 3.4,
we report the discuss the technical details to run the benchmark, such as environment settings, hardware and
sofware requirements; and finally in Section 3.5, we present the structure and the format of the experimental
data provided by CorWave Inc. (3.5.1), we depict the plan for the benchmark for the model validation (3.5.2).
Licences of use and configuration files can be found in the Apendix 3.A.

3.2. Mathematical Formulation

3.2.1. The Fluid-Structure Interaction Model

The intertwined dynamics arising inside a progressive wave pumps can be mathematically described in the
framework of FSI modeling, where a system of Partial Differential Equations (PDEs) describes separately the
behaviour of the fluid and of the structure in the respective domains, while proper coupling conditions define

Deliverable D5.2
28

3.2. Mathematical Formulation

their interaction at the interface. In the following, we simplify the formulation of the problem by considering
a unique structural domain Ωs = Ωs

1∪Ωs
2, where Ωs

1 is the membrane domain and Ωs
2 is the magnet ring domain.

The FSI problem reads as follows: for each time t > 0, find fluid velocity and pressure0 (u(t), p(t)) in the fluid
domain Ωf (t) and membrane displacement d̂(t) in the reference structure domain Ω̂s = Ωs(0), such that:

ρf (∂tu + u · ∇u)−∇ · Tf (u, p) = 0 in Ωf (df), (3.1)

∇ · u = 0 in Ωf (df), (3.2)

ρs∂ttd̂−∇ · T̂
s
(d̂) = 0 in Ω̂s, (3.3)

df = d on Σ(df), (3.4)

u = ∂td on Σ(df), (3.5)

Tf (u, p) n = Ts(d) n on Σ(df). (3.6)

with proper boundary and initial conditions. Equations (3.1) and (3.2) are the Navier-Stokes (NS) equations
modeling the conservation of momentum and mass of an incompressible viscous Newtonian fluid. Equation
(3.3), written in the Lagrangian formulation with the quantities defined in the reference configuration (·̂ su-
percript), is the elastodynamic equation that models the structure deformation. Equation (3.4) provides the
adherence condition between the fluid and the solid domains, and Equations (3.5) and (3.6) guarantee the conti-
nuity of velocity and of stresses respectively at the fluid-structure interface Σ. Notice that both the fluid domain
Ωf and the interface Σ depend over time on the fluid displacement df and thus on the structure displacement
d due to the geometric condition (3.4). In particular, the physical quantities presented in the mathematical
formulation are:

• ρf and ρs are the mass densities of fluid and structure;

• nf and ns are the external normal vectors from fluid and structure domains, satisfying nf = −ns = n;

• Tf (u, p) = −pI + 2µfD(u) is the Cauchy stress tensor for a viscous Newtonian fluid with dynamic
viscosity µf and symmetric operator D(w) = 1

2(∇w +∇wT)

• T̂
s
(d̂) is the first Piola-Kirkhhoff tensor of the structure, such that T̂

s
(d̂) = J Ts (d)F−T with Ts being

the solid Cauchy stress tensor depending on the constitutive law of the structure, F = ∇x the gradient
of deformation and J = det F its determinant. According with previous works [4], we assume linear
elasticity for both structures, so that we can use the Hooke Law and write the Cauchy tensor as Ts(d) =
λs (∇ · d) I + 2µs D(d), where λs and µs are the Lamé parameters for each material.

In the right panel of Figure 3.1, we see the mathematical domain of the blood pump. We specify that the
geometrical differences with respect to the view in the right panel of Figure 3.1 are due to the fact that we work
on an alternative design of the pump. In addition we have omitted the rigid titanium apparatus that connects
the magnet ring to the membrane, because it is not significant for our analysis. Indeed, we apply the oscillatory
motion imposed by the actuator directly on the structure boundaries Γs1 and Γs2.. Hence, the imposed oscillations
are modeled by means of a sinusoidal Dirichlet conditions on Γs = Γs1 ∪ Γs2 as:

d (t) = Φ sin (2π f t) ez on Γs (3.7)

where Φ and f are respectively the amplitude and the frequency of the forced oscillation of both the membrane
and the magnet ring.

In addition we have the boundary conditions for the fluid subproblem. We use a pair of Neumann conditions
to prescribe the pressure conditions at the inlet Γin and at the outlet Γout of the pump domain and a non-slip

Deliverable D5.2
29

3.2. Mathematical Formulation

condition at the pump walls Γw. In fact, we have that:

Tf (u, p) nf = ∆P nf on Γin, (3.8)

Tf (u, p) nf = 0 on Γout, (3.9)

u = 0 on Γw, (3.10)

where ∆P < 0 is the negative pressure parameter that defines the pressure difference between the inlet and the
outlet (having set the zero pressure level at the outlet).

We finally consider null initial conditions for both velocity and displacement variables.

3.2.2. Numerical Method

In our solution of the benchmark, we will try to numerically reproduce the experimental results mimiking
the same working conditions of the pump in the experimental setup and solving the mathematical problem
above in three dimensions (3D) using the XFEM [5, 6]. XFEM is an unfitted technique which has two
main advantages compared with other approaches for FSI problems: i) since the fluid mesh is kept fixed
on the background, it avoids the remeshing procedure normally occurring in case of element distortion;
ii) the accuracy of the solution is maintained at the interface, thanks to the local enrichment of the func-
tional space of the extended finite elements. However, since the structure mesh moves in the foreground
cutting the underlying fluid mesh, XFEM requires to compute the mesh intersections at each time istant
to identify the fluid elements that are cut in multiple subportions (called split elements), leading to a
higher computational cost. For more details on the numerical formulation of the XFEM with a Discontinuous
Galerkin (DG) mortaring at the interface, the reader can find an exaustive explanation in the reference paper [7].

We linearize the fluid subproblem by using the semi-implicit approach for the convective term. In addition, in
order to solve efficiently the geometric coupling, we take the first order extrapolation of the fluid domain from
previous timestep. We use first order finite elements for all variables and we consider the Continuous Interior
Penalty (CIP) stabilization to satisfy the inf-sup condition [8]. We also apply a ghost penalty stabilization
to solve the spurious oscillations coming from XFEM, when the size of the split elements becomes too small [9].

The linear system obtained at each timestep after the XFEM-based discretization is solved with a monolythic
approach with a GMRES solver preconditioned by a block Gauss-Seidel preconditioner.

3.2.3. Hierarchical Modeling

Due to the multi-component and multiphysics nature of our problem, the strong coupling of the physical system
and the computational needs of the unfitted method [10], most of the times the solution of the fluid-structure
dynamics can be very tricky and the complexity of the problem can represent a real barrier to in-depth analysis
of the system.

However, in our application, there exist several modeling options, both at the geometric and numerical level,
that can enable faster computations but at the cost of a decreased accuracy, and viceversa. In fact, the FSI
model of our study is actually the result of a sequence of modeling options (e.g. geometry detail, modeling
assumptions, numerical approximations, etc.), that act on distinct levels and that contribute in different ways to
the global complexity of the model. Hence, the model is considered to be hierarchical. This means that we can
tailor the model to fit the needs of our study by acting independently of multiple levels, requiring, for instance,
a high level of detail of geometric features but relaxing specific numerical coupling conditions.

In the following, we provide the hierarchical levels that we identified in the FSI problem in progressive wave

Deliverable D5.2
30

3.2. Mathematical Formulation

blood pumps.

3.2.3.1. Geometry of the domain

The complete domain of the blood pump is composed by several subcomponents: the pump housing, the mem-
brane assembly, the actuator, the magnet ring and the membrane frame (see Figure 3.1). It is clear that model
all the components and their interaction can be very complicated and, in most cases, not necessary. Therefore,
it is possible to reduce the complexity of the geometry of the domain by omitting the rigid components or either
by simplifying the geometrical features of the system.

Figure 3.2: Different levels of geometric extensions of the blood pump domain. Blue and green boxes
identifiy reduced pump domains; the red box identifies the full pump geometry, including the inlet and the

outlet channels and the magnet ring (violet).

For instance, if we are interested in the study of the fluid-structure dynamics between the blood and the wave
membrane, we can limit the computational domain to the so-called pump head region. Therefore, we can
simply cut the domain limiting ourselves to the study of the lower part of the pump (see blue square in Figure
3.2). In this way, we heavily reduced the number of nodes and consequently the computational time for the
simulations. Alternatively, we can reduce the geometric detail of the pump or the membrane, so that the mesh
intersection step in the XFEM is easier and faster to solve.

3.2.3.2. Meshing

Another standard way to modulate the complexity of the problem is by working at the mesh step h of the
computational domain. Indeed, you can either choose to have a coarse mesh (large mesh step h) to have fast
simulations with small accuracy or finer mesh (small mesh step h) to get accurate results at higher compu-
tational cost. In fact, when you decrease the discretization step h, you automatically increase the number of
degrees of freedom of the problem and consequently the dimension of the linear system. In case of unfitted
methods, the choice of the discretization step is even more important, because it affects as well the number of
fluid elements that are split by the structure mesh resulting in a higher complexity of the mesh intersection step.
In case of the multi-component systems like our blood pump, it is possible to make more sophisticated choices
of the mesh step depending on the different properties of specific regions. In fact, instead of having a uniform
mesh (same h in the whole domain), once can start from a coarse mesh and refine the meshing in the regions
where we expect the dynamics are more complex or more interesting for our study - like in the proximity of the
membrane or the magnet ring structures - or in regions that present geometrical peculiarities (like narrowing of
the flow path or sharp angles), as shown in Figure 3.3.

Deliverable D5.2
31

3.2. Mathematical Formulation

Figure 3.3: Different levels of meshing of the fluid mesh. Left: uniform meshing with small meshsize. Right:
coarse fluid mesh with local refinement in the specific regions of interest.

3.2.3.3. Geometric coupling

In FSI problems we have two types of coupling conditions at the interface: physical and geometrical coupling
conditions. Physical conditions impose the continuity of the velocities (kinematic condition) and of the normal
stresses (dynamic condition) at the fluid-structure interface. The geometric condition requires that the adher-
ence of the fluid and the solid domain is maintained during their motion in time, without the creation of inner
holes. The latter coupling condition is normally formulated by asking that the displacement of the structure d
is equal to the fluid domain displacement df in all the points of the interface (see Equation 3.4). We want to
remind the reader that in the XFEM framework the fluid mesh is fixed on the background and the fluid domain
corresponds to the sole region that is not overlapped by the structure mesh moving on the foreground. There-
fore, the fluid domain changes in time according with df , that depends directly on the motion of structure by
means of the coupling condition.

In XFEM applications the satisfaction of the geometric adherence condition is actually a source of high compu-
tational costs. In fact, the fluid domain displacement df has to be computed from the intersection of the moving
structure mesh with the underlying fluid mesh. At each time instant, the structure moves in the space region
overlapping the fluid mesh in different positions and thus the mesh intersection step has to be repeated at each
iteration. The costs for this operation are definitely not negligible and they increase with the refinement of both
meshes.

As a consequence, in our study we propose the so-called fixed geometry approximation, for which, in case of
small displacement regime (d small and bounded), we neglect the fluid domain displacement df . This means
that the fluid domain is actually not updated at each timestep, but it is approximated to remain fixed to its
original configuration. Therefore, the mesh intersection step has to be performed only once during the first time
iteration, saving a lot of computational time. We want to emphasize that the displacement of the structure d is
still computed and it is still active for the physical coupling conditions; we only neglect its effect as modifier
of the fluid domain. Thus, the fixed geometry approximation can be a smart way in case of small displacement
regime, to decrease the computational cost and avoid the additional complications in the splitting of the fluid
elements coming from atypical geometrical configurations.

A second level of approximation relies on moving the fluid domain, but in an explicit way, by using extrapola-
tion of information at previous time steps. This strategy will introduce an error with respect to the fully implicit
geometric coupling, which is however smaller than that produced by the previous strategy, at the price of an
increased computational cost.

Deliverable D5.2
32

3.2. Mathematical Formulation

3.2.3.4. Modeling the Contact

We consider to have contact when two solid bodies are sufficiently close so that their motions are mutually
affected by each other. Therefore it is not strictly necessary that the two bodies touch each other to have contact
and under some conditions proper impact cannot even occur. In our application, contact can occur between the
moving membrane and the walls of the pump housing. Thus, only one of the two bodies is mobile, simplifying
the implementation of the contact condition. Such contact-like situation is actually very important for a correct
pumping performance for two reasons: i) near the contact region, the membrane wave generates a pressure
gradient that propels the blood towards the outlet, ii) the contact between the membrane and the walls works as
a valve that avoids the backflow from the outlet towards the inlet (see Figure 3.4).

Figure 3.4: Detail of the contact point between the membrane and the lower pump wall. Left: velocity field in
the whole pump domain. Right: zoom on the velocity (above) and pressure (below) fields in the contact area.

Therefore, in our study we can add an additional level complexity by investigating the contact between the
membrane and the pump wall, finding a way to prohibit the penetration of the former in the latter.

In FSI problems, a possible approach to model the contact derives directly from the combination of non-slip
coupling interface conditions and the incomprimibility of the fluid. In fact, previous theoretical studies [11]
proved that collisions between a body moving in a viscous incompressible fluid and a wall can never occur in
finite time. This is justified by the fact that the incompressible fluid opposes a resistance to the motion of the
structure with an intensity that increases more and more they get closer. Since there is no possibility to have
tangential slip at the interface, then there will always remain a small layer of fluid separating the two bodies.
This is confirmed by physical and numerical studies. This approach has the advantage that it is simple to
implement, but it requires to have small discretization steps both in space and in time, in order that the model
can capture the dynamics generated when the membrane approaches the wall.

Alternatively, we can relax the coupling conditions by allowing the tangential slip at the interface in order
to have contact. In case of slip coupling conditions, the kinematic condition requires the continuity of the
velocities only in normal direction, without constraints in the tangential one. Under these conditions, contact

Deliverable D5.2
33

3.3. Implementation

can formally occur and we need to add a new term to the weak formulation acting on the portion of the
boundary that is proximal to the wall [12]. This additional term represents the contact force exerted on the
membrane in case of contact. This more sophisticated approach needs to identify the portion of the membrane
boundary where to apply the contact force and calibrate the intensity of such force by tuning a penalty contact
parameter.

As a result, we have identified four independent hierarchical levels of our FSI model, that can be set in order
to build up simulations with a certain complexity, depending on the degree of accuracy or the computational
time of our study. In our solution for this benchmark we decided to consider the full pump geometry because
the experimental data referred to the whole pump domain, but we made small changes to the geometry, such
as the omission of the rigid holder apparatus and of a small step in the most external region of the membrane.
We considered a uniform mesh size for the background mesh, while for the membrane mesh we refined the
mesh step h more and more approaching the tip region, where the membrane thickness is smaller. Concerning
the geometric coupling we have solved it by taking the first order extrapolation of the fluid domain from the
previous timestep. And finally for the contact subproblem, we assumed non-slip condition both at the interface
and at the pump walls, in agreement with experimental observations in similar problems [13].

3.3. Implementation

The software for the benchmark will be implemented in LIbrary of Finite Elements V (LIFEV)
(https://bitbucket.org/lifev-dev/lifev-env.git) [14], a C++ parallel finite element library for the solution of PDEs.
In particular, the library is suitable for solving real problems in the field of cardiovascular applications. The
XFEM module requires external libraries to handle the geometric intersections between the fluid and the solid
meshes and the treatment of the split elements. Therefore, Triangle (version 1.6) and TetGen (version 1.15.0)
[15] are used to mesh the polihedra generated by the cut of the fluid mesh in 2D and 3D respectively. In partic-
ular, the source code of TetGen library has been modified to make it compliant with the LIFEV environment.
The licence of use is reported in the Appendix 3.A.1 for each of these libraries.

Despite a release version of LIFEV is available online (accessible with a free bitbucket account), it does not
include the module for the XFEM numerical approach that is needed for the benchmark. The branch of the
library including the XFEM method will be made public soon, so that the codes will be open access.

LifeV requires some third-part libraries to be built. In particular, the following packages are required:

• cmake (latest version): to configure and create the necessary makefiles for building the source code;

• openblas (v. 0.2.17): low level linear algebra package, providing both BLAS and LAPACK bindings;

• trilinos (v. 11.14.3): parallel linear algebra;

• metis (v. 5): graph partitioning library;

• parmetis (v. 4.0.3): parallel version of metis;

• hdf5 (v. 1.8.16): management of the HDF5 file format for storing data;

• suitesparse (v. 4.5.1): linear algebra library with linear solvers and utilities.

The software will be made publically available soon on Bitbucket. Moreover, in order to simplify the config-
uration of the system and increase the cross-platform compatibility with other benchmarks in ROMSOC, the
installation of the LIFEV environment and the necessary third-part libraries will be set via Docker. Therefore
free Docker and Bitbucket accounts will be necessary to run the software to run the benchmark.

Here we present the general idea of the installation procedure, detailing in the following list the steps required
for the Docker installation ansd the configuration procedure:

1. Set the Docker container with the required modules installed by typing in the terminal (it requires docker):

docker build -f Dockerfile

Deliverable D5.2
34

3.3. Implementation

where the Dockerfile contains the instructions as follows:

Use Ubuntu 16.04 as parent image
FROM ubuntu:xenial

Install LifeV dependencies
RUN apt-get update && \
apt-get install -y \
g++ \
cmake \
git \
libblacs-mpi-dev \
libscalapack-mpi-dev \
libsuitesparse-dev \
trilinos-all-dev \
libboost-program-options-dev \del
libparmetis-dev \
libmetis-dev \
libhdf5-openmpi-dev \
libmumps-dev \
libsuperlu-dev \
libtbb-dev \
libptscotch-dev \
binutils-dev \
libiberty-dev \
libtriangle-dev && \
groupadd -r lifev && \
useradd -l -m -g lifev lifev
Set user 'lifev'
USER lifev
Set working directory
WORKDIR /home/lifev
Copy the content of the current dir into the WORKDIR
ADD --chown=lifev:lifev . /home/lifev

Listing 3.1: Dockerfile

2. Define the paths inside the container as in the defs.sh file below:

#!/bin/bash
LifeV_DIR=$PWD
LifeV_SRC=$LifeV_DIR/lifev-src
LifeV_BUILD=$LifeV_DIR/lifev-build
LifeV_LIB=$LifeV_DIR/lifev-install
TetGen_DIR=$LifeV_DIR/tetgen1.5.0
mkdir -p $LifeV_SRC
mkdir -p $LifeV_BUILD
mkdir -p $LifeV_LIB

Listing 3.2: defs.sh

3. Clone the source codes of LIFEV and TetGen from xx bitbucket repository into the container by executing
./clone.sh file:

#!/bin/bash
source defs.sh
git clone lifev-xfem_REPOSITORY ${LifeV_SRC}
git clone tetgen4lifev_REPOSITORY ${TetGen_DIR}

Listing 3.3: clone.sh

Deliverable D5.2
35

3.4. Computer Requirements

Notice that lifev-xfem REPOSITORY and tetgen4lifev REPOSITORY will be the url to the public repository
of the LIFEV software and to the modified version of TetGen library.
4. Build TetGen and configure LIFEV typing ./config.sh from the container:

#!/bin/bash
source defs.sh
cd $TetGen_DIR
make tetlib
cd $LifeV_BUILD
cmake \
-D BUILD_SHARED_LIBS:BOOL=OFF \
-D CMAKE_BUILD_TYPE:STRING=RELEASE \
-D CMAKE_INSTALL_PREFIX:PATH=${LifeV_LIB}\
-D CMAKE_C_COMPILER:STRING="mpicc" \
-D CMAKE_CXX_COMPILER:STRING="mpicxx" \
-D CMAKE_CXX_FLAGS:STRING="-O3 -msse3

-Wno-unused-local-typedefs -Wno-literal-suffix"\
-D CMAKE_C_FLAGS:STRING="-O3 -msse3" \
-D CMAKE_Fortran_COMPILER:STRING="mpif90" \
-D CMAKE_Fortran_FLAGS:STRING="-Og -g" \
-D CMAKE_AR:STRING="ar" \
-D CMAKE_MAKE_PROGRAM:STRING="make" \
[...]
${LifeV_SRC}
cd $LifeV_DIR

Listing 3.4: config.sh

Here the config.sh is shown in a shorter form with the most important compiling options (mpicc compiler
for C, mpicxx compiler fo C++, O3 optimization). For a complete version with all compiling options and
dependancies we refer the reader to Appendix 3.A.2).
5. Build LIFEV from the container by executing ./build.sh:

#!/bin/bash
source defs.sh
cd $LifeV_BUILD
make -j 3
cd $LifeV_DIR

Listing 3.5: build.sh

3.4. Computer Requirements

The operative system has to be UNIX-based (like Oracle Solaris, Darwin or macOS), equipped with C++
compiler and all basic system libraries required for software development, like FORTRAN, C++, HDF5 or
MPI. It is sufficient to type on the terminal

sudo apt-get install build_essentials

, to check if your operative system already has such fundamental libraries or, in case they are not present, install
them.
The minimum requirements for the hardware are:

• CPU: 1 processor is sufficient to run the benchmark, but multi-thread CPU is needed in case you want to
employ parallel computing;

• rigid disk: at least 3 GB of available space in the rigid disk, considering the memory required for building
lifev and all third-part libraries, as well as the space required by data and results;

Deliverable D5.2
36

3.5. Numerical Example

• RAM: a minimum of 40 GB of RAM is predicted to be required the benchmark in serial. Be aware that
in case of parallel runs, the demand of RAM increases.

3.5. Numerical Example

3.5.1. Experimental Data

The experimental data used for the benchmark are Head pressure-Flow (HQ) curves, which are standard pump
performance curves obtained during the in vitro testings of the pump system in a static pipe loop machine.
Blood is replaced by a mixture of water and glycerin (39% in weight). The bench system is equipped with
pressure sensors placed both at the inlet and at the outlet sections, to measure the pressure gradient arisen over
the pump, or head pressure, and an ultrasonic flowmeter clamped at the outlet pipe, to measure the outflow
volume rate of the pump. The hydraulic resistance in the circuit is varied by means of centrifugal pumps placed
in series with the blood pump, that can work in favor or against it. Therefore, the HQ curves are obtained by
diplaying the different measurements in the pressure-flow plan for the different flow conditions. Figure 3.5
shows the HQ curves of the pump system when the frequency of oscillation of the membrane is fixed to 120
Hz, while the amplitude of oscillation - that is a function of the input voltage Vp of the pump actuator - passes
from 0.53 mm (grey triangles), to 0.63 mm (yellow crosses) and finally to 0.73 mm (blue dots).

Figure 3.5: HQ experimental curves for three different values of the voltage of the actuator.

Raw data are provided in Excel format for each experiment session and will be made publically available
in open-source spreadsheet applications. Each document consists of three separate data columns with the
measurements of:

• head pressure H , corresponding to mean pressure difference between the outlet and the inlet, expressed
in millimeters of mercury [mmHg] (1 mmHg = 1333.22 g /cm s2).

• outflow volume rates Q, expressed in liters per minute [lpm] (1 lpm = 0.06 cm3/s).

The software uses quantities expressed in the cgs system.

A separate table explicits the settings of each experimental sessions, including in particular the correspondence
between the values of the input voltage of the actuator Vp, expressed in Volt [V], shown in the Figure above,
and the respective amplitude of the induced membrane vibrations Φ, expressed in millimeters [mm].

Deliverable D5.2
37

3.5. Numerical Example

3.5.2. Benchmark Plan

The aim of the proposed benchmark is to validate the FSI model via comparison of the experimental HQ curves
with the numerical results. Analogously to the approach for model validation used by Perschal et al. in a
similar scenario [4], the pump system is simulated under the same operative conditions of the experimental
sessions, so that we can measure the error between the real data and the predicted quantities and quantify the
goodness of the model. In particular, we set the pressure difference betweeen the pump outlet and inlet, so that
we can predict the corresponding pump outflow rate and compare the numerical result with its experimental
counterpart.

1: [Q data, H data, M data] = read data(HQcurves, phys settings);
2: [Q Ndata, H Ndata, M Ndata] = extract Ndata(N); // N ≥ 1 data points
3: for n = 1 : N do
4: input pressure = H Ndata[n];
5: input frequency = M Ndata[n].f;
6: input amplitude = M Ndata[n].phi;
7: define bc(input pressure, input frequency, input amplitude); // Boundary conditions
8: [u0, d0] = initialization()
9: while t < Tmax do // Time loop

10: [ut, pt, dt] = solve FSI(); // Solve the FSI problem
11: Q out[t] = f(ut|out); // Outflow computation
12: t = t + dt;
13: end while
14: Q output[n] = mean(Q|out); // Average in time
15: end for
16: plot(Q data, H data; Q output, H Ndata); // Validation plot
17: err Q = norm2(Q Ndata - Q output);

Algorithm 1: Benchmark structure: Model validation against N data points.

The plan for the model validation is described in the Algorithm 1. Specifically:
1. First, the experimental data coming from the HQ curves are stored in separated variables: H data col-

lects the data of the head pressure between outlet and inlet, Q data contains the measurements of the
corresponding outflow volume rate, and M data stores the input settings for the parameters of membrane
displacement; moreover, additional physical parameters are contained in the settings variables (line 1).

2. Only N data points are extracted by the curves to be reproduced via simulation and used for the model
validation (line 2).

3. Therefore, for each of the N selected cases, the input parameters for the inlet flow (line 4) and for the
membrane oscillation (lines 5-6) are used to define the boundary conditions of the problem (line 7).

4. In this way, the pump system is simulated in the time interval [0, Tmax], so that we obtain the numerical
values of the blood velocity ut, blood pressure pt and structure displacement dt at each time t; afterwords,
the numerical outflow Q out is computed by taking the integral over the outlet surface of the blood normal
velocity (lines 8-13).

5. At the end of each simulation, the pump outflow rate is averaged in time over the last period of membrane
oscillation (line 14).

6. Finally, the HQ curves can be plotted together with the numerical output and an error measure can be
computed as the 2-norm of the deviation of the numerical results from the experimental data (lines 16-17).

Therefore, the input for the benchmark are:
• the experimental data, i.e. the HQ curves,

Deliverable D5.2
38

3.A. Appendix

• N ≥ 1: number of data points used for validation (it coincides with the number of simulations),

• input pressure: head pressure values for the nth simulation,

• input frequency: frequency of membrane vibration for the nth simulation,

• input amplitude: amplitude of membrane vibration for the nth simulation,

• physical parameters of the blood pump system, e.g. blood and structure properties;

while the output are:

• Q output: predictions of the outflow rate from the N simulations,

• err Q: 2-norm error between the estimated and the experimental outflow vectors,

• validation plot: HQ curve and numerical points.

In conclusion, the proposed benchmark can be used for training in the fields of mathematical modeling of a
coupled system, model testing and error estimation.

3.A. Appendix

3.A.1. Licences of Use

3.A.1.1. LIFEV (release version)

Copyright (C) 2004, 2005, 2007 EPFL, Politecnico di Milano, INRIA Copyright (C) 2010 EPFL, Politecnico
di Milano, Emory University Copyright (C) 2011,2012,2013 EPFL, Politecnico di Milano, Emory University

This file is part of LifeV.

LifeV is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

LifeV is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with LifeV. If not, see
http://www.gnu.org/licenses/.

3.A.1.2. TetGen

TetGen is distributed under a dual licensing scheme. You can redistribute it and/or modify it under the terms of
the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version. A copy of the GNU Affero General Public License is reproduced
below.

If the terms and conditions of the AGPL v.3. would prevent you from using TetGen, please consider the option
to obtain a commercial license for a fee. These licenses are offered by the Weierstrass Institute for Applied
Analysis and Stochastics (WIAS). As a rule, licenses are provided ”as-is”, unlimited in time for a one time fee.
Please send corresponding requests to: tetgen@wias-berlin.de. Please do not forget to include some description
of your company and the realm of its activities.

3.A.1.3. Triangle

Triangle A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. Version 1.6

Deliverable D5.2
39

3.A. Appendix

Copyright 1993, 1995, 1997, 1998, 2002, 2005 Jonathan Richard Shewchuk 2360 Woolsey H Berkeley, Cali-
fornia 94705-1927 Please send bugs and comments to jrs@cs.berkeley.edu

Created as part of the Quake project (tools for earthquake simulation). Supported in part by NSF Grant CMS-
9318163 and an NSERC 1967 Scholarship. There is no warranty whatsoever. Use at your own risk.

These programs may be freely redistributed under the condition that the copyright notices (including the copy
of this notice in the code comments and the copyright notice printed when the ‘-h’ switch is selected) are not
removed, and no compensation is received. Private, research, and institutional use is free. You may distribute
modified versions of this code under the condition that this code and any modifications made of it in the
same file remain under Copyright of the original author, both soruce and object code are made freely available
without charge, and clear notice is given of the modifications. Distribution of this code as part of a commercial
system is permissible only by direct agreement with the author. (If you are not directly supplying this code to
a customer, and you are instead telling them how they can obtain it for free, then you are not required to make
any arrangement with me.)

3.A.2. Configuration files

#!/bin/bash
source defs.sh

cd $TetGen_DIR

make tetlib

cd $LifeV_BUILD

cmake \
-D BUILD_SHARED_LIBS:BOOL=OFF \
-D CMAKE_BUILD_TYPE:STRING=RELEASE \
-D CMAKE_INSTALL_PREFIX:PATH=${LifeV_LIB}\
-D CMAKE_C_COMPILER:STRING="mpicc" \
-D CMAKE_CXX_COMPILER:STRING="mpicxx" \
-D CMAKE_CXX_FLAGS:STRING="-O3 -msse3 -Wno-unused-local-typedefs -Wno-literal-suffix" \
-D CMAKE_C_FLAGS:STRING="-O3 -msse3" \
-D CMAKE_Fortran_COMPILER:STRING="mpif90" \
-D CMAKE_Fortran_FLAGS:STRING="-Og -g" \
-D CMAKE_AR:STRING="ar" \
-D CMAKE_MAKE_PROGRAM:STRING="make" \
\
-D TPL_ENABLE_AMD=ON \
-D AMD_INCLUDE_DIRS=/usr/include/suitesparse/ \
-D AMD_LIBRARY_DIRS=/usr/lib/x86_64-linux-gnu/ \
-D AMD_LIBRARY_NAMES=amd \
-D TPL_ENABLE_BLACS=ON \
-D BLACS_INCLUDE_DIRS=/usr/include/ \
-D BLACS_LIBRARY_DIRS=/usr/lib/ \
-D BLACS_LIBRARY_NAMES=blacs \
-D TPL_ENABLE_Boost=ON \
-D Boost_INCLUDE_DIRS=/usr/include/boost/ \
-D TPL_ENABLE_BoostLib=ON \
-D Boost_NO_BOOST_CMAKE:BOOL=ON \
-D BoostLib_INCLUDE_DIRS=/usr/include/boost/ \
-D BoostLib_LIBRARY_DIRS=/usr/lib/x86_64-linux-gnu/ \
-D TPL_ENABLE_HDF5=ON \
-D HDF5_INCLUDE_DIRS=/usr/include/hdf5/openmpi/ \
-D HDF5_LIBRARY_DIRS=/usr/lib/x86_64-linux-gnu/ \
-D TPL_ENABLE_SCALAPACK=ON \
-D SCALAPACK_INCLUDE_DIRS= \

Deliverable D5.2
40

3.A. Appendix

-D SCALAPACK_LIBRARY_DIRS=/usr/lib/ \
-D SCALAPACK_LIBRARY_NAMES=scalapack \
-D TPL_ENABLE_MPI=ON \
-D MPI_BASE_DIR:PATH=/usr/ \
-D ParMETIS_INCLUDE_DIRS=/usr/include/ \
-D ParMETIS_LIBRARY_DIRS=/usr/lib/x86_64-linux-gnu/ \
-D TPL_ENABLE_UMFPACK=ON \
-D UMFPACK_INCLUDE_DIRS=/usr/include/suitesparse/ \
-D UMFPACK_LIBRARY_DIRS=/usr/lib/x86_64-linux-gnu/ \
-D UMFPACK_LIBRARY_NAMES=umfpack \
-D Trilinos_INCLUDE_DIRS:PATH="/usr/include/trilinos/" \
-D Trilinos_LIBRARY_DIRS:PATH="/usr/lib/x86_64-linux-gnu/" \
-D TetGen_INCLUDE_DIRS:PATH="${TetGen_DIR}" \
-D TetGen_LIBRARY_DIRS:PATH="${TetGen_DIR}" \
-D TetGen_LIBRARY_NAMES="tet" \
-D Triangle_INCLUDE_DIRS:PATH="/usr/include" \
-D Triangle_LIBRARY_DIRS:PATH="/usr/lib" \
-D Triangle_LIBRARY_NAMES="triangle" \
\
-D LifeV_ENABLE_DEBUG:BOOL=OFF \
-D LifeV_ENABLE_TESTS:BOOL=ON \
\
-D LifeV_ENABLE_ALL_PACKAGES:BOOL=ON \
-D LifeV_ENABLE_Core:BOOL=ON \
-D LifeV_ENABLE_ETA:BOOL=ON \
-D LifeV_ENABLE_NavierStokes:BOOL=ON \
-D LifeV_ENABLE_BCInterface:BOOL=ON \
-D LifeV_ENABLE_Structure:BOOL=ON \
-D LifeV_ENABLE_ZeroDimensional:BOOL=ON \
-D LifeV_ENABLE_OneDFSI:BOOL=ON \
-D LifeV_ENABLE_LevelSet:BOOL=ON \
-D LifeV_ENABLE_Darcy:BOOL=ON \
-D LifeV_ENABLE_Electrophysiology:BOOL=ON \
-D LifeV_ENABLE_Heart:BOOL=ON \
-D LifeV_ENABLE_FSI:BOOL=ON \
-D LifeV_ENABLE_Multiscale:BOOL=ON \
-D LifeV_ENABLE_XFEM:BOOL=ON \
-D LifeV_ENABLE_Dummy:BOOL=ON \
\
-D LifeV_STRUCTURE_ENABLE_ANISOTROPIC:BOOL=ON \
-D LifeV_STRUCTURE_COLORING_MESH:BOOL=ON \
-D LifeV_STRUCTURE_COMPUTATION_JACOBIAN:BOOL=ON \
-D LifeV_STRUCTURE_EXPORTVECTORS:BOOL=ON \
\
-D BCInterface_ENABLE_TESTS:BOOL=ON \
-D Core_ENABLE_TESTS:BOOL=ON \
-D Darcy_ENABLE_TESTS:BOOL=ON \
-D Dummy_ENABLE_TESTS:BOOL=ON \
-D Electrophysiology_ENABLE_TESTS:BOOL=ON \
-D ETA_ENABLE_TESTS:BOOL=ON \
-D FSI_ENABLE_TESTS:BOOL=ON \
-D Heart_ENABLE_TESTS:BOOL=ON \
-D LevelSet_ENABLE_TESTS:BOOL=ON \
-D Multiscale_ENABLE_TESTS:BOOL=ON \
-D NavierStokes_ENABLE_TESTS:BOOL=ON \
-D OneDFSI_ENABLE_TESTS:BOOL=ON \
-D Structure_ENABLE_TESTS:BOOL=ON \
-D XFEM_ENABLE_TESTS:BOOL=ON \
-D ZeroDimensional_ENABLE_TESTS:BOOL=ON \
\
-D BCInterface_ENABLE_EXAMPLES:BOOL=ON \

Deliverable D5.2
41

Bibliography

-D Core_ENABLE_EXAMPLES:BOOL=ON \
-D Darcy_ENABLE_EXAMPLES:BOOL=ON \
-D Dummy_ENABLE_EXAMPLES:BOOL=ON \
-D Electrophysiology_ENABLE_EXAMPLES:BOOL=ON \
-D ETA_ENABLE_EXAMPLES:BOOL=ON \
-D FSI_ENABLE_EXAMPLES:BOOL=ON \
-D Heart_ENABLE_EXAMPLES:BOOL=ON \
-D LevelSet_ENABLE_EXAMPLES:BOOL=ON \
-D Multiscale_ENABLE_EXAMPLES:BOOL=ON \
-D NavierStokes_ENABLE_EXAMPLES:BOOL=ON \
-D OneDFSI_ENABLE_EXAMPLES:BOOL=ON \
-D Structure_ENABLE_EXAMPLES:BOOL=ON \
-D XFEM_ENABLE_EXAMPLES:BOOL=ON \
-D ZeroDimensional_ENABLE_EXAMPLES:BOOL=ON \
\
-D LifeV_ENABLE_STRONG_CXX_COMPILE_WARNINGS:BOOL=ON \
${LifeV_SRC}

cd $LifeV_DIR

Listing 3.6: config.sh

Bibliography

[1] C. N. Botterbusch, S. Lucquin, P. Monticone, J. B. Drevet, A. Guignabert, and P. Meneroud, “Implantable
pump system having an undulating membrane,” May 15 2018, uS Patent 9,968,720.

[2] C. N. Botterbusch, P. Monticone, E. Illouz, B. Burg, L. Polverelli, and T. Snyder, “Getting past the spin:
The CorWave LVAD, a membrane wave pump providing physiologic pulsatility without high shear,” The
Journal of Heart and Lung Transplantation, vol. 38, no. 4, p. 5345, 2019.

[3] T. Snyder, A. Bourquin, F. Cornat, B. Burg, J. Biasetti, and C. N. Botterbusch, “CorWave LVAD develop-
ment update,” The Journal of Heart and Lung Transplantation, vol. 38, no. 4, pp. 5341–5342, 2019.

[4] M. Perschall, J. B. Drevet, T. Schenkel, and H. Oertel, “The progressive wave pump: numerical mul-
tiphysics investigation of a novel pump concept with potential to ventricular assist device application,”
Artificial organs, vol. 36, no. 9, 2012.

[5] E. Burman and M. A. Fernández, “An unfitted Nitsche method for incompressible fluid–structure interac-
tion using overlapping meshes,” Computer Methods in Applied Mechanics and Engineering, vol. 279, pp.
497–514, 2014.

[6] A. Hansbo and P. Hansbo, “An unfitted finite element method, based on Nitsche’s method, for elliptic
interface problems,” Computer methods in applied mechanics and engineering, vol. 191, no. 47-48, pp.
5537–5552, 2002.

[7] S. Zonca, C. Vergara, and L. Formaggia, “An unfitted formulation for the interaction of an incompressible
fluid with a thick structure via an XFEM/DG approach,” SIAM Journal on Scientific Computing, vol. 40,
no. 1, pp. B59–B84, 2018.

[8] E. Burman, M. A. Fernández, and P. Hansbo, “Continuous interior penalty finite element method for
Oseen’s equations,” SIAM journal on numerical analysis, vol. 44, no. 3, pp. 1248–1274, 2006.

[9] E. Burman, “Ghost penalty,” Comptes Rendus Mathematique, vol. 348, no. 21-22, pp. 1217–1220, 2010.

[10] C. Vergara and S. Zonca, Extended Finite Elements Method for Fluid-Structure Interaction with an Im-
mersed Thick Non-linear Structure, 01 2018, pp. 209–243.

[11] M. Hillairet and T. Takahashi, “Collisions in three-dimensional fluid structure interaction problems,”
SIAM Journal on Mathematical Analysis, vol. 40, no. 6, pp. 2451–2477, 2009.

Deliverable D5.2
42

Bibliography

[12] E. Burman, M. A. Fernández, and S. Frei, “A Nitsche-based formulation for fluid-structure interactions
with contact,” arXiv preprint arXiv:1808.08758, 2018.

[13] E. Lauga, M. P. Brenner, and H. A. Stone, “Microfluidics: the no-slip boundary condition,” arXiv preprint
cond-mat/0501557, 2005.

[14] L. Bertagna, S. Deparis, L. Formaggia, D. Forti, and A. Veneziani, “The LifeV library: engineering
mathematics beyond the proof of concept,” arXiv preprint arXiv:1710.06596, 2017.

[15] H. Si, “TetGen, a delaunay-based quality tetrahedral mesh generator,” ACM Transactions on Mathemati-
cal Software (TOMS), vol. 41, no. 2, p. 11, 2015.

Deliverable D5.2
43

Part II.

Model order reduction methods

Deliverable D5.2
44

4. Model order reduction for parametric high dimensional interest rate
models in the analysis of financial risk

Andreas Binder1, Onkar Jadhav2, Volker Mehrmann2

1MathConsult
2Technische Universität Berlin

Abstract. This paper presents a model order reduction (MOR) approach for high dimensional problems in
the analysis of financial risk. To understand the financial risks and possible outcomes, we have to perform
several thousand simulations of the underlying product. These simulations are expensive and create a need for
efficient computational performance. Thus, to tackle this problem, we establish a MOR approach based on a
proper orthogonal decomposition (POD) method. The study involves the computations of high dimensional
parametric convection-diffusion reaction partial differential equations (PDEs). POD requires to solve the high
dimensional model at some parameter values to generate a reduced-order basis. We propose an adaptive greedy
sampling technique based on surrogate modeling for the selection of the sample parameter set that is analyzed,
implemented, and tested on the industrial data. The results obtained for the numerical example of a floater with
a cap and floor under the Hull-White model indicate that the MOR approach works well for short-rate models.

Keywords: Financial risk analysis, short-rate models, convection-diffusion-reaction equation, finite difference
method, parametric model order reduction, proper orthogonal decomposition, adaptive greedy sampling, pack-
aged retail investment and insurance-based products.

4.1. Introduction

Packaged retail investment and insurance-based products (PRIIPs) are at the essence of the retail investment
market. PRIIPs offer considerable benefits for retail investors which make up a market in Europe worth up
to e10 trillion. However, the product information provided by financial institutions to investors can be overly
complicated and contains confusing legalese. To overcome these shortcomings, the EU has introduced new reg-
ulations on PRIIPs (European Parliament Regulation (EU) No 1286/2014) [1]. According to these regulations,
a PRIIP manufacturer must provide a key information document (KID) for an underlying product that is easy to
read and understand. The KID informs about the vital features, such as costs and risks of the investment, before
purchasing the product. The PRIIPs include interest rate derivatives such as the interest rate cap and floor [2],
interest rate swaps [3], etc.
A key information document includes a section about ’what could an investor get in return?’ for the invested
product which requires costly numerical simulations of financial instruments. This paper evaluates interest
rate derivatives based on the dynamics of the short-rate models [4]. For the simulations of short-rate models,
techniques based on discretized convection-diffusion reaction partial differential equations (PDEs) are very
successful [5]. To discretize the PDE, we implemented the finite difference method (FDM) [6]. The FDM has
been proven to be efficient for solving the short-rate models [7, 8, 9]. The model parameters are usually cali-
brated based on market structures like yield curves, cap volatilities, or swaption volatilities [4]. The regulation
demands to perform yield curve simulations for at least 10,000 times. A yield curve shows the interest rates
varying with respect to 20-30 time points known as tenor points. These time points are the contract lengths
of an underlying instrument. The calibration based on several thousand simulated yield curves generates a
high dimensional model parameter space as a function of these tenor points. The 10,000 different simulated
yield curves and the calibrated parameters based on these simulated yield curves can be considered as 10,000
different scenarios. We need to solve a high dimensional model (HDM) obtained by discretizing the short-rate
PDE for such scenarios [10]. Furthermore, the results obtained for these several thousand scenarios are used
to calculate the possible values for an instrument under favorable, moderate, and unfavorable conditions. The

Deliverable D5.2
45

4.1. Introduction

favorable, moderate, and unfavorable scenario values are the values at 90th percentile, 50th percentile, and 10th
percentile of 10,000 values, respectively. However, these evaluations are computationally costly, and addition-
ally, have the disadvantage of being affected by the so-called curse of dimensionality [11].
To avoid this problem, we establish a parametric model order reduction (MOR) approach based on a variant
of the proper orthogonal decomposition (POD) method [12, 13]. The method is also known as the Karhunen-
Loéve decomposition [14] or principal component analysis [15] in statistics. The combination of a Galerkin
projection approach and POD creates a powerful method for generating a reduced order model (ROM) from the
high dimensional model that has a high dimensional parameter space [16]. This approach is computationally
feasible as it always looks for low dimensional linear (or affine) subspaces [17, 18]. Also, it is necessary to note
that the POD approach considers the nonlinearities of the original system. Thus, the generated reduced order
model will be nonlinear if the HDM is nonlinear as well. POD generates an optimally ordered orthonormal
basis in the least squares sense for a given set of computational data. Furthermore, the reduced order model
is obtained by projecting a high dimensional system onto a low dimensional subspace obtained by truncating
the optimal basis called reduced-order basis (ROB). The selection of the data set plays an important role and
is most prominently obtained by the method of snapshots introduced in [19]. In this method, the optimal basis
is computed based on a set of state solutions. These state solutions are known as snapshots and are calculated
by solving the HDM for some pre-selected training parameter values. The quality of the ROM is bounded by
the training parameters used to obtain the snapshots. Thus, it is necessary to address the question of how to
generate the set of potential parameters which will create the optimal ROB. Some of the previous works imple-
ment either some form of fixed sampling or often only uniform sampling techniques [20]. These approaches
are straightforward, but they may neglect the vital regions in the case of high dimensional parameter spaces.
In the current work, a greedy sampling algorithm has been implemented to determine the best suitable param-
eter set [21, 22, 23]. The basic idea is to select the parameters at which the error between the ROM and the
HDM is maximal. Further, we compute the snapshots using these parameters and thus obtain the best suitable
ROB which will generate a fairly accurate ROM. The calculation of the relative error between the ROM and the
HDM is expensive, so instead, we use error estimators like the residual error associated with the ROM [24, 25].
The greedy sampling algorithm picks the optimal parameters which yield the highest values for the error esti-
mator. Furthermore, we use these parameters to construct a snapshot matrix and, consequently, to obtain the
desired ROB.
However, it is not reasonable to compute an error estimator for the entire parameter space. The error estimator
is based on the norm of the residual, which scales with the size of the HDM. This problem forces us to select
a pre-defined parameter set as a subset of the high dimensional parameter space to train the greedy sampling
algorithm. We usually select this pre-defined subset randomly. But, a random selection may neglect the crucial
parameters within the parameter space. Thus, to surmount this problem, we implemented an adaptive greedy
sampling approach. We choose the most suitable parameters adaptively at each greedy iteration using an opti-
mized search based on surrogate modeling. We construct a surrogate model for the error estimator and use it to
find the best suitable parameters. The use of the surrogate model avoids the expensive computation of the error
estimator over the entire parameter space. The adaptive greedy sampling approach associated with surrogate
modeling has been introduced before in [22, 23]. There are several approaches to design a surrogate model
like regression analysis techniques [26], response surface models, or Kriging models [27]. The authors of [22]
have designed a Kriging based surrogate model to select the most relevant parameters adaptively. However,
in our case, due to the high dimensional parameter space, we may face the multicollinearity problem as some
variable in the model can be written as a linear combination of the other variables in the model [28]. Also, we
need to construct a surrogate model considering the fact that the model parameters are time-dependent. Thus,
in this work, we construct a surrogate model based on the principal component regression (PCR) technique
[26]. The PCR approach is a dimension reduction technique in which explanatory variables are replaced by
few uncorrelated variables known as principal components. It replaces the multivariate problem with a more
straightforward low dimensional problem and avoids overfitting.
In the classical greedy sampling approach, the convergence of the algorithm is observed using the error estima-
tor. However, we can use the norm of the residual to estimate the exact error between the HDM and the ROM.

Deliverable D5.2
46

4.2. Mathematical Formulation: Model Hierarchy

In this work, we establish an error model for an exact error as a function of the error estimator based on the
idea presented in [22]. Furthermore, we use this exact error model to observe the convergence of the greedy
sampling algorithm.
To summarize, this paper presents an approach to select the most prominent parameters or scenarios for which
we solve the HDM and obtain the required ROB. Thus, instead of performing 10,000 expensive computations,
we perform very few expensive computations and solve the remaining scenarios with the help of the ROM.
The paper illustrates the implementation of numerical algorithms and methods in detail. It is necessary to note
that the choice of a short-rate model depends on the underlying financial instrument. In this work, we focus
on one-factor short-rate models only. We implement the developed algorithms for the one-factor Hull-White
model [29] and present the results with a numerical example of a floater with cap and floor [30]. The current
research findings indicate that the MOR approach works well for short-rate models.
The paper is organized as follows. Section 4.2 presents a model hierarchy for the Hull-White model. In
Section 4.3.1 a finite difference method for the Hull-White model and the projection-based model reduction
technique are presented. The selection of optimal sampling parameters based on the classical greedy approach
is presented in Subsection 4.3.2 and based on the adaptive greedy method in Subsections 4.3.3 and 4.3.4. Nu-
merical results for the example of a floater are presented in section 4.4.

4.2. Mathematical Formulation: Model Hierarchy

The management of interest rate risks, i.e., the control of change in future cash flows due to the fluctuations
in interest rates is of great importance. Especially, the pricing of products based on the stochastic nature of
the interest rate creates the necessity for mathematical models for an underlying financial instrument. There
exist several well-known one-factor short-rate models, such as the Vasicek model [31], the Cox-Ingersoll-Ross
model [32], or the Hull-White model [29, 33] which is an extension of the Vasicek model. The stochastic
differential equation for the Hull-White model is given as

dr(t) = (a(t)− b(t)r(t))dt+ σ(t)dW (t), (4.1)

with time-dependent parameters a(t), b(t), and σ(t). The term (a(t) − b(t)r(t)) is a drift term and a(t) is
known as deterministic drift. Based on the Ito’s lemma, we can define the partial differential equation for the
Hull-White model which is given by

∂V1

∂t
+ (a(t)− b(t)r(t)) ∂V1

∂r(t)
+

1

2
σ2(t)

∂2V1

∂r(t)2
− r(t)V1 = 0. (4.2)

In [34] it is suggested to use as a simplification that b(t) and σ(t) are constant in time. Although this may lead
to difficulties, see [35], we follow this suggestion and assume in this paper that b(t) = b and σ(t) = σ are
constant and consider in the remainder of the paper the so called robust Hull-White model

∂V1

∂t
+ (a(t)− br(t)) ∂V1

∂r(t)
+

1

2
σ2 ∂

2V1

∂r(t)2
− r(t)V1 = 0

for yield curve simulation and parameter calibration. Our results can, however, be extended to the more general
case. Figure 4.1 shows the model hierarchy for the Hull-White model.

Deliverable D5.2
47

4.3. Numerical Methods

SDE for a short-rate model

drt = f(t, rt)dt+ g(t, rt)dW (t)

PDE from SDE using Ito’s lemma

∂V

∂t
+

1

2
g2(r, t)

∂2V

∂r2
− u(r, t)

∂V

∂r
− rV = 0

Hull-White PDE for any financial instrument V

∂V

∂t
+ (a(t)− b(t)r)∂V

∂r
+

1

2
σ(t)2∂

2V

∂r2
− rV = 0

Robust Hull-White model

∂V

∂t
+ (a(t)− br)∂V

∂r
+

1

2
σ2∂

2V

∂r2
− rV = 0

Figure 4.1: A model hierarchy to construct the Hull-White model based on the short-rate r with constant b
and σ.

To approximate the time-dependent parameter a(t) one uses yield curves, which determine the average direction
in which the short-rate r(t) moves. The PRIIP regulation demands to perform yield curve simulations for at
least 10 000 times [1]. The calibration based on several thousand simulated yield curves generates a high
dimensional model parameter space as a function of these tenor points. We need to solve a high dimensional
model (HDM) obtained by discretizing the short-rate PDE for such a high dimensional parameter space [10].
However, these evaluations are computationally costly, and additionally, have the disadvantage of being affected
by the curse of dimensionality [11]. To overcome this drawback we establish model order reduction approach.

4.3. Numerical Methods

Figure 4.2 shows the model hierarchy to obtain a reduced-order model for the Hull-White model.

Deliverable D5.2
48

4.3. Numerical Methods

Hull-White model

∂V

∂t
+ (a(t)− br)∂V

∂r
+

1

2
σ2∂

2V

∂r2
− rV = 0

Finite difference method

A(ρs(t))V
n+1 = B(ρs(t))V

n, V (0) = V0

Selection of training parameters:
Classical greedy sampling algorithm

ρ1, ..., ρl

POD: Method of snapshots
V̂ = [V (ρ1), V (ρ2), ..., V (ρl)]

Singular value decomposition

V̂ =

k∑
i=1

Σiφiψ
T
i .

Reduced order model

Ad(ρs)V
n+1
d = Bd(ρs)V

n
d

Model Order Reduction

ROM Quality
k = 1

Adaptive
greedy sam-

pling algorithm

Stop Model Order
Reduction

satisfactory

unsatisfactory

Discretization error

Sampling error

Model reduc-
tion error

Figure 4.2: Model hierarchy to obtain a reduced order model for the Hull-White model.

We discretize the Hull-White PDE using a finite difference method, which creates a parameter-dependent high
dimensional model. Solving the high dimensional model for a large parameter space is computationally costly.
Thus, we incorporate the parametric model order reduction approach based on the proper orthogonal decompo-
sition. The POD approach relies on the method of snapshots. The snapshots are nothing but the solutions of the
high dimensional model at some parameter values. The idea is to solve the high dimensional model for only a

Deliverable D5.2
49

4.3. Numerical Methods

certain number of training parameters to obtain a reduced-order basis. This reduced-order basis is then used to
construct a reduced-order model. Finally, we can solve the reduced-order model cheaply for the large parame-
ter space. The selection of the training parameters is of utmost importance to obtain the optimal reduced-order
model. In this work, we have incorporated the classical as well as adaptive greedy sampling approaches for
the selection of the training parameter set. Each layer within the model hierarchy associates some error. We
have considered the model parameters as constants to obtain the robust model, which leads to the model error.
Discretization error occurs due to the implementation of the FDM for simulating the Hull-White model. We
have to consider the sampling error associated with the sampling algorithms as well. The total error then can
be defined using an inequality as follows

‖Vtrue − Vapprox‖ ≤ ‖Vmodel − VDiscr‖︸ ︷︷ ︸
Discretization error

+ ‖VDiscr − VMOR‖︸ ︷︷ ︸
MOR error

+ ‖Esampl.‖︸ ︷︷ ︸
Sampling error

(4.3)

where Vtrue is the true solution for the Hull-White PDE, while Vapprox is a solution obtained using the model
order reduction approach. VDiscr is the result of the discretized model based on the finite difference method.
VMOR is the result obtained using a reduced order model. Esampl. is the error associated with the sampling
techniques. In the following sections, we concentrate on the methods to obtain a suitable ROB using two
different sampling approaches.

4.3.1. Parametric Model Order Reduction

The discretization of the Hull-White PDE is a parametric high dimensional model of the following form (4.4)

A(ρ`(t))V
n+1 = B(ρ`(t))V

n, (4.4)

with given initial vector V 0, and matrices A(ρ`) ∈ RM×M , and B(ρ`) ∈ RM×M . We call this the full model
for the model reduction procedure in this section. Here again ` = 1, . . . , s = 10 000, m is the total number of
tenor points, and we need to solve this system at each time step n with an appropriate boundary condition and a
known initial value of the underlying instrument. Altogether we have a parameter space P of size 10 000×m
to which we now apply model reduction.

To perform the parametric model reduction for system (4.4) we employ Galerkin projection onto a low dimen-
sional subspace via

V̄ n = QV n
d , (4.5)

where the columns of Q ∈ RM×d represent the reduced-order basis with d � M , V n
d is a vector of reduced

coordinates, and V̄ n ∈ RM is the solution in the nth time step obtained using the reduced order model. For the
Galerkin projection we require that the residual of the reduced state

pn(V n
d , ρ`) = A(ρ`)QV

n+1
d −B(ρ`)QV

n
d (4.6)

is orthogonal to the reduced basis matrix Q, i.e.,

QT pn(V n
d , ρ`) = 0, (4.7)

so that by multiplying (4.7) with QT , we get

QTA(ρ`)QV
n+1
d = QTB(ρ`)QV

n
d ,

Ad(ρ`)V
n+1
d = Bd(ρ`)V

n
d ,

(4.8)

where Ad(ρ`) ∈ Rd×d and Bd(ρ`) ∈ Rd×d are the parameter dependent reduced matrices.

We obtain the Galerkin projection matrixQ (4.7) based on a proper orthogonal decomposition (POD) approach,
which generates an optimal order orthonormal basis Q in the least square sense that is independent of the

Deliverable D5.2
50

4.3. Numerical Methods

parameter space P and we do this by the method of snapshots. The snapshots are nothing but the state solutions
obtained by simulating the full model for selected parameter groups. We assume that we have a training set of
parameter groups ρ1, . . . , ρk ∈ [ρ1, ρs]. We compute the solutions of the full model for this training set and
combine them in a snapshot matrix V̂ = [V (ρ1), V (ρ2), ..., V (ρk)]. The POD method solves

POD(V̂) := argmin
Q

1

k

k∑
i=1

‖Vi −QQTVi‖2, (4.9)

for an orthogonal matrix Q ∈ RM×d via a truncated SVD, see [36],

V̂ = ΦΣΨT =
k∑
i=1

Σiφiψ
T
i , (4.10)

where φi and ψi are the left and right singular vectors of the matrix V̂ respectively, and Σi are the singular
values. The truncated SVD computes only the first k columns of the matrix Φ. The optimal projection subspace
Q then consists of d left singular vectors φi known as POD modes. The dimension d of the subspace Q is
chosen such that we get a good approximation of the snapshot matrix. According to [17], large singular values
correspond to the main characteristics of the system, while small singular values give only small perturbations
of the overall dynamics. The relative importance of the ith POD mode of the matrix V̂ is determined by the
relative energy Ξi of that mode

Ξi =
Σi∑k
i=1 Σi

(4.11)

If the sum of the energies of the generated modes is 1, then these modes can be used to reconstruct a snapshot
matrix completely [37]. In general, the number of modes required to generate the complete data set is signif-
icantly less than the total number of POD modes [38]. Thus, a matrix V̂ can be accurately approximated by
using POD modes whose corresponding energies sum to almost all of the total energy. Thus, we choose only d
out of k POD modes to construct Q = [φ1 · · ·φd] which is a parameter independent projection space based on
(4.11).

We summarize the procedure in Algorithm 1, where we denote by V (ρi) the solution of the full model for a
parameter set ρi, by V̂ the snapshot matrix, by Φ (Ψ) the matrix of left (right) singular vectors, associated with
the diagonal matrix of singular values Σ, and by Ξj the relative energy of the jth POD mode.

Algorithm 1 (Parametric POD).
Input: Parameter group a(t), b, σ, energy level EL, number of samples k.
Output: Projection matrix Q.

Choose sample parameter groups ρ1, · · · , ρk.

FOR i = 1 to k.

Solve the full order model for the parameter group ρi and determine V (ρi).

END

Construct snapshot matrix V̂ = [V (ρ1), ..., V (ρk)].

Compute leading singular values and vectors of V̂ using truncated SVD V̂ = ΦΣΨT .

Set Ξ = diag(Σ)/sum(diag(Σ)).

FOR j = 1 to length(Σ).

Ξ̄ = sum(Ξ(1 : j))× 100.

IF Ξ̄ > EL then set d = j.

END

Q = [φ1 · · ·φd].

Deliverable D5.2
51

4.3. Numerical Methods

It is evident that the quality of the reduced model strongly depends on the selection of parameter groups
ρ1, ..., ρk that are used to compute the snapshots. Hence it is essential to introduce an efficient sampling
technique for the parameter space. We could consider the standard sampling techniques, like uniform sampling
or random sampling [28]. However, these techniques may neglect vital regions within the parameter space. As
an alternative, a greedy sampling method has been suggested in the framework of model order reduction, see
[23, 21, 22].

4.3.2. Greedy Sampling Method

The greedy sampling technique selects the parameter groups at which the error between the reduced model and
the full model is maximal. We compute the snapshots using these parameter groups in such a way that we
obtain an optimal reduced basis Q. Let ‖e‖ = ‖V−V̄ ‖

‖V ‖ be the relative error between the reduced and full model
and set

ρI = argmax
ρ∈P

‖e‖. (4.12)

At each greedy iteration i = 1, ..., Imax, the greedy sampling algorithm selects the optimal parameter group ρI
that maximizes the relative error ‖e‖. However, the computation of the relative error ‖e‖ is computationally
costly as it entails the solution of the full model. Thus, usually, the relative error is replaced by error bounds or
the residual ‖p‖. However, in some cases, it is not possible to obtain error bounds, see [24, 25, 22]. Let ε be the
error estimator, i.e., in our case the norm of the residual. At each iteration i = 1, ..., Imax, the classical greedy
sampling algorithm chooses the parameter group as the maximizer

ρI = argmax
ρ∈P

ε(ρ). (4.13)

The algorithm is initiated by selecting a parameter group ρ1 from the parameter set P and computing a reduced
basis Q1 as in section 4.3.1. Choosing a pre-defined parameter set P̂ of cardinality c randomly from the set P ,
at each point of P̂ , the algorithm determines a reduced order model with reduced basis Q1 and then computes
error estimator values, ε(ρj)cj=1. The parameter group in P̂ at which the error estimator is maximal is then
selected as the optimal parameter group ρI . Then the full order model is solved for this parameter group and
the snapshot matrix V̂ is updated. Finally, a new reduced basis is obtained by computing a truncated singular
value decomposition of the updated snapshot matrix, as in Algorithm 1. These steps are then repeated for Imax
iterations or until the maximum value of the error estimator is lower than the specified tolerance εtol. The
procedure for the classical greedy approach is summarized in Algorithm 2.

Algorithm 2 (Classical greedy sampling).
Input: Maximum number of iterations Imax, maximal number of parameter groups c, parameter space P ,
tolerance εtol.
Output: Galerkin projection matrix Q.

Choose first parameter group ρ1 = [(a11, ..., a1m), b, σ] from P .

Solve full order model for parameter group ρ1 and store the results in V1.

Compute truncated SVD of the matrix V1 and construct Q1.

Randomly select a set of c parameter groups P̂ = {ρ1, ρ2, ..., ρc} ⊂ P .

FOR i = 2 to Imax
FOR j = 1 to c

Compute reduced model for parameter group ρj with reduced basis Qi−1.

Compute error estimator ε(ρj).

END

Compute ρI = argmax
ρ∈P̂

ε(ρ).

Deliverable D5.2
52

4.3. Numerical Methods

IF ε(ρI) ≤ εtol, then Q = Qi−1, STOP.

Simulkate the full model for the parameter group ρI and store the result in Vi.

Construct snapshot matrix V̂ by concatenating the solutions V` for ` = 1, ..., i.

Compute a truncated SVD of the matrix V̂ and construct Qi.

END

The classical greedy sampling method computes an inexpensive a posteriori error estimator for the reduced
model. However, it is not feasible to calculate the error estimator values for the entire parameter space P .
To address this, the classical greedy sampling technique chooses the pre-defined parameter set P̂ randomly
as a subset of P . Random sampling is designed to represent the whole parameter space P , but there is no
guarantee that P̂ will reflect the complete space P , since the random selection may neglect parameter groups
corresponding to the most significant error. These observations motivate us to design a new criterion for the
selection of the subset P̂ .

Another drawback of the classical greedy sampling technique is that we have to specify the maximum error
estimator tolerance εtol. The error estimator usually depends on some error bound, which may not be tight
or may not exist. To overcome this drawback, following ideas in [22], we establish a strategy to construct a
surrogate model for the error as a function of the error estimator and we use this error model to control the
convergence of the greedy sampling algorithm.

4.3.3. Adaptive Greedy Sampling Method

To overcome drawbacks of the classical greedy sampling approach, we implement adaptive sampling approach
which selects the parameter groups adaptively at each iteration of the greedy procedure, using an optimized
search based on surrogate modeling. We construct a surrogate model of the error estimator ε̄ to approximate the
error estimator ε over the entire parameter space. Further, we use this surrogate model to select the parameter
groups P̂k = {ρ1, ..., ρck} with ck < c, where the values of the error estimator are highest. For each parameter
group within the parameter set P̂k, we determine a reduced model and compute the values of the error estimator.
Then the process repeats itself until the total number of parameter groups reaches c, resulting in the desired
parameter set P̂ .

The first stage of the adaptive greedy sampling algorithm computes the error estimator over a randomly selected
parameter set P̂0 of cardinality c0. The algorithm uses these error estimator values {εi}c0i=1 to build a surrogate
model ε̄0 and locates the ck parameter groups corresponding to the ck maximal values of the surrogate model.
This process repeats itself for k = 1, ...,K iterations until the total number of parameter groups reaches c.
Finally, the optimal parameter group ρI is the one that maximizes the error estimator within the parameter set

P̂ = P̂0 ∪ P̂1 ∪ P̂2 ∪ · · · ∪ P̂K .

Thus, at the kth iteration, a surrogate model ε̄k is constructed that approximates the error estimator over the
entire parameter space P . There are different choices to build a surrogate model [28]. In this paper, we use
the principal component regression (PCR) technique. Suppose ε̂ = (ε1, ..., εck) ∈ Rck×1 is the vector of error
estimator values at the kth iteration. Since the parameters b and σ are constant, we build a surrogate model
with the parameter a(t) only. Let P̂k = [ρ1, ..., ρck] ∈ Rck×m be the matrix composed of ck parameter groups
at the kth iteration. The rows of the matrix P̂k represent ck parameter vectors, while the m columns represent
m tenor points for the parameter vector a(t). We can fit a simple multiple regression model as

ε̂ = P̂k · η + err, (4.14)

where η = [η1, ..., ηm] is an array containing regression coefficients and err is an array of residuals. The least

Deliverable D5.2
53

4.3. Numerical Methods

square estimate of η is obtained as

η̂ = argmin
η
‖ε̂− P̂k · η‖22 = argmin

η
‖ε̂−

m∑
i=1

ρiηi‖22.

If ck is not much larger than m, then the model may give weak predictions due to the risk of over-fitting for
the parameter groups which are not used in model training. Also, if ck is smaller than m, then the least square
approach cannot produce a unique solution, restricting the use of the simple linear regression model. We may
face this problem during the first few iterations of the adaptive greedy sampling algorithm, as we will have
few error estimator values to build a reasonably accurate model. The principal component regression (PCR)
technique is a dimension reduction technique in which m explanatory variables are replaced by p linearly
uncorrelated variables called principal components. The dimension reduction is achieved by considering only a
few relevant principal components. The PCR approach helps to reduce the problem of estimatingm coefficients
to the more simpler problem of determining p coefficients. In the following, we describe the method to construct
a surrogate model at the kth iteration in detail.

Before performing a principal component analysis (PCA), we center both the response vector ε̂ and the data
matrix P̂k. The PCR starts by performing a PCA of the matrix P̂k. For this, we compute an SVD

P̂k = Φ̂Σ̂Ψ̂,

and then the principal components are the columns of the matrix P̂kΨ̂. For dimension reduction, we se-
lect only p columns of the matrix Ψ̂ to construct a fairly accurate reduced model. In [39] it is sug-
gested that the first three or four principal components are enough to analyze the yield curve changes. Let
Z = P̂kΨ̂p = [P̂kψ̂1, ..., P̂kψ̂p] be the matrix containing first p principal components. We regress ε̂ on these
principal components via

ε̂ = ZΩ + err, (4.15)

where Ω = [ω1, ..., ωp] is the vector containing the regression coefficients obtained using the principal compo-
nents. The least square estimate for Ω is given as

Ω̂ = argmin
Ω
‖ε̂− ZΩ‖22 = argmin

ω
‖ε̂−

p∑
i=1

ziωi‖22.

We obtain the PCR estimate ηPCR ∈ Rm of the regression coefficients η as

ηPCR = Ψ̂pΩ̂ (4.16)

Finally, the value of the surrogate model for any parameter vector a` = [a`.1, ..., a`,m] is

ε̄(ρ`) = η1a`,1 + · · ·+ ηma`,m. (4.17)

Algorithm 3 (Surrogate error model using PCR).
Input: Vector ε̂ = [ε1, ..., εck], P̂k = [ρ1, ..., ρck] ∈ Rck×m̄, number of principal components p.
Output: Vector of regression coefficients η.

• Standardize P̂k and ε̂ with zero mean and variance one.

• Compute SVD P̂k = Φ̂Σ̂Ψ̂.

• Construct matrix Z = P̂kΨ̂p = [P̂kψ̂1, ..., P̂kψ̂p] composed of principal components.

• Compute the least square regression using the principal components as independent variables: Ω̂ =
argmin

Ω
‖ε̂− ZΩ‖22.

• Compute the PCR estimate ηPCR = Ψ̂pΩ̂ of the regression coefficients η.

Deliverable D5.2
54

4.3. Numerical Methods

We will use the error model in the construction of an adaptive greedy sampling method.

4.3.4. Adaptive Greedy Sampling Algorithm

The adaptive greedy sampling algorithm utilizes the designed surrogate model to locate optimal parameter
groups adaptively at each greedy iteration i = 1, ..., Imax. The first few steps of the algorithm resemble
the classical greedy sampling approach. It selects the first parameter group ρ1 from the parameter space P
and computes the reduced basis Q1. Furthermore, the algorithm randomly selects c0 parameter groups and
constructs a temporary parameter set P̂0 = {ρ1, ..., ρc0}. For each parameter group in the parameter set P̂0, the
algorithm determines a reduced order model and computes an array of residual errors ε0 = {ε(ρ1), ..., ε(ρc0)}
obtained for the parameter set P̂0. Then a surrogate model for the error estimator ε̄ is constructed based on the
estimator values {ε(ρj)}c0j=1, as discussed in subsection 4.3.3. The obtained surrogate model is then simulated
for the entire parameter space P . Then we locate ck parameter groups corresponding to the first ck maximal
values of the surrogate model. We then construct a new parameter set P̂k = {ρ1, ..., ρk} composed of these ck
parameter groups.

The algorithm determines a reduced model for each parameter group within the parameter set P̂k and obtains an
array of error estimator values εk = {ε(ρ1), ..., ε(ρck)} for the parameter set P̂k. Furthermore, we concatenate
the set P̂k and the set P̂0 to form a new parameter set P̂ = P̂k∪P̂0. Let esg = ε0∪· · ·∪εk be the set composed
of all the error estimator values available at the kth iteration. The algorithm then uses this error estimator set
esg to build a new surrogate model. The quality of the surrogate model increases with each iteration as we get
more error estimator values. This process is repeated until the cardinality of the set P̂ reaches c, giving

P̂ = P̂0 ∪ P̂1 ∪ P̂2 ∪ · · · ∪ P̂K .

Finally, the optimal parameter group ρI which maximizes the error estimator (4.13) is extracted from the
parameter set P̂ . Note that typically it is not necessary to obtain a very accurate sampling using the designed
surrogate model. Sampling the full model in the neighborhood of the parameter group with maximal error is
sufficient to obtain good results. In the adaptive greedy sampling algorithm, we then use an approximate error
ē determined from the surrogate error model instead of the exact error.

To build an approximate error model, we simulate one full model at each greedy iteration for the optimal pa-
rameter group ρI , and update the snapshot matrix V̂ . A new reduced basis Q is then obtained by computing the
truncated singular value decomposition of the updated snapshot matrix as explained in Section 4.3.1. Further-
more, we solve the reduced model for the optimal parameter group before and after updating the reduced basis
and obtain the respective error estimator values εbef (ρI), and εaft(ρI). Then we compute the relative errors
ebef , eaft between the full and reduced model constructed before and after updating the reduced basis.

In this way, at each greedy iteration, we get a set of error valuesEp that we use to construct a linear approximate
error model for the exact error e based on the error estimator ε.

ep = {(ebef1 , εbef1) ∪ (eaft1 , εaft1), ..., (ebefi , εbefi) ∪ (eafti , εafti)} (4.18)

as
log(ēi) = γilog(ε) + logτ. (4.19)

Setting Y = log(ē),X = log(ε) and τ̂ = log(τ) we get

Y = γeX + τ̂ ,

where γe is the slope of the linear model and τ̂ is the intersection with the logarithmic axis log(y).

After each greedy iteration, we get more data points in the error set Ep, which increases the accuracy of the
error model. In Section 4.4, we illustrate that this linear model is sufficient to achieve an accurate error model.
The adaptive greedy sampling approach is summarized in Algorithm 4.

Deliverable D5.2
55

4.3. Numerical Methods

Algorithm 4 (Adaptive greedy sampling algorithm).
Input: Maximal number of iterations Imax, maximal number of parameter groups c, number of adaptive can-
didates ck, parameter space P , tolerance emaxtol .
Output: Q.

Choose first parameter group ρ1 = [[a11, ..., a1m], b, σ] from P .

Simulate the full model for parameter group ρ1 and store the results in V1.

Compute a truncated SVD of the matrix V1 and construct Q1.

FOR i = 2, . . . , Imax

Randomly select a set of parameter groups P̂0 = {ρ1, ρ2, ..., ρc0} ⊂ P .

FOR j = 1, . . . , c0

determine reduced model for parameter group ρj with reduced basis Qi−1.

Compute error estimator ε(ρj).

END

Let ε0 = {ε(ρ1), ..., ε(ρc0)} be error estimators for P̂0.

Let k = 1 and esg = ε0.

WHILE n(P̂) < c

Construct a surrogate model ε̄(ρ) using the values esg.

Compute the values ε̄(ρ) of the surrogate model over P .

Determine first ck maximum values of ε̄(ρ) and parameter groups P̂k = {ρ1, ..., ρck}.
For x = 1, . . . , n(P̂k)

Compute reduced basis Qi−1 for parameter group ρx.

Compute error estimator ε(ρx).

END

Let εk = {ε(ρ1), ..., ε(ρck)} be the error estimators for P̂k.

Update esg = {ε0 ∪ · · · ∪ εk}.
Construct new parameter set P̂ = P̂0 ∪ P̂k.

k = k + 1.

END

Find ρI = argmax
ρ∈P̂

ε(ρ).

IF i > 2 and ēi ≤ emaxtol , set Q = Qi−1, STOP.

Solve full model for the parameter group ρI and store result in Vi.

Solve reduced model for the parameter group ρI using Qi−1 and store result in V̄i.

Compute relative error ebefi and error estimator εbefi using reduced model obtained withQi−1, before
updating reduced basis. Set ebefi = ‖Vi(ρI)− V̄i(ρI)‖/‖Vi(ρI)‖.

Construct a snapshot matrix V̂ by concatenating the solutions V` for ` = 1, ..., i.

Compute an SVD of the matrix V̂ and construct Qi.

Simulate reduced model for parameter group ρI using Qi and store result in V̄i+1.

Compute relative error eafti and error estimator εafti using the reduced model obtained withQi (after
updating the reduced basis). Set eafti = ‖Vi(ρI)− V̄i+1(ρI)‖/‖Vi(ρI)‖.

Construct error set Ep = {(ebef1 , εbef1) ∪ (eaft1 , εaft1), ..., (ebefi , εbefi) ∪ (eafti , εafti)}.
Construct model for error ē using error set Ep: log(ēi) = γilog(ε) + logτ .

Deliverable D5.2
56

4.4. Numerical Example

END

4.4. Numerical Example

A numerical example of a floater with cap and floor [30] is used to test the developed algorithms and methods.
We model the floater instrument using the Hull-White model and compare the results of the PDE model by
discretizing as in subsection 4.3.1 with the results of the reduced model. The reduced model is generated by
implementing the POD method along with the classical and the adaptive greedy sampling techniques. The
characteristics of the floater instrument are as shown in Table 4.1. The interest rates are capped at CR = 2.25%

Table 4.1: Numerical Example of a floater with cap and floor.

Coupon frequency quarterly
Cap rate, CR 2.25 % p.a.
Floor rate, FR 0.5 % p.a.
Currency EURO
Maturity 10 years
Nominal amount 1.0
b 0.015
σ 0.006

p.a. and floored at CF = 0.5% p.a. with the reference rate as Euribor3M. The coupon rates can be written as

coup = min(2.25%,max(0.5%,Euribor3M)) (4.20)

Note that the coupon rate coup(n) at time tn is set in advance as the coupon rate at tn−1.

Computer Requirements: All computations are carried out on a PC with 4 cores and 8 logical processors
at 2.90 GHz (Intel i7 7th generation). We used MATLAB R2018a for the yield curve simulations. The
numerical method for the yield curve simulations is tested with real market based historical data from from the
State-of-the-art stock exchange information system, ”Thomson Reuters EIKON [40]”. The daily interest rate
data are collected at 26 tenor points in time over the past 5 years, where each year has 260 working days, so
there are 1300 observation periods. We have used the inbuilt UnRisk tool for the parameter calibration, which
is well integrated with Mathematica (version used: Mathematica 11.3). Further, we used calibrated parameters
for the construction of a Hull-White model. We implemented the finite difference method and the model
reduction approach for the solution of the Hull-White model in MATLAB R2018a.

The collected historical data has 21 tenor points and 1306 observation periods as follows (D: Day, M: Month,
Y: Year):

m =: {1D, 3M, 6M, 1Y, 2Y, 3Y, · · · , 10Y, 12Y, 15Y, 20Y, 25Y, 30Y, 40Y, 50Y }
n =: {1306 daily interest rates at each tenor point}

The 10 000 simulated yield curves in 10 years in the future are presented in Fig. 4.1. For the floater example,
we need parameter values only until the 10Y tenor point (maturity of the floater). Henceforth, we consider the
simulated yield curves with only the first 13 tenor points. The calibration generates the real parameter space of
dimension R10000×13 for the parameter a(t). We considered the constant volatility σ = 0.006 and the constant
mean reversion b = 0.015. All variable parameters are assumed to be piecewise constants between the tenor
points (0− 3M, 3M − 6M, 6M − 1Y, 1Y − 2Y, 2Y − 3Y, · · · , 9Y − 10Y). Figure 4.2 shows 10 000 different
piecewise constant parameters a(t).

Deliverable D5.2
57

4.4. Numerical Example

Figure 4.3: 10,000 simulated yield curves obtained by bootstrapping for next 10 years.

Figure 4.4: 10,000 parameter vectors a(t) as a piecewise function of time.

The computational domain for the interest rate r(t) with an interval [rlow, rup], according to [5] is given by

rlow = r(T)− 7σ
√
T , rup = r(T) + 7σ

√
T , (4.21)

where r(T) is the yield at the maturity T also known as a spot rate. Here, rlow = −0.1 and rup = 0.1. We
applied homogeneous Neumann boundary conditions of the form

∂V

∂r
|r=u = 0,

∂V

∂r
|r=v = 0. (4.22)

We divided the spatial domain into M = 600 equidistant grid points {r(1), r(2), . . . , r(M)} and used the N
time points (measured in days) starting from t = 0 until maturity T , i.e., in our case, the number of days until

Deliverable D5.2
58

4.4. Numerical Example

maturity are assumed to be 3600 ≈ 10Y with an interval τ = 1. Rewriting (4.4), we obtain

A(ρ`(t))V
n+1 = B(ρ`(t))V

n, V (0) = V0.

We can apply the first boundary condition in (4.22) by updating the first and the last rows (A1 and AM) of the
matrix A(ρ`) which yields

A1 = (−1, 1, 0, . . . , 0) and AM = (0, . . . , 0, 1,−1).

The second Neumann boundary condition can be applied by changing the last entry of the vector BV n to zero.
Starting at t = 0 with the known initial condition V (0) as the principal amount, at each time step, we solve the
system of linear equations (4.4).

Note that we need to update the value of the grid point r(i) every three months as the coupon frequency is
quarterly by adding coupon fn based on the coupon rate given by (4.20). The value at the intermediate holding
period is calculated by accreting the coupons in between today and the intermediate holding period to the fair
value of the instrument.

We have implemented the parametric model reduction approach for the floater example, as discussed in Sec-
tion 4.3.1. using both the classical and the adaptive greedy sampling algorithm.

At each iteration of the classical greedy sampling approach, the algorithm constructs a reduced basis via Al-
gorithm 1. We have specified a maximum number of 40 pre-defined candidates to construct a set P̂ and a
maximum number of iterations Imax = 10. The progression of the maximal and average residuals with each it-

1 2 3 4 5 6 7 8 9
10

-4

10
-3

10
-2

10
-1

10
0

Figure 4.5: Evolution of maximal and average residuals in each iteration of classical greedy algorithm.

eration of the greedy algorithm is presented in Fig. 4.5. It is observed that the maximal residual error typically
decreases in the process and the proposed greedy algorithm efficiently locates the optimal parameter groups
and constructs the desired reduced basis Q. Furthermore, we tested the effect of change in the cardinalities of
the set P̂ . The proposed algorithm is applied with three different cardinalities of P̂: |P̂1| = 20, |P̂2| = 30,
|P̂3| = 40. Note that we have constructed P̂ by randomly selecting the parameter groups from the parameter
space P .
Figure 4.6 shows the plot of the maximal residual against the number of iterations for three different cardinali-
ties.

Deliverable D5.2
59

4.4. Numerical Example

1 2 3 4 5 6 7 8 9
10

-4

10
-3

10
-2

10
-1

10
0

Figure 4.6: Evolution of the maximum residual error for three different cardinalities of set P̂ .

It is evident that with an increasing number of candidates, the maximal residual error decreases and the decrease
is sufficient for a cardinality 20 of P̂ .

5 10 15 20 25 30 35 40 45 50
10

-5

10
-4

10
-3

10
-2

10
-1

Figure 4.7: Relative error between full and reduced model for two different parameter groups.

During our tests we noticed that there are some parameter groups (e.g., ρ238) for which the reduced model
gives unsatisfactory results. Figure 4.7 illustrates the relative error between the full model and the reduced-
order model for two different parameter groups. One can observe that the reduced model for the parameter
group ρ238 (dashed line) shows inferior results as compared to the reduced model for the parameter group ρ786

(solid line). Even an increase in the reduced dimension d does not improve the quality of the result substantially.

This reveals that the selection of trial candidates by random sampling may neglect parameter groups corre-
sponding to the significant error.

To overcome this drawback, we have also implemented the adaptive greedy sampling approach for the floater
example. At each greedy iteration, the algorithm locates ck = 10 parameter groups adaptively using the surro-
gate modeling technique, as described in Subsection 4.3.3. We have fixed the maximum number of elements
within the parameter set P̂ to 40. Furthermore, the adaptively obtained parameter set P̂ has been used to locate
the optimal parameter group ρI . These steps are repeated for a maximum of Imax = 10 iterations or until
convergence. The algorithm has been initiated by selecting c0 = 20 random parameter groups.

The optimal parameter group updates the snapshot matrix, and consecutively the algorithm generates a new
reduced basis at each greedy iteration. Figure 4.8 shows the evolution of maximum and average residual errors

Deliverable D5.2
60

4.4. Numerical Example

1 2 3 4 5 6 7 8 9
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 4.8: Maximal and average residuals per iteration of adaptive greedy algorithm.

with each iteration of the adaptive greedy algorithm. The residual error decreases with each incrementing
iteration and hence the algorithm succeeded in locating the optimal parameter group efficiently.

10
-8

10
-6

10
-4

10
-2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(a) Iteration no. 2.

10
-8

10
-6

10
-4

10
-2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(b) Iteration no. 4.

10
-8

10
-6

10
-4

10
-2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(c) Iteration no. 6.

10
-8

10
-6

10
-4

10
-2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(d) Iteration no. 8.

Figure 4.9: Error model ē based on error set Ep for four different greedy iterations.

To monitor the convergence of the adaptive greedy algorithm, we have designed an error model ē for the relative
error e as a function of the residual error ε. Figure 4.9 shows the designed error model based compared to the
available error set Ep for four different greedy iterations. The error plot exhibits a strong correlation between
the relative error and the residual error. The results indicate that a linear error model is satisfactory to capture
the overall behavior of the exact error as a function of the residual error.
We have used the reduced basis obtained from the adaptive greedy sampling procedure to design the reduced
model. Figure 4.10 presents the relative error plot for the parameter groups ρ238, and ρ786. We see that the

Deliverable D5.2
61

4.4. Numerical Example

adaptive greedy approach gives better results than the classical greedy method. With a reduced dimension of
d = 6, we obtained an excellent result as the relative error is less than 10−3.

0 10 20 30 40 50 60
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 4.10: Comparison of classical (CG) and adaptive (AG) greedy sampling approach.

4.4.1. Computational cost

In the case of the classical greedy sampling approach, the algorithm solves c reduced models and one full
model at each greedy iteration. It also computes a truncated SVD of the updated snapshot matrix with each
proceeding iteration. Let tRM be the time required to solve one reduced model, tFM the computational time
required for one full model, and tSVD the time required to obtain a truncated SVD of the snapshot matrix. The
total computational time TCGQ required to obtain the reduced basis in the case of the classical greedy sampling
approach can be given as

TCGQ ≈
[
c× tROM + (tHDM + tSVD)

]
× i.

Similarly, in the case of the adaptive greedy approach, the total computational time TAGQ can be given as

TAGQ ≈
[
c0 × tROM + k(Ck × tROM + tSM + tevSM)︸ ︷︷ ︸

tρI

+tHDM + tSVD + 2taf,bfROM + tEM

]
× i,

where tSM and tevSM denote the computational times required to build and evaluate a surrogate model for the
entire parameter space respectively. tEM is the time required to build an error model. The term 2taft,befRM shows
the computational time needed to solve the reduced model after and before updating the reduced basis. Table

Table 4.2: Computation time/ reduction time (TQ) to generate projection subspace.

Algorithm Cardinality |P̂ | Max. no. iterations Imax Computational time

Classical greedy sampling 20 10 56.82 s
Classical greedy sampling 30 10 82.54 s
Classical greedy sampling 40 10 95.04 s
Adaptive greedy sampling 40 10 183.21 s

4.2 compares the computational times required to generate the reduced basis Q for different sets of P̂ in case

Deliverable D5.2
62

4.4. Numerical Example

of the classical greedy sampling approach with that needed to obtain the reduced basis in case of the adaptive
greedy sampling approach.

Table 4.3: Evaluation time.

Algorithm Model
Eva. time
single ρs

Total Eva.
time (Teva)

Total time
TQ + Teva

FM, M = 600 0.2193 s 2193.72 s 2193.72 s

Classical greedy sampling RM, d = 5 0.0102 s 102.56 s 197.60 s
Classical greedy sampling RM, d = 10 0.0125 s 125.48 s 220.52 s

Adaptive greedy sampling RM, d = 6 0.0104 s 104.38 s 287.59 s
Adaptive greedy sampling RM, d = 10 0.124 s 124.32 s 307.53 s

The computational time tρI required to locate the optimal parameter group by constructing a surrogate model
for one greedy iteration is approximately 8 seconds. tρI is nothing but the time required to complete a while
loop outlined in Algorithm 4 for a single greedy iteration. Thus, the total time contributed to generate the
reduced basis via surrogate modeling is Imax × tρI = 78.56 s, considering the adaptive greedy algorithm runs
for Imax iterations. Figure 4.10 shows that we can truncate the algorithm after 4 or 5 iterations as the residual
error falls below 10−4.
The computational times required to simulate reduced models and full models are presented in Table 4.3. The
time required to solve the complete system with a parameter space of 10000 ×m for both a full and reduced
model is given in the total time column.
We can see that the evaluation time required for the reduced model is at least 18−−20 times less than that of
the full model. However, there is a slight increase in total time due to the addition of the reduction time TQ. One
can also observe that with an increase in the dimension d of the reduced model, the evaluation time increases
significantly. The reduced model with the classical greedy sampling approach is at least 10−−11 times faster
than that for the full model. The time required to simulate the reduced model with the adaptive greedy sampling
approach is a bit higher due to the time invested in building surrogate and error models. Despite of that, the
reduced model is at least 8 − −9 times faster than the full model. The computational time presented in both
tables considers that the greedy algorithms run for the maximal number of iterations Imax. However, we can
truncate the algorithms after 4 or 5 iterations, i.e., we can practically achieve even more speedup than discussed
here.

4.4.1.1. Floater Scenario Values

Table 4.4: Results for a floater with cap and floor.

Scenario 5 years 10 years

Favorable (90th percentile) 1.0759 1.0829
Moderate (50th percentile) 1.0578 1.0615
Unfavorable (10th percentile) 1.0183 1.0254

To design a key information document, we need the values of the floater at different spot rates. The spot rate
rsp is the yield rate at the first tenor point from the simulated yield curve. The value of a floater at the spot rate

Deliverable D5.2
63

4.5. Conclusion

rsp is nothing but the value at that short rate r = rsp. For 10 000 simulated yield curves, we get 10 000 different
spot rates and the corresponding values for the floater. These values are further used to calculate three different
scenarios: (i) favorable scenario, (ii) moderate scenario, (iii) unfavorable scenario which are the values at 90th
percentile, 50th percentile and 10th percentile of 10 000 values, respectively.

4.5. Conclusion

This paper presents a parametric model reduction approach for a discretized convection-diffusion-reaction PDE
that arises in the analysis of financial risk. The parameter space with time-dependent parameters is generated via
the calibration of financial models based on market structures. A finite difference method has been implemented
to solve this PDE. The selection of parameters to obtain the reduced basis is of utmost importance. We have
established a greedy approach for parameter sampling, and we noticed that there are some parameter groups
for which the classical greedy sampling approach gave unsatisfactory results. To overcome this drawback,
we have applied an adaptive greedy sampling method using a surrogate model for the error estimator that is
constructed for the entire parameter space and further used to locate the parameters which most likely maximize
the error estimator. The surrogate model is built using the principal component regression technique. We tested
the designed algorithms for a numerical example of a floater with cap and floor solved using the Hull-White
model. The results indicate the computational advantage of the parametric model reduction technique for the
short-rate models. A reduced model of dimension d = 6 was enough to reach an accuracy of 0.01%. The
reduced model was at least 10 − −12 times faster than that of the full model. The developed model order
reduction approach shows potential applications in the historical or Monte Carlo value at risk calculations as
well, where a large number of simulations need to be performed for the underlying instrument.

4.A. Relation between a singular value decomposition and a principal component
analysis

Consider a data matrix X of size n ×m, where n is the number of samples and m is the number of variables.
Let us also assume that the data matrix X is centered. We can decompose the matrix X using singular value
decomposition (SVD) as

X = ΦΣΨT , (4.23)

where the matrices Φ and Ψ contain left and right singular vectors of the matrix X respectively. The matrix
Σ is a diagonal matrix having singular values Σi arranged in descending order along the diagonal. Consider a
covariance matrix C of order m×m as follows:

C = XTX. (4.24)

We now compute an eigendecomposition, also known as spectral decomposition of the covariance matrix as

C = XTX = ΨΣ̄ΨT , (4.25)

where Ψ is the matrix of eigenvectors and Σ̄ is a diagonal matrix having eigenvalues λi arranged in descending
order along the diagonal. In the principal component analysis (PCA), the columns of a matrixXΨ are known as
the principal components, while the columns of the matrix Ψ are known as principal directions or PCA loading.
Furthermore, one can easily see the similarities between the SVD and the PCA. We can write a covariance
matrix as follows

XTX = (ΦΣΨT)TΦΣΨT ,

XTX = ΨΣΦTΦΣΨT ,

XTX = ΨΣ2ΨT ,

(4.26)

where ΦTΦ = I . Now we can see that the right singular vectors of the matrix X are simply the eigenvectors of
the matrix C, and the singular values of X are related to the eigenvalues of C as λi = Σ2

i .

Deliverable D5.2
64

Glossary

Packaged retail investment and insurance-based products Packaged retail investment and
insurance-based products are a broad class of financial instruments that are provided to customers
in the EU through banks or financial institutions, which include stocks, bonds, insurance policies,
structured funds, structured deposits, and structured products. 46

key information document A key information document is a 3-page document provided to the customers
by financial institutions for the invested product. It includes the risk and reward profile of the product,
the cost of the product, the recommended holding period, possible outcomes, etc., so that investors can
understand the product easily.. 46

yield curve The yield curve is the curve showing interest rates plotted against different maturities for the
same financial instrument. 46

cap An upper limit on the interest rate for a floating interest rate instrument. 46

swaption a. Swap: A swap is an agreement between two parties to exchange financial instruments for a
certain time.
b. Swaption: A swaption is an option to enter into a swap. 46

tenor Tenor refers to the amount of time left until the financial instrument expires. The maturity time points
on a yield curve are also known as tenor points. 46

Bibliography

[1] European Commission, “Commission delegated regulation (EU) 2017/653 OJ L 100,” Off. J. EU, vol. 1,
pp. 1–52, 2017.

[2] A. Gupta and M. Subrahmanyam, “Pricing and hedging interest rate options: Evidence from cap-floor
markets,” J. Bank. Finance, vol. 29, pp. 701–733, 2005.

[3] J. Bicksler and A. Chen, “An economic analysis of interest rate swaps,” J. Finance, vol. 3, pp. 645–655,
1986.

[4] D. Brigo and F. Mercurio, Interest Rate Models - Theory and Practice, 2nd ed. Berlin: Springer-Verlag,
2006.

[5] M. Aichinger and A. Binder, A Workout in Computational Finance, 1st ed. West Sussex, UK: John Wiley
and Sons Inc., 2013.

[6] E. Ekström, P. Lötstedt, and J. Tysk, “Boundary values and finite difference methods for the single factor
term structure equation,” J. Appl. Math. Finance, vol. 16, pp. 253–259, 2009.

[7] T. Haentjens and K. I. Hout, “Alternating direction implicit finite difference schemes for the Heston-Hull-
White partial differential equation,” J. Comput. Finance, vol. 16, pp. 83–110, 2012.

[8] A. Falcó, L. Navarro, and C. Cendón, “Finite difference methods for hull-white pricing of interest rate
derivatives with dynamical consistent curves,” Soc. Sci. Res. Net. Elec. J., 2014.

[9] M. Briani, L. Caramellino, and A. Zanette, “A hybrid tree/finite-difference approach for
Heston–Hull–White-type models,” J. Comput. Finance, vol. 21, no. 3, 2017.

[10] A. Cohen and R. DeVore, “Approximation of high-dimensional parametric PDEs,” Acta Numerica, vol. 24,
pp. 1–159, 2015.

[11] I. Piotr and R. Motwani, “Approximate nearest neighbors: Towards removing the curse of dimensionality,”

Deliverable D5.2
65

Bibliography

in Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing. New York, NY, USA:
ACM Press, 1998, pp. 604–613.

[12] A. Chatterjee, “An introduction to the proper orthogonal decomposition,” Curr. Sci., vol. 78, pp. 808–817,
2000.

[13] G. Berkooz, P. Holmes, and J. Lumley, “The proper orthogonal decomposition in the analysis of turbulent
flows,” Annu. Rev. Fluid Mech., vol. 25, no. 1, pp. 539–575, 1993.

[14] M. Graham and I. Keverekidis, “Alternative approaches to the K arhunen-loéve decomposition for model
reduction and data analysis,” Comput. Chem. Eng., vol. 20, no. 5, pp. 495–506, 1996.

[15] I. Jolliffe, Principal Component Analysis, 1st ed. Berlin: Springer-Verlag, 2014.

[16] M. Graham and I. Keverekidis, “Proper orthogonal decomposition and its applications part I: Theory,” J.
Sound Vib., vol. 252, no. 3, pp. 527–544, 2002.

[17] M. Rathinam and L. Petzold, “A new look at proper orthogonal decomposition,” SIAM J. Numer. Anal.,
vol. 41, no. 5, pp. 1893–1925, 2003.

[18] A. Vidal and D. Sakrison, “On the optimality of the Karhunen-Loéve expansion (corresp.),” IEEE Trans.
info. theory, vol. 15, no. 2, pp. 319–321, 1969.

[19] L. Sirovich, “Turbulence and the dynamics of coherent structures. Part I: coherent structures,” Quart.
Appl. Math., vol. 45, no. 3, pp. 561–571, 1987.

[20] J. Lucia, P. Beran, and W. Silva, “Reduced order modeling: new approaches for computational physics,”
Prog. Aerosp. Sci., vol. 40, no. 1-2, pp. 51–117, 2004.

[21] M. Grepl and A. Patera, “A posteriori error bounds for reduced-basis approximations of parametrized
parabolic partial differential equations,” M2AN, Math. Model. Numer. Anal., vol. 39, pp. 157–181, 2005.

[22] A. Paul-Dubois-Taine and D. Amsallem, “An adaptive and efficient greedy procedure for the optimal
training of parametric reduced-order models,” Int. J. Numer. Meth. Engng., vol. 102, pp. 1262–1292,
2014.

[23] D. Amsallem, M. Zahr, and Y. Choi, “Design optimization using hyper-reduced-order models,” Struct.
Multidisc. Optim., vol. 51, no. 4, pp. 919–940, 2015.

[24] T. Bui-Thanh, K. Willcox, and O. Ghattas, “Model reduction for large-scale systems with high-
dimensional parametric input space,” SIAM J. Sci. Comput., vol. 30, no. 6, pp. 3270–3288, 2008.

[25] K. Veroy and A. Patera, “Certified real-time solution of the parametrized steady incompressible
Navier–Stokes equations: rigorous reduced-basis a posteriori error bounds,” Int. J. Numer. Meth. Fluids,
vol. 47, pp. 773–788, 2005.

[26] H. Lee, Y. Park, and S. Lee, “Principal component regression by principal component selection,” Commun.
Stat. Appl. Methods, vol. 22, no. 2, pp. 173–180, 2015.

[27] D. Jones, “A taxonomy of global optimization methods based on response surfaces,” J. Global Optim.,
vol. 21, no. 4, pp. 345–383, 2001.

[28] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, 1st ed. New
York, NY: Springer-Verlag, 2013.

[29] J. Hull and A. White, “Pricing interest-rate-derivative securities,” Rev. Financial Stud., vol. 3, no. 4, pp.
573–592, 1990.

[30] F. Fabozzi, Valuation of Fixed Income Securities and Derivatives, 3rd ed. John Wiley and Sons Inc.,
1998.

[31] O. Vasicek, “An equilibrium characterization of the term structure,” J. Financial Econ., vol. 5, no. 2, pp.
177–188, 1977.

[32] J. Cox, J. Ingersoll Jr., and S. Ross, “A theory of the term structure of interest rates,” Econometrica,
vol. 53, no. 2, pp. 385–407, 1985.

Deliverable D5.2
66

Bibliography

[33] J. Hull and A. White, “One-factor interest-rate models and the valuation of interest-rate derivative securi-
ties,” J. Financ. Quant. Anal., vol. 28, no. 2, pp. 235–254, 1993.

[34] ——, “Numerical procedures for implementing term structure models I: single-factor models,” J. Deriv.,
vol. 2, pp. 7–16, 1994.

[35] G. Darbellay, “A note on the volatility term structure in short rate models,” J. Appl. Math. Mech., vol. 78,
pp. 885–886, 1998.

[36] G. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” Numer. Math.,
vol. 24, pp. 403–420, 1970.

[37] M. Williams, P. Schmid, and J. Kutz, “Hybrid reduced-order integration with proper orthogonal decompo-
sition and dynamic mode decomposition,” SIAM J. Multiscale Model. Simul., vol. 11, no. 2, pp. 522–544,
2013.

[38] R. Pinnau, “Model reduction via proper orthogonal decomposition,” in Model Order Reduction: The-
ory, Research Aspects and Applications, W. Schilders, H. van der Vorst, and J. Rommes, Eds. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 95–109.

[39] A. Binder, “A clever handful is enough,” Wilmott, pp. 10–14, 2007.
[40] MathConsult, “Calibration of interest rate models,” MathConsult GmbH, Linz, Austria, Report, 2009.

Deliverable D5.2
67

5. Software-based representation of an inverse heat conduction
problem

Patricia Barral1, Federico Bianco2, Riccardo Conte2, Umberto Emil Morelli3, Peregrina Quintela1, Gianluigi
Rozza4, Giovanni Stabile4

1Instituto Tecnolóxico de Matemática Industrial, Universidade de Santiago de Compostela
2Danieli
3Instituto Tecnolóxico de Matemática Industrial
4Scuola Internazionale Superiore di Studi Avanzati

Abstract. In continuous casting molds, it is important to know the steel-mold heat flux in real time for a proper
control of the process. This heat flux can be computed using thermocouples measurements inside the mold
and solving an inverse problem. To validate, analyze and compare different techniques for the solution of this
inverse problem, we design a benchmark case. In this document, we provide a description of the mathematical
formulation of the problem and a methodology for computing its numerical solution. Then, we discuss its
software implementation. Finally, we present the benchmark case with the related numerical results and all the
required data for its reproducibility.
Keywords: Inverse problem, heat transfer, continuous casting mold, boundary flux estimation

5.1. Introduction

Continuous casting of steel is presently the most used process to produce steel worldwide. Figure 5.1(a) pro-
vides a schematic of the process. These casters are complex machinery, the most critical part for the process
being the mold. Here the steel undergoes to its primary solidification. The mold extracts heat from the liquid
steel thanks to a liquid cooling system. This system is composed of drilled channels in which water flows at
high flow rate and pressure (see Figure 5.1(b)).
For safety and quality reasons, it is important to control the heat extraction from the steel during the casting.
For example, if the heat extraction is too little the steel solid skin is thin at its exit can brake. For this and other
reasons, it is essential to know the real time behavior of the mold to properly control the casting process.
One way to compute this heat flux could be to simulate all the phenomena happening inside the mold: from the
tapping of the molten steel to the secondary cooling region (e.g. multiphase flow, heat transport, solidification,
thermodynamic reactions etc.). However, the resulting model would be quite complex and computationally
expensive to deal with, especially for real time applications. Then, this option was discarded.
Also the fully experimental approach is no feasible since it is not possible to make direct measurements in
the solidification region. The only measurements available are made by thermocouples that are buried inside
the mold plates. They provide temperature measurements few centimeters into the mold. Then, our approach
to study the real time behavior of continuous casting molds and the mold-slab heat flux is to solve an inverse
problem having as data the thermocouples measurements.
In modeling the thermal behavior of the mold, we consider the following well established assumptions:

• The copper mold is assumed an homogeneous and isotropic solid material;
• The cooling water is a isotropic, Newtonian and incompressible fluid;
• The thermal expansion of the mold and its mechanical distortion are negligible;
• The material properties are assumed constant;
• The boundaries in contact with air are assumed adiabatic;
• No boiling in the water is assumed;

Deliverable D5.2
68

5.1. Introduction

(a) Caster [1].

Cooling waterThermocouple

Mold

Steel

(b) Horizontal section of a mold.

Figure 5.1: Schematic of a continuous caster (a) and of a cross section of a mold (b).

• The heat transmitted by radiation is neglected.

Notice that the running parameters of the cooling system and its geometry ensure a fully developed turbulent
flow. In fact, these molds are equipped with a closed loop cooling system, the water is pumped at a high
pressure and the average velocity in each cooling channel is approximately 10 m/s, the diameter being approx.
10 mm. Thus, the Reynolds number in the cooling system is around 105, which ensures a turbulent flow. Since
we want to have solution in real-time (e.g. at each second) and the casting speed is of few meter per minute,
we consider steady-state models. Moreover, we only consider 3D mold models because we are interested in the
heat flux in all the mold-slab interface. By adding specific assumptions at each simplification step, we propose
now the hierarchy of mold thermal models of Figure 5.2.

According to the mentioned assumptions, we consider the following physical problems:

(M1): The domain is composed of the (solid) copper mold and (liquid) cooling water. Then, a liquid-solid
steady-state three-dimensional heat transfer model one-way coupled with a turbulent fluid flow model
for the fluid dynamics of the cooling water is considered.

The one-way coupling is in the sense that we neglect the effects that changes in the fluid temperature have on
the fluid dynamics (i.e. buoyancy).

Notice that in the mold, we consider the cooling water flowing in circular channels with constant cross section.
Then, we can consider simplified 1D models for the turbulent flow in pipes (see e.g. [2], Chapter 7). These
models give the shape of the averaged boundary layer in a pipe and the velocity has only one component, the
vertical component along the axis of the pipe. Thus, we must pay attention in making this simplification for the
following model since we neglect the heat transport due to turbulence eddies and mixing. Therefore, we derive
the following simplified version of the previous model:

(M2): The domain is composed of the (solid) copper mold and (liquid) cooling water. Then, a liquid-solid
steady-state three-dimensional heat transfer model one-way coupled with a simplified pipe flow model

Deliverable D5.2
69

5.2. Mathematical Formulation

Incompessible
Pipe Flow Model

Model in Solid

1D Steady-state

1D Steady-state

Incompessible
Navier-Stokes Model

Liquid-solid

Liquid-solid

3D Steady-state 3D Steady-state

Heat Transfer Model

3D Steady-state

Heat Transfer Model

Heat Conduction
3D Steady-state

Pipe Thermal Model

3D Heat Conduction Model in Solid
Steady-state

(M4)

(M3)

(M2)

(M1)

Figure 5.2: Scheme of the models hierarchy for the continuous casting mold.

for the fluid dynamics of the cooling water is considered.

Thanks to the high Reynolds number of the flow, we can further assume that the cooler and hotter water
molecules are well mixed. Such that, the temperature in each section of the cooling channel is approximately
constant. Moreover the water is pumped in a closed circuit, so we can assume that the water flow rate is
constant. In turn, since the channels have constant section, the velocity of the fluid is also uniform and constant
(plug flow). Making these assumptions, we end up with the following model which is a three dimensional
version of the 2D model proposed by Samarasekera and Brimacombe [3]:

(M3): The domain is composed of the (solid) copper mold and (liquid) cooling water. A steady-state three-
dimensional heat conduction model with a convective BC in the portion of the boundary in contact with
the cooling water is considered in the solid domain. Assuming constant temperature in each transversal
section of the cooling system, the 1D water thermal model is given by a cross sectional heat balance. In
this case the two models are two-way coupled by the boundary condition.

Finally, considering that the temperature increase of the cooling water is of only few degrees, we can assume
that the water temperature is known. Then, we consider the following simplification of the previous model:

(M4): The domain is composed of the (solid) copper mold. A steady-state three-dimensional heat conduction
model with a convective BC in the portion of the boundary in contact with the cooling water is considered.
Here, the water temperature is assumed to be known.

In the following, we provide the mathematical formulation of model (M4) and its numerical solution. Then, we
formulate the respective inverse problem discussing the methodology for its solution. The core of this document
is then the discussion on the implementation of the direct and inverse models in a software and their application
to the proposed benchmark case.

5.2. Mathematical Formulation

5.2.1. Computational Domain and Notation

Consider a solid domain, Ω, which is an open Lipschitz bounded subset of IR3, with smooth boundary Γ
(see Figure 5.3). Let Γ = Γin ∪ ΓI ∪ ΓII ∪ ΓIII ∪ ΓIV ∪ Γsf where Γ̊in, Γ̊I , Γ̊II , Γ̊III , Γ̊IV and Γ̊sf are

Deliverable D5.2
70

5.2. Mathematical Formulation

two dimensional open disjoint sets. The Eulerian Cartesian coordinate vector is denoted by x ∈ Ω and n(x)
represents the unit normal vector that is directed outwards from Ω.

Ω

x

Γin

Γsf

y

z

ΓI

ΓII

ΓIII

ΓIV

Figure 5.3: Schematic of the solid domain.

In this setting, Ω corresponds to the region of the space occupied by the solid part of the mold. The boundary
Γsf is the interface between the mold and the cooling system. The boundaries ΓI , ΓII , ΓIII and ΓIV are
in contact with the air surrounding the mold and Γin is the portion of the mold boundary in contact with the
solidifying steel.

5.2.2. Direct Heat Transfer Problem

The objective of the direct problem is to compute the absolute temperature in Ω assuming known the heat flux
through the surface of the mold in contact with the hot steel, Γin. In what follows, we denote the absolute
temperature by T . We shall assume all along the following assumptions on the data:
(H1): The thermal conductivity is constant and strictly positive: k ∈ IR+.

Deliverable D5.2
71

5.2. Mathematical Formulation

(H2): The heat fluxes, qI , qII , qIII and qIV , belong to L2(ΓI), L2(ΓII), L2(ΓIII) and L2(ΓIV) respectively.
(H3): There are not heat sources inside the mold.
(H4): The heat transfer coefficient is constant and strictly positive: h ∈ IR+.
(H5): The cooling water temperature, Tf , is known and belongs to L2(Γsf).
(H6): The heat flux at the mold-steel interface, g, belongs to L2(Γin).
According to these assumptions, we model the mold thermal behavior as a diffusion problem. Moreover, we
model the cooling due to the water with a convection condition at the boundary Γsf . Then, we write our mold
thermal model as

Problem 1. Find T such that
− k∆T = 0, in Ω, (5.1)

with BCs

−k∇T · n = g on Γin, (5.2)

−k∇T · n = qI on ΓI , (5.3)

−k∇T · n = qII on ΓII , (5.4)

−k∇T · n = qIII on ΓIII , (5.5)

−k∇T · n = qIV on ΓIV , (5.6)

−k∇T · n = h(T − Tf) on Γsf . (5.7)

We recall that for this problem the following result is well established (see [4], Theorem 3.14 and [5], Theorem
3.3.5):

Theorem 1. Under assumptions (H1)-(H6), the solution to Problem 1 exists and is unique inH1(Ω). Moreover,
there exists a γ > 0 such that the solution to Problem 1 belongs to C0,γ(Ω).

As a final remark, we recall (see [5], Theorem 3.3.5),

Theorem 2. If g, qI , qII , qIII , qIV and Tf belong to Ls(Γin), Ls(ΓI), Ls(ΓII), Ls(ΓIII), Ls(ΓIV) and
Ls(Γsf) respectively, with s > 2, then the solution T to Problem 1 belongs to C(Ω̄).

Regarding the numerical solution of Problem 1, we use the finite volume method for its discretization. Given a
discretization of T of the domain, Ω, we write the discrete unknown (TC)C∈T into the real vector T, belonging
to IRNh with Nh = size(T). Then, we write the discretized problem as the linear system.

AT = b, (5.8)

where A is the stiffness matrix and b the source term. The value of each element of A and b depends on the
particular finite volume scheme for the discretization and the mesh used. Since our problem is a classic diffusion
problem, we refer for further details regarding the finite volume discretization to the Eymard’s monograph [6].

5.2.3. Inverse Problem

We state now the inverse problem corresponding to Problem 1. In particular, we want to estimate the heat
flux g capable of reproducing the measured temperatures at the thermocouples points. This can be stated as an
optimal control problem with pointwise observations.
We introduce the following notation. Let Ψ := {x1,x2, . . . ,xM} be a collection of points in Ω. We define
the application xi ∈ Ψ → T̂ (xi) ∈ IR+, T̂ (xi) being the experimentally measured temperature at xi ∈ Ψ.
Moreover, let Gad be a bounded set in L2(Γin).
Using a least square, deterministic approach, we state the inverse problem as

Deliverable D5.2
72

5.2. Mathematical Formulation

Problem 2. (Inverse) Given {T̂ (xi)}Mi=1 a collection of values in IR+, find the heat flux g ∈ Gad that minimizes
the functional J1 : L2(Γin)→ IR+,

J1[g] :=
1

2

M∑
i=1

[T [g](xi)− T̂ (xi)]
2, (5.9)

where T [g](xi) is the solution of Problem 1 at points xi, for all i = 1, 2, . . . ,M .

We notice that, thanks to Theorem 1 the state variable T is continuous in Ω, then its value at pointwise obser-
vations are well-defined.

The adjoint equation for Problem 2 is (see [5], Section 3.5)

Problem 3. (Adjoint) Find λ[g] such that

1

k
∆λ[g] =

M∑
i=1

(T [g](xi)− T̂ (xi))δ(x− xi), in Ω, (5.10)

with BCs ∇λ[g] · n = 0 on Γin ∪ ΓI ∪ ΓII ∪ ΓIII ∪ ΓIV , (5.11)

∇λ[g] · n +
h

k
λ[g] = 0 on Γsf , (5.12)

δ(x− xi) being the Dirac’s delta function centered at xi.

We recall that (see [5], Theorem 3.5.1),

Theorem 3. Under the assumptions (H1)-(H5), Problem 3 admits a unique solution in Lq(Ω) for all q < 3,
and this solution belongs to W 1,τ (Ω) for all τ < 3

2 .

Let δT [g] be the solution to

Problem 4. (Sensitivity) Find δT such that

− k∆δT [δg] = 0, in Ω, (5.13)

with BCs
−k∇δT [δg] · n = δg on Γin, (5.14)

−k∇δT [δg] · n = 0 on ΓI ∪ ΓII ∪ ΓIII ∪ ΓIV , (5.15)

−k∇δT [δg] · n = h(δT) on Γsf . (5.16)

Denoting by dJ1 and J ′1 the Frechet and Gâteaux derivatives of J1, respectively, we have,

dJ1(gan)g =

M∑
i=1

(T [gan](xi)− T̂ (xi))δT [g](xi) =
1

k2

∫
Γin

λg. (5.17)

Then, from (5.17) and the definition of the Gâteaux derivative of a functional, we have

J ′1[g] =
λ[g]

k2
in L2(Γin). (5.18)

Deliverable D5.2
73

5.2. Mathematical Formulation

Different methods can be used for the solution of this minimization problem. Here, we discuss its solution by
Alifanov’s regularization method (see [7]).

5.2.3.1. Alifanov’s Regularization

The Alifanov’s regularization method is a conjugate gradient method applied on the adjoint equation (see [8]).

We consider the following iterative procedure for the estimation of the function g that minimizes the functional
(5.9). Given an initial estimation g0 ∈ L2(Γin), for n > 0 a new iterant is computed as:

gn+1 = gn − βnPn, n = 0, 1, 2, . . . (5.19)

where n is the iteration counter, β is the stepsize in the search direction Pn given by

P 0 = J ′1[g0], Pn+1 = J ′1[gn+1] + γn+1Pn for n ≥ 1, (5.20)

γn being the conjugate coefficient.

The stepsize βn in (5.19) is obtained by minimizing the functional J1[gn − βPn] with respect to β. Therefore,
βn is the solution of the critical point equation of the functional J , restricted to a line passing through gn in the
direction defined by Pn, i.e. βn is the critical point of J1[gn − βPn] which then satisfies

J1[gn − βnPn] = min
β

{
1

2

M∑
i=1

{T [gn − βPn](xi)− T̂ (xi)}2
}
. (5.21)

Recalling Problem 4,

J1[gn − βPn] =
1

2

M∑
i=1

[T [gn − βPn](xi)− T̂ (xi)]
2

=
1

2

M∑
i=1

[(T [gn]− βδT [Pn])(xi)− T̂ (xi)]
2.

(5.22)

Differentiating with respect to β, we obtain the critical point equation

dJ1[gn − βnPn]

dβ
=

M∑
i=1

[(T [gn]− βnδT [Pn])(xi)− T̂ (xi)](−δT [Pn](xi)) = 0. (5.23)

Finally, we have

βn =

∑M
i=1{T [gn](xi)− T̂ (xi)}δT [Pn](xi)∑M

i=1(δT [Pn](xi))2
. (5.24)

With respect to the conjugate coefficient, γ, its value is zero for the first iteration and for other iterations it can
be calculated using Fletcher-Reeves expression as follows [9]

γn =
‖J ′1[gn]‖2L2(Γin)

‖J ′1[gn−1]‖2L2(Γin)

. (5.25)

Notice that, to use this iterative procedure, we have to compute at each iteration the Gâteaux derivative J ′1g(x)
which is given by (5.18). Thus, we must solve the adjoint problem to compute it.

Alifanov’s regularization algorithm is summarized in Algorithm 2.

Deliverable D5.2
74

5.3. Implementation

Input: g0

Set n = 0;
while n < nmax do

Compute T [gn] by solving Problem 1;
Compute J1[gn] by (5.9);
if J1[gn] < J1tol then

Stop;
end
Compute λ[gn] by solving Problem 3;
Compute J ′1[gn] by (5.18);
if n ≥ 1 then

Compute the conjugate coefficient, γn, by (5.25);
Compute the search direction, Pn(x), by (5.20);

else
P 0 = J ′1[g0];

end
Compute δT [Pn] by solving Problem 4 with δg = Pn;
Compute the stepsize in the search direction, βn, by (5.24);
Update heat flux gn by (5.19) ;
n = n+ 1;

end
Algorithm 2: Alifanov’s regularization.

5.3. Implementation

The implementation of the inverse problem solution methodology can be divided into four stages: geometry
and mesh generation, solving direct heat transfer problems, solving inverse problem and visualizing numerical
solutions. In this section, we discuss the implementation of the four stages separately.

For the numerical solution of Problem 2, we use ITHACA-FV [10] which is freely available under the GPL
3 License. ITHACA-FV is an open-source C++ library based on the finite volume solver OpenFOAM [11].
Then, for the understanding of the following implementation, some basic knowledge of the OpenFOAM and
C++ environment may be required (e.g. setting up an OpenFOAM case, object oriented programming etc.).
We refer to the OpenFOAM and ITHACA-FV documentation for all the details. All the updated information
regarding installation and usage are available at https://mathlab.sissa.it/ithaca-fv together with
usefull examples.

5.3.1. Geometry and Meshing

The digital representation of the setup is first done by drawing the CAD of the geometry and then discretizing it
to form a mesh. While several tools and techniques are available for this, we propose the use of two open-source
tools:

(i) The open-source software SALOME. It provides capabilities for interfacing with various numerical sim-
ulation tools and has a flexible cross-platform architecture made of reusable components, allowing for
customized integration and handling of complex geometrical objects. Moreover, it allows for creation of
geometry and meshes using a graphical and a text user interface.

(ii) The blockMesh utility supplied with OpenFOAM [11]. The blockMesh utility creates parametric,
structured, hexahedral meshes with grading and curved edges. For the generation of the geometry and
mesh, the user must use a dictionary text file.

The decision on when to use which is fairly simple since blockMesh only allows the meshing of simple

Deliverable D5.2
75

https://mathlab.sissa.it/ithaca-fv

5.3. Implementation

geometries, it could be preferred in these cases. In fact, it may be not very intuitive to use but provides the user
a mesh ready to be used in OpenFOAM in few seconds. For any complex geometry, the choice must be to use
SALOME.

In this work, we present a simple academic benchmark with a trivial geometry. Then, we use blockMesh. The
principle behind blockMesh is to decompose the domain geometry into a set of 1 or more three dimensional,
hexahedral blocks. Each block of the geometry is defined by 8 vertices, one at each corner of a hexahedron.
Edges of the blocks can be straight lines, arcs or splines. The mesh is ostensibly specified as a number of cells
in each direction of the block, sufficient information for blockMesh to generate the mesh data.

5.3.2. Direct Problem Solver

For the solution of the direct heat transfer problems, we use OpenFOAM, a popular open-source finite volume
library for solving Partial Differential Equations (PDEs). Different versions of OpenFOAM are available. We
use OpenFOAM v1812.

This C++ library, offer a reach interface for solving PDEs in with the finite volume method. One of its
key features is the easy implementation of the PDEs to be solved. In fact, it has fvScalarMatrix and
fvVectorMatrix classes in which we can directly write the equations to be solved for a scalar and a vector
state variable, respectively. Then, the software takes care of the finite volume discretization. The scheme used
for the discretization of each term in the equation are specified by the user in the fvScheme dictionary.

As an example of using the fvScalarMatrix class, Problem 1 is implemented and solved in OpenFOAM
as

while (simple.loop())
{

while (simple.correctNonOrthogonal())
{

fvScalarMatrix TEqn
(

fvm::laplacian(DT, T)
);
TEqn.solve();

}
}

where the BCs are assigned before this piece of code using the ITHACA-FV command
ITHACAutilities::assignBC. A detailed documentation along with numerous examples are of-
fered by Jasak [11]. Moreover, we refer the the OpenFOAM official guide for any detail [12].

5.3.3. Inverse Problem Solver

The implementation of the inverse problem solver (i.e. the Alifanov’s regularization) was entirely made in
the ITHACA-FV framework. As previously mentioned, it is a C++ library based on the finite volume solver
OpenFOAM. It consists of the implementation of several reduced order modeling techniques for parameterized
problems. One of the advantages of this library is that linear and non-linear algebra operations which are not
already implemented in OpenFOAM are performed with the external library Eigen, the source code of Eigen
3.3.7 [13] being provided together with ITHACA-FV.

All the input parameter for the inverse problem solver are provided by the user through the dictionary
ITHACAdict. An example of ITHACAdict is

FoamFile
{

version 2.0;
format ascii;
class dictionary;

Deliverable D5.2
76

5.4. Computer Requirements

location "system";
object ITHACAdict;

}

cgIterMax 200;
Jtolerance 1e-3;

thermocouplesNumber 16;
thermalConductivity 1.0;
heatTranferCoeff 1.0;

where cgIterMax is the maximum number of iterations for the Alifanov’s regularization, Jtolerance the
J1tol of Algorithm 2, thermocouplesNumber the number of thermocouples, thermalConductivity
the mold thermal conductivity k in W

mK and heatTranferCoeff the heat transfer coefficient h in W
m2K .

5.3.4. Post-processing and Visualization

Visualization and post-processing of the obtained data is critical both in the development phase and to present
the results. Implementing and representing these data in a simple and effective manner is extremely useful for
deriving information, presenting results, and also in testing and debugging. The post-processing operations are
very problem specific and depend also on the user taste. In our benchmark case, the analysis of the solutions
include visualization of thermal fields and boundary heat fluxes, computation of error fields, computation of
norms and many others.

In general, the post-processing can be included inside the solver or can be made during the visualization phase.
Within the solver phase, these could just be operations on the solution data done using ITHACA-FV and plotted
using some common user preferred graphing libraries like Matplotlib [14].

For the visulatization of the solution fields, we use the dedicated visualization tool ParaView [15]. It is a
widely used open-source visualization tool for plotting and viewing solutions and graphs. Moreover, it is able
to directly read the OpenFOAM outputs without need of converting them to other formats.

ParaView comes with a wide range of filters for analysis and visualization including plotting graphs, contours,
surface plots, vector field plots etc. In addition, it is also possible to define user-defined filters to perform
customized operations. For further information, we refer to the ParaView user guide [15].

5.4. Computer Requirements

The software tools used in the present study require a minimal UNIX system with at least 1GB of memory
and about 500MB of disk space (swap) for execution. For the installation of OpenFOAM and ParaView the
following minimal versions are required:

• gcc: 4.8.5;

• cmake: 3.3 (required for ParaView and CGAL build);

• boost: 1.48 (required for CGAL build);

• fftw: 3.3.7 (optional - required for FFT-related functionality);

• Qt: 4.8 (optional - required for ParaView build).

To handle larger problems it is recommended to have some higher configuration.

5.5. Benchmark Case

The benchmark presented in this section is an academic case. It is a steady-state heat conduction problem in an
homogeneous isotropic solid in a rectangular parallelepiped domain. By carefully selecting the BC on the faces
of the parallelepiped, we are able to compute the analytical solution of the heat conduction problem. Then, we

Deliverable D5.2
77

5.5. Benchmark Case

use this academic test to validate the numerical solution of the direct problem. Moreover, by arbitrarily selecting
some temperature measurements points, we test the inverse problem solver discussed in Section 5.2.3.1.

Let the domain be Ω = (0, L) × (0,W) × (0, H) as in Figure 5.3 with positive real constants L,W and H .
Then, the boundaries of the domain are

Γsf := {x ∈ Γ| x = (x,W, z)},
Γin := {x ∈ Γ| x = (x, 0, z)},
ΓI := {x ∈ Γ| x = (x, y,H)},
ΓII := {x ∈ Γ| x = (L, y, z)},
ΓIII := {x ∈ Γ| x = (x, y, 0)},
ΓIV := {x ∈ Γ| x = (0, y, z)}.

(5.26)

Let a, b, c be real constants. To have an analytical solution T in Ω, we consider the following BCs for Problem 1,

g = kbx+ c,

qI = 2kaH,

qII = −k(2aL+ by),

qIII = 0,

qIV = kby,

Tf =
kbx+ c

h
+ ax2 + cy − az2 + bxW + c.

(5.27)

Then,
Tan = ax2 + bxy + cy − az2 + c, (5.28)

is the solution to Problem 1. In the following, we use the input parameters of Table 5.1.

Table 5.1: Parameters used in the numerical example.
Parameter Value
Thermal conductivity, k 3 W/(mK)
Heat transfer coefficient, h 5 W/(m2K)
L 1 m
W 1 m
H 1 m
a 5
b 10
c 15

5.5.1. Direct Problem

Due to its simplicity, the domain Ω is discretized by uniform, structured, orthogonal, hexahedral meshes. To
study the convergence of the numerical solution to the analytical one, we use four different grids. They have
20, 30, 40 and 50 grid elements per axis. Since we use the same number of elements for the three axes, the
grids have 8e3, 27e3, 64e3 and 125e3 elements respectively.

Using blockMesh, the 125e3 elements mesh is generated by writing the blockMeshDict as follow

scale 1;

vertices

Deliverable D5.2
78

5.5. Benchmark Case

L

Ω

x

Γin

Γsf

y

z

W

H

ΓI

ΓIV

ΓII

ΓIII

Figure 5.4: Schematic of the solid rectangular parallelepiped domain.

(
(0 0 0)
(1 0 0)
(1 1 0)
(0 1 0)

(0 0 1)
(1 0 1)
(1 1 1)
(0 1 1)

);

blocks
(

hex (0 1 2 3 4 5 6 7) (50 50 50) simpleGrading (1 1 1)
);

edges
(
);

boundary
(

hotSide
{

Deliverable D5.2
79

5.5. Benchmark Case

type patch;
faces
(

(0 1 5 4)
);

}
coldSide
{

type patch;
faces
(

(3 2 6 7)
);

}
gammaEx1
{

type patch;
faces
(

(4 5 6 7)
);

}
gammaEx2
{

type patch;
faces
(

(1 5 6 2)
);

}
gammaEx3
{

type patch;
faces
(

(0 1 2 3)
);

}
gammaEx4
{

type patch;
faces
(

(0 4 7 3)
);

}
);

Remember that the default lenght unit in OpenFOAM is meter.

As previously discussed, we use the FVM for the discretization of Problem 1. For the discretization of the
laplacian, we use the Gaussian integration. Since we have a structured orthogonal grid, no correction is needed
when computing the gradient normal to the cells faces. Moreover, we use linear interpolation to interpolate the
values from cell centers to face centers. The resulting scheme is second order accurate.

From the discretization of Problem 1, we obtain a linear system. We solve it by using the Preconditioned
Conjugate Gradient solver (PCG) with Diagonal Incomplete Cholesky (DIC) preconditioning. The tolerance
used for the linear system solver is 10−6. All the computations are performed in OpenFOAM [12].

Deliverable D5.2
80

5.5. Benchmark Case

To evaluate the accuracy of the numerical solutions, we compute the error εεε as

εK := TK − Tan(xK) ∀K ∈ T . (5.29)

Figure 5.5 shows the decay of the L2- and L∞-norm of εεε with the grid refinement. We conclude that Problem 1
is well numerically solved.

0.08 0.27 0.64 1.25
Mesh size 1e5

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25 1e−6

L2 norm
L∞ norm

Figure 5.5: Decay of the L2- and L∞-norm of εεε with the mesh refinement.

5.5.2. Inverse Problem

We now consider the numerical solution of Problem 2 where T [g](xi) is the solution of Problem 1 assuming:

(HB1): Known temperatures at themocouples points, {T̂ (xi)}Mi=1;

(HB2): The remaining data (except the unknown g) corresponding to the academic direct problem of Sec-
tion 5.5.1.

So the analytical solution of Problem 2 is:
gan = kbx+ c. (5.30)

To numerically analyze the performances of the inverse solvers, we design a numerical test. The idea is to
select arbitrarily the measurement points x1,x2, . . . ,xM . Then, we use the analytical solution of Problem 1,
(5.28), at the virtual thermocouples locations as temperature measurements, i.e.

T̂ (xi) = Tan(xi), i = 1, 2, . . . ,M. (5.31)

Finally with the measurements T̂ (xi), we solve Problem 2.

The thermocouples are assumed to be located in the plane y = 0.2 m. The (x, z) coordinates of the thermo-
couples are shown in Figure 5.6. The parameters used for the computations are summarized in Table 5.2. The
following tests are all performed on the 123e3 elements grid.

Figure 5.7(a) and (b) illustrate the convergence of the functional J and of the L2- and L∞-norm of the relative

Deliverable D5.2
81

Bibliography

0.
2
m

0.
2
m

0.2 m
x

z

Figure 5.6: Positions of the thermocouples.

Table 5.2: Parameters used for the test of inverse problem solver.
Parameter Value
N. of thermocouples 16
Thermocouples plane y = 0.2 m
CG stop criterion Jn < 10−6K2

g0 0 W/m2

error, respectively. The relative error norms are computed as

‖εrel‖L2(Γin) =

∥∥∥∥g − gangan

∥∥∥∥
L2(Γin)

, ‖εrel‖L∞(Γin) =

∥∥∥∥g − gangan

∥∥∥∥
L∞(Γin)

. (5.32)

The relative error at the last iteration is 0.017 and 0.055 in the L2- and L∞-norm respectively. By looking at
Figure 5.8, we see that also qualitatively the heat flux is well estimated.

Bibliography

[1] L. Klimeš and J. Štětina, “A rapid gpu-based heat transfer and solidification model for dynamic computer
simulations of continuous steel casting,” Journal of Materials Processing Technology, vol. 226, pp. 1–14,
2015.

[2] F. M. White, Fluid Mechanics. McGraw Hill, 2011.

[3] I. Samarasekera and J. Brimacombe, “The influence of mold behavior on the production of continuously
cast steel billets,” Metallurgical Transactions B, vol. 13, no. 1, pp. 105–116, 1982.

[4] R. Nittka, “Regularity of solutions of linear second order elliptic and parabolic boundary value problems
on lipschitz domains,” Journal of Differential Equations, vol. 251, no. 4, pp. 860 – 880, 2011.

[5] J.-P. Raymond, “Optimal control of partial differential equations,” Université Paul Sabatier, Internet,

Deliverable D5.2
82

Bibliography

0 2 4 6 8 10
Iteration

10−5

10−3

10−1

101

103

J 1
[K

2]

(a) Cost functional, J1.

0 2 4 6 8 10
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

||εrel||L2(Γin)
||εrel||L∞(Γin)

(b) Relative error.

Figure 5.7: Convergence of the Alifanov’s regularization with thermocouples at y = 0.2 m.

gan [W/m2] g [W/m2] gan − g [W/m2]

Figure 5.8: Comparison of the estimated and real boundary heat flux by the Alifanov’s regularization with
thermocouples at y = 0.2 m.

2013.

[6] R. Eymard, T. Gallouet, and R. Herbin, “Finite volume methods,” in Solution of Equation in Rn (Part
3), Techniques of Scientific Computing (Part 3), ser. Handbook of Numerical Analysis. Elsevier, 2000,
vol. 7, pp. 713 – 1018.

[7] O. Alifanov, Inverse Heat Transfer Problems, 1st ed. Moscow Izdatel Mashinostroenie, 1988.

[8] F. D. Moura Neto and A. J. da Silva Neto, An Introduction to Inverse Problems with Applications.
Springer Publishing Company, Incorporated, 2012.

[9] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” The Computer Journal,
vol. 7, no. 2, pp. 149–154, 01 1964.

[10] G. Stabile, S. Hijazi, A. Mola, S. Lorenzi, and G. Rozza, “POD-Galerkin reduced order methods for
cfd using finite volume discretisation: vortex shedding around a circular cylinder,” Communications in
Applied and Industrial Mathematics, vol. 8, no. 1, pp. 210 – 236, 2017.

[11] H. Jasak, “Openfoam: Open source cfd in research and industry,” International Journal of Naval Archi-

Deliverable D5.2
83

Bibliography

tecture and Ocean Engineering, vol. 1, no. 2, pp. 89 – 94, 2009.
[12] OpenCFD, OpenFOAM - The Open Source CFD Toolbox - User’s Guide, 1st ed., OpenCFD Ltd., United

Kingdom, 11 2007. [Online]. Available: https://cfd.direct/openfoam/user-guide/
[13] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.
[14] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9,

no. 3, pp. 90–95, 2007.
[15] U. Ayachit, The ParaView Guide: A Parallel Visualization Application. Clifton Park, NY, USA: Kitware,

Inc., 2015.

Deliverable D5.2
84

https://cfd.direct/openfoam/user-guide/

6. Coupled parameterized reduced order modelling of
thermo-mechanical phenomena arising in blast furnaces

Nirav Shah1, Patricia Barral2, Michele Girfoglio1, Alejandro Lengomin3, Peregrina Quintela2, Gianluigi
Rozza1

1Scuola Internazionale Superiore di Studi Avanzati
2Instituto Tecnolóxico de Matemática Industrial, Universidade de Santiago de Compostela
3Global Research and Development Center, AMIII

Abstract. Blast furnace operations are subjected to temperatures up to 1500◦C, producing very high thermal
stresses inside the blast furnace hearth walls. An optimum design is necessary to enlarge the hearth lifetime and,
consequently, each blast furnace campaign. The thermal stresses are evaluated by finite element formulation of
a one-way coupled axisymmetric thermo-mechanical model. The numerical implementation of the discretized
model is validated performing proper benchmark tests. The parameters directly affecting the thermal stresses
are physical properties of the material, process conditionsand geometric dimensions of the hearth. In this
framework, we apply a parametric reduced order model procedure.

Keywords: Blast furnace hearth, thermo-mechanical axisymmetric model, finite element method, benchmark
verification, model order reduction, proper orthogonal decomposition.

6.1. Introduction

6.1.1. Conceptual model

Steel making is a very old process and has contributed to the development of technological societies since
ancient times. The previous stage to the steelmaking is the ironmaking process, which is performed inside
a blast furnace. Its general layout is shown in Figure 6.1. It is a metallurgical reactor used to produce hot
metal (95 % Fe, 4.5% C) from iron ore. The burden contains iron ore, fluxes and coke. The process involves
exothermic and endothermic reactions.

High temperature inside the blast furnace is required to increase the gasification of carbon. The temperature in
the hearth can be as high as 1500◦ C. The thermal stresses induced by high temperature inside the blast furnace
hearth limits the overall blast furnace campaign period. The numerical computation of thermal stresses requires
coupling of thermal and mechanical models and solve the associated coupled system. The hearth is made up of
several refractory zones, with each zone having specific functions and, accordingly, design requirements.

The proper materials selection ensures less thermal stress, which causes mechanical design challenge. The heat
transfer through the furnace wall occurs by conduction. Additionally, convection occurs at the surface. Wear of
carbon refractory limits the hearth lifetime, which in turn restricts lifetime of blast furnace. An optimum design
enlarges the hearth lifetime and consequently, the blast furnace campaign.

In this document, we focus on some parameters affecting the hearth design such as material properties and
geometric dimensions. In particular, concerning the parameters related to material properties, the effects of
thermal conductivity, thermal expansion coefficient and Lamé parameters (or Young’s modulus and Poisson’s
ratio) are of great relevance. The geometric parameters characterizing the hearth walls are the thickness of
hearth blocks, number of blocks, inner diameter of the hearth at each transversal section, outer diameter of the
hearth, and volume of the hot liquids that can be contained.

The blast furnace operates under different conditions, each of which is governed by different mathematical
models. Considering the objectives of the present work, below simplifications are considered.

• Taphole operation is not part of this study. The perforation action of the taphole and the important

Deliverable D5.2
85

6.1. Introduction

Figure 6.1: Blast furnace [Courtesy:ArcelorMittal]

pressures in the draining of the hot metal and slag produce important mechanical stresses located in the
area that require a deeper analysis and that is not part of this work. So, in this document, the detail of the
tap on the furnace walls is omitted.

• Since the objective is to be able to calculate in real time the effects of wall design on blast furnace
operation, we focus on the steady state operations.

• We assume that the hearth is made up of a single homogeneous, elastic and isotropic material with
temperature-independent material properties.

• Heat transfer only by conduction within hearth walls will be considered. The temperature of the molten
metal inside the hearth is assumed constant and known. Therefore, the fluid region will not be part of the
problem.

6.1.2. Mathematical problem and Benchmark cases

As explained in the subsection 6.1.1, the problem consists of a thermal and mechanical system. The governing
equations are the momentum conservation for small displacements and the energy conservation (see [1], [2]).
The energy conservation equation is solved first and the computed temperature field is used in the momentum
conservation equation as a data.

We consider the hearth domain Ω (Figure 6.2). Assuming known the heat source term, Q, and the body force
term,

−→
f0 , the conservation equations to solve are:

−Div(k∇T) = Q , in Ω , (6.1)

−Div(σ) =
−→
f0 , in Ω , (6.2)

where k is the thermal conductivity, and T is the temperature scalar field. Let us denote the displacement vector
field as −→u . The thermo-mechanical stress tensor σ is related to the strain tensor through the Hooke’s law:

σ(−→u)[T] = λTr(ε(−→u))I + 2µε(−→u)− (2µ+ 3λ)α(T − T0)I , (6.3)

Deliverable D5.2
86

6.1. Introduction

(a) Hearth sectional view [Courtesy:
ArcelorMittal]

r

y

γsf
γout

γs
γ−

γ+

ω

rmax

ymax

Fluid
region

(b) Boundaries ∂ω of computational
domain ω, Ω = ω × [0, 2π)

Figure 6.2: Hearth domain and its boundaries

where I refers to the identity tensor, ε(−→u) is the strain tensor defined as,

ε(−→u) =
1

2
(∇−→u +∇−→u T) . (6.4)

In addition, T0 is the reference temperature, α is the thermal expansion coefficient, and λ and µ are the Lamé
parameters of the material. These latter can be expressed in terms of Young modulus, E, and the Poisson ratio,
ν, as:

µ =
E

2(1 + ν)
, λ =

Eν

(1− 2ν)(1 + ν)
. (6.5)

In further analysis we use the terms normal force, σn, and tangential force, −→σt , defined by (−→n is the unit outer
normal vector):

σn = (σ−→n) · −→n ,
−→σt = σ−→n − σn−→n .

We consider the following boundary conditions.

• On the upper boundary, γ+, the applied force, −→g +, and the density of heat flux, q+, are known.

• On the bottom boundary, γ−, the convection heat transfer with heat exchanger at temperature T− and
heat transfer coefficient hc,− occurs. The normal displacement is null and shear forces are assumed to be
−→g −.

• On the inner boundary, γsf , convection heat transfer with the fluid phase occurs and hydrostatic pressure
is acting. The fluid temperature Tf is assumed to be known and constant at the steady state, hc,f is the
convective heat transfer coefficient on γsf , and −→g sf is the applied force. In the blast furnace, −→g sf is
related to the hydrostatic pressure by the expression: −→g sf = −ph−→n , ph being the hydrostatic pressure.

• On the outer boundary, γout, a convective heat flux and known applied force −→g out are assumed. hc,out is
the convective heat transfer coefficient on γout, and Tout the ambient temperature.

• On the symmetry boundary, γs, symmetry conditions are assumed as explained in the next section.

Considering that the different physical phenomena are under interaction, the coupled system is split into 3

Deliverable D5.2
87

6.2. Mathematical formulation

subsystems : Thermal model, Mechanical model and Coupling. Separate benchmark cases for each individual
subsystem are proposed. This helps for step by step error resolution.

6.1.2.1. Benchmark for the thermal model

A known analytical temperature function, corresponding source term and boundary conditions functions will
be applied. The computed temperature field will be compared with applied analytical temperature field.

6.1.2.2. Benchmark for the mechanical model

Similar procedure to benchmark test of energy equation is followed. A known analytical displacement field,
corresponding source term and boundary conditions will be applied. The computed displacement field will be
compared with the analytical displacement field.

6.1.2.3. Benchmark for the coupling

We apply known displacement and temperature fields in the domain and compute the corresponding displace-
ments and thermomechanical stresses. The computed fields are compared with the analytical ones. To complete
the test, a separate analysis of the effective thermal stresses will be made analysing the hydrostatic part of ther-
momechanical stresses.

6.2. Mathematical formulation

In addition to the simplifications indicated at the end of Section 6.1.1, in the context of blast furnace application,
the axisymmetric hypothesis is applicable. In general, a hierarchy of the main models helps to understand
simplifications and assumptions used to arrive at a specific model (see appendices 6..3 and 6..4).

6.2.1. Axisymmetric model

We express now the governing equations (6.2), (6.1) and boundary conditions in cylindrical coordinate system
(r, y, θ) having corresponding unit vectors (−→er ,−→ey ,−→eθ). The body force density term

−→
f0 can be expressed as,

−→
f0 = f0,r(r, y)−→er + f0,y(r, y)−→ey , (6.6)

and it depends only on (r, y) coordinates. Similarly, applied surface forces have zero component in−→eθ direction
and they do not depend on θ. In the axisymmetric system, we represent the displacement −→u and temperature
T , both independent of θ, as

−→u = ur(r, y)−→er + uy(r, y)−→ey ,
T = T (r, y) .

(6.7)

Under the assumption of axisymmetry, the strain and stress tensors in cylindrical coordinate system (r, y, θ)
respectively, can be reduced to,

ε(−→u) =

∂ur
∂r

1
2

(
∂ur
∂y +

∂uy
∂r

)
0

1
2

(
∂ur
∂y +

∂uy
∂r

)
∂uy
∂y 0

0 0 ur
r ,

 (6.8)

Deliverable D5.2
88

6.2. Mathematical formulation

σ(−→u)[T] =

σrr σry 0
σry σyy 0
0 0 σθθ

 . (6.9)

In vector notation, axisymmetric stress-strain relationship can be expressed as,

{σ(−→u)[T]} = A{ε(−→u)} − (2µ+ 3λ)α(T − T0){I} ,

A =
E

(1− 2ν)(1 + ν)

1− ν ν ν 0
ν 1− ν ν 0
ν ν 1− ν 0
0 0 0 1−2ν

2

 ,

{σ} = {σrr σyy σθθ σry}T ,
{ε} = {εrr εyy εθθ 2εry}T ,
{I} = {1 1 1 0}T .

(6.10)

Taking into account the expression of the unit normal vector at different boundaries as (see Figure 6.2b),

on γ+ : nr = 0 , ny = 1 ,−→n = −→ey ,
on γ− : nr = 0 , ny = −1 ,−→n = −−→ey ,
on γsf : −→n = nr

−→er + ny
−→ey ,

on γout : nr = 1 , ny = 0 ,−→n = −→er ,
on γs : nr = −1 , ny = 0 ,−→n = −−→er ,

(6.11)

the axisymmetric thermomechanical model considered can be summarized as :

• Thermal model (T1) :

− 1

r

∂

∂r

(
rk
∂T

∂r

)
− ∂

∂y

(
k
∂T

∂y

)
= Q , in ω . (6.12)

Boundary conditions:

on γ+ : −k∂T
∂y

= q+ ,

on γ− : k
∂T

∂y
= hc,−(T − T−) ,

on γsf : −k∂T
∂r
nr − k

∂T

∂y
ny = hc,f (T − Tf) ,

on γout : −k∂T
∂r

= hc,out(T − Tout) ,

on γs :
∂T

∂r
= 0 .

(6.13)

• Mechanical model (M1) :

∂σrr
∂r

+
∂σry
∂y

+
σrr − σθθ

r
+ f0,r = 0 , in ω ,

∂σry
∂r

+
∂σyy
∂y

+
σry
r

+ f0,y = 0 , in ω .
(6.14)

Boundary conditions :

Deliverable D5.2
89

6.2. Mathematical formulation

on γ+ : σry = g+,r , σyy = g+,y ,

on γ− : uy = 0, σry = −g−,r ,
on γsf : σrrnr + σryny = gsf,r ,

σrynr + σyyny = gsf,y ,

on γout : σrr = gout,r , σry = gout,y ,

on γs : ur = 0 , σry = 0 .

(6.15)

6.2.2. Weak formulation for thermal model

We introduce weighted Sobolev spaces [3], L2
r(ω) and H1

r (ω) with respective norms || · ||L2
r(ω) and || · ||H1

r (ω)

as,

L2
r(ω) =

{
ψ : ω 7→ R ,

∫
ω
ψ2rdrdy <∞

}
,

||ψ||2L2
r(ω) =

∫
ω
ψ2rdrdy ,

H1
r (ω) =

{
ψ : ω 7→ R ,

∫
ω

(
ψ2 +

(
∂ψ

∂r

)2

+

(
∂ψ

∂y

)2
)
rdrdy <∞

}
,

||ψ||2H1
r (ω) =

∫
ω

(
ψ2 +

(
∂ψ

∂r

)2

+

(
∂ψ

∂y

)2
)
rdrdy .

(6.16)

Before discussing the weak formulation of the thermal model (T1), we assume the following hypotheses on
the data:

(TH1) The heat source term, Q, verifies
Q ∈ L2

r(ω) .

(TH2) The convection temperatures belong to the spaces,

Tsf ∈ L2
r(γsf) , T− ∈ L2

r(γ−) , Tout ∈ L2
r(γout) .

(TH3) The boundary heat flux verifies
q+ ∈ L2

r(γ+) .

(TH4) There exists a constant k0 > 0, such that the thermal conductivity, k(r, y) satisfies,

k(r, y) ∈ L∞(ω) , k(r, y) > k0 , in ω .

Also, there exist constants hc,f,0 > 0, hc,out,0 > 0, hc,−,0 > 0 such that,

hc,f (r, y) ∈ L∞(γsf) , hc,f (r, y) > hc,f,0 , on γsf ,

hc,out(r, y) ∈ L∞(γout) , hc,out(r, y) > hc,out,0 on γout ,

hc,−(r, y) ∈ L∞(γ−) , hc,−(r, y) > hc,−,0 , on γ− .

In order to propose a weak formulation for the thermal model (T1), in the following we assume sufficient
regularity to perform the following calculations. We multiply the energy equation (6.12) by rψ(r, y) and
integrate over the axisymmetric domain ω with respect to (r, y) variables, so we obtain:

−
∫
ω

ψ

r

∂

∂r

(
rk
∂T

∂r

)
rdrdy −

∫
ω
ψ
∂

∂y

(
k
∂T

∂y

)
rdrdy =

∫
ω
ψQrdrdy . (6.17)

Deliverable D5.2
90

6.2. Mathematical formulation

By applying Gauss divergence theorem, we deduce,∫
ω
rk

(
∂T

∂y

∂ψ

∂y
+
∂T

∂r

∂ψ

∂r

)
drdy =

∫
ω
ψQrdrdy +

∫
∂ω
rψk

(
∂T

∂y
ny +

∂T

∂r
nr

)
dγ , (6.18)

where −→n = (nr, ny) is the unit outer normal vector to the boundaries of ω. Using boundary conditions from
equation (6.13), expression (6.18) can be written as∫

ω
rk

(
∂T

∂y

∂ψ

∂y
+
∂T

∂r

∂ψ

∂r

)
drdy +

∫
γsf

ψhc,fTrdγ +

∫
γout

ψhc,outTrdγ+∫
γ−

ψhc,−Trdγ =

∫
ω
ψQrdrdy +

∫
γsf

ψhc,fTfrdγ+∫
γout

ψhc,outToutrdγ +

∫
γ−

ψhc,−T− rdγ −
∫
γ+

ψq+rdγ .

(6.19)

Therefore, we propose the following weak formulation for thermal problem (T1):

Problem 5. Weak thermal formulation (WT1) : Under the assumptions (TH1)-(TH4), find T ∈ H1
r (ω), such

that equality (6.19) is verified for all ψ ∈ H1
r (ω).

It is to be noted that under assumptions (TH1)-(TH4) all integrals of the proposed weak formulation are well
defined. The left hand side of equation (6.19) is bilinear and symmetric. So, we define in H1

r (ω)×H1
r (ω) the

operator:

aT (T, ψ) =

∫
ω
rk

(
∂T

∂y

∂ψ

∂y
+
∂T

∂r

∂ψ

∂r

)
drdy +

∫
γsf

ψhc,fTrdγ +

∫
γout

ψhc,outTrdγ+∫
γ−

ψhc,−Trdγ .

(6.20)

The right hand side of equation (6.19) is linear and the following linear operator defined onH1
r (ω) is introduced:

lT (ψ) =

∫
ω
ψQrdrdy +

∫
γsf

ψhc,fTfrdγ +

∫
γout

ψhc,outToutrdγ+∫
γ−

ψhc,−T− rdγ −
∫
γ+

ψq+rdγ .

(6.21)

6.2.3. Weak formulation of the mechanical model

Before discussing the weak formulation for the mechanical model (M1) (see [4],[5]), the following space V
for the displacements is considered:

V = (H1
r (ω) ∩ L2

1/r(ω))×H1
r (ω) .

It will be equipped with the inner product,

<
−→
φ ,−→u >V=

∫
ω

(
φrur + φyuy +

∂ur
∂r

∂φr
∂r

+
∂ur
∂y

∂φr
∂y

+
ur
r

φr
r

+
∂uy
∂r

∂φy
∂r

+

∂uy
∂y

∂φy
∂y

+
∂ur
∂y

∂φy
∂r

+
∂uy
∂r

∂φr
∂y

)
rdrdy ,

(6.22)

Deliverable D5.2
91

6.2. Mathematical formulation

and with the norm,

||−→φ ||2V =<
−→
φ ,
−→
φ >V . (6.23)

Its closed and convex subspace

U = {−→φ = (φr φy) ∈ V , φy = 0 on γ− , φr = 0 on γs } ,

will be the set of admissible displacements.

The function space for stress tensor is defined as,

S = {σ = [σij] ∈ [L2
r(ω)]3×3, σij = σji, σα3 = 0} .

We assume the following hypotheses on the mechanical data:

(MH1) The body force density,
−→
f0 , is such that:

−→
f0 ∈ [L2

r(ω)]2 .

(MH2) The boundary forces verify the following regularity assumptions:

−→g + ∈ [L2
r(γ+)]2, −→g sf ∈ [L2

r(γsf)]2, −→g out ∈ [L2
r(γout)]

2,
−→g − ∈ [L2

r(γ−)]2, and −→n · −→g − = 0 on γ−.

(MH3) There exist constants E0 > 0 and α0 > 0 such that, the Young’s modulus, E(r, y), and the coefficient of
thermal expansion, α(r, y) satisfy:

E(r, y) ∈ L∞(ω) , E > E0 ,

α(r, y) ∈ L∞(ω) , α > α0 , in ω .

(MH4) There exist constants ν0 > 0, ν1 < 0.5 such that, the Poisson’s ratio, ν(r, y), satisfies:

ν(r, y) ∈ L∞(ω) , ν0 < ν < ν1 , in ω .

It can be seen that in case T = T0 in equation (6.10), the stress tensor σ(
−→
φ) belongs to the space S. Besides,

if T and T0 belong to H1
r (ω), the stresses generated belong to S too. In other words, the stresses generated due

to mechanical effects lies also in the same space as that of stresses generated due to thermo-mechanical effects.

In order to propose a weak formulation of the mechanical model (6.14) - (6.15), we assume that all functions
have sufficiently regularity as necessary for the following calculations. Given a function

−→
φ = (φr, φy), we

multiply the first equation of (6.14) by r(φr(r, y), the second one by rφy(r, y)), we sum both, and integrate
over ω to obtain∫

ω

(
φr
∂σrr
∂r

+ φr
∂σry
∂y

+
φr
r

(σrr − σθθ) + φy
∂σry
∂r

+ φy
∂σyy
∂y

+ φy
σry
r

)
rdrdy+∫

ω
(φrf0,r + φyf0,y) rdrdy = 0 .

Deliverable D5.2
92

6.2. Mathematical formulation

So, ∫
ω

(
φr
∂σrr
∂r

+ φy
∂σry
∂r

)
rdrdy +

∫
ω

(
φr
∂σry
∂y

+ φy
∂σyy
∂y

)
rdrdy+∫

ω
(φr(σrr − σθθ) + φyσry) drdy +

∫
ω

(φrf0,r + φyf0,y) rdrdy = 0 .

Then, applying Green formula, using boundary conditions given by equations in (6.15), taking into account
(6.8) and (6.9), assuming that the normal component of

−→
φ is null on γ− ∪ γs, we obtain,∫

ω
A{ε(−→u)} · {ε(−→φ)}rdrdy =

∫
ω
(2µ+ 3λ)α(T − T0){I} · {ε(−→φ)}rdrdy+∫

ω
(φrf0,r + φyf0,y) rdrdy +

∫
γsf

−→
φ · −→g sfrdγ +

∫
γout

−→
φ · −→g outrdγ+∫

γ−

−→
φ · −→g −rdγ +

∫
γ+

−→
φ · −→g +rdγ ,

(6.24)

where T is assumed to be the solution of the weak thermal model (WT1).

Firstly, notice that under assumptions (MH1)-(MH4), and since T ∈ H1
r (ω), all integrals in (6.24) are well

defined. Therefore, we propose the following weak formulation for the mechanical model:

Problem 6. Weak mechanical formulation (WM1) : Let T ∈ H1
r (ω) be the solution of the weak thermal

model (WT1). Under assumptions (MH1)-(MH4), find −→u ∈ U, such that equality (6.24) is verified for all−→
φ ∈ U.

The left hand side of equation (6.24) is bilinear in V× V,

aM (−→u ,−→φ) =

∫
ω
A{ε(−→u)} · {ε(−→φ)}rdrdy , (6.25)

while the right hand side of the equation is linear in V,

lM [T](
−→
φ) =

∫
ω
(2µ+ 3λ)α(T − T0){I} · {ε(−→φ)}rdrdy +

∫
ω

(φrf0,r + φyf0,y) rdrdy+∫
γsf

−→
φ · −→g sfrdγ +

∫
γout

−→
φ · −→g outrdγ +

∫
γ−

−→
φ · −→g −rdγ +

∫
γ+

−→
φ · −→g +rdγ .

(6.26)

One can also use the principle of superposition here. In other words, the net displacement at any point in the
domain is the sum of the displacement due to purely mechanical effects −→uM ∈ U and the displacement due to
purely thermal effects −→u T ∈ U.

aM (−→uM ,
−→
φ) = lM [T0](

−→
φ) , ∀−→φ ∈ U ,

aM (−→u T ,
−→
φ) = lM [T](

−→
φ)− lM [T0](

−→
φ) , ∀−→φ ∈ U ,

−→u = −→uM +−→u T .
(6.27)

6.2.4. Finite element method

In the course of finite element analysis [6], the weak formulations are projected on the finite dimensional
subspaces. For sake of brevity, the details about finite element analysis are only briefly described.

• We use the Galerkin method of weighted residuals.

Deliverable D5.2
93

6.2. Mathematical formulation

• The Lagrange basis functions are used. The basis functions for displacement and temperature are piece-
wise polynomials of degree p ≥ 1.

• Since, the bilinear forms aT (T, ψ) and aM (−→u ,−→φ) are coercive, the matrices associated with the corre-
sponding linear system are positive definite.

• Also, since the piecewise polynomials have compact support in the domain, the system matrices of the
corresponding linear systems are sparse matrices.

• Since Galerkin weighted residual method is used, the symmetry of bilinear forms aT (T, ψ) and
aM (−→u ,−→φ) is maintained.

6.2.5. Parameter space

In the context of geometric parametrization [7, 8, 9], domain ω is characterized by some geometric pa-
rameters. The geometric parameters relevant in our analysis are the diameter of each section of the hearth
D0, D1, D2, D3, D4, the volume of the hearth and the height of each section of the hearth t0, t1, t2, t3, t4 (see
Figure 6.3). The relevant material parameters in our analysis are thermal conductivity of the material, k, thermal
expansion coefficient, α, and Lamé parameters, µ, λ. Let Ξ be the tuple of parameters and P be the parameters
space. Let dp = 14 be the dimensionality of the parameter space. Therefore,

Ξ ∈ P ⊂ Rdp .

D0

t0

D4

t1
D1 t2
D2 t3
D3

t4
Volume of hearth

Symmetry axis

Figure 6.3: Hearth geometric parameters

Given a tuple Ξ ∈ P, let T and −→u be the solutions of problems (WT1) and (WM1), respectively. We assume
the following affine parametric dependence i.e.,

aT (T, ψ; Ξ) =

naT∑
i=1

θaT,i(Ξ)aT,i(T, ψ) ,

lT (ψ; Ξ) =

nlT∑
i=1

θlT,i(Ξ)lT,i(ψ) .

(6.28)

Deliverable D5.2
94

6.3. Implementation

and

aM (−→u ,−→φ ; Ξ) =

naM∑
i=1

θaM,i(Ξ)aM,i(
−→u ,−→φ) ,

lM [T](
−→
φ ; Ξ) =

nlM∑
i=1

θlM,i(Ξ)lM,i[T](
−→
φ) .

(6.29)

The bilinear forms aT (T, ψ; Ξ), aM (−→u ,−→φ ; Ξ) and the linear forms lT (ψ; Ξ), lM [T](
−→
φ ; Ξ) are decomposed

into naT , naM bilinear forms and nlT , nlM linear forms respectively and the latters are evaluated once in offline
phase. In case new parameter tuple is given, instead of evaluating bilinear and linear forms, scalar parameters
θaT,i , θlT,i , θaM,i , θlM,i are evaluated during online phase. The affine expansion of operators is essentially a
change of variables and helps to achieve offline-online decomposition of computations. The details of the
affine expansion and offline-online decomposition has been explained in the literature such as [7].

6.2.6. Model order reduction

Various methods have been used for model order reduction of parametric systems with physical and/or geo-
metric parameters (see [7], [10], [11]). The snapshot Proper Orthogonal Decomposition (POD) method with
Galerkin projection is used in the present work. For description of POD-Galerkin method we refer to the section
3.2.1 of [7].

A coupled system is characterized by different subsystems interacting with each other through coupling. The
coupled systems require special considerations while applying model order reduction techniques (see [12],
[13]). In our approach, the coupled system is divided into 3 parts: thermal system, mechanical system and
coupling system. Each individual subsystem can be written as below.

Thermal model:
aT (T, ψ) = lT (ψ) , ∀ψ ∈ H1

r (ω) . (6.30)

Mechanical model:
aM (−→uM ,

−→
φ) = lM [T0](

−→
φ) , ∀−→φ ∈ U . (6.31)

Coupling thermo-mechanical model:

aM (−→u T ,
−→
φ) = lM [T](

−→
φ)− lM [T0](

−→
φ) , ∀−→φ ∈ U . (6.32)

The total displacement is then given by,
−→u = −→uM +−→u T . (6.33)

Generation of the reduced basis space and the Galerkin projection are steps performed during the offline phase.
Solution of the smaller system of equations to compute the reduced basis approximations are steps performed
during the online phase. It is to be noted that, during the online phase the matrices corresponding to the bilinear
forms and the linear forms are assembled using the affine decomposition.

6.3. Implementation

All benchmark tests are performed in FEniCS [14] and/or RBniCS [7], whose licensing and the software version
are mentioned below.

• FEniCS

1. Website : https://fenicsproject.org/

2. Download and installation : https://fenicsproject.org/download/

Deliverable D5.2
95

6.4. Computer requirements

3. Licensing : The FEniCS Project is developed and maintained as a freely available, open-source
project by a global community of scientists and software developers. The project is developed
by the FEniCS Community, is governed by the FEniCS Steering Council and is overseen by the
FEniCS Advisory Board.

4. Version : 2019.1.0

• RBniCS

1. Website : https://mathlab.sissa.it/rbnics

2. Download and installation : https://gitlab.com/RBniCS/RBniCS/

3. Licensing : RBniCS is freely available under the GNU LGPL, version 3.

4. Version : 0.1.0

The mesh was created using Gmsh [15].

• Gmsh

1. Website : https://gmsh.info/

2. Download and installation : https://gmsh.info/#Download

3. Licensing : https://gmsh.info/#Licensing

4. Version : 4.0.0

For the post-processing of the results, the following visualization libraries are used.

• Paraview

1. Website : https://www.paraview.org/

2. Download and installation : https://www.paraview.org/download/

3. Licensing : https://www.paraview.org/paraview-license/

4. Version : 5.4.0

• Matplotlib

1. Website : https://matplotlib.org/

2. Download and installation : https://matplotlib.org/users/installing.html

3. Licensing : https://matplotlib.org/users/license.html

4. Version : 1.5.1

6.4. Computer requirements

The operating system used is Ubuntu 16.04.5 LTS and python version used is 3.5.2. Addi-
tionally, FEniCS is available on platforms Linux, Mac, Windows and also as docker image.
RBniCS is available additionally as docker image (https://hub.docker.com/r/rbnics/rbnics/), on
Google Colab (https://colab.research.google.com/notebooks/intro.ipynb) using Jupyter notebooks
(https://gitlab.com/RBniCS/RBniCS-jupyter) and on ARGOS, the Advanced Reduced Groupware On-
line Simulation platform (https://argos.sissa.it/tutorials). Gmsh runs on Windows, Mac OS X, Linux and most
Unix variants.

6.5. Numerical examples

In this chapter we provide results for the benchmark tests to verify the numerical implementations (Section
6.5.1) including the simulation for actual problem (Section 6.5.1.4) and test problem for reduced basis method
(Section 6.5.2).

Deliverable D5.2
96

6.5. Numerical examples

6.5.1. Benchmark tests

In this chapter we provide results for the benchmark tests to verify the numerical implementations. Python and
Gmsh codes that have been developed and used for this benchmark. The domain considered in this analysis
corresponds to a real furnace and is a polygon in the r − y plane with vertices (see Figure 6.2):

Dimension Value (m)
Vertices (0, 0), (7.05, 0),
(r, y) (7.05, 7.265), (5.3, 7.265),

(5.3, 4.065), (4.95, 4.065),
(4.95, 3.565), (4.6, 3.565),
(4.6, 2.965), (4.25, 2.965),
(4.25, 2.365), (0, 2.365)

rmax 7.05

ymax 7.265

The two dimensional domain considered in the analysis was divided into 30 triangular subdomains. The di-
vision of domain ω into the triangular subdomains verifies the assumption of affine parameter dependence.
The mesh considered is compatible with the triangular subdomains and it contains 8887 triangular elements
and 4608 vertices. The mesh condition number is also presented (see Figure 6.4). The decrease in condition
number of an element increases its distance from the set of degenerate elements. The condition number of an
element ranges from 1 to∞, with 1 being a perfectly shaped element.

Subdomains ωi of ω Mesh T of domain ω Mesh quality

Figure 6.4: Discretization of domain ω

We also assess quality, qe, of each element of mesh by the following formula (see [16]):

qe =
4
√

3A

l21 + l22 + l23
, (6.34)

where, A is the area of an triangular element, and l1,l2 and l3 are the lengths of each edge of the triangle. The
minimum quality over all elements was 0.25 and the average quality over all elements was 0.94.

Following material properties are considered for all benchmark cases presented here, unless otherwise stated:

Deliverable D5.2
97

6.5. Numerical examples

Material property Value
Thermal conductivity k = 10 W

mK

Convection coefficients hc,− = 2000 W
m2K

hc,f = 200 W
m2K

hc,out = 2000 W
m2K

Young’s modulus E = 5e9Pa

Poisson’s ratio ν = 0.2

Thermal expansion coefficient α = 10−6/◦K

Density of Molten metal ρm = 7460Kg
m3

Gravitation acceleration g = 10m
s2

We also introduce some definitions, which will be used in the subsequent sections.

• Hydrostatic stress σm :

σm =
1

3
Tr(σ) . (6.35)

• Deviatoric part of the stress tensor σd:

σd = σ − 1

3
Tr(σ)I = σ − σmI . (6.36)

• Von Mises effective stress σvm:

σvm =

√
3

2
σd : σd . (6.37)

6.5.1.1. Thermal model

We consider as analytical temperature, the known temperature,

Ta = C ′r2y, C ′ = 1K/m3 , (6.38)

and the corresponding data for the thermal model are calculated. Then, using the obtained data, the computed
temperature, solving (WT1) model, is compared with the known analytical temperature. It can be clearly
verified that ∂Ta∂r = 0 on the symmetry boundary, γs.

From thermal model (T1) following data can be derived to ensure that T is the strong solution to the problem
(T1).

The corresponding source term Q is given by,

Q(r, y) = −k∂
2Ta
∂r2

− k∂
2Ta
∂y2

− k

r

∂Ta
∂r

= −4C ′ky . (6.39)

Heat flux on γ+, that is q+, is given by,

q+(r, y) = −k∂Ta
∂r

nr − k
∂Ta
∂y

ny = −C ′kr2 . (6.40)

Deliverable D5.2
98

6.5. Numerical examples

The boundary temperatures Tf , Tout, T− are given by,

Tf =Ta +
k

hc,f
∇Ta · −→n = C ′r2y + C ′

k

hc,f
(2rynr + r2ny) , on γsf , (6.41a)

Tout =Ta +
k

hc,out
∇Ta · −→n = C ′r2y + C ′

2ryk

hc,out
, on γout , (6.41b)

T− =Ta +
k

hc,−
∇Ta · −→n = C ′r2y − C ′ r

2k

hc,−
, on γ− . (6.41c)

Therefore T a is the analytical solution of the thermal problem (T1) for the data Q, q+, Tf , Tout, T− given by
expressions (6.39)-(6.41c). The analytical temperature with the temperature computed using an discretized
space of polynomial of degree 3 is compared in Figure 6.5. For a more quantitative comparison, we computed
the relative error in H1

r -norm (equation (6.16)), that was 2.4022e − 11. We also assess p−convergence be-
havior and h−convergence behavior, using an discretized space of polynomial of degree 1, of the computed
temperature field with the analytical temperature field in Figure 6.6.

Computed
temperature

Analytical
temperature

Absolute error
in temperature

Figure 6.5: Benchmark tests for energy equation

Relative error p−convergence Relative error h−convergence

Figure 6.6: Convergence behavior for thermal model

6.5.1.2. Mechanical model

In this section, we consider that the body is at reference temperature i.e. thermal stresses are not present. We
postpone the discussion of considering thermal stresses to benchmark test for coupling.

Deliverable D5.2
99

6.5. Numerical examples

We consider a known displacement function

−→u a = C(ry2, r2y) , C = 1e− 4/m2 , (6.42)

to mechanical problem, without considering thermal stresses, along with corresponding body force term.
Clearly −→u a · −→n = 0 on γ− ∪ γs.

In order for −→u a to be a solution of the mechanical model (M1) with T = T0 the following data must be
considered:

The source term
−→
f 0 = [f0,r f0,y] is given by,

f0,r = −
(
∂σrr
∂r

+
∂σry
∂y

+
σrr − σθθ

r

)
= −

(
2EνCr

(1− 2ν)(1 + ν)
+

2ECr

(1 + ν)

)
, (6.43a)

f0,y = −
(
∂σry
∂r

+
∂σyy
∂y

+
σry
r

)
= −

(
4ECy

(1 + ν)
+

4EνCy

(1− 2ν)(1 + ν)

)
. (6.43b)

The boundary tractions are given by,

on γ+ : g+,r =
2ECry

(1 + ν)
, g+,y =

E

(1− 2ν)(1 + ν)

(
2νCy2 + (1− ν)Cr2

)
, (6.44a)

on γ− : uy = 0 , g−,r = −2ECry

(1 + ν)
, (6.44b)

on γsf : gsf,r =
E

(1− 2ν)(1 + ν)

(
Cy2 + νCr2

)
nr +

2ECry

(1 + ν)
ny , (6.44c)

gsf,y =
2ECry

(1 + ν)
nr +

E

(1− 2ν)(1 + ν)

(
2νCy2 + (1− ν)Cr2

)
ny , (6.44d)

on γout : gout,r =
E

(1− 2ν)(1 + ν)

(
Cy2 + νCr2

)
, gout,y =

2ECry

(1 + ν)
. (6.44e)

Thus, the−→u a is the displacement solution of mechanical model (M1) for the data given by expressions (6.43a)
- (6.44e) and T = T 0. The comparison between the known analytical displacement with computed displace-
ment is given in Figure 6.7. The comparison between the Von Mises stress (equation (6.37)) calculated from
analytical displacement and the Von Mises stress calculated from computed displacement is given in Figure
6.8. For a more quantitative comparison, we computed the relative error in U-norm (equation (6.23)), that
was 5.8030e− 13. We also assess p−convergence behavior and h−convergence behavior, using an discretized
space of polynomial of degree 1, of the computed displacement field with the analytical displacement field in
Figure 6.9.

Deliverable D5.2
100

6.5. Numerical examples

Computed
displacement

Analytical
displacement

Absolute error in displacement

Figure 6.7: Benchmark tests for mechanical model : Displacement

Computed Von
Mises stress

Analytical Von
Mises stress

Absolute error in Von mises
stress

Figure 6.8: Benchmark tests for mechanical model : Von Mises stress

Relative error p−convergence Relative error h−convergence

Figure 6.9: Convergence behavior in displacements for mechanical model

Deliverable D5.2
101

6.5. Numerical examples

6.5.1.3. Coupled model

We first compute the hydrostatic thermomechanical stress (equation (6.35)) when the domain is subjected to
combined mechanical and thermal effect. We assume the displacement function,

−→u a = C(ry2, r2y) , C = 1e− 4/m2 , (6.45)

and the temperature function,
Ta = C ′r2y , C ′ = 1K/m3 .

−→u a is the displacement solution of mechanical model (M1) for the data given by expressions (6.43a)- (6.44e)
and T = T 0 as indicated in Section 6.5.1.2. Ta is the solution of thermal model for the data given by expressions
(6.39)-(6.41c) as indicated in Section 6.5.1.1. From mechanical model (M1) following data can be derived.

The source term
−→
f 0 = [f0,r f0,y] is given by,

f0,r = −
(
∂σrr
∂r

+
∂σry
∂y

+
σrr − σθθ

r

)
= −

(
2EνCr

(1− 2ν)(1 + ν)
+

2ECr

(1 + ν)
− 2C ′ryEα

(1− 2ν)

)
, (6.46a)

f0,y = −
(
∂σry
∂r

+
∂σyy
∂y

+
σry
r

)
= −

(
4ECy

(1 + ν)
+

4EνCy

(1− 2ν)(1 + ν)
− C ′r2Eα

(1− 2ν)

)
. (6.46b)

The boundary tractions are given by,

on γ+ : g+,r =
2ECry

(1 + ν)
, g+,y =

E

(1− 2ν)(1 + ν)

(
2νCy2 + (1− ν)Cr2

)
− Eα

(1− 2ν)
(C ′r2y − T0) ,

(6.47a)

on γ− : uy = 0, g−,r = −2ECry

(1 + ν)
, (6.47b)

on γsf : gsf,r =

(
E

(1− 2ν)(1 + ν)
(Cy2 + νCr2)− Eα

(1− 2ν)
(C ′r2y − T0)

)
nr +

2ECry

(1 + ν)
ny , (6.47c)

gsf,y =
2ECry

(1 + ν)
nr +

(
E

(1− 2ν)(1 + ν)

(
2νCy2 + (1− ν)Cr2

)
− Eα

(1− 2ν)
(C ′r2y − T0)

)
ny ,

(6.47d)

on γout : gout,r =
E

(1− 2ν)(1 + ν)
(Cy2 + νCr2)− Eα

(1− 2ν)
(C ′r2y − T0) , gout,y =

2ECry

(1 + ν)
. (6.47e)

Firstly, we analyse the analytical solution of the thermomechanical model, in displacements and stresses, with
the values computed (see Figures 6.10, 6.11). Finally, notice that the difference between the hydrostatic stress
computed with the thermomechanical model and the one computed with the mechanical model should be equal
to the thermal part of the thermomechanical stress; this comparison is shown in Figure 6.12. For a more
quantitative comparison, we computed the relative error in U-norm (equation (6.23)), that was 7.3134e − 13.
We also assess p−convergence behavior and h−convergence behavior of the computed displacement field,
using an discretized space of polynomial of degree 1, with the analytical one in Figure 6.13.

Deliverable D5.2
102

6.5. Numerical examples

Analytical
displacement

Computed
displacement

Absolute error in displacement

Figure 6.10: Benchmark tests for coupling : Displacement

Computed Von
Mises stress

Analytical Von
Mises stress

Absolute error in Von mises
stress

Figure 6.11: Benchmark tests for coupling : Von Mises stress

Deliverable D5.2
103

6.5. Numerical examples

Difference in
hydrostatic stress

for the mechanical
and thermomechanical models

Analytical
part of

the thermal
stress

Absolute
error in

hydrostatic thermal
stress

Figure 6.12: Benchmark tests for coupling : Hydrostatic stress

Relative error p−convergence Relative error h−convergence

Figure 6.13: Convergence behavior in displacements for coupled model

6.5.1.4. Simulation for actual problem

We now present the computed temperature and the computed displacement profiles for the problem of blast
furnace hearth (see Figure 6.14). The geometry and the physical parameters are those introduced in Section
6.5.1. Besides, the following data were considered:

T0 = 298K , Q = 0 , q+ = 0 , Tf = 1773K , Tout = 313K , T− = 313K .

g+,r = g+,y = g−,r = gout,r = gout,y = 0 , f0,r = 0 , f0,y = 0 ,

on γsf : −→g sf = −ρm ∗ g ∗ (ymax − y) = −7460 ∗ 10 ∗ (7.265− y)−→n ,

on γs ∪ γ− : −→u · −→n = 0 .

In particular, −→g sf is the hydrostatic pressure exerted by the molten metal on the surface γsf .

Deliverable D5.2
104

6.5. Numerical examples

Temperature profile Displacement magnitude

Figure 6.14: Temperature and displacement profiles

6.5.2. Test problem for reduced basis method

We now perform the model order reduction for the actual problem presented in the section 6.5.1.4 using the
methodology described in the section 6.2.6. We introduce two important quantities in order to investigate the
efficiency of the reduced order model developed :

• The Speedup, that is the ratio of the time taken to solve the finite element system of equations to the time
taken to solve the reduced basis system of equations.

• The relative error, defined in the following way

εrel,Xh =
||Xh −Xrb

h ||
||Xh||

where Xh and Xrb
h are finite element solution and the corresponding reduced basis solution respectively.

|| · || is the relevant norm (|| · ||H1
r (ω) or || · ||U).

Analysis of the speedup and the relative error between the finite element solution and the reduced basis solution
in respective norms are given in figures 6.15, 6.16 and 6.17. The number of parameter tuples considered for
training, error analysis and speedup are given in Table 6.1. The range of parameters for training and testing,
and the values of the parameters related to the parametric domain are given in Table 6.2. The parameters were
generated randomly. The minimum admissible eigenvalue for reduced basis space was kept at 1e− 4.

System Training parameters Error analysis Speedup
Thermal system 500 10 10

Mechanical system 500 10 10
Coupling system 500 10 10

Table 6.1: Number of parameters for training, testing and speedup analysis

Deliverable D5.2
105

6.5. Numerical examples

Parameter Minimum value Maximum value Parametric domain
t0 2.3 2.4 2.365
t1 0.5 0.7 0.6
t2 0.5 0.7 0.6
t3 0.4 0.6 0.45
t4 3.05 3.35 3.2
D0 13.5 14.5 14.10
D1 8.3 8.7 8.30
D2 8.8 9.2 9.2
D3 9.8 10.2 9.9
D4 10.4 10.8 10.6
k 9.8 10.2 10
µ 1.9e9 2.5e9 2.08e9
λ 1.2e9 1.8e9 1.39e9
α 0.8e-6 1.2e-6 1e-6

Table 6.2: Ranges of parameters used for training, testing and speedup analysis, and values of the parameters
related to the parametric domain

The finite element solution and the reduced basis solution are compared by assessing the spatial distribution of
absolute error between the finite element solution and the reduced basis solution for the parametric domain (see
Table 6.2 and figures 6.18, 6.19, 6.20).

6.5.2.1. Thermal system

Speedup analysis Error analysis

Figure 6.15: Thermal system reduced basis analysis : temperature field

Deliverable D5.2
106

Bibliography

6.5.2.2. Mechanical system

Speedup analysis Error analysis

Figure 6.16: Mechanical system reduced basis analysis : displacement field

6.5.2.3. Coupling system

Speedup analysis Error analysis

Figure 6.17: Coupling system reduced basis analysis : displacement field

FEM solution RB solution Absolute error

Figure 6.18: FEM and RB solution for thermal system : temperature field

6..3. Hierarchy of thermal model

6..4. Hierarchy of mechanical model

Bibliography

[1] M. Gurtin, An Introduction to Continuum Mechanics. Academic Press, 1981.

Deliverable D5.2
107

Bibliography

FEM solution RB solution Absolute error

Figure 6.19: FEM and RB solution for mechanical system : displacement field

FEM solution RB solution Absolute error

Figure 6.20: FEM and RB solution for coupling system : displacement field

Energy conservation on the deformed configuration

Energy conservation on the reference configuration

Steady state heat transfer

Fourier’s law for anisotropic materials

Isotropic materials

Axisymmetric hypothesis

Axisymmetric heat conduction equation

[2] A. Bermúdez de Castro, “Continuum thermomechanics. progress in mathematical physics,” Meccanica,
vol. 41, pp. 697–698, 12 2006.

[3] H. Li, “Finite element analysis for the axisymmetric laplace operator on polygonal domains,” J. Compu-
tational Applied Mathematics, vol. 235, pp. 5155–5176, 07 2011.

Deliverable D5.2
108

Bibliography

Momentum conservation on the deformed configuration

Momentum conservation on the reference configuration

Steady state momentum balance

Model associated with elastic materials

Linearized model

Axisymmetric hypothesis

Axisymmetric momentum conservation equation

[4] I. Hlaváček, “Shape optimization of elastic axisymmetric bodies,” Aplikace matematiky, vol. 34, no. 3,
pp. 225–245, 1989. [Online]. Available: http://eudml.org/doc/15578

[5] I. Hlaváček, “Korn’s inequality uniform with respect to a class of axisymmetric bodies,” Aplikace Matem-
atiky, vol. 34, 01 1989.

[6] O. C. Zienkiewicz et. al., The Finite Element Method: Its Basis and Fundamentals, Sixth Edition, 6th ed.
Butterworth-Heinemann, May 2005.

[7] J. S. Hesthaven et. al., Certified Reduced Basis Methods for Parametrized Partial Differential Equations,
ser. SpringerBriefs in Mathematics. Springer International Publishing, 2015.

[8] D. B. P. Huynh et. al., “Reduced basis approximation and a posteriori error estimation for stress intensity
factors,” International Journal for Numerical Methods in Engineering, vol. 72, no. 10, pp. 1219–1259,
2007. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2090

[9] G. Rozza et. al., “Reduced basis approximation and a posteriori error estimation for affinely parametrized
elliptic coercive partial differential equations,” Archives of Computational Methods in Engineering,
vol. 15, pp. 1–47, 09 2007.

[10] K. C. Hoang et. al., “Fast and accurate two-field reduced basis approximation for parametrized
thermoelasticity problems,” Finite Elements in Analysis and Design, vol. 141, pp. 96 – 118, 2018.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168874X17304870

[11] J. S. Hesthaven et. al., “Non-intrusive reduced order modeling of nonlinear problems using neural net-
works,” Journal of Computational Physics, vol. 363, 02 2018.

[12] W. H. A. Schilders et. al., A Novel Approach to Model Order Reduction for Coupled Multiphysics
Problems. Cham: Springer International Publishing, 2014, pp. 1–49. [Online]. Available:
https://doi.org/10.1007/978-3-319-02090-7 1

[13] S. Zhang et. al., “Reduced order variational multiscale enrichment method for thermo-mechanical prob-
lems,” Computational Mechanics, 02 2017.

[14] M. S. Alnæs et.al., “The fenics project version 1.5,” Archive of Numerical Software, vol. 3, no. 100, 2015.

[15] C. Geuzaine et. al., “Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing

Deliverable D5.2
109

http://eudml.org/doc/15578
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2090
http://www.sciencedirect.com/science/article/pii/S0168874X17304870
https://doi.org/10.1007/978-3-319-02090-7_1

Bibliography

facilities,” International Journal for Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309–1331,
2009. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2579

[16] S. Vázquez-Fernández et. al., “Mathematical modelling and numerical simulation of the heat transfer in
a trough of a blast furnace,” International Journal of Thermal Sciences, vol. 137, pp. 365 – 374, 2019.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S1290072917320434

Deliverable D5.2
110

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2579
http://www.sciencedirect.com/science/article/pii/S1290072917320434

Part III.

Optimization methods

Deliverable D5.2
111

7. A benchmark for atmospheric tomography

Bernadett Stadler1, Ronny Ramlau1, Andreas Obereder2

1Industrial Mathematics Institute, Johannes Kepler Universität Linz

2MathConsult

Abstract. The new generation of ground-based extremely large telescopes requires highly efficient algorithms
to achieve an excellent image quality in a large field of view. These systems rely on adaptive optics (AO),
where one aims to compensate the rapidly changing optical distortions in the atmosphere in real-time . Many
of systems require the reconstruction of the turbulence layers, which is called atmospheric tomography. Mathe-
matically, this problem is ill-posed, due to the small angle of separation. The dimension of the problem depends
on the telescope size and has increased in the last years. Altogether, efficient solution methods are of great in-
terest. Within this benchmark case we will use the standard, however, not most efficient method, called Matrix
Vector Multiplication, to deal with the problem of atmospheric tomography.

Keywords: Inverse Problems, Adaptive Optics, Atmospheric Tomography, Matrix-Vector-Multiplication, Ex-
tremely Large Telescope

7.1. Introduction

The new generation of planned earthbound Extremely Large Telescopes (ELT) require highly efficient algo-
rithms to achieve an excellent image quality in a large field of view. These systems rely on technique called
Adaptive Optics (AO) with the task to compensate in real-time the rapidly changing optical distortions caused
by atmospheric turbulences. To achieve such a correction, the deformations of optical wavefronts emitted
by natural or artificial guide stars are measured via wavefront sensors and, subsequently, corrected using de-
formable mirrors.

Many of those systems require the reconstruction of the turbulence profile in the atmosphere, which is called
atmospheric tomography. Mathematically, this problem is ill-posed, i.e., there is an unstable relation between
measurement data and the solution. Hence, regularization techniques must be applied. A common way of
dealing with this problem is the Bayesian formulation, where the statistical information regarding the turbulence
model and sensor noise can be incorporated. The dimension of the atmospheric tomography problem depends
on the number of subapertures of the used wavefront sensors and on the number of degrees of freedom of the
correcting mirrors, which are in general higher for bigger telescopes. Moreover, the solution has to be computed
in real-time. Altogether, efficient solution methods are of great interest for this kind of problems.

So far, the standard method for atmospheric tomography is the matrix-vector-multiplication (MVM). The com-
putational costs of the MVM scales at O(n2), where n is the dimension of the AO system. These dimension is
increasing drastically in the next generation of ground-based telescopes, as e.g., the Extremely Large Telescope.

Within this work, the MVM method will serve as the benchmark case. Before the benchmark method is
described in detail in Section 7.2.3, we first introduce the mathematical formulations of guide stars, turbulence
statistics, deformable mirrors, wavefront sensors and the atmospheric tomography problem in the upcoming
section. For more details about AO we refer to [1]. In Section 7.3 the implementation of the benchmark
method is described, including programming language and used libraries. Section 7.4 provides information
about computer requirements, the compiler and the build process. The last section shows a numerical example
with the input physical parameter setting and the output numerical result.

Deliverable D5.2
112

7.2. Mathematical formulation

7.2. Mathematical formulation

In this section, we describe the mathematical models used in the context of adaptive optics for, e.g., guide
stars, wavefront sensors or deformable mirrors. Further, we show the problem formulation of atmospheric
tomography and a possible solution method called MVM.

7.2.1. Adaptive optics

7.2.1.1. Guide stars

Guide stars (GS) are either natural stars up in the sky near the object of interest or generated by a laser beam.

Natural Guide Star
A natural guide star (NGS) is a bright star that serves as a reference point for the WFS to detect atmospheric
distortions. The star is modelled as a point source at a height of infinity. Assuming the layered atmospheric
model, the wavefront aberrations in the direction θ of a NGS are given by

ϕθ(x) = (PNGSθ φ)(x) :=
L∑
`=1

φl(x+ θh`), (7.1)

where φ` is the turbulent layer at altitude hl for ` = 1, ..., L. We call PNGSθ the geometric propagation operator
in the direction of the NGS.

Within our benchmark case we assume that the photon noise from the NGS, that affects the WFS measurements,
is modeled by a Gaussian random variable with zero mean and covariance matrix Cη. The noise is identically
distributed in each subaperture and the x- and y-measurements noise is uncorrelated. Thus, the covariance
matrix can be defined by

Cη = σ2I, (7.2)

where σ2 is the noise variance of a single measurement, which is given by

σ2 =
1

nphotons
, (7.3)

where nphotons is the number of photons per subaperture.

Laser Guide Star
For a laser guide star (LGS) the model is slightly more complicated than for NGS. In particular, two important
effects are taken into account in our benchmark case.

In contrast to the infinite height that is assumed for a NGS, the LGS is considered to be a fixed point at a finite
height H . Due to the finite altitude, the light detected by the telescope passes through a cone-like volume in
the atmosphere (see Figure 7.1). This behaviour is referred to as the cone effect.

Deliverable D5.2
113

7.2. Mathematical formulation

Figure 7.1: Cone effect

Assuming a layered model of the atmosphere, as for the NGS case, the incoming wavefront aberrations in the
direction θ of a LGS are given by

ϕθ(x) = (PLGSθ φ)(x) :=
L∑
`=1

φl((1−
h`
H

)x+ θh`), (7.4)

where PLGSθ is called the geometric propagation operator in the direction of the LGS.

For a LGS the sodium layer thickness has to be taken into account for modelling the photon noise. As the
sodium layer has a certain width, the scattering of the laser beam happens in a vertical stripe, instead of in a
single point. This stripe is observed as an elongated spot by the charge-coupled device (CCD) detector of the
WFS. Thus, this effect is called spot elongation.

The vertical density profile of the laser beam scatter is modelled by a Gaussian random variable with mean H
and a full width at half maximum (FWHM) parameter, which is defined by

FWHM = 2
√

2ln(2)σ. (7.5)

Further, we define the laser launch positions as (xLL1 , xLL2) and the midpoint of a subaperture Ωij by

x̄i =
xi + xi+1

2
, (7.6)

for 0 ≤ i < ns where the xi are given by (7.19).

The elongation vector in a subaperture Ωij is given by

βij = (βij,1, βij,2) =
FWHM

H2
((x̄i, x̄j)− (xLL1 , xLL2)). (7.7)

The spot elongated noise covariance matrix in a subaperture is given by

Cij = σ2(I +
α2
η

f2
)

(
β2
ij,1 βij,1βij,2

βij,1βij,2 β2
ij,2

)
, (7.8)

where σ is defined as in (7.3), f is the FWHM of the non-elongated spot and αη is a fine-tuning parameter to

Deliverable D5.2
114

7.2. Mathematical formulation

cope with other sources of noise (e.g. read out noise).

Summarized, the noise model for the WFS associated to an LGS is given by a Gaussian random variable with
zero mean and covariance matrix

Cη = diag(Cij), (7.9)

with 0 ≤ i, j < ns for an active subaperture Ωij .

7.2.1.2. Operating modes

Depending on the number of NGS and LGS the AO systems operates in different modes, which are listed in
the following subsections.

Single Conjugate AO
If the object of interest, e.g., a star or a galaxy, is located near a bright NGS, the classical AO system Single
Conjugate AO (SCAO) is used. In a SCAO system the wavefront is reconstructed using one WFS, that
measures the data, and one DM, where the shape is chosen according to the reconstruction. One issue with
SCAO systems is that the further away the object of interest is from the NGS, the worse is the correction of the
wavefront.

Laser Tomography AO
If no NGS is available in the vicinity of the object of interest, the usage of an SCAO system is not possible.
The idea is to generate LGS to obtain a good correction. This LGS is combined with at least one NGS to
correct for the low order modes, which are not available using only LGS. In the general, a combination of
several LGS and NGS is possible.

Figure 7.2: Principle of LTAO Figure 7.3: Principle of MOAO

Within the framework of a laser tomography AO (LTAO) GLGS and GNGS are used in combination with
a single mirror to reconstruct the wavefront. The correction is performed through two steps. The first step
is called atmospheric tomography, where the turbulent layers are reconstructed from sensor measurements.
In the second step, the shape of the DM is chosen according to the projection of the wavefront through the
reconstructed layers in the direction of interest.

Deliverable D5.2
115

7.2. Mathematical formulation

Multi Object AO
In contrast to LTAO multi object AO (MOAO) corrects for multiple directions of interest, simultaneously, by
using several mirrors. Each mirror corrects for a specific direction. As in the LTAO case a combination of NGS
and LGS is used for reconstructing the layers.

Multi Conjugate AO
As in MOAO, a Multi Conjugate AO (MCAO) system corrects for multiple directions, however, with the aim
to achieve a uniformly optimal correction over the whole field of view and not into specific directions. For that
purpose, several DMs are used conjugated to different heights in the atmosphere.

7.2.1.3. Turbulence statistic in the atmosphere

The main source of distortions of the wavefront are atmospheric turbulences, which emerge from irregular
mixing of cold an hot air affected by the sun and wind. Due to these irregularities the refractive index of air
is inhomogeneous. This leads to a distorted wavefront arriving at the telescope pupil. Since these turbulence
effects are not predictable, we model the turbulent layers as a Gaussian random variable with zero mean and
covariance matrix Cφ.

Each layer ` = 1, ..., L is statistically independent, thus, the layers’ covariance matrix Cφ = diag(C1, ..., CL).
Based on the Karman turbulence model [2] these sub-matrices are given by

C` = F−1φ`F , for ` = 1, ..., L. (7.10)

The operator F is the Fourier transform and φ` is the spectral density of the turbulent layer given by

φ`(κ) :=
0.023r

−5/3
0 C2

n(h`)

4π(|κ|2 + |κ0|2)11/6
, κ0 < |κ| < 2πl−1

0 , κ0 = 2πL−1
0 . (7.11)

7.2.1.4. Deformable mirror

A deformable mirror (DM) typically consists of a thin surface to reflect light and a set of actuators that drive
the mirror. Within this benchmark case we assume the simple model of a bilinear DM. The shape of a bilinear
DM is described using a piecewise continuous bilinear function a.

We define the domain on which the DM operates, also called actuator grid, by

Ω := [−D/2, D/2]2, (7.12)

where D is the telescope diameter. Further, we denote by n2
a the number of actuators or nodal points

of the piecewise bilinear function and assume that they are arranged in a rectangular grid with spacing
d := D/(na − 1). Due to the circular shape of the telescope, not all of these actuators need to be active.

The actuator positions are given by (xi, xj) for 0 ≤ i, j ≤ na, where

xi := −D/2 + i · d. (7.13)

In relation to this, we define the square sub-domains of Ω by

Ωij := [xi, xi+1]× [xj , xj+1]. (7.14)

Deliverable D5.2
116

7.2. Mathematical formulation

To each subdomain we associate a bilinear function defined on [0, 1]2

bij(x, y) = aij(1− x− y + xy) + ai,j+1(x− xy) + ai+1,j(y − xy) + ai+1,j+1xy, (7.15)

where the values aij are called actuator commands.

In the fitting step, mirror shapes are fit to the reconstructed atmosphere. This is different for each AO system.

For an SCAO system, the reconstructed layer is located at the altitude of the DM, hence, the grid points of the
reconstructed layer are aligned with the mirror nodal values and nothing has to be done.

For a LTAO system, the mirror is optimized towards a certain direction of interest θ1. Thus, the fitting step is
defined by projecting through the reconstructed layers towards θ1

a1 = [PNGSθ1,1 · · · PNGSθ1,L]

φ1
...
φL

 , (7.16)

where PNGSθ1,`
is a bilinear interpolation on layer ` = 1, ..., L towards the direction θ1.

The difference to MOAO is that we are optimizing towards M directions of interest θ1, ..., θM , instead of only
one, leading to a1

...
aM

 =

P
NGS
θ1,1

· · · PNGSθ1,L
...

...
PNGSθM ,1

· · · PNGSθM ,L

φ1

...
φL

 . (7.17)

For a MCAO system, the fitting operator is more complex, since M mirrors are aligned at various altitudes to
obtain a good correction over a wide field of view. For the sake of simplicity we omit this case here.

7.2.1.5. Wavefront sensor

A wavefront sensor (WFS) measures the wavefront aberrations indirectly. The most common WFS is called
Shack-Hartmann WFS [3], which utilizes an array of little lenses, each focused on a CCD detector plane. The
vertical and horizontal shifts of the focal points determine the average slope of the wavefront over the area of
the lens, known as subaperture. Similar to the actuator grid in (7.12) we define the subaperture grid for n2

s

subapertures by
Ω := [−D/2, D/2]2, (7.18)

and the points with equidistant spacing inside the grid by

(xi, xj) : 0 ≤ i, j ≤ ns, where xi := −D/2 + i · d. (7.19)

A subaperture is then defined as an open square sub-domain of Ω

Ωij := (xi, xi+1)× (xj , xj+1). (7.20)

Deliverable D5.2
117

7.2. Mathematical formulation

Figure 7.4: Active subapertures

The Shack-Hartmann measurement vector is defined by s := (sx, sy). The vectors sx and sy are a concatenation
of values sxij and syij for (i, j) a set of indices that belongs to an active subaperture Ωij . The subapertures where
no measurements are available are excluded from s. To the above defined relation between measurements s
and wavefront aberrations ϕ we associate a Shack-Hartmann WFS operator which we denote by Γ = (Γx,Γy),
where Γx and Γy determine the slopes in x- and y-direction, respectively

s =

(
sx

sy

)
=

(
Γxϕ
Γyϕ

)
= Γϕ. (7.21)

The incoming wavefront aberration is approximated by a continuous piecewise bilinear function ϕ with nodal
values ϕij at points defined by Equation (7.19)

sxij '
(ϕi,j+1 − ϕi,j) + (ϕi+1,j+1 − ϕi+1,j)

2
, (7.22)

syij '
(ϕi+1,j − ϕi,j) + (ϕi+1,j+1 − ϕi,j+1)

2
. (7.23)

7.2.2. Problem formulation - atmospheric tomography

Atmospheric Tomography is the fundamental problem in many AO systems used in the new generation of ex-
tremely large telescopes. Assuming a layered model of the atmosphere, the goal of the atmospheric tomography
problem is to reconstruct the turbulent layers from the wavefront sensor measurements.

Deliverable D5.2
118

7.2. Mathematical formulation

Figure 7.5: Atmospheric Tomography

The atmospheric tomography problem is defined by

s = (sg)
G
g=1 = Aφ, (7.24)

where φ = (φ1, ..., φL) denote the L turbulent layers, s the sensor measurements and A is the tomographic
operator. This operator is a concatenation of a Shack-Hartmann operator Γ, as described in Equations (7.21)
and a geometric propagation operator P , defined by (7.1) and (7.4), in the direction of the guide star. This leads
to the following equivalent formulation of Equation (7.24)

sg = ΓgPgφ for g = 1, ..., G. (7.25)

A common way of dealing with the problem of atmospheric tomography is the Bayesian framework [4]. The
advantage here is that it allows to incorporate the statistics of turbulence and noise. Within this framework
we consider S and φ to be random variables corresponding to the vectors of measurements and turbulence
layers, respectively. Further, we assume the presence of noise and model that via a noise random variable η.
Altogether, leading to a re-formulation of Equation (7.24)

S = Aφ+ η. (7.26)

The optimal solution of Equation (7.26) is given by the maximum a-posteriori estimate (MAP), which is ob-
tained by solving the linear system of equations

(ATC−1
η A+ C−1

φ)φ = ATC−1
η s, (7.27)

where C−1
φ and C−1

η are the inverse covariance matrices of layers φ and noise η.
This problem is ill-posed, due to the small angle of separation. The size of the matrix A depends on the number
of subapertures, which is in general higher for bigger telescopes and has increased in the last years. Moreover,
the solution has to be computed in real-time. Altogether, efficient solution methods are of great interest for
such problems. The standard way of solving this equation, however, not the most efficient one, is called Matrix
Vector Multiplication (MVM). This method will serve as benchmark method throughout this document and is
described in the following subsection.

Deliverable D5.2
119

7.3. Implementation

7.2.3. Solution method - Matrix Vector Multiplication

The standard approach to solve Equation (7.27) is called Matrix Vector Multiplication (MVM) [5], where the
inverse of the discretized left-hand side matrix is computed explicitly by

R := (ATC−1
η A+ C−1

φ)−1ATC−1
η . (7.28)

and then multiplied with the sensor measurements. Typically, a mirror fitting operator F (as defined in Section
7.2.1.4) is combined with the atmospheric reconstruction, mapping sensor measurements onto mirror shapes

a = (FR)s. (7.29)

The calculation of FR is often referred to as soft real-time, since the re-computation has to be done whenever
the noise level, which changes the entries of Cη, or the turbulence parameters, that effect Cφ, change. In
contrast, the multiplication with the vector of sensor measurements s, which is done at approximately 500 -
1000 Hz, is called hard real-time.

The algorithm described above can be summarized as follows:

1. Compute the tomographic operator A as a concatenation of

• The Shack-Hartmann operator Γ which is given by equations (7.21), (7.22) and (7.23).

• The geometric propagation operator P which is defined by (7.4) for LGS and (7.1) for NGS.

2. Set up the inverse covariance matrix of noise C−1
η by using Equation (7.2) and Equation (7.9) for NGS

and LGS, respectively.

3. Set up the inverse covariance matrix of layers C−1
φ by Equation (7.10) and Equation (7.11).

4. Calculate the reconstruction operator

R := (ATC−1
η A+ C−1

φ)−1ATC−1
η . (7.30)

Use Cholesky Decomposition for inverting the matrix (ATC−1
η A+ C−1

φ).

5. Set up the fitting operator F depending on the operating mode of the telescope (see Section 7.2.1.4).

6. Multiply R by the fitting operator F to obtain the control matrix (FR).

7. Multiply the vector of sensor measurement s by the control matrix to obtain the mirror commands

a = (FR)s. (7.31)

7.3. Implementation

We implemented the benchmark algorithm in C++ using common libraries for matrix and vector operations,
Cholesky decomposition and Fourier transformation. If you want to set-up an environment for C++, you just
need to have a text editor to write your program and a C++ compiler to compile your source code into the final
executable program. However, we highly recommend to use an integrated development environment (IDE) for
C++, as Visual Studio, Eclipse or CLion, instead to profit from an easier way to debug and re-factor your code.

We simply followed the algorithm described in Section 7.2.3 step by step to implement the MVM in C++. First,
we set up the required matrices A,C−1

η , C−1
φ and F as described in the introduction. Afterwards, we computed

the FR matrix and, in a last step, we multiplied these matrix by the vector of sensor measurements s.

The Basic Linear Algebra Subprograms (BLAS) library provides routines for performing basic vector and
matrix operations. The Linear Algebra Package (LAPACK) is a C++ library that provides routines for solving
systems of linear equations, least-squares solutions of linear systems of equations, eigenvalue problems

Deliverable D5.2
120

7.4. Computer requirements

and singular value problems. Moreover, matrix factorizations, such as LU or Cholesky decomposition,
are provided. BLAS and LAPACK are free libraries that can be downloaded on the following website:
http://www.netlib.org/lapack/ and http://www.netlib.org/lapack/. For the benchmark case we use BLAS for
matrix- and vector operations and LAPACK to perform Cholesky decomposition for inverting the matrix in
Step 4 of the MVM.

Fastest Fourier Transform in the West (FFTW) is a C library for computing the discrete Fourier trans-
form in one or more dimensions. It is a free software and can be downloaded on the FFTW website
(http://www.fftw.org/download.html). Within the benchmark case we use this library to perform the Fourier
transform and inverse Fourier transform when computing the layers covariance matrixCφ with Equation (7.10).

7.4. Computer requirements

One of the most common C++ compiler is called GNU Compiler Collection (GCC) and can be simply down-
loaded and installed from the GCC website (https://gcc.gnu.org/). GCC is just our recommendation, you can
use any C++ compiler you prefer.

Beside GCC, we use CMake, which manages the build process in an operating system in a compiler-
independent manner. A simple configuration file called CMakeLists.txt, placed inside the source directory,
is used to generate standard build files (e.g. Makefiles). The most basic CMakeLists.txt without using any
libraries in the code and any further subdirectories looks as follows

cmake_minimum_required (VERSION 2.6)
project(MVM)
SET(CMAKE_C_COMPILER gcc)
SET(CMAKE_CXX_COMPILER g++)
add_executable(MVM mvm.cpp)

Including the libraries required for the benchmark case the CMakeLists.txt changes to

cmake_minimum_required (VERSION 2.6)
project(MVM)
find_package(BLAS)
find_package(LAPACK)
if(LAPACK_FOUND AND BLAS_FOUND)
set(lapackblas_libraries ${BLAS_LIBRARIES} ${LAPACK_LIBRARIES})
endif()
add_executable(MVM mvm.cpp)
target_link_libraries(MVM ${BLAS_LIBRARIES} ${LAPACK_LIBRARIES} fftw3)

7.5. Numerical example

The numerical example we consider within our benchmark case uses LTAO (see 7.2.1.2 for details) for per-
forming atmospheric tomography. Utilizing the input parameters, which are listed in the following subsection,
we can use the algorithm described in Section 7.2.3 to deal with the problem of atmospheric tomography and,
finally, obtain as output the actuator commands to control the deformable mirror.

7.5.1. Input parameters

To obtain the actuator and subaperture mask Iact and Isub, respectively, we can use the provided data files
I act.txt and I sub.txt. These two files contain 0 at positions where the actuator or subaperture is inactive and 1
for active actuators or subapertures. Both matrices are stored as an 1D-array inside the data files. The relation

Deliverable D5.2
121

Bibliography

between an index k in the 1d-array and entries (i, j) of the corresponding n× n matrix is given by

k = i · n+ j.

Operating mode LTAO
Telescope diameter D 42 m
Type of WFS Shack-Hartmann
Number of WFS 9
Number of layers L 9
Layer heights h` [0, 140, 281, 562, 1125, 2250, 4500, 9000, 18000]
Layer strength c2

n [0.5224, 0.0260, 0.0444, 0.1160, 0.0989, 0.0295, 0.0598, 0.0430, 0.0600]
Discretization spacing on layer δ` [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1]
Number of subapertures ns 84 x 84 = 7056
Number of actuators na 85 x 85 = 7225
Number of photons nphotons 100
Number of LGS GLGS 6
LGS positions (3.75, 0), (3.75/2, 3.75·

√
3/2), (-3.75/2, 3.75 ·

√
3/2), (-3.75, 0),

(-3.75/2, -3.75·
√

3/2), (3.75/2, -3.75 ·
√

3/2)
LGS wavelength λLGS 589 nm
LGS FWHM 11.4 km
LGS height H 90 km
Laser launch positions (xLLi , xLLj) (16.26, -16.26), (16.26, 16.26), (-16.26, 16.26), (-16.26, 16.26),

(-16.26, -16.26), (16.26, -16.26)
Number of NGS GNGS 3
NGS positions (-5, 0), (5/2, 5·

√
3/2), (5/2, -5 ·

√
3/2)

NGS wavelength λNGS 500 nm
FWHM of non-elongated spot f 1.1
Outer scale L0 25 m
Fine-tuning parameter αη 0.4
Fried parameter r0 0.129
Number of measurements nmeas 84 · 84 · 2 · 9 = 127008

Sensor measurements s [1, ..., 1] ∈ R127008

If for a parameter in the table above no unit is specified, the SI-Unit is meant.

Based on these input parameters we can start with the algorithm described in Section 7.2.3. First, we set up
the required matrices A,Cφ and Cη. Then we use the libraries described in Section 7.3 to perform matrix and
vector operations and Cholesky Decomposition.

7.5.2. Ouput - DM commands

The output of the MVM algorithm are the mirror commands, with whom the deformable mirror can be adjusted
such that atmospheric distortions are corrected. For our specific benchmark case the resulting DM commands
are stored in an array of size 85 × 85, thus, we omitted to put the output inside this document and provided a
data file output.txt where all DM commands are listed.

Bibliography

[1] F. Roddier, “Adaptive optics in astronomy,” Cambridge, U.K. ; New York: Cambridge University Press,
1999.

Deliverable D5.2
122

Bibliography

[2] T. von Karman, “Mechanische Ähnlichkeit und Turbulenz,” International Congress of Applied Mechanics,
1930.

[3] J. Primot, “Theoretical description of Shack–Hartmann wave-front sensor,” Optics Communications
222(1):81–92, 2003.

[4] T. Fusco, J.-M. Conan, G. Rousset, L. Mugnier, and V. Michau, “Optimal wavefront reconstruction strate-
gies for multi conjugate adaptive optics,” J. Opt. Soc. Am. A 18(10):2527–2538, 2001.

[5] I. Foppiano, E. Diolaiti, and P. Ciliegi, “Maory adaptive optics real-time computer user requirements,”
Tech. Rep., 2018.

Deliverable D5.2
123

8. Acceleration of Sinkhorn Algorithm using ε scaling with
applications to the Reflector Problem

Jean-David Benamou1, Guillaume Chazareix1, Wilbert Ijzerman2, Giorgi Rukhaia1

1Institut National de Recherche en Informatique et en Automatique
2Signify

Abstract. FreeForm Optics is the branch of Optics concerned with the design of non-conventional asymmetric
refractive and reflective optical elements or systems of such elements. This research is important to improve
the energy efficiency of lighting devices and reduce light pollution (for example of street lighting). A classic
application of FreeForm Optics (amongst many) is the irradiance tailoring problem: design an optical system
transferring a given light source emittance (e.g a car headlight bulb) to a prescribed irregular target irradiance
(e.g. the angular far-field distribution of projected light). At the industrial level, FreeForm Optics design has
remained so far largely heuristic.
On the academic side, two classes (collimated or point source illuminance) of idealized tailoring irradiance
problems can be exactly modeled and solved using Optimal Transport theory. Optimal Transport defines a
unique map or a coupling between prescribed distributions representing given illuminance and irradiance. This
map can then be used to construct the optical element shape. Recent advances in Optimal Transport numerical
solvers allow tackling systems described by millions of degrees of freedom. This offers a sound mathematical
and numerical background to FreeForm Optics.
There are several different approaches for finding numerical solutions of Optimal Trasport problems, varying in
efficiency, accuracy, and complexity. This work concentrates on the Sinkhorn algorithm. The main advantages
of the Sinkhorn algorithm are its simple structure of implementation, involving only simple basic linear algebra
operations, and it’s fastness both from the mathematical foundation and from a wide selection of fast linear
algebra libraries. Also, this algorithm can be drastically speeded up using model hierarchy techniques such as
discretization and regularization parameter scaling.

Keywords: Reflector Problem, FreeForm Optics, Optimal Transport, Entropic Regularization, Sinkhorn Algo-
rithm.

8.1. Introduction

A light source, also called “illuminance”, is sufficiently small compared to the reflecting surface so that it
can be regarded as a point in space. It can therefore be modelled as a probability distribution on the sphere,
it will be denoted µ in this paper. The light hits a perfect mirror and we are also given a desired target light
distribution, the “illumination” in the far field. From the far field the reflecting surface can be regarded as a
point and the illumination again modelled as a probability distribution, denoted ν, on the sphere. Total light
conservation is assumed. The reflector problem is to determine the shape of the mirror which produces the
specular reflection from the source to the target distribution. This can be interpreted as the inverse problem of
generating some illumination given an illuminance and a reflector (see figure 8.1).

8.1.1. Optimal Transport model

This problem has an elegant mathematical modelization and solution based on the optimal transportation (OT)
theory due to [1] and [2]. We briefly recall the main result as presented in [2]. In its Kantorovich primal and
dual form (see [3]) :

Theorem 4 (Kantorovich duality). Given two compact manifoldX and Y endowed with a continuous, bounded

Deliverable D5.2
124

8.1. Introduction

htdp

Figure 8.1: Reflector problem from Point source O to Far Field.

from below cost function c : X ×X → R and two borel probability measures (µ, ν) ∈ P(X)× P(Y). Then,
Kantorovich problem in primal and dual forms (8.1) has solutions.

OT (µ, ν) := min
γ∈Π(µ,ν)

〈c, γ〉X×Y = max
f,g∈C

〈f, µ〉X + 〈g, ν〉Y (8.1)

with respectively primal :

Π(µ, ν) := {γ ∈ P(X × Y), 〈1X , γ〉Y = ν 〈1Y , γ〉X = µ},

and dual :
C = {(f, g) ∈ C(X)× C(Y), f ⊕ g ≤ c},

constraints sets

The notation 〈f, α〉Ω stands for the duality product
∫

Ω f dα between bounded continuous functions f ∈ C(Ω)
and probability measures α ∈ P(Ω), {f ⊕ g}(x, y) = f(x) + g(y) is the direct sum and µ⊗ ν ∈ P(X × Y)
the tensor product. Finally 1Ω is the characteristic function, i.e. a constant 1 on Ω.

Under suitable hypothesis on c (as they are technical and satisfied for the costs in this paper, we skip this part),
the OT problem is well posed and the the optimal transference plan γ is concentrated on a graph of the OT map
y = T (x) implicitely defined by the saturation of the dual constraint :

f(x) + g(T (x)) = c(x, T (x)), µ a.e. (8.2)

The pair (f, g) are called the Kantorovich potentials and is unique up to an additive constant .

By construction T is a measure preserving map characterizing the transport. The measure preserving property
is usually denoted ν = T#µ (T pushes forward µ to ν). The pushforward of µ is the measure defined as

ν(A) = T#µ(A) = µ(T−1(A)) for all ν measurable subset A (8.3)

Remark 1 (Lp Wasserstein metric). For complete separable metric space X and Lp costs c := 1/p dp(x, y),

Deliverable D5.2
125

8.1. Introduction

this OT problems defines a separable metric on the set of probability measures with finite second moments: the
“Wasserstein” distance, which is given by W p

p (µ, ν) := OT (µ, ν).

This metric metrizes weak convergence of measures is a fundamential tool in image processing (see [4]).

In [2], Wang shows that the point source reflector model can be translated to an OT problem. More precisely,
he proved the following theorem :

Theorem 5. Let S0 ∈ Sd−1 and S∞ ∈ Sd−1 be connected domains in northern and southern hemispheres
respectively, µ and ν which represent the given illuminance and illumination probability distributions. Then
theorem 4 applies to the cost function

c(x, y) = − log(1− x · y). (8.4)

A transport map T satisfying (8.2) exists and the solution of the corresponding OT problem can be used to build
the desired reflector.

The construction of the reflector can be summarized as follows : Taking the exponential of the dual constraints
and the saturation property (8.2) we get

e−g(T (x))

1− x · T (x)
= ef(x) ≤ e−g(y)

1− x · y , µ⊗ ν a.e. (8.5)

We now define in Rd a family of parabolic reflectors with axis y ∈ S∞ : x ∈ S0 → Py(x) :=
e−g(y)

1− x · y . And

directly infer that the reflector shape parameterized over the directions in S0 and given as :

R = {xef(x)|x ∈ S0}. (8.6)

Under this choice the map x→ T (x) can be interpreted as the specular reflection of an optical ray atR(x) onto
a parabola of axis T (x) while the illumination and illuminance constraints are enforced by (8.3).

8.1.2. Entropic Regularization of Optimal Transport

Entropic regularization has been introduced for OT computations in [5] (see [4] for a comprehensive review).
The entropic regularization of the Kantorovich problem (4) is based on the following KullBack-Leibler diver-
gence or “relative entropy” (KL) penalization :

OTε(µ, ν) := minγε∈Π(µ,ν)〈c, γε〉X×Y + ε KL(γε |µ⊗ ν) =

maxfε,gε〈fε, µ〉X + 〈gε, ν〉Y − ε 〈exp(1
ε (fε ⊕ gε − c))− 1, µ⊗ ν〉X×Y

(8.7)

where ε > 0 is a small “temperature” parameter (see [6] for a Statistical Physics interpretation of this problem
due to Schroedinger) and

KL(γ |µ⊗ ν) :=

∫
X×Y

log(
dγ

dµ⊗ dν) dγ if γ is absolutely continuous w.r.t to µ⊗ ν and +∞ else.

The primal-dual optimality condition is given by

γε = exp(
1

ε
(fε ⊕ gε − c))µ⊗ ν. (8.8)

The optimal entropic plan is therefore the scaling by the Kantorovich potentials of a fixed Kernel exp(−1
ε c).

Deliverable D5.2
126

8.1. Introduction

Remark 2. Of course, altering the desired target functional (4) results in altered solution and thereof γε is not
the exact transport plan that we are looking for. It is diffuse, i.e. not concentrated on a map, and ε can be
interpreted as a bandwidth under which the transport is blurred.

Although, this entropic plan γε converges to γ, the minimizer of (4), when ε goes to 0.(see [4])

8.1.3. Sinkhorn Algorithm for Regularized Optimal Transport

Numerical solutions are produced using the discretization of this problem, i.e. replacing (X, Y , c , µ, ν) by
(XN , YN , cN , µN νN) in the following way:

µN =
N∑
i=1

piδxi , νN =
N∑
j=1

qjδyj , where
N∑
i=1

pi =
N∑
j=1

qj = 1. (8.9)

Of course the number of discrete points for µ and ν may differ, we keepN for both to simplify the presentation.

This discretisation provides a natural discretization of the OT problem (4). Settting XN = {xi}i=1..N , YN =
{yj}j=1..N , cN = {c(xi, yj)}i,j=1..N , q = {qj}j=1..N and p = {pi}i=1..N . we can again use the 〈., .〉.
notation :

OTN (p, q) := min
γN∈Π(p,q)

〈cN , γN 〉XN⊗YN (8.10)

where
Π(p, q) :=

{
γN ∈ RN×N+ |〈1XN , γN 〉YN = p, 〈1YN , γN 〉XN = q

}
(8.11)

Similarly, discretization of regularized problem (8.7) gives

OTε,N := max
fε,gε
〈fε, µN 〉XN + 〈gε, νN 〉YN − ε 〈exp(

1

ε
(fε ⊕ gε − cN))− 1, µN ⊗ νN 〉XN×YN . (8.12)

where we use the same notation (fε, gε) for discrete vectors in RN .

We solve (8.12) with Sinkhorn algorithm. It corresponds to a block coordinate (fε and gε) ascent : Initialize
with g0

ε = 0Y and then iterate (in k) :

fk+1
ε = −ε log(〈exp(1

ε (g
k
ε − cN)), νN 〉YN)

gk+1
ε = −ε log(〈exp(1

ε (f
k+1
ε − cN)), µN 〉XN)

(8.13)

As discussed in [4](Remark 4.13), for sufficiently regular data (for example when exact map T is guaranteed
to be smooth) following estimate holds for sufficiently large number of iterations k in (8.13):

sup
XN

|fε(x)− fkε (x)| = O(1− ε)k (8.14)

Where fε is an exact regularized potential of (8.12).

8.1.4. Benchmark Cases

The following benchmark cases are being discussed in this chapter:

• Computing a reflector for the problem where the Source is a uniform distribution with support on a set,
which is the inverse stereographic projection of unit square centered at the origin and the desired light
distribution is a uniform distribution with support on a set, which is an inverse stereographic projection
of circle centered at the origin and Diameter 1.

Deliverable D5.2
127

8.2. Hierarchical approach to Sinkhorn Algorithm

• Computing a reflector for the problem where the Source is a uniform distribution with support on a set,
which is an inverse stereographic projection of unit square centered at the origin and the desired light dis-
tribution is a sum of two gauss distributions which are the centered respectively at inverse stereographic
projection of points (0.25,-0.25),(0.25,0.25).

8.2. Hierarchical approach to Sinkhorn Algorithm

8.2.1. ε scaling

As mentioned in remark (2), decreasing ε would result in a more accurate solution for (4). On the other hand,
estimate (8.14) suggests that smaller ε we take, higher number of iterations will be required for Sinkhorn
algorithm to converge. Also, taking ε too small, would result into numerical overflows due to the exponential
terms of order e

1
ε in (8.13)

As discussed in [7], problem of numerical stability can be tackled by working with the increments of the
potentials rather then full potentials during the iterative steps.

That is, if we look at the updates fk+1
ε and gk+1

ε in (8.13) as fk+1
ε = fkε + f̂k+1

ε and gk+1
ε = gkε + ĝk+1

ε , then
by moving previous approximations to the right hand side, we will get the following new iterative scheme for
the increments:

f̂k+1
ε = −ε log(〈exp(1

ε (g
k
ε + fkε − cN)), νN 〉YN)

fk+1
ε = fkε + f̂k+1

ε

ĝk+1
ε = −ε log(〈exp(1

ε (f
k+1
ε + gkε − cN)), µN 〉XN)

gk+1
ε = gkε + ĝk+1

ε

(8.15)

Those iterations will be more stable due to the saturation property of the optimizing potentials (8.2). This
property tells us that quantity f(xi) + g(yj) − c(xi, yj) is zero for exact potentials and optimal pairs (xi, yj)

while being strictly negative for non-optimal pairs. Thereof, when the iterates fkε and gkε are close to the true
potentials, new updating steps would not cause a numerical overflow.

Although, this approach alone would not help at the first steps of the algorithm, since we have no guarantees
that initial approximations would be close to the exact potentials, and for small ε we would get an overflow at
the first step of the iterations. In order to avoid this, possible approach would be to start with higher values of ε
and gradually decrease it to the desired final value εfinal (see [7] [8]).

More formally, one can define a sequence of regularization parameters εk → εfinal and use εk at k-th iteration
in (8.15). A common choice is to start with ε0 = 1. We use a scaling parameter λ ∈ (0, 1) and define
εk := max{εfinal, λkε0}.

Remark 3. It has been empirially established (see [7] and references therein), that above discussed approach of
gradually increasing εk at each iteration, not only provides more numerically stable scheme, but also increases
the convergence speed. In other words, a smaller number of iterations is required for achieving a given error
threshold with decreasing εk at each iteration, then while using fixed εfinal for all iterations.

8.2.2. Discretization scaling

In [7] (see also [9]), it is discussed that the entropic regularization with ε acts as a smoothing filter on the data,
which smoothers out any details that are on the finer scale then ε. This means that using Sinkhorn iterations
with discretizations such that mini,j d(xi, xj) << ε does not provide any valuable improvement over working
with discretizations that are on the scale of ε.

Thereof, it would be more efficient to also use a sequence of discretizations (XNk , YNk , cNk , µNk , νNk) where
Nk = O(1

εk
)d (where d is the dimension of the problem). In order to implement this approach, one would need

Deliverable D5.2
128

8.2. Hierarchical approach to Sinkhorn Algorithm

to find a way to interpolate approximations fkε , gkε on the discretization XNk+1
, YNk+1

respectively, while they
are computed on the grids XNk , YNk .
Luckily, Sinkhorn algorithm provides a canonical way of computing such interpolations, even for the full spaces
X and Y . If we expand the definition of scalar product in (8.13) and replace cN = cN (xi, yj) by c(x, yj) and
c(xi, y) respectively, we obtain following continuous extensions for given approximations fkεk and gkεk :

f̃kεk(x) :=− εk log(
∑

j=1..Nk

exp(
1

εk
(gkεk(yj)− c(x, yj)))νNk(yj)), ∀x ∈ X. (8.16)

g̃kεk(y) :=− εk log(
∑

i=1..Nk

exp(
1

εk
(fkεk(xi)− c(xi, y)))µNk(xi)), ∀y ∈ Y. (8.17)

Thereof, at k-th iteration, we can take k − 1-th approximations to be restrictions of f̃k−1
ε (x) and f̃k−1

ε (x) on
the spaces XNk and YNk respectively.
Putting it all together, we obtain the following iterative procedure in k:

fk−1
εk

= f̃k−1
εk−1
|XNk gk−1

εk
= g̃k−1

εk−1
|YNk

f̂kεk = −εk log(〈exp(1
εk

(gk+1
εk−1

+ fk−1
εk−1
− cNk)), νNk〉YNk)

fkεk = fk−1
εk

+ f̂kεk

ĝkεk = −εk log(〈exp(1
εk

(fkεk + gk−1
εk
− cNk)), µNk〉XNk)

gkεk = gk−1
εk

+ ĝkεk

(8.18)

In this setting, taking εfinal to 0 means also refining the discretization. To the best of our knowledge the joint
convergence in N and ε has only be studied in [9]:

Theorem 6 (Berman joint convergence - corollary 1.3 [9]). We assume µ and ν are in C2,α and positive, and
that N and ε are dependent parameters : N = (1/ε)d where d is the dimension of the problem. A technical
condition on the sequence of discretization (XN , YN , cN , µN νN) called “density propery” (see remark 5
below) is also necessary. Then there exists a positive constant A0 such that for any A > A0 the folowing
holds : setting mε = [−A log(ε)/ε] the continuous interpolation provided by f̃mεε , built using the cannonical
extension (8.16) from the discrete Sinkhorn iterate at k = mε, satisfies the estimate

sup
X
|f̃mεε − f | ≤ −Cε log(ε) (8.19)

for some constant C (depending on A) and f an optimal potential for (4).

Remark 4. Assumptions of Theorem 6 holds on the sphere for the reflector cost (see section 6.3.3 [9]). How-
ever, while estimating the necessary number of iterations mε, this theorem does not take into account the
improved effect on the convergence, coming from the ε-scaling.

Remark 5 (Density property Lemma 3.1 [9]). For any given open set U intersecting the supportX of µ (same
for Y and ν)

lim inf
ε→0

ε log(µN (U)) = 0

For the flat space X ⊂ Rd, this condition is enough. For curved surfaces, a technical generalization is
required. But in both cases, this density property ensures the discretization of X and µ (8.9) is such that, for U
the sequence of approximations µN (U) never converges faster to 0 than ε (remember that N = (1/ε)d).

For the sphere this can be achieved by either the Quasi Monte-Carlo discretizations that are sampled uniformly
with respect to the surface element of the sphere (see [10]), or by adjusting the weights of the discretization
points according to the deviation from the surface element (e.g. for the orthogonal grids projected from a plane
to the sphere).

Deliverable D5.2
129

8.3. Entropic Bias

8.3. Entropic Bias

8.3.1. Entropic Bias and Sinkhorn Divergences

The rate of convergence, both in estimate (8.14) and in theorem 6, have infinite slope at ε = 0. Because of this,
it is a known issue, that even with above-discussed modifications, using computationally feasible values of ε
will leave certain ”entropic bias” in the approximate potentials.

This problem is discussed in depth in [11] where it is proposed, that in order to correct the bias, to add “diagonal
terms” to correct the entropic cost :

Sε(µ, ν) = OTε(µ, ν)− 1

2
(OTε(µ, µ) +OTε(ν, ν)). (8.20)

Quite remarkably, the authors show that this quantity, called Sinkhorn divergence, remains positive and is
convex. It also obviously vanishes for µ = ν wich is not the case for OTε. Thanks to the symmetry, there is
only one dual potential for each of diagonal problems. We denote them fµOTε and fνOTε . They can be computed
using the independent Sinkhorn iterations :

fµ,k+1
OTε

= −ε log(〈exp(1
ε (f

µ,k
OTε
− cN)), µ〉X)

fν,k+1
OTε

= −ε log(〈exp(1
ε (f

ν,k
OTε
− cN)), ν〉Y)

(8.21)

The µ gradient of Sε, denoted fSε may be formed by a simple substraction.

fSε = fε − fµOTε (8.22)

Numerical simulations of gradient flows in [11] indicate that fSε is a better approximation of exact potential f .
For more comperhensive review of entropic bias and it’s effect on the reflector problem see [12].

8.4. Implementation

Although theoretically it is more efficient to conduct the iterations on the appropriate discretization at every
iteration as in (8.18), in practice, altering memory and memory containers at every iteration is not feasible due
to hardware properties.

It is a common knowledge in software engineering, that arranging computations in a way that memory is
accessed in a continuous way, so that processor doesn’t have to wait for the delivery of necessary memory
components, produces better practical computational time even when theoretical count of operations is far
larger.

With this in mind, depending on the desired εfinal and Nεfinal , we define two discretization levels : Nsmall =

O(Nfinal)
1
2d and Nlarge = O(Nfinal). Similarly, 2 different intermediate values of ε are chosen: εsmall =

ε
1
2
final, εlarge = εfinal.

The sequence εk is initialized by ε0 = 1 and for k > 0 εk =

(
ε−1
k−1 + ε

− 1
3

current

)−1

where εcurrent is either
εsmall or εlarge.

Deliverable D5.2
130

8.5. Computer Requirements

With this choice, outline of hierarchical sinkhorn algorithm for reflector problem would be following:

Data: Source and target distributions µ, ν
Result: Approximations of Kantorovich potentials fεfinal , gεfinal
Initialization: k = 0, N = Nsmall, εcurrent = εsmall, f0 ≡ 0, g0 ≡ 0 ;
while εk < εfinal do

f̂k+1
ε = −εk log(〈exp(1

εk
(gkε + fkε − cN)), νN 〉YN) ;

fk+1
ε = fkε + f̂k+1

ε ;
ĝk+1
ε = −εk log(〈exp(1

εk
(fk+1
ε + gkε − cN)), µN 〉XN) ;

gk+1
ε = gkε + ĝk+1

ε ;
k=k+1
if εk > εcurrent then

if εcurrent = εfinal then
Stop;

else
N = Nfinal, εcurrent = εfinal ;
fkε = f̃kεk |XN , gkε = g̃kεk |YN ;

end
end

end
fεfinal = fkεk − f

µ
OTε

;
gεfinal = gkεk − fνOTε ;
Here de-biasing terms fµOTε and fνOTε coming from (8.21) are computed using the diagonalized versions of
above algorithm:

Data: Source or target distribution µ and corresponding space X
Result: Approximation of Kantorovich potential fµεfinal
Initialization: k = 0, N = Nsmall, εcurrent = εsmall, f0 ≡ 0;
while εk < εfinal do

f̂k+1,µ
ε = −εk log(〈exp(1

εk
(fk+1,µ
ε + fk+1,µ

ε − cN)), µN 〉XN) ;

fk+1,µ
ε = fk,µε + 1

2 f̂
k+1,µ
ε ;

k=k+1;
if εk > εcurrent then

if εcurrent = εfinal then
Stop;

else
N = Nfinal, εcurrent = εfinal ;
fk,µε = f̃k,µεk |XN ;

end
end

end
fµεfinal = fk,µεk ;

8.5. Computer Requirements

The software is written in C++, but most of the computational data structures are C-style fixed-size Arrays and
most of the computational work is done either by basic operations available in C as well, or by Intel’s Math
Kernel Library. No manually written classes are used and C++ standard library functions are used for secondary
tasks, such as data filling, data sorting or time counting.

Deliverable D5.2
131

8.6. Numerical Demonstration

Intel’s Math Kernel Library (MKL) is a library of optimized math routines. It includes BLAS, LAPACK,
ScaLAPACK, sparse solvers, fast Fourier transforms, and vector math. The routines in MKL are hand-
optimized specifically for Intel processors. In this software, only BLAS and vector math functions are used.

The library is available free of charge under the terms of Intel Simplified Software License which al-
lows redistribution. Commercial support is available when purchased as standalone software or as part
of Intel Parallel Studio XE or Intel System Studio. It can be downloaded from Intel’s official web-page
https://software.intel.com/mkl where installation instructions are also provided.

Due to high importance of good memory management, and software’s primary purpose for now being the
development of the method, code doesn’t follow standard suggestions for C++ code development.

C++ compiler with version 11 or higher is required, as code uses timing functions and arithmetic of ”inf” and
”nan” values introduced in this version.

The code is OS independent as long as appropriate compiler and ability to link with MKL library are available,
except, for convenience of output handling, system command is called to create and move folders. Right now
code uses Linux commands ”mkdir ” and ”mv ”. For other operating systems one could just change those
commands in the main function.

Due to the use of Intel’s MKL library, the software will be much more efficient when running on the Intel
processor, compared to other processors of the same power. Other then the capability of installing Intel’s MKL
Library, there is no other definitive hardware requirement, but for computational stability, it is desirable for
double-precision floating-point variable to hold numbers up to 16 digit precision, so it is recommended that
hardware is capable of handling such precision.

8.6. Numerical Demonstration

Here we demonstrate that, for the benchmark cases, using ε-scaling speeds up the computation by decreasing
number of iterations required for achieving a given precision in Sinkhorn algorithm. Also, using discretization
scaling does not worsen total number of iterations, while achieving speedup by using cheaper iterations on the
first stage.

As stopping criteria for the native sinkhorn algorithm (8.15), we use the absolute value of the change f̃k+1
ε in

the first potential. In order to achieve a fair comparison with the ε-scaling algorithms, we also force ε-scaling
algorithms to continue with native iterations after reaching final value of regularization parameter, until they
achieve same threshold.

Our input are the discretization of the analytical descriptions of the illumination/illuminance µ and ν described
below. All benchmark cases presented in this paper will have the same source and target domains X and Y .
The source domain X ⊂ S2 will be the inverse stereograpic projection in the northern hemisphere of the square
domain centered at the origin {(x1, x2) ∈ R2| − 0.6 ≤ x1 ≤ 0.6, −0.6 ≤ x2 ≤ 0.6}. Similarly, Y ⊂ S2 will
be the inverse stereographic projection in the southern hemisphere of same domain.

As discussed in remark 5 (see also [9]), we discretize those domains using Quasi Monte-Carlo discretizations
from [10]. We take N = 16488 ≈ 128 ∗ 128 points in each discretization. For discretization scaling, we use
Nsmall = 381. We compute each benchmark case with two different values for final ε, 1

4∗128 and 1
16∗128 . For

the second value, native sinkhorn algorithm is not applicable as we get an overflow on the very first iteration.

As according to convergence result from Theorem 6, for given ε = O(N)−
1
d we can expect only approximations

of order εlog(ε), we take f̃kε < 1.e − 5 as a stopping criteria, since when changes become smaller, each new
iteration adds less improvement, and approximation error becomes dominant.

Benchmark Case 1: Square To Circle. The source distribution µ will be the uniform distribution over the
set with a square stereographic projection StP (supp(µ)) = {(x1, x2) ∈ R2| − 0.5 ≤ x1 ≤ 0.5, −0.5 ≤ x2 ≤
0.5}. The target distribution ν will be an uniform distribution over the set with a disck (circle) stereographic
projection StP (supp(µ)) = {(x1, x2) ∈ R2|x2

1 +x2
2 ≤ 0.52}. Even though the densities are constant, mapping

from a non smooth support geometry of the square to the smooth geometry of a circle is not a trivial task.

Deliverable D5.2
132

Bibliography

εfinal Type of Algorithm Number of iterations

1
4∗128

Native 146
ε-scaling 116

Discretization scaling 121

1
16∗128

Native NA(Numeric Overflow)
ε-scaling 171

Discretization scaling 182

Benchmark Case 2: Square To Two Gaussians. The source distribution µ is the same as in the previ-
ous. The target distribution ν is a gaussian distribution with density on the projected domain ρ(x1, x2) =
e−16∗((x1−0.25)2+(x2−0.25)2) + e−16∗((x1−0.25)2+(x2+0.25)2) over whole target domain Y

εfinal Type of Algorithm Number of iterations

1
4∗128

Native NA (Slow convergence)
ε-scaling 202

Discretization scaling 175

1
16∗128

Native NA(Numeric overflow)
ε-scaling 502

Discretization scaling 184

An interesting phenomena occurs for this case. Since the target has very high steepness, convergence speed for
native algorithm, even for moderate value of ε, is extremely slow. Even after 1000 iterations, absolute value of
the incrementing term was of order 1.e − 3. On the other hand, scaling algorithm managed to converge with
comparable number of iterations as in previous case.

Bibliography

[1] T. Glimm and V. Oliker, “Optical design of single reflector systems and the monge–kantorovich mass
transfer problem,” Journal of Mathematical Sciences, vol. 117, pp. 4096–4108, 09 2003.

[2] X.-J. Wang, “On the design of a reflector antenna ii,” Calculus of Variations and Partial
Differential Equations, vol. 20, no. 3, pp. 329–341, Jul 2004. [Online]. Available: https:
//doi.org/10.1007/s00526-003-0239-4

[3] C. Villani, Optimal Transport: Old and New, ser. Grundlehren der mathematischen Wis-
senschaften. Springer Berlin Heidelberg, 2008. [Online]. Available: https://books.google.fr/books?id=
NZXiNAEACAAJ

[4] G. Peyré and M. Cuturi, “Computational Optimal Transport,” ArXiv e-prints, Mar. 2018.
[5] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” in Advances in

Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp. 2292–2300. [Online]. Available:
http://papers.nips.cc/paper/4927-sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf

[6] C. Léonard, “A survey of the schrödinger problem and some of its connections with optimal transport,”
2013.

[7] B. Schmitzer, “Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems,” arXiv
e-prints, p. arXiv:1610.06519, Oct 2016.

[8] A. M. Oberman and Y. Ruan, “An efficient linear programming method for optimal transportation,” 2015.
[9] R. J. Berman, “The Sinkhorn algorithm, parabolic optimal transport and geometric Monge-Ampere equa-

tions,” ArXiv e-prints, Dec. 2017.
[10] R. S. Womersley, “Efficient Spherical Designs with Good Geometric Properties,” ArXiv e-prints, Sep.

2017.

Deliverable D5.2
133

https://doi.org/10.1007/s00526-003-0239-4
https://doi.org/10.1007/s00526-003-0239-4
https://books.google.fr/books?id=NZXiNAEACAAJ
https://books.google.fr/books?id=NZXiNAEACAAJ
http://papers.nips.cc/paper/4927-sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf

Bibliography

[11] J. Feydy, T. Séjourné, F.-X. Vialard, S.-i. Amari, A. Trouvé, and G. Peyré, “Interpolating between
Optimal Transport and MMD using Sinkhorn Divergences,” Oct. 2018, working paper or preprint.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-01898858

[12] J.-D. Benamou, W. L. Ijzerman, and G. Rukhaia, “An Entropic Optimal Transport Numerical
Approach to the Reflector Problem,” Apr. 2020, working paper or preprint. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02539799

Deliverable D5.2
134

https://hal.archives-ouvertes.fr/hal-01898858
https://hal.archives-ouvertes.fr/hal-02539799

9. Data driven model adaptations of coil sensitivities in magnetic
particle imaging

Sören Dittmer1, José Carlos Gutiérrez Pérez1, Lena Hauberg-Lotte1, Tobias Kluth1, Peter Maass1, Daniel Otero
Baguer1

1University of Bremen

Abstract. In Section 9.1 first basic ideas of magnetic particle imaging (MPI) are introduced, model and data
based cases are discussed and different problem scenarios are formulated. In the following the basic ideas
behind scenarios of applying Deep Learning to Inverse Problems are presented and five broad categorizations
are introduced: 1. Learned Penalty Terms, 2. Plug-and-Play Prior Methods, 3. Gradient-Descent-by-Gradient-
Descent type Methods, 4. Regularization by Architecture (Deep Prior), 5. Image Post-Processing via Deep
Learning. The application of Deep Learning to MPI is described with two approaches, surrogate data sets
and regularization via architecture. In Section 9.2 the implementation as well as the underlying network is
explained in detail. The computer requirements are stated (Section 9.3) and numerical examples are given by
using the publically available data sets generated by the Bruker preclinical MPI system at the Medical Center
Hamburg-Eppendorf (Section 9.4).

Keywords: Deep learning, neural networks, inverse problems, deep image priors.

9.1. Introduction and literature

The content of this section is a slightly modified version of the corresponding sections in the description of
’Benchmark Case 4’ described in the first report.

Magnetic particle imaging (MPI) is a relatively new non-invasive tomographic imaging technique that
directly detects superparamagnetic iron oxide nanoparticles (SPIO). It combines high tracer sensitivity with
submillimetre resolution and imaging is performed in milliseconds to seconds.

MPI is suitable for several medical applications: The nonlinear magnetization behaviour of nanoparticles in an
applied magnetic field is employed to reconstruct a spatial distribution of the concentration of nanoparticles
in the cardiovascular system. A high temporal resolution and a potentially high spatial resolution make MPI
suitable for several in-vivo applications without the need for harmful radiation. The potential for imaging
blood flow was demonstrated first in in-vivo experiments using a healthy mouse [1]. The usability of a
circulating tracer for long-term monitoring was recently investigated [2]. The high temporal resolution of MPI
is advantageous for potential flow estimation [3] and for tracking medical instruments [4]. Recently, MPI
was also shown to be suitable for tracking and guiding instruments for angioplasty [5]. Further promising
applications of MPI include cancer detection [6] and cancer treatment by hyperthermia [7].

The main goal of MPI is to reconstruct the spatially dependent concentration of particles and for that
computationally efficient reconstruction methods are required to allow real time observations. Therefore
mathematical models are advantageous for the development of such new methods.

Inverse Problems have been a key tool in many areas of science, technology in general, and more particularly
in the field of medical imaging for many years now. The key idea is to calculate causes from effects, opposed
to so-called direct problems trying to predict effects from causes.

Deep Learning (DL) on the other hand is a relatively new field which studies big machine learning models.

Deliverable D5.2
135

http://dx.doi.org/10.14279/depositonce-7412

9.1. Introduction and literature

It is not clear what all the strength of DL are, but a major one is the ability to predict labels from data via
supervised learning, e.g., a label of a computer tomographic (CT) image could be cancer or no cancer. A ma-
jor problem with this is the fact that one usually needs massive amounts of labeled data to train a learning model.

The success of neural networks (NN) in many computer vision tasks in the past has motivated attempts at
using Deep Learning to achieve better performance in solving Inverse Problems [8]. It was proposed to apply
data-driven approaches to inverse problems, using neural networks as a regularization functional. The network
learns to discriminate between the distribution of ground truth images and the distribution of unregularized
reconstructions and the approach was used for computer tomography reconstruction [9]. Furthermore, deep
learning was used in medical applications such as tumour classification with MALDI Imaging [10], magnetic
resonance imaging (MRI) [11] [12], low-dose X-ray CT [13] as well as positron emission tomography (PET)
[14].

The need for massive amounts of data is also a major challenge in bringing Deep Learning and Inverse
Problems together, since it creates a chicken-and-egg-problem. The problem lies therein that one can think
about the ”cause” in Inverse Problems as (or at least connected to) the label in Deep Learning. This means
that one usually doesn’t have labels for Inverse Problems which are required to train a deep model to solve the
Inverse Problem. Most approaches that try to bring Deep Learning to Inverse Problems ignore this fact and
only focus on problems where there is enough ground truth data for the cause already – due to some special
circumstances. In fact they can simplify the practical application of already solved Inverse Problems massively,
but they can usually not be applied to novel unsolved Inverse Problems. In summary: there exists some kind of
”information gap” that creates a boot strap problem. We are planning on exploring ways to solve this problem,
in particular forMPI.

9.1.1. Magnetic Particle Imaging

To determine the distribution of nanoparticles, which is the quantity c(x), the nonlinear magnetization behavior
of ferromagnetic nanoparticles is exploited as follows, see also [15]: A static magnetic field (selection field),
which is given by a gradient field, generates a field free point (FFP) (or alternatively a field free line (FFL)
[16]). The larger the distance between nanoparticles and FFP, the more is the magnetization caused by the
nanoparticles in saturation. The superposition with a spatially homogeneous but time-dependent field (drive
field) moves the field free region along a predefined trajectory defining the field-of-view (FOV). An interplay
between gradient strength and drive field amplitude determines the FOV size but when guaranteeing a certain
resolution the FOV is strictly limited due to safety reasons. The rapid change of the applied field H(x, t) causes
a measurable change of the magnetization M(x, t) of the nanoparticles.

In the first approximation the change of the magnetization can be characterized by using the Langevin function.
Neglecting the interactions between multiple particles and doing the transition from microscopic to macroscopic
scale (see [17]) allows the approximation of the magnetization M by multiplying the particles’ mean magnetic
moment vector m̄(x, t) and the particle concentration c(x).

The temporal change of the particles’ magnetization induces a voltage uP (t) in the receive coil units. Using
a quasi-static approximation in the induction principle and the law of reciprocity (see [18]) allows for the
description via a linear integral operator with respect to the particle concentration:

uP (t) = −µ0

∫
Ω

pR(x) · ∂
∂t

M(x, t) dx =

∫
Ω
c(x)(−µ0p

R(x) · ∂
∂t

m̄(x, t))︸ ︷︷ ︸
=s(x,t)

dx. (9.1)

Here, pR is the receive coil sensitivity, which is the magnetic field which is generated by the receive coil unit
when applying a unit current. Analogously, the applied field H(x, t) also induces a voltage uE(t) which is

Deliverable D5.2
136

9.1. Introduction and literature

known as direct feedthrough. Since this value is several orders of magnitude larger than that of the particle
signal, it must be removed prior to digitization. This is done by applying an analog filter which is described
by a temporal convolution with a kernel function a(t) (ã denotes its periodic continuation). The measured
signal v(t) is then given by v = (uP + uE) ∗ a. One common choice for the analog filter is a band-stop
filter such that some frequency bands of the particle signal are also removed. The resulting integral kernel
s̃(x, t) = (s(x, ·) ∗ a)(t) is primarily determined by the analog filter (receive-unit-dependent), the receive
coil sensitivity (receive-unit-dependent), the behavior of the nanoparticles, the particle parameters, and the
applied magnetic fields. Due to missing accurate models for the particle magnetization, the whole function s̃ is
commonly determined in a time-consuming calibration process limiting the FOV size as well as the resolution.
As the calibration data strictly relies on the particle properties and the measurement sequence, changing tracer
material or measurement sequences requires a complete recalibration. Model-based approaches including less
simplified behavior of the particles’ magnetic moments in the applied fields are highly desirable to reduce the
calibration costs and to enable more sophisticated measurement sequences.

9.1.1.1. Scenarios in MPI

The main problem in MPI is given by the forward operator

F :X(Ω)→ Y (0, T)L

c 7→ (Akc+ ak ∗ uEk)k=1,...,L,

for L ∈ N receive coil units with suitable function spaces X(Ω) and Y (0, T) (assumed to be Hilbert spaces
in the following). Ak : X(Ω) → Y (0, T), c 7→

∫
Ω s̃k(x, t)c(x) dx, k = 1, . . . , L, is the forward operator

mapping to the analog filtered particle signal for individual receive coil units. The operator F describes the
actual measurement process. In MPI we are mainly aiming for solving problems given by the linear operator

A :X(Ω)→ Y (0, T)L

c 7→ (Akc)k=1,...,L.

We thus need to get rid of the direct feedthrough uEk . In an ideal situation it holds A = F as one assumes
ak ∗ uEk = 0 but in general this not the case. We can now distinguish two cases in MPI regarding a formal
description of the forward operator, the data-based case where a full calibration of the linear forward operator
is performed and the model-based case where a suitable model for the mean magnetic moment m̄ is formulated.
Due to the fact that finding a suitable model for the particles’ magnetization is still an unsolved problem and the
full system matrix calibration is still state of the art in MPI, we distinguish these two cases in the following. As
it is possible to specify physical models which might not include relevant aspects, hybrid approaches combining
best of both are also desirable. In MPI possible problem setups are as follows (to improve reading convenience,
we formulate the scenarios for one coil unit only, i.e., L = 1):

• Data-based case: Let Γ ⊂ R3 be a reference volume placed at the origin. The data-based approach uses
single measurements of a small sample at predefined positions {x(i)}i=1,...,N ∈ ΩN . The concentration
phantoms are given by c(i) = c0χx(i)+Γ for some reference concentration c0 > 0. Typical choices for Γ

are small cubes (∼ 1 mm × 1 mm × 1 mm). The measurements v(i) = 1
c0
Fc(i), i = 1, . . . , N , are then

used to characterize the data-based forward operator.

Background subtraction case (D1): Let v(0) = F0. Assuming the calibration positions are chosen such
that x(i) + Γ are pairwise disjoint and Ω = ∪Ni=1x

(i) + Γ, the specific discretised problem of the model-
based approach corresponds to the data-based approach (solving Ac = v− v(0)) with Sc̃ = v− v(0) with
S = [v(1) − v(0)| . . . |v(N) − v(0)] and where c =

∑N
i=1 c̃iχx(i)+Γ. The full discrete setup is obtained by

a finite dimensional approximation in YM ⊂ Y (0, T), i.e., assume v =
∑M

i=1〈φi, v〉φi where {φj}j∈N
is an ONB of Y (0, T). It then reads: Find c̃ ∈ RN for given measurement ṽ ∈ KM , K ∈ {R,C},

Deliverable D5.2
137

9.1. Introduction and literature

(v ∈ Y (0, T) obtained from an evaluation of F) such that

S̃D1c̃ = ṽ − ṽ(0), S̃D1 = [ṽ(1) − ṽ(0)| . . . |ṽ(N) − ṽ(0)] (9.2)

where ṽ = (〈φi, v〉)i=1,...,M (ṽ(k) obtained analogously).

Partial temporal information case (D2): Alternative strategies to remove the influence of the back-
ground signal v(0) (due to the structure of v(0) in a certain basis) is to restrict the problem to partial
data. The discretisation of Y (0, T) is again obtained via the ONB {φi}i=1,...,M . Let {ψj}j∈N be another
ONB of Y (0, T) (can also be equal to {φi}i=1,...,M). We further assume v(0) is sparse in {ψj}j∈N, i.e.
|〈v(0), ψj〉| 6= 0, j ∈ J , |J | < ∞. We thus formulate the reduced data problem within the data-based
case: It then reads finding c̃ ∈ RN for given measurement ṽ ∈ KM , K ∈ {R,C}, (v ∈ Y (0, T) obtained
from an evaluation of F) such that

〈Sc̃, ψj〉 = 〈v − v(0), ψj〉, j ∈ N \ J, S = [v(1) − v(0)| . . . |v(N) − v(0)] (9.3)

Exploiting the sparsity assumption on v(0) and using the finite-dimensional approximation in YM yields
the final problem

〈S̃D2c̃, (〈φi, ψj〉)i=1,...,M 〉 = 〈ṽ, (〈φi, ψj〉)i=1,...,M 〉, j ∈ N \ J,
S̃D2 = [ṽ(1)| . . . |ṽ(N)] (9.4)

The crucial part is to obtain the correct index set J . In the literature this is commonly done by an SNR-
threshold technique with respect to {ψj}j∈N being the Fourier basis for T -periodic signals. If the index
set is determined incorrectly, one inverts an affine linear system assuming it is linear causing additional
artifacts in the reconstruction (i.e., in a noise-free case the reconstruction c∗ of a true c† is obtained via
c∗ = A−1Fc† = c† +A−1v(0)).

• Model-based case: The challenging part in the model-based case is formulating the correct model for the
mean magnetic moment m̄.

Equilibrium model (monodisperse / polydisperse) (M1): One of the most extensively studied models
in MPI is based on the Langevin function. This model is motivated by the assumptions that the applied
magnetic field is static and the particles are in equilibrium. Under these assumptions, we assume that the
mean magnetic moment vector of the nanoparticles immediately follows the magnetic field, i.e.:

m̄(x, t) = m0Lβ(|H(x, t)|) H(x, t)

|H(x, t)| (9.5)

where Lβ : R→ R is given in terms of the Langevin function by the following:

Lβ(z) =

(
coth(βz)− 1

βz

)
(9.6)

for m0, β > 0. The final problem with respect to the Langevin function is to obtain the concentration c
from the following system of equations:

v(t) = −
∫ T

0

∫
Ω
c(x)ãk(t− t′)sk(x, t′) dx dt′

s = µ0m0(pR)T
∂

∂t

(
Lβ(|H|) H

|H|

) (9.7)

I3 ∈ R3×3 being the identity matrix . The equilibrium model in (9.7) can be extended to polydisperse
tracers by adapting the function defining the length of the mean magnetic moment vector in (9.6). The

Deliverable D5.2
138

9.1. Introduction and literature

tracer material is then modeled by a distribution of particles with different diameters D > 0. Assuming
that the particle’s diameter distribution is given by the density function ρ : R+ → R+ ∪ {0} with
‖ρ‖L1(R+) = 1, we obtain the extended problems by the following:

v(t) = −
∫ T

0

∫
Ω
c(x)ã(t− t′)s(x, t′) dx dt′

s = µ0(pR)T
∂

∂t

(
Lρ(|H|)

H

|H|

) (9.8)

where Lρ : R→ R is given in terms of the Langevin function by

Lρ(z) =

∫
R+

ρ(D)m0(D)Lβ(D)(z) dD (9.9)

with m0, β : R+ → R+ describing the influence of the particle diameter on the volume of the core,
respectively the magnetic moment.
Imperfect models suitable for lower quality image reconstruction (M2): This category includes a
rather large number of possible model approaches. Generally spoken, this comprises models which
approximate the behavior of the system matrix (commonly fitting some model parameters to real data)
but cannot reach the reconstruction quality of the data-based case. For example, one can treat the analog
filter a as one unknown parameter and fit the model in (M1) to real data.
Suitable model for magnetization dynamics (M3): The operator is properly described by a mathe-
matical model including a sufficient model for the magnetization behavior of the tracer. This requires
considering (or approximating) Brownian and Neél rotation mechanisms in the magnetic moment rota-
tion of the nanoparticles. The important difference to (M2) is that here we assume that this model is
qualitatively an alternative to the data-based case. This is still an unsolved problem but it is added to the
list of possible cases to emphasize the opportunities in the context of Deep Learning approaches.

Using the previously formulated standard setups in MPI we can formulate different problem scenarios (S) which
are discussed in the context of Deep Learning in the remainder of this article:

• Scenario (S1):
Given information (D1): measured and background-corrected system matrix (S̃D1), background mea-
surements ṽ(0), a phantom measurement ṽ.
Possible targets: (i) reduce number of calibration scans (larger delta sample and/or missing regions), (ii)
obtain fast and improved concentration reconstructions, (iii) obtain memory-efficient representation, (iv)
obtain cleaned particle signal

• Scenario (S2):
Given information (D2): measured system matrix (S̃D2), background measurements ṽ(0) (optional), a
phantom measurement ṽ.
Possible targets: (i) reduce number of calibration scans (larger delta sample and/or missing regions), (ii)
obtain fast and improved concentration reconstructions, (iii) obtain memory-efficient representation, (iv)
obtain correct index set J , (iv) obtain completed particle signal

• Scenario (S3):
Given information (D1 or D2, M1): measured system matrix (S̃D1 or S̃D2), background measurements
ṽ(0) (in (D2) optional), a phantom measurement ṽ, similar but oversimplified model for m̄ (see M1).
Possible targets: (i) reduce number of calibration scans (larger delta sample and/or missing regions), (ii)
obtain fast and improved concentration reconstructions, (iii) obtain memory-efficient representation, (iv)
obtain correct index set J (in (D2)) , (iv) obtain completed particle signal, (v) measured signal correction
(background), completion, and mapping to range of oversimplified model (reconstruction is than obtained
via oversimplified model).

Deliverable D5.2
139

9.1. Introduction and literature

• Scenario (S4):
Given information (M1): background measurements ṽ(0), a phantom measurement ṽ, similar but over-
simplified model for m̄ (see M1).
Possible targets: (i) obtain fast and improved concentration reconstructions, (ii) obtain improved operator,
(iii) obtain cleaned particle signal from measured phantom data.

• Scenario (S5):
Given information (M2): background measurements ṽ(0), a phantom measurement ṽ, imperfect model
for m̄ which allows reasonable reconstruction (see M2).
Possible targets: (i) obtain fast and improved concentration reconstructions, (ii) obtain improved operator,
(iii) obtain cleaned particle signal from measured phantom data.

• Scenario (S6):
Given information (D1 or D2, M2): measured system matrix (S̃D1 or S̃D2), background measurements
ṽ(0) (in (D2) optional), a phantom measurement ṽ, imperfect model for m̄ which allows reasonable re-
construction (see M2).
Possible targets: (i) reduce number of calibration scans (larger delta sample and/or missing regions),
(ii) obtain fast and improved concentration reconstructions (e.g., post-processed reconstruction of lower
quality), (iii) obtain memory-efficient representation, (iv) obtain correct index set J (in (D2)) , (iv) ob-
tain completed particle signal, (v) measured signal correction (background), completion, and optional
mapping to range of imperfect model (reconstruction is than obtained via oversimplified model).

• Scenario (S7) (hypothetical):
Given information (M3): background measurements ṽ(0), a phantom measurement ṽ, suitable model for
m̄ (see M3).
Possible targets: (i) obtain fast and improved concentration reconstructions, (ii) obtain cleaned particle
signal from measured phantom data.

9.1.2. Deep Learning and Inverse Problems

In the following subsections we will present the basic ideas behind scenarios of applying Deep Learning to
Inverse Problems and briefly introduce explicit methods to deploy them.

We use the following naming conventions:

• The forward operator:
A : X → Y,

where X (a Banach space) the reconstruction space and Y (a Banach space) the signal space.

• pX : X → Rgε0 the probability density function of the elements/images/concentrations that we want to
reconstruct.

• pY : Y → Rgε0 the probability density function of the elements/signals/voltages that we are measuring.

• pXY : X × Y → Rgε0 the joint probability density function.

9.1.2.1. A: Learned Penalty Terms

In variational approaches to Inverse Problems one usually incorporates a so-called penalty function

φ : X → Rgε0

to favor good reconstructions, via minimizing a Tikhonov-type functional

min
x
||Ax− y||22 + φ(x)

Deliverable D5.2
140

9.1. Introduction and literature

(or similar). This penalty function is usually handcrafted and at best a very rough approximation of what one
would want to have as a penalty term. Given enough data to be representative of pX , one can use neural
networks to learn the “ideal” penalty function. This approach has been explored in [19] [20].

Like for the Plug-and-Play Prior Methods, (B), these methods only require knowledge about pX . This can
be provided via handcrafted parts, via known ground truth data or via surrogate, which represents pX good
enough.

• What do we learn:
The parametrization θ of a penalty function φθ : X → Rgε0 (for example represented by a neural
network).

• Intrinsically required knowledge:
Ground truth data about pX e. g. in the form of many samples.

9.1.2.2. B: Plug-and-Play Prior Methods

This approach is in some sense (w. r. t. proximal operators) dual to approach A.

Plug-and-Play Prior where introduced in [21], outside the Deep Learning context. The authors pointed out that
the alternating direction method of multipliers (ADMM) algorithm used for reconstruction in Inverse Problems
could easily be adapted to incorporate any type of denoising method (or more general, any type of algorithm)
as a prior during reconstruction. The prior is incorporated by replacing the proximal-operator, proxφ : X → X ,
of some penalty function, φ (within the reconstruction algorithm e.g. ADMM) with some other operator. It
is worth noting, that this operator does not have to be a proximal operator of some penalty function anymore.
With the rise of Deep Learning methods people started to learn these proximal-operator which are replaced by
neural networks.

It was also possible to extend the basic idea to other algorithms like proximal descent or primal dual hybrid
gradient, not just ADMM, see for example [22, 23].

• What do we learn:
The parametrization θ of an operator pθ : X → X that – incorporated in some reconstruction algorithm,
in which it replaces the proximal operator of some penalty function – improves the reconstruction.

• Intrinsically required knowledge:
Ground truth data about pX , e. g., in the form of many samples.

9.1.2.3. C: Gradient-Descent-by-Gradient-Descent type Methods

A major field of research in Inverse Problems and Deep Learning is to learn an iterative method from data. This
field makes implicit use of the Plug-and-Play prior idea but goes way further. Two very prominent papers in
this field are the “Learning Fast Approximations of Sparse Coding” (LISTA) paper [24] and the “Learning to
learn by gradient descent by gradient descent” paper [25]. Despite the fact that the paper [25] is not explicitly
solving an Inverse Problem their method can be seen as the most data driven form of this type of method. Other
authors applied the ideas from [25] directly to solve Inverse Problems [26].

The basic idea of this method has be extended in multiple ways to incorporate prior knowledge e.g. by unrolling
existing iteration methods up until a fixed number of iterations and replacing different parts of them by neural
networks [27, 28, 29, 30, 31, 32].

One tries to learn parameters θ of a function fθ : Y → X , such that it produces “nice” reconstructions via

min
θ

EpXY [d(fθ(y), x)],

where d is some measure of distance.

• What do we learn:

Deliverable D5.2
141

9.1. Introduction and literature

The parametrization θ of an operator fθ : Y → X that directly produces “nice” reconstructions.

• Intrinsically required knowledge:
Ground truth data about pXY e. g. in the form of many samples.

9.1.2.4. D: Regularization by Architecture

From an abstract point most (if not all) of machine learning methods – and therefore all methods above – can be
seen as parameter identification problems. Despite this being the case for all of the above mentioned types this
one is the closest to the original notion of parameter identification problems, since no training data is required;
one solely fits the parameters θ of a function

Fθ : G→ Rgε0

for (usually) a single point of data, g ∈ G via

min
θ
Fθ(g).

These methods are very new, there is only some internal work by us and one very recent paper by a group from
the University of Texas [33]. Both works are inspired by a recent paper [34] that noticed, that the inherent
structure of so-called convolutional neural networks (CNN) is a good prior for images (even without training).
This inspired the authors in [34] to solve Inverse Problems with the prior that the reconstructed image has to lie
in the range of a CNN-architecture (non-specific to a given parameterization of the network).

• Deep Image Prior:
Fθ(u) = ||u−Ac(θ)||22,

where u is the measured signal, A the MPI operator and c (the output of an untrained neural network
parameterized by θ whose input is a constant) the concentration.

• Our “Deep Operator Priors” are all of the form:

Fθ(A) =

N∑
i=1

wi||Ai − fθ(ci)||22 + φ(fθ, ci),

where fθ is a neural network representing and enforcing the form of the forward operator in its architec-
ture, Ai usually the columns of a measured operator corresponding to sample concentrations ci and φ a
penalty function enforcing structures on weights in the internal representations of fθ. The wi are weights
to incorporate SNR and similar knowledge. Possible architectures are mixtures of CNN for the spatial
structure and RNN (recurrent neural network) for the temporal (frequency) structure.

It is also a still open question whether the || · ||2-loss is really the best way to enforce the regression, we are also
thinking about using the Wasserstein loss [29].

We see huge potential in these methods, since they allow one to incorporate abstract structural knowledge
about the object one ones to regularize. The main difference to “classic” parameter identification is, that one
uses deep models as structures (instead of e. g. differential equations). This allows one to incorporate more
abstract and less precise knowledge about some underlying structure of a given point of data These methods
relate to traditional parameter identification problems, like Deep Learning relates to machine learning.

We not only want to use these type of methods via the one described in [33], but also via own approaches. We
see massive potential in applying these types of ideas to the forward operator via casting abstract knowledge
about it into into the architectural design of a neural network that in-turn is fitted to a measured (noisy and error
prone, maybe incomplete) version of the forward operator.

These methods are especially interesting for Magnetic Particle Imaging, since they do not rely on ground truth

Deliverable D5.2
142

9.2. Implementation

data. This is crucial, since forMPI – as well as for nearly any other novel Inverse Problem – one can not expect
to have sufficient ground truth data, see chicken-and-egg-problem.

• What do we learn:
A regularized version of some data point (e. g. an image or even an operator itself).

• Intrinsically required knowledge:
Any kind of abstract knowledge about the data point could potentially be incorporated.

9.1.2.5. E: Image Post-Processing via Deep Learning

Of course, all kinds of image post-processing techniques can be applied to improve MPI reconstructions: in-
painting, denoising, deblurring, etc. The leading methods in this field are mostly Deep Learning based nowa-
days. The amount of literature is expanding rapidly, see for examples [35, 36, 37, 38, 39, 40, 41].

9.1.3. Applying Deep Learning to Magnetic Particle Imaging

In MPI we have to deal with the full extend of the chicken-and-egg problem described earlier. Therefore many
of the methods described above that rely on ground truth data (and which in general do not solve new Inverse
Problems) are not applicable. This makes MPI an example par excellence for bringing Inverse Problems and
Deep Learning together in solving previously unsolved Inverse Problems.

Possible approaches to tackle this union:

• Use surrogate data sets.

• Regularization via Architecture.

Using surrogate data sets means to use data that is presumably similar to MPI data, like MRI data, to boot strap
a Deep Learning approach. Approaches that lean to that are especially approaches of the kind, where on learns
a penalty term, since theses methods a intrinsically from the Inverse Problem itself.

Using architecture as a regularization is a very new field. Obviously Deep Image Prior should be implement for
MPI, but there are a myriad of other opportunities to evaluate. For example one could use the structure provided
by an recurrent neural network, like a long-short-term-memory network (LSTM) combined with a convolutional
neural network to do inpainting/deblurring on the measured operator to reconstruct measurements with bad
signal-to-noise ratios. This could be done via one big optimization in which one optimizes the structure of an
extremely deep LSTM that reaches over all frequency-(or time) measurements of an operator at the same time.
The goal of the optimization is to fit the output of the network to the measured operator (learning its structure)
weighted by the signal-to-noise ratio of the measurements.

9.2. Implementation

We will now describe the network we are using to deploy our deep image prior / regularization by architecture
approach to magnetic particle imaging as described above. Since it is not clear what a good prior for MPI is
or how one would encode one would cast it into a regularizing architecture. Here, we use the deep image prior
introduced by [42], specifically their U-net architecture. Our implementation is based on Tensorflow [43] and
Keras [44] and has the following specifications: Between the encoder and decoder part of the U-net our skip
connection have 4 channels. The convolutional encoder goes from the input to 32, 32, 64 and 128 channels
each with strides of 2×2 and filters of size 3×3. Then the convolutional decoder has the mirrored architecture
plus first a resize-nearest-neighbor layer to reach the desired output shape and second an additional ReLU
convolutional layer with filters of size 1. The number of channels of this last layers is 3 for DS1 to accommodate
for the 3 slices and 1 for DS2. The input of the network is given by a fixed Gaussian random input of size
1× 32× 32 or 3× 32× 32. For further details on this architecture we refer to [42].

Since Tensorflow does not support auto gradients for complex numbers, we split up our loss function into the

Deliverable D5.2
143

9.2. Implementation

form

‖AφW (z)− yδ‖2 = ‖real(A)φW (z)− real(yδ)‖2 (9.10)

+ ‖imag(A)φW (z)− imag(yδ)‖2, (9.11)

where real and imag denote the real and imaginary parts respectively. If nothing else is said we used
Adam [45] for out optimizations. Sometimes our optimization apparently got stuck in some undesirable lo-
cal minimum early on, such that it quickly became apparent that the result would not be anything close
desirable. In those cases we simply restarted the optimization (with a new random initialization of the net-
work). The implementation can be found at Google Drive https://drive.google.com/open?id=
1F Pp5VYhrnLDXh3FEhaEnJ-HQNJYCrf5.

The implementation was made in Python, an interpreted, high-level, general-purpose programming language.
Python’s design philosophy emphasizes code readability with its notable use of significant whitespace. Its
language constructs and object-oriented approach aim to help programmers write clear, logical code for small
and large-scale projects.

For presentation we used Jupyter, which is a non-profit, open-source project, born out of the IPython Project
in 2014 as it evolved to support interactive data science and scientific computing across all programming lan-
guages. Jupyter will always be 100% open-source software, free for all to use and released under the liberal
terms of the modified BSD license.

For plotting and visualisation was used Matplotlib, a Python 2D plotting library which produces publication
quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can
be used in Python scripts, the Python and IPython shells, the Jupyter notebook, web application servers, and
four graphical user interface toolkits. Matplotlib tries to make easy things easy and hard things possible. You
can generate plots, histograms, power spectra, bar charts, errorcharts, scatterplots, etc., with just a few lines of
code.

Also SciPy, a free and open-source Python library used for scientific computing and technical computing was
used. SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions,
FFT, signal and image processing, ODE solvers and other tasks common in science and engineering. SciPy
builds on the NumPy array object and is part of the NumPy stack which includes tools like Matplotlib, pandas
and SymPy, and an expanding set of scientific computing libraries. This NumPy stack has similar users to other
applications such as MATLAB, GNU Octave, and Scilab. The NumPy stack is also sometimes referred to as
the SciPy stack.

For the deep learning part we mainly used two libraries. The first one Tensorflow, is an end-to-end open source
platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community
resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML
powered applications. Tensorflow allow you to build and train state-of-the-art models without sacrificing speed
or performance. TensorFlow gives you the flexibility and control with features like the Keras Functional API
and Model Subclassing API for creation of complex topologies. For easy prototyping and fast debugging, use
eager execution.

The other deep learning tool used was Keras, a high-level neural networks API, written in Python and capable
of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimen-
tation. Being able to go from idea to result with the least possible delay is key to doing good research. we use
Keras because it allows for easy and fast prototyping (through user friendliness, modularity, and extensibility),
supports both convolutional networks and recurrent networks, as well as combinations of the two, and runs
seamlessly on CPU and GPU.

Those libraries need to be installed for run the codes. To simplify package management and deployment was
used Anaconda, a free and open-source distribution of the Python and R programming languages for scientific
computing (data science, machine learning applications, large-scale data processing, predictive analytics, etc.).

Deliverable D5.2
144

https://drive.google.com/open?id=1F_Pp5VYhrnLDXh3FEhaEnJ-HQNJYCrf5
https://drive.google.com/open?id=1F_Pp5VYhrnLDXh3FEhaEnJ-HQNJYCrf5
https://www.python.org/
https://jupyter.org
https://matplotlib.org/
https://scipy.org/index.html
https://numpy.org/
https://www.tensorflow.org/
https://keras.io/
https://www.anaconda.com/

9.3. Computer requirements

The Anaconda distribution is used by over 15 million users and includes more than 1500 popular data-science
packages suitable for Windows, Linux, and MacOS. The main reason to use Anaconda was that it has installed
almost all libraries that we use, except Tensorflow and Keras, which were installed separately.

9.3. Computer requirements

The codes provided were runned in a SuperServer 4028GR-TR with the following enviroment:

• Operating system: Ubuntu 16.04.5 LTS

• Processor: Intel Xeon E5-2630 v4 (10 cores, 20 threads)

• System RAM: 64 GiB

• Graphic cards: 4xnVidia GeForce GTX 1080 Ti (3584 cores, 11Gbps memory speed, 11GB GDDR5X
Standard Memory Config)

• Storage: 2x 240GB Intel SSD DC S4500 240BG SATA, 8x 2TB SATA3-HD Seagate Exox E7E2000

Since the implementation is in Python, there is no need to compile or build the code, the notebooks can be
runned once all the required libraries are installed. So no Makefiles or other computer setting environment files
are needed. It is recommended to have at least one GPU to run the code.

9.4. Numerical examples

Figure 9.1: Experimental platform used to obtain dataset DS1 with FFP Lissajous trajectory in blue. Photo
taken at University Medical Center Hamburg-Eppendorf by T. Kluth.

We test the capability of the Deep Imaging Prior approach to improve image reconstruction. This is done by
using two datasets generated by using the Bruker preclinical MPI system at the University Medical Center
Hamburg-Eppendorf. A 2D excitation in the x/y-direction is used with excitation frequencies of 2.5/102 MHz
(≈ 24.51 kHz) and 2.5/96 MHz (≈ 26.04 kHz) resulting in a 2D Lissajous trajectory with a period of ap-
proximately 0.6528 ms. The drive field amplitude in x- and y-direction is 12 mT/µ0 respectively. The gradient
strength of the selection field is 2 T/m/µ0 in z-direction and -1 T/m/µ0 in x- and y-direction. The time-dependent
voltage signal is sampled with a rate of 2.5 MHz from L = 3 receive coil units. The discretization in time and
the real-valued signal results in 817 available Fourier coefficients (for ψj , j ∈ {0, . . . , 816}) for each receive
coil. Thus each system matrix S has at most 3 · 817 = 2451 rows. The two datasets are as follows:

DS1 2D phantom dataset: The system matrix is obtained by using a cubic sample with edge length of 1 mm.
The calibration is done with Resovist® tracer with a concentration of 0.25 mol/l. The field-of-view has
a size of 29 mm × 29 mm × 3 mm and the sample positions have a distance of 1 mm in each direction
resulting in a size of 29 × 29 × 3 voxels, i.e., 2523 columns in the system matrix. System matrix entries

Deliverable D5.2
145

https://www.supermicro.com/en/products/system/4u/4028/SYS-4028GR-TR.cfm

9.4. Numerical examples

are averaged over 200 repetitions and empty scanner measurements are performed every 29 calibration
scans. It is ensured that the used phantoms are positioned within the calibrated FOV by moving an
experimental platform in the desired region, see Figure 9.1. The phantom measurements are averaged
over 10000 repetitions of the excitation sequence. We use the three following phantoms:

– “4mm”: Two cylindrical glass capillary with an inner diameter of 0.7 mm filled with Resovist®

with a concentration of 0.25 mol/l are placed in the x/y-plane oriented in y-direction. The height
of the tracer in the capillaries are 10 mm (left capillary) and 21 mm (right capillary). The distance
between the capillaries in x-direction is 4 mm. See also Table 9.1 for an illustration.

– “2mm”: Like the “4mm” phantom with 2 mm distance in x-direction between the glass capillary.
See also Table 9.1 for an illustration.

– “one”: The same capillaries from the “4mm” phantom are used and arranged as the digit one.

DS2 Open MPI dataset: The dataset is publicly available at [46]. From the dataset the 2D calibration system
matrix for the x/y-plane located at z=0 mm is used for the reconstruction. Here, the system matrix is
obtained by using a cuboid sample with an edge length of 2 mm × 2 mm × 1 mm. The calibration is
done with Perimag® tracer with a concentration of 0.1 mol/l. The considered field-of-view has a size
of 38 mm × 38 mm × 1 mm and the sample positions have a distance of 2 mm in x- and y-direction
resulting in a size of 19 × 19 × 1 voxels, i.e., 361 columns in the system matrix. System matrix entries
are averaged over 1000 repetitions and empty scanner measurements are performed every 19 calibration
scans. In contrast to the previous dataset the used phantoms are not limited to the covered field of view
of the system matrix. The phantom measurements are averaged over 1000 repetitions of the excitation
sequence. According to the description on [46] we have the following three phantoms:

– “concentration”: This phantom consists of 8 cubes of 2mm edge length resulting in 8µl volume
each. The distance of the cubes is 12 mm between centers (10 mm between edges) within the x/y-
plane and 6 mm between centers (4 mm between edges) in z-direction. The sample chambers are
numbered from 1 to 8 starting with the top layer on the top left position (positive x- and y-direction),
counting clockwise. Then starting with the lower layer with number 5 on the top left (positive X
and Y direction), counting clockwise. The concentrations in the 8 sample chambers are diluted with
a factor of 1.5 in each step and the values are 100.0, 66.6, 44.4, 29.6, 19.7, 13.1, 8.77, and 5.85
mmol/l. See also Table 9.1 for an illustration.

– “shape”: The phantom is a cone defined by a 1 mm radius tip, an apex angle of 10 deg, and a height
of 22 mm. The total volume is 683.9 µL. Perimag® tracer with a concentration of 0.05 mol/L is
used. See also Table 9.1 for an illustration.

– “resolution”: The resolution phantom consists of 5 tubes filled with Perimag® with a concentration
of 0.05 mol/l. The 5 tubes have a common origin on one side of the phantom. From there they
extend in different angles from this origin within the x/y- and the y/z-plane. In z-direction the
angles in the y/z-plane are chosen smaller (10 deg and 15 deg) than in x/y-plane (20 deg and 30
deg). See also Table 9.1 for an illustration.

All data is provided in the Magnetic Particle Imaging Data Format Files (MDF) encoded according to [47, 48].

In MPI there exist two standard approaches which are commonly combined to determine the index sets J`,
l = 1, 2, 3, for the purpose of preprocessing: a band pass approach and an SNR-type thresholding. Let
IBP = {j ∈ Z| b1 ≤ |j|/T ≤ b2} be the band pass indices for frequency band limits 0 ≤ b1 < b2 ≤ ∞. For
the SNR-type thresholding one standard quality measure is determined by computing a ratio of mean absolute
values from individual measurements v(i)

` (as previously described) and a set of empty scanner measurements
{v(k)
`,0 }Kk=1 [49]:

d`,j =
1
N

∑N
i=1 |〈v

(i)
` − µ

(i)
` , ψj〉|

1
K

∑K
k=1 |〈v

(k)
`,0 − µ`, ψj〉|

(9.12)

Deliverable D5.2
146

Bibliography

where µ` = 1
K

∑K
k=1 v

(k)
0 and µ(i)

` = κiv
(ki)
`,0 + (1− κi)v(ki+1)

`,0 is a convex combination of the previous (ki-th)
and following (ki + 1-th) empty scanner measurement with respect to the i-th calibration scan; κi ∈ [0, 1]
chosen equidistant for all calibration scans between two subsequent empty scanner measurements. For a given
threshold τ ≥ 0 we thus obtain

J` = {j ∈ IBP|d`,j ≥ τ} (9.13)

for ` = 1, 2, 3.

We will now describe the general setup we use to apply the deep inversion prior approach to the reconstruction
of 2 dimensional magnetic particle imaging data. We do the processing of the data in the following manner:

1. We build the system matrix S and the measurement v which are associated with the index sets J`, ` =
1, 2, 3, based on an SNR-type thresholding with τ = 2 ((d`,j)j,` also provided by the MDF file) and the
bandpass index set with the passband boundaries b1 = 80 kHz and b2 = 625 kHz.

2. We subtract the signal of an empty scanner measurement from the phantom data to correct for the back-
ground signal.

3. The resulting linear equation system Sc = v is multiplied with a diagonal matrix W with the reciprocal
of the 2-norm of the respective row of the system matrix on the diagonal.

This leaves us with the a processed system matrix, to which we will from now on refer to asA = WS ∈ CM×N ,
and signals to which we will from now on refer to as yδ = W (v − v0) ∈ CM M =

∑L
`=1 |J`|. For DS1 we

end up with M = 211 and N = 292 · 3 = 2523 and for DS2 with M = 842 and N = 192 = 361.

Bibliography

[1] J. Weizenecker, B. Gleich, J. Rahmer, H. Dahnke, and J. Borgert, “Three-dimensional real-time in vivo
magnetic particle imaging,” Physics in Medicine and Biology, vol. 54, no. 5, p. L1, 2009.

[2] A. Khandhar, P. Keselman, S. Kemp, R. Ferguson, P. Goodwill, S. Conolly, and K. Krishnan, “Evaluation
of peg-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging,”
Nanoscale, vol. 9, no. 3, pp. 1299–1306, 2017.

[3] J. Franke, R. Lacroix, H. Lehr, M. Heidenreich, U. Heinen, and V. Schulz, “Mpi flow
analysis toolbox exploiting pulsed tracer information – an aneurysm phantom proof,” International
Journal on Magnetic Particle Imaging, vol. 3, no. 1, 2017. [Online]. Available: https:
//journal.iwmpi.org/index.php/iwmpi/article/view/36

[4] J. Haegele, J. Rahmer, B. Gleich, J. Borgert, H. Wojtczyk, N. Panagiotopoulos, T. Buzug, J. Barkhausen,
and F. Vogt, “Magnetic particle imaging: visualization of instruments for cardiovascular intervention,”
Radiology, vol. 265, no. 3, pp. 933–938, 2012.

[5] J. Salamon, M. Hofmann, C. Jung, M. G. Kaul, F. Werner, K. Them, R. Reimer, P. Nielsen, A. vom
Scheidt, G. Adam, T. Knopp, and H. Ittrich, “Magnetic particle/magnetic resonance imaging: In-vitro
MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer ap-
proach,” PloS ONE, vol. 11, no. 6, pp. e0 156 899–14, 2016.

[6] E. Y. Yu, M. Bishop, B. Zheng, R. M. Ferguson, A. P. Khandhar, S. J. Kemp, K. M. Krishnan,
P. W. Goodwill, and S. M. Conolly, “Magnetic particle imaging: A novel in vivo imaging platform
for cancer detection,” Nano Letters, vol. 17, no. 3, pp. 1648–1654, 2017. [Online]. Available:
http://dx.doi.org/10.1021/acs.nanolett.6b04865

[7] K. Murase, M. Aoki, N. Banura, K. Nishimoto, A. Mimura, T. Kuboyabu, and I. Yabata, “Usefulness of
magnetic particle imaging for predicting the therapeutic effect of magnetic hyperthermia,” Open Journal
of Medical Imaging, vol. 5, no. 02, p. 85, 2015.

[8] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse
problems in imaging,” IEEE Transactions on Image Processing, vol. 26, no. 9, pp. 4509–4522, 2017.

Deliverable D5.2
147

https://journal.iwmpi.org/index.php/iwmpi/article/view/36
https://journal.iwmpi.org/index.php/iwmpi/article/view/36
http://dx.doi.org/10.1021/acs.nanolett.6b04865

Bibliography

Table 9.1: Different Reconstructions. Photos for phantoms “4mm” and “2mm” taken at University Medical
Center Hamburg-Eppendorf by T. Kluth. Photos for phantoms “concentration”, “shape”, and “resolution” as

provided by [46].
Phantom Kaczmarz with `2 `1 DIP Photo

“4mm” (DS1)

λ̃ = 5e− 4 λ̃ = 5e− 3 η = 5e− 5

“2mm” (DS1)

λ̃ = 5e− 4 λ̃ = 5e− 3 η = 5e− 5

“concentration” (DS2)

λ̃ = 5e− 3 λ̃ = 1e− 2 η = 5e− 5

“shape” (DS2)

λ̃ = 5e− 3 λ̃ = 1e− 2 η = 5e− 5

“resolution” (DS2)

λ̃ = 5e− 3 λ̃ = 5e− 3 η = 5e− 5

[9] S. Lunz, O. Öktem, and C.-B. Schönlieb, “Adversarial regularizers in inverse problems,” arXiv preprint
arXiv:1805.11572, 2018.

[10] J. Behrmann, C. Etmann, T. Boskamp, R. Casadonte, J. Kriegsmann, and P. Maaβ, “Deep learning for
tumor classification in imaging mass spectrometry,” Bioinformatics, vol. 34, no. 7, pp. 1215–1223, 2017.

[11] S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, “Accelerating magnetic
resonance imaging via deep learning,” in Biomedical Imaging (ISBI), 2016 IEEE 13th International Sym-
posium on. IEEE, 2016, pp. 514–517.

[12] J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert, “A deep cascade of convolutional

Deliverable D5.2
148

Bibliography

neural networks for dynamic mr image reconstruction,” IEEE transactions on Medical Imaging, vol. 37,
no. 2, pp. 491–503, 2018.

[13] E. Kang, J. Min, and J. C. Ye, “A deep convolutional neural network using directional wavelets for low-
dose x-ray ct reconstruction,” Medical physics, vol. 44, no. 10, 2017.

[14] K. Gong, J. Guan, K. Kim, X. Zhang, G. E. Fakhri, J. Qi, and Q. Li, “Iterative pet image reconstruction
using convolutional neural network representation,” arXiv preprint arXiv:1710.03344, 2017.

[15] B. Gleich and J. Weizenecker, “Tomographic imaging using the nonlinear response of magnetic particles,”
Nature, vol. 435, no. 7046, pp. 1214–1217, June 2005.

[16] J. Weizenecker, B. Gleich, and J. Borgert, “Magnetic particle imaging using a field free line,”
Journal of Physics D: Applied Physics, vol. 41, no. 10, p. 105009, 2008. [Online]. Available:
http://stacks.iop.org/0022-3727/41/i=10/a=105009

[17] T. Kluth, “Mathematical models for magnetic particle imaging,” Inverse Problems, 2018, accepted
manuscript online available at http://iopscience.iop.org/article/10.1088/1361-6420/aac535. [Online].
Available: http://iopscience.iop.org/article/10.1088/1361-6420/aac535

[18] T. Knopp and T. M. Buzug, Magnetic Particle Imaging: An Introduction to Imaging Principles and Scan-
ner Instrumentation. Berlin/Heidelberg: Springer, 2012.

[19] S. Lunz, O. Öktem, and C.-B. Schönlieb. Adversarial regularizers in inverse problems. [Online].
Available: https://arxiv.org/abs/1805.11572

[20] H. Li, J. Schwab, S. Antholzer, and M. Haltmeier, “Nett: Solving inverse problems with deep neural
networks,” arXiv preprint arXiv:1803.00092, 2018.

[21] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based recon-
struction,” in Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE. IEEE,
2013, pp. 945–948.

[22] J. R. Chang, C. Li, B. Póczos, B. V. K. V. Kumar, and A. C. Sankaranarayanan, “One network to solve
them all - solving linear inverse problems using deep projection models,” CoRR, vol. abs/1703.09912,
2017. [Online]. Available: http://arxiv.org/abs/1703.09912

[23] T. Meinhardt, M. Möller, C. Hazirbas, and D. Cremers, “Learning proximal operators: Using denoising
networks for regularizing inverse imaging problems,” CoRR, vol. abs/1704.03488, 2017. [Online].
Available: http://arxiv.org/abs/1704.03488

[24] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proceedings of the 27th
International Conference on International Conference on Machine Learning. Omnipress, 2010, pp.
399–406.

[25] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford, and
N. De Freitas, “Learning to learn by gradient descent by gradient descent,” in Advances in Neural In-
formation Processing Systems, 2016, pp. 3981–3989.

[26] P. Putzky and M. Welling, “Recurrent inference machines for solving inverse problems,” arXiv preprint
arXiv:1706.04008, 2017.

[27] J. Adler and O. Öktem. (2017) Solving ill-posed inverse problems using iterative deep neural networks.
[Online]. Available: https://arxiv.org/abs/1704.04058

[28] B. Kelly, T. P. Matthews, and M. A. Anastasio, “Deep learning-guided image reconstruction from incom-
plete data,” arXiv preprint arXiv:1709.00584, 2017.

[29] J. Adler, A. Ringh, O. Öktem, and J. Karlsson, “Learning to solve inverse problems using wasserstein
loss,” CoRR, vol. abs/1710.10898, 2017. [Online]. Available: http://arxiv.org/abs/1710.10898

[30] J. Adler and O. Öktem. (2017) Learned primal-dual reconstruction. [Online]. Available: https:
//arxiv.org/abs/1707.06474

Deliverable D5.2
149

http://stacks.iop.org/0022-3727/41/i=10/a=105009
http://iopscience.iop.org/article/10.1088/1361-6420/aac535
http://iopscience.iop.org/article/10.1088/1361-6420/aac535
https://arxiv.org/abs/1805.11572
http://arxiv.org/abs/1703.09912
http://arxiv.org/abs/1704.03488
https://arxiv.org/abs/1704.04058
http://arxiv.org/abs/1710.10898
https://arxiv.org/abs/1707.06474
https://arxiv.org/abs/1707.06474

Bibliography

[31] A. Hauptmann, F. Lucka, M. M. Betcke, N. Huynh, B. T. Cox, P. C. Beard, S. Ourselin, and S. R.
Arridge, “Model based learning for accelerated, limited-view 3d photoacoustic tomography,” CoRR, vol.
abs/1708.09832, 2017. [Online]. Available: http://arxiv.org/abs/1708.09832

[32] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll, “Learning a
variational network for reconstruction of accelerated mri data,” Magnetic resonance in medicine, vol. 79,
no. 6, pp. 3055–3071, 2018.

[33] D. Van Veen, A. Jalal, E. Price, S. Vishwanath, and A. G. Dimakis, “Compressed sensing with deep image
prior and learned regularization,” arXiv preprint arXiv:1806.06438, 2018.

[34] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” arXiv preprint arXiv:1711.10925, 2017.
[35] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-

resolution,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds.
Cham: Springer International Publishing, 2014, pp. 184–199.

[36] L. Xu, J. S. Ren, C. Liu, and J. Jia, “Deep convolutional neural network for image deconvolution,” in
Advances in Neural Information Processing Systems, 2014, pp. 1790–1798.

[37] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,”
IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 2, pp. 295–307, 2016.

[38] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can plain neural networks compete
with bm3d?” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE,
2012, pp. 2392–2399.

[39] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neural networks,” in Advances in
neural information processing systems, 2012, pp. 341–349.

[40] X. Tao, H. Gao, X. Shen, J. Wang, and J. Jia, “Scale-recurrent network for deep image deblurring,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8174–8182.

[41] C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the dark,” arXiv preprint arXiv:1805.01934,
2018.

[42] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Deep image prior,” CoRR, vol. abs/1711.10925, 2017.
[Online]. Available: http://arxiv.org/abs/1711.10925

[43] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[44] F. Chollet et al., “Keras,” https://keras.io, 2015.
[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980,

2014.
[46] “Open mpi data,” https://magneticparticleimaging.github.io/OpenMPIData.jl/latest/index.html, accessed:

2018-11-16.
[47] T. Knopp, T. Viereck, G. Bringout, M. Ahlborg, A. von Gladiss, C. Kaethner, A. Neumann, P. Vogel,

J. Rahmer, and M. Möddel, “Mdf: Magnetic particle imaging data format,” ArXiv e-prints, vol.
1602.06072v6, pp. 1–15, jan 2018, article, MDF. [Online]. Available: http://arxiv.org/abs/1602.06072v6

[48] “Github mdf,” https://github.com/MagneticParticleImaging/MDF, accessed: 2018-11-16.
[49] J. Franke, U. Heinen, H. Lehr, A. Weber, F. Jaspard, W. Ruhm, M. Heidenreich, and V. Schulz, “System

characterization of a highly integrated preclinical hybrid mpi-mri scanner,” IEEE Transactions on Medical
Imaging, vol. 35, no. 9, pp. 1993–2004, Sept 2016.

Deliverable D5.2
150

http://arxiv.org/abs/1708.09832
http://arxiv.org/abs/1711.10925
https://www.tensorflow.org/
https://keras.io
https://magneticparticleimaging.github.io/OpenMPIData.jl/latest/index.html
http://arxiv.org/abs/1602.06072v6
https://github.com/MagneticParticleImaging/MDF

10. A mixed-inter programming (MIP) model for a joint assignment of
drivers and locomotives to trains at a rail freight company

Jonasz Staszek1, Andreas Bärmann1, Alexander Martin1

1Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract. In this work we present a mixed-inter programming model (MIP) for a joint assignment of drivers and
locomotives to trains (i.e. transportation tasks) in rail freight traffic. The significance of the challenge at hand
lies in both the complexity of the planning problem and its prospective economic and environmental impact. We
use set packing approach with compatibility, conflict and multiple choice constraints in our modelling approach.
At this stage, our objective is to maximize the number of trains performed, i.e. to maximize the number of
trains for which both a locomotive and a driver were found. We take into consideration the compatibilities
between the drivers and locomotives, the complex labour code regulations regarding working time as well as
the locomotives’ maintenance requirements. Our approach can efficiently solve small instances. Our further
efforts will be focusing on studying the mathematical properties of the problem further to allow reduction of the
running time, in order to enable instances connected to longer planning period to solve efficiently. We would
also like to develop an approach to schedule the locomotive empty runs.

Keywords: discrete optimization, joint vehicle and staff assignment, integer model, joint vehicle and crew
scheduling.

10.1. Introduction

In this work, we present our approach to optimization of the joint assignment of locomotives and drivers to
transportation tasks (also called trains), which takes into consideration the compatibilities between the drivers
and locomotives, the complex labour code regulations regarding working time as well as the locomotives’
maintenance requirements.

The significance of the challenge at hand lies in both the complexity of the planning problem and its prospective
economic and environmental impact. The complexity of the discussed problem can be viewed from both
theoretical and applied perspective. From the theoretical perspective, set packing problems, long known to be
NP-complete [1], are frequently used in the resource assignment problems (see for example [2]). The novelty
of our approach lies in considering the compatibilities between distinct resource groups as well as the Polish
labor code requirements. In the reality of rail freight planning, the process of assigning locomotives and drivers
to trains is carried out sequentially, using many complexity-reduction techniques, in order to make it solvable
to human planners. Such an approach can lead to suboptimal solutions. The economic benefit of the studied
problem is the increased efficiency in the assignment of locomotives and drivers, and identification of excess
capacities that could then be used to transport even more cargo via rail.

Our work focuses on presentation of the planning problem and the model considered. We also present the
promising initial results on the real-life instances supplied by DB Cargo Polska S.A., with some simple in-
stances are solved efficiently.

10.2. Methods

We present a mixed-inter programming model (MIP) for a joint assignment of drivers and locomotives to
trains (i.e. transportation tasks). We use a set packing approach with compatibility, conflict and multiple
choice constraints in our modelling approach. At this stage, our objective is to maximize the number of trains
performed, i.e. to maximize the number of trains for which both a locomotive and a driver were found. The
inputs to the model are: a set of trains to be performed T (together with departure and arrival times, origin and

Deliverable D5.2
151

10.2. Methods

destination stations and locomotive requirements), a set of locomotives L (together with information about their
type and fuel; their maintenance requirements are stored in set M l ∀l ∈ L) and a set of drivers D (incl. their
geographical assignment, licensing to locomotive types and licensing to train routes), as well as information
about the compatibilites between them. We assume that the locomotive type is pre-determined for each train.
We could relax this assumption by choosing to search for any suitable locomotive given the mass of the train
and the respective power requirements, as well as the availability of the overhead electric line.
In the model, we need to make sure that each train is staffed by one suitable driver and one suitable locomotive.
These decisions are modelled with binary variables δtd (for drivers) and λtl (for locomotives). Next, we need to
make sure that no locomotive or driver is planned in such a way that they would be required to be present in
two places at the same time. Although we allow limited mobility of drivers between stations (i.e. a driver can
pick up another train from the station where his previous train has arrived, or in a station in the neighbourhood
defined as a maximum of 120 minute car ride from the arrival station of the previous train), we do not allow
it for locomotives (i.e. locomotive needs to pick up another train exactly from the station where it has arrived
with the previous one).
Furthermore, the Polish labor code stipulates that we need to make sure that the drivers work for a maximum
of 12 hours per working day, and then are given a break of at least 11 hours. In our calculations, we assume
that the break shall be at least 12 hours long. We also need to ensure that at least one 35-hour break is planned
every week for each driver. Additionally, on at least one of every four Sundays the driver has to have a 24-hour
break. To comply with these requirements, we need to distinguish between the first job in a shift, denoted by a
binary variable ytd, last job in a shift before a short (12h) break, denoted by a binary variable vtd and the last job
in a shift before a long (35h) break, denoted by a binary variable ztd. We also need to know whether the driver
has worked on a given Sunday. This is denoted by a binary variable hworkw,d .
Based on the provided maintenance schedule, we also consider maintenance requirements of the locomotives.
The model enforces a selection of a train which will bring the locomotives due for maintenance to a depot
station. It also prohibits it from use in the period between the train which brought it to maintenance station and
the beginning of the maintenance period. Hence, we need to know which train is the last one of a locomotive
before undergoing maintenance. We model that using the binary variable utl,m
Finally, for modelling purposes we also need to know which trains t are the first and the last job for locos and
drivers in the planning period. We do that with the help of binary variables αtl , α

t
d and ωtl , ω

t
d, which denote

that the train t is the first (α) / the last (ω) one in the planning period for a locomotive l ∈ L or a driver d ∈ D.
All the variables are summarized in Table 1.

Table 10.1: Summary of variables

Name Description Type

λtl Train t is served by a locomotive l binary
δtd Train t is served by a driver d binary
ytd Train t is the first job of a driver d in their shift binary
vtd Train t is the last job of a driver d before a 12h break binary
ztd Train t is the last job of a driver d before a 35h break binary
utl,m Train t is the last job of a locomotive l before a maintenance period binary
αtl Train t shall be the first train of locomotive l in the planning period binary
ωtl Train t shall be the last train of locomotive l in the planning period binary
αtd Train t shall be the first train of driver d in the planning period binary
ωtd Train t shall be the last train of driver d in the planning period binary
hworkw,d Driver d has worked on the Sunday of the week w binary

Deliverable D5.2
152

10.2. Methods

In order to facilitate the construction of constraints, we construct a number of auxiliary sets. A brief overview
of these is included in the appendix.
Our model reads as follows:
max

∑
t∈T

∑
d∈Dt

δtd

s.t. ∑
d∈Dt

δtd ≤ 1 ∀ t ∈ T (10.1)

∑
l∈Lt

λtl ≤ 1 ∀ t ∈ T (10.2)

δtd + δt1d ≤ 1 ∀ d ∈ D, ∀ t ∈ T d, ∀ t1 ∈ T timet,d (10.3)

λtl + λt1l ≤ 1 ∀ l ∈ L, ∀ t ∈ T l, ∀ t1 ∈ T timet,l (10.4)

λt1l ≤
∑

t2∈Tnext l prunedt1,l

λt2l + ωt1l ∀ l ∈ L, ∀ t1 ∈ T l (10.5)

λt1l ≤
∑

t2∈T prev lt1,l

λt2l + αt1l ∀ l ∈ L, ∀ t1 ∈ T l (10.6)

∑
t1∈Tnext l prunedt,l

λt1l ≤ 1 ∀ l ∈ L, ∀ t ∈ T l (10.7)

∑
t∈T l

αtl ≤ 1 ∀ l ∈ L (10.8)

∑
t∈T l

ωtl ≤ 1 ∀ l ∈ L (10.9)

δtd ≤
∑

t1∈Tnext dt,d

δt1d + vtd ∀ d ∈ D, ∀ t ∈ T d (10.10)

δtd ≤ ytd +
∑

t1∈T prev dt,d

δt1d ∀ d ∈ D, ∀ t ∈ T d (10.11)

vtd ≤
∑

t1∈T potential startst,d

yt1d + ωtd ∀ d ∈ D, ∀ t ∈ T d (10.12)

ytd ≤
∑

t1∈T potential endst,d

vt1d + αtd ∀ d ∈ D, ∀ t ∈ T d (10.13)

∑
t∈T d

αtd ≤ 1 ∀ d ∈ D, ∀ t ∈ T d (10.14)

Deliverable D5.2
153

10.2. Methods

∑
t∈T d

ωtd ≤ 1 ∀ d ∈ D, ∀ t ∈ T d (10.15)

ytd ≤ δtd ∀ d ∈ D, ∀ t ∈ T d (10.16)∑
t2∈T common blocking beginningst,d

yt2d + δt1d ≤ 1 ∀ d ∈ D, ∀ t ∈ T d, ∀ t1 ∈ TB−t,d (10.17)

∑
t2∈T common beginningst,d

δt2d ≤
∑

t1∈T shift beginningt,d ∪{t}

yt1d ∀ d ∈ D, ∀ t ∈ T d (10.18)

∑
t2∈T common forward blockingst,d

vt2d + δt1d ≤ 1 ∀ d ∈ D, ∀ t ∈ T d, ∀ t1 ∈ TB+
t,d (10.19)

∑
t2∈T common endst,d

vt2d ≤
∑

t1∈T shift beginningt,d ∪{t}

yt1d ∀ d ∈ D, ∀ t ∈ T d (10.20)

∑
t2∈T common endst,d

δt2d ≤
∑

t1∈T shift endt,d ∪{t}

vt1d ∀ d ∈ D, ∀ t ∈ T d (10.21)

ztd ≤ vtd ∀ d ∈ D, ∀ t ∈ T d (10.22)∑
t2∈T common long breakst,d

zt2d + δt1d ≤ 1 ∀ d ∈ D, ∀ t ∈ T d, ∀ t1 ∈ T 35h
t,d (10.23)

δtd ≤
∑

t1∈Tweekw,d

zt1d ∀d ∈ D, ∀ w ∈ T, ∀ t ∈ T d ∩ Tweekw,d (10.24)

δtd ≤ hworkw,d ∀ d ∈ D, ∀ w ∈ T, ∀ t ∈ TSundayw,d (10.25)

hworkwn,d + hworkwn+1,d + hworkwn+2,d + hworkwn+3,d ≤ 3 ∀ d ∈ D, ∀ wn ∈ T (10.26)

utl,m ≤ λtl ∀ l ∈ L, ∀ m ∈M l, ∀ t ∈ T depol,m (10.27)

∑
t2∈T common premaint blockingt,l,m

utl,m + λt1l ≤ 1

∀ l ∈ L, ∀ m ∈M l, ∀ t ∈ T depol,m , ∀ t1 ∈ T blockt,l,m (10.28)

∑
t∈T depol,m

utl,m = 1 ∀ l ∈ L, ∀ m ∈M l (10.29)

δtd ≤
∑

l∈Ld∩Lt
λtl ∀ t ∈ T (10.30)

Deliverable D5.2
154

10.3. Implementation

λtl ≤
∑

d∈Dl∩Dt
δtd ∀ t ∈ T (10.31)

δtd ∈ {0, 1} ∀ t ∈ T, ∀ d ∈ D (10.32)

λtl ∈ {0, 1} ∀ t ∈ T, ∀ l ∈ L (10.33)

ytd ∈ {0, 1} ∀ t ∈ T, ∀ d ∈ D (10.34)

vtd ∈ {0, 1} ∀ t ∈ T, ∀ d ∈ D (10.35)

ztd ∈ {0, 1} ∀ t ∈ T, ∀ d ∈ D (10.36)

hworkwn,d ∈ {0, 1} ∀ d ∈ D, ∀ wn ∈ T (10.37)

ul,mt ∈ {0, 1} ∀ l ∈ L, ∀ m ∈M l, ∀ t ∈ T pre−maintl,m (10.38)

αtd ∈ {0, 1} ∀ t ∈ T, ∀ d ∈ Dt (10.39)

ωtd ∈ {0, 1} ∀ t ∈ T, ∀ d ∈ Dt (10.40)

αtl ∈ {0, 1} ∀ t ∈ T, ∀ l ∈ Lt (10.41)

ωtl ∈ {0, 1} ∀ t ∈ T, ∀ l ∈ Lt (10.42)

In summary, our model enforces the following aspects of resource allocation at a rail freight company (in the
brackets one can find the corresponding constraints):

1. Each train requires both a locomotive and a driver to be performed (1, 2)

2. No trains in time conflict (e.g. running in parallel timewise) can be served by the same locomotive /
driver (3, 4)

3. Locomotives can only serve trains which begin in the station in which they are currently located (5 - 9)

4. Drivers can serve trains which begin in the station in which their previous train has ended or in stations
in its neighbourhood - up to 120 minute car ride (10 - 15)

5. Each driver requires an 12-hour uninterrupted break after each at most 12 hours long shift (16 - 21)

6. Each driver needs at least one uninterrupted 35-hour break once a week (22 - 24)

7. Each driver needs to have at least one in four Sundays off (25, 26)

8. Locomotives with a maintenance period scheduled in the planning period need to serve a train which will
bring them to the station, where the maintenance shall take place (27 - 29)

9. Locomotive and driver must be compatible with one another (30, 31)

10. Finally, all the variables need to be binary (32 - 42)

10.3. Implementation

The model discussed above was implemented in Python 3.7. We used Anaconda as our distribution of choice.
It comes with a New BSD License.

In order to process data supplied by the industrial partner, we have used many libraries which are a part of
Python Standard Library, available with all Python distributions.

To manipulate the source data, we have also used pandas library, available under Three-Clause BSD License.
To implement some of the auxiliary sets, we use networkx library, which supplies a toolset for creation,
manipulation, and study of the structure of complex networks. It comes under the BSD license.

The most important software package that we use is Gurobi and its Python module called gurobipy. It is
a state-of-the-art commercial solver, handling Linear, Quadratic and Mixed Integer Programs. We are using its

Deliverable D5.2
155

10.4. Results

free-of-charge academic license.
All of the above-mentioned software is easily available online, with a handy installation manual included.

10.4. Results

To test our approach, we have developed a number of test instances based on the data supplied by our industrial
partner, DB Cargo Polska S.A. To solve the model, we have used a node at University of Erlangen’s High
Performance Computing Center with with Gurobi 9.0, using 2x AMD Opteron 6134 (”Magny Cours”) at 2,3
GHz and 120 GB RAM, with a time limit of 48 hours.
We have developed two families of instances. Full instances capture the whole complexity of the problem,
whereas the Frequent instances consider only trains which are planned to go at least ten times a week. Each
name is accompanied by the indication of the planning horizon (e.g. 1M - one month, 1W - one week etc.).
The results are summarized in the Table 2 below.

Deliverable D5.2
156

10.4. Results

Ta
bl

e
10

.2
:R

es
ul

ts

In
st

an
ce

#
of

tr
ai

ns
#

of
dr

iv
er

s
#

of
lo

co
s

B
ef

or
e

pr
es

ol
ve

A
ft

er
pr

es
ol

ve
O

pt
im

um
Ti

m
e

#
ro

w
s

#
co

lu
m

ns
#

ro
w

s
#

co
lu

m
ns

Fr
eq

ue
nt

1D
56

21
7

11
2+

16
78

14
1

17
66

4
65

01
2

90
41

35
3.

34
s

Fr
eq

ue
nt

3D
14

8
21

7
11

2+
29

20
6

14
3

49
87

1
57

44
1

36
53

2
11

8
57

.2
7

s
Fr

eq
ue

nt
1W

36
3

21
7

11
2+

82
87

6
72

6
13

5
47

2
16

8
48

8
95

76
5

27
0

(4
.0

7%
)

1
7
2

8
0
0s

Fr
eq

ue
nt

1M
15

12
21

7
11

2+
31

5
1

94
1

78
0

31
7

14
3

39
4

11
4

20
4

17
1

-
-

Fu
ll

1D
80

21
7

11
2+

10
10

3
04

2
25

18
6

23
92

5
14

98
9

66
9.

00
s

Fu
ll

3D
24

0
21

7
11

2+
31

41
1

56
6

78
06

6
99

57
5

62
91

1
20

9
54

91
.2

6
s

Fu
ll

1W
62

9
21

7
11

2+
88

1
92

5
35

7
22

5
07

7
31

3
58

7
17

3
52

9
-

-

Deliverable D5.2
157

10.5. Conclusions and Contributions

The results table presents the name of the instance, then the numbers of trains, locomotives and drivers which
were found feasible to be used. Then, it presents the number of rows and columns, both before and after
Gurobi’s preprocessing routine. Finally, we can see the number of trains performed in the optimum solution
and its share in the total trains in the planning period (this does not have to be equal to the number of feasible
trains in the table).
Our approach can efficiently solve small instances - the two smallest Frequent instances optimize in less than a
minute. Three-day (3D) Full instances can be solved to optimality in a longer period - approximately 1.5 hours.
Within the time limit, we could also close the optimality gap to less than 5% for Frequent one-week instance.
In our approach, we do not plan empty runs of the locomotives in this model (e.g. locomotives travelling
between stations without cargo, just to pick up another train), and such movements of locomotives are required
to enable all trains to run. We also assume that drivers need to perform both their first and last job in the planning
horizon within a certain set of stations. We also noticed that some of our secondary set implementations are too
strict. Hence we see the small number of trains performed in the optimal solution when compared to the total
number of trains in an instance. Extending the planning perspective above three days is still challenging.

10.5. Conclusions and Contributions

The current status of our work shows that the optimization of the assignment of locomotives and drivers,
including all the peculiarities of driver-locomotive and driver-route licensing can be efficiently applied at least
to short planning horizons.
Our further efforts will be focusing on studying the mathematical properties of the problem further to allow
reduction of the running time, in order to enable also weekly, and potentially also monthly instances, to solve
efficiently. In particular, as we deal with a set packing problem, we will employ some of the results related to
that family of problems to strengthen the existing constraints as well as to decrease their number. We will also
design a suitable relaxation approach to further speed up the optimization process. Finally, we would also like
to develop an approach to schedule the locomotive empty runs.

Deliverable D5.2
158

10.5. Conclusions and Contributions

Ta
bl

e
10

.3
:S

um
m

ar
y

of
se

co
nd

ar
y

se
ts

N
am

e
D

es
cr

ip
tio

n

D
t

D
riv

er
s

al
lo

w
ed

to
dr

iv
e

on
th

e
ro

ut
e

of
tr

ai
n
t

L
t

L
oc

om
ot

iv
es

al
lo

w
ed

to
dr

iv
e

on
th

e
ro

ut
e

of
tr

ai
n
t

D
l

D
riv

er
s

al
lo

w
ed

to
dr

iv
e

th
e

lo
co

m
ot

iv
e
l

T
l

Tr
ai

ns
w

hi
ch

ca
n

be
se

rv
ed

by
a

lo
co

m
ot

iv
e
l

L
d

L
oc

om
ot

iv
es

w
hi

ch
ca

n
be

dr
iv

en
by

a
dr

iv
er
d

T
d

Tr
ai

ns
w

hi
ch

dr
iv

er
d

is
lic

en
se

d
to

T
B

+
t,
d

Tr
ai

ns
w

hi
ch

ca
nn

ot
be

as
si

gn
ed

to
a

dr
iv

er
d

if
t

is
hi

s
la

st
jo

b
in

a
w

or
ki

ng
da

y
T

3
5
h

t,
d

Tr
ai

ns
w

hi
ch

ca
nn

ot
be

as
si

gn
ed

to
a

dr
iv

er
d

if
t

is
hi

s
la

st
jo

b
be

fo
re

a
w

ee
kl

y
35

h
br

ea
k

T
B
−

t,
d

Tr
ai

ns
w

hi
ch

ca
nn

ot
be

as
si

gn
ed

to
a

dr
iv

er
d

if
t

is
hi

s
fir

st
jo

b
in

a
w

or
ki

ng
da

y
T
−

1
2
h

t,
d

Tr
ai

ns
w

hi
ch

co
ul

d
tim

ew
is

e
be

as
si

gn
ed

to
a

dr
iv

er
d

as
fir

st
jo

bs
in

a
sh

if
ti

ft
is

to
be

pe
rf

or
m

ed
by

th
em

T
w
ee
k

w
,d

Tr
ai

ns
w

hi
ch

be
lo

ng
to

a
ca

lc
ul

at
io

n
w

ee
k
w

T
S
u
n
d
a
y

w
,d

Tr
ai

ns
w

hi
ch

be
lo

ng
to

a
Su

nd
ay
h
w

T
p
r
e−
m
a
in
t

l,
m

Tr
ai

ns
w

hi
ch

ar
e

sc
he

du
le

d
to

ru
n

sh
or

tly
be

fo
re

a
lo

co
m

ot
iv

e
l

is
du

e
fo

rm
ai

nt
en

an
ce

pe
ri

od
m

T
d
ep
o

l,
m

Tr
ai

ns
t
∈
T
p
r
e−
m
a
in
t

l,
m

w
hi

ch
ar

e
he

ad
in

g
to

th
e

de
po

ts
ta

tio
n

T
bl
o
ck

t,
l,
m

Tr
ai

ns
t
∈
T
p
r
e−
m
a
in
t

l,
m

w
hi

ch
ca

nn
ot

be
se

rv
ed

by
lo

co
m

ot
iv

e
l

af
te

ri
th

as
ar

riv
ed

at
its

de
po

ts
ta

tio
n

T
p
r
ev

d
t,
d

Pa
st

tr
ai

ns
w

hi
ch

co
ul

d
ha

ve
be

en
as

si
gn

ed
to

dr
iv

er
d

if
is

as
si

gn
ed

to
a

jo
b
t

T
n
ex
t
d

t,
d

Fu
tu

re
tr

ai
ns

w
hi

ch
co

ul
d

be
as

si
gn

ed
to

dr
iv

er
d

if
is

as
si

gn
ed

to
a

jo
b
t

T
n
ex
t
d
p
r
u
n
ed

t,
d

Fu
tu

re
tr

ai
ns

w
hi

ch
co

ul
d

be
as

si
gn

ed
to

dr
iv

er
d

if
is

as
si

gn
ed

to
a

jo
b
t,

ex
cl

.t
ra

in
s

w
hi

ch
ha

ve
pr

ed
ec

es
so

rs
in
T
n
ex
t
d

t,
d

T
n
ex
t
l

t,
l

Fu
tu

re
tr

ai
ns

w
hi

ch
co

ul
d

be
as

si
gn

ed
to

dr
iv

er
l

if
is

as
si

gn
ed

to
a

jo
b
t

T
n
ex
t
l
p
r
u
n
ed

t,
l

Fu
tu

re
tr

ai
ns

w
hi

ch
co

ul
d

be
as

si
gn

ed
to

lo
co

m
ot

iv
e
l

if
is

as
si

gn
ed

to
a

jo
b
t,

ex
cl

.t
ra

in
s

w
hi

ch
ha

ve
pr

ed
ec

es
so

rs
in
T
n
ex
t
d

t,
l

T
sh
if
t
be
g
in
n
in
g

t,
d

Pa
st

tr
ai

ns
w

hi
ch

co
ul

d
ha

ve
be

en
as

si
gn

ed
-b

ot
h

tim
ew

is
e

an
d

lo
ca

tio
nw

is
e

-t
o

dr
iv

er
d

if
he

is
as

si
gn

ed
to

a
jo

b
t.

T
sh
if
t
en
d

t,
d

Fu
tu

re
tr

ai
ns

w
hi

ch
ca

n
be

as
si

gn
ed

-b
ot

h
tim

ew
is

e
an

d
lo

ca
tio

nw
is

e
-t

o
dr

iv
er
d

if
he

is
as

si
gn

ed
to

a
jo

b
t.

T
ti
m
e

t,
d

&
T
ti
m
e

t,
l

Tr
ai

ns
w

hi
ch

ar
e

fe
as

ib
le

fo
rd

riv
er
d

/l
oc

om
ot

iv
e
l

an
d

in
tim

e
co

nfl
ic

tw
ith

th
e

tr
ai

n
t

T
p
o
te
n
ti
a
l
st
a
r
ts

t,
d

Tr
ai

ns
w

hi
ch

co
ul

d
be

th
e

fir
st

jo
bs

of
th

e
ne

xt
sh

if
ta

ft
er

th
e

12
h

br
ea

k
fo

llo
w

in
g

tr
ai

n
t

T
p
o
te
n
ti
a
l
en
d
s

t,
d

Tr
ai

ns
w

hi
ch

co
ul

d
ha

ve
be

en
th

e
la

st
jo

b
of

th
e

pr
ev

io
us

sh
if

tb
ef

or
e

th
e

12
h

br
ea

k
pr

ec
ed

in
g

tr
ai

n
t

T
co
m
m
o
n
bl
o
ck
in
g
be
g
in
n
in
g
s

t,
d

Tr
ai

ns
w

hi
ch

bl
oc

k
a

tr
ai

n
t

as
vi

ol
at

in
g

th
e

pa
st

12
h

br
ea

k
T
co
m
m
o
n
be
g
in
n
in
g
s

t,
d

Tr
ai

ns
w

hi
ch

sh
ar

e
an

id
en

tic
al
T
sh
if
t
be
g
in
n
in
g

t,
d

T
co
m
m
o
n
f
o
r
w
a
r
d
bl
o
ck
in
g
s

t,
d

Tr
ai

ns
w

hi
ch

bl
oc

k
a

tr
ai

n
t

as
vi

ol
at

in
g

th
e

fu
tu

re
12

h
br

ea
k

T
co
m
m
o
n
en
d
s

t,
d

Tr
ai

ns
w

hi
ch

sh
ar

e
an

id
en

tic
al
T
sh
if
t
en
d

t,
d

T
co
m
m
o
n
lo
n
g
br
ea
k
s

t,
d

Tr
ai

ns
w

hi
ch

bl
oc

k
a

tr
ai

n
t

as
vi

ol
at

in
g

th
e

fu
tu

re
35

h
br

ea
k

T
co
m
m
o
n
p
r
em

a
in
t
bl
o
ck
in
g

t,
l,
m

Tr
ai

ns
w

hi
ch

bl
oc

k
a

tr
ai

n
t

as
de

pa
rt

in
g

fr
om

th
e

de
po

st
at

io
n

Deliverable D5.2
159

Bibliography

Bibliography

[1] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Computations,
R. Miller, J. Thatcher, and J. Bohlinger, Eds. Springer, 1972, pp. 85–103. [Online]. Available:
http://doi.org/10.1007/978-1-4684-2001-2 9

[2] R. Velásquez and M. T. Melo, “A set packing approach for scheduling elective surgical procedures,” in
Operations Research Proceedings 2005, H.-D. Haasis, H. Kopfer, and J. Schönberger, Eds. Springer,
2006, pp. 425–430. [Online]. Available: http:///doi.org/10.1007/3-540-32539-5 67

Deliverable D5.2
160

http://doi.org/10.1007/978-1-4684-2001-2_9
http:///doi.org/10.1007/3-540-32539-5_67

The ROMSOC project

June 9, 2020

ROMSOC-D5.2-2.0

Horizon 2020

	I Coupling methods
	1 Implementing acoustic scattering simulations for external geometries within a porous enclosure
	1.1 Introduction
	1.2 Mathematical Formulation
	1.2.1 Model Hierarchy
	1.2.1.1 Fluid region
	1.2.1.2 Porous region
	1.2.1.3 Pefectly matched layer

	1.2.2 Coupling

	1.3 Implementation
	1.3.1 Geometry and Meshing
	1.3.2 Solver
	1.3.3 Post-processing and Visualization

	1.4 Computer Requirements
	1.5 Case study : Acoustic transmission of a vibrating sphere in a porous enclosure
	1.5.1 Description of test case sphere
	1.5.2 Exact solution
	1.5.3 Geometry and Mesh
	1.5.4 Solver
	1.5.5 Visualization

	1.6 Conclusion
	Bibliography

	2 Multirate time integration and model order reduction for coupled thermal electrical systems
	2.1 Introduction
	2.1.1 Thermal-Electric Benchmark Circuit

	2.2 Mathematical Formulation
	2.2.1 Multirate time integration
	2.2.2 Model order reduction

	2.3 Implementation
	2.3.1 Parameters and functions
	2.3.2 Setting up the IRK iteration
	2.3.3 The IRK iteration
	2.3.4 The POD algorithm

	2.4 Requirements
	2.5 Numerical examples
	2.5.1 Results

	2.6 Conclusion
	Bibliography

	3 Validation of fluid-structure interaction simulations in membrane-based blood pumps
	3.1 Introduction
	3.2 Mathematical Formulation
	3.2.1 The Fluid-Structure Interaction Model
	3.2.2 Numerical Method
	3.2.3 Hierarchical Modeling
	3.2.3.1 Geometry of the domain
	3.2.3.2 Meshing
	3.2.3.3 Geometric coupling
	3.2.3.4 Modeling the Contact

	3.3 Implementation
	3.4 Computer Requirements
	3.5 Numerical Example
	3.5.1 Experimental Data
	3.5.2 Benchmark Plan

	3.A Appendix
	3.A.1 Licences of Use
	3.A.1.1 LIFEV (release version)
	3.A.1.2 TetGen
	3.A.1.3 Triangle

	3.A.2 Configuration files

	Bibliography

	II Model order reduction methods
	4 Model order reduction for parametric high dimensional interest rate models in the analysis of financial risk
	4.1 Introduction
	4.2 Mathematical Formulation: Model Hierarchy
	4.3 Numerical Methods
	4.3.1 Parametric Model Order Reduction
	4.3.2 Greedy Sampling Method
	4.3.3 Adaptive Greedy Sampling Method
	4.3.4 Adaptive Greedy Sampling Algorithm

	4.4 Numerical Example
	4.4.1 Computational cost
	4.4.1.1 Floater Scenario Values

	4.5 Conclusion
	4.A Relation between a singular value decomposition and a principal component analysis
	Bibliography

	5 Software-based representation of an inverse heat conduction problem
	5.1 Introduction
	5.2 Mathematical Formulation
	5.2.1 Computational Domain and Notation
	5.2.2 Direct Heat Transfer Problem
	5.2.3 Inverse Problem
	5.2.3.1 Alifanov's Regularization

	5.3 Implementation
	5.3.1 Geometry and Meshing
	5.3.2 Direct Problem Solver
	5.3.3 Inverse Problem Solver
	5.3.4 Post-processing and Visualization

	5.4 Computer Requirements
	5.5 Benchmark Case
	5.5.1 Direct Problem
	5.5.2 Inverse Problem

	Bibliography

	6 Coupled parameterized reduced order modelling of thermo-mechanical phenomena arising in blast furnaces
	6.1 Introduction
	6.1.1 Conceptual model
	6.1.2 Mathematical problem and Benchmark cases
	6.1.2.1 Benchmark for the thermal model
	6.1.2.2 Benchmark for the mechanical model
	6.1.2.3 Benchmark for the coupling

	6.2 Mathematical formulation
	6.2.1 Axisymmetric model
	6.2.2 Weak formulation for thermal model
	6.2.3 Weak formulation of the mechanical model
	6.2.4 Finite element method
	6.2.5 Parameter space
	6.2.6 Model order reduction

	6.3 Implementation
	6.4 Computer requirements
	6.5 Numerical examples
	6.5.1 Benchmark tests
	6.5.1.1 Thermal model
	6.5.1.2 Mechanical model
	6.5.1.3 Coupled model
	6.5.1.4 Simulation for actual problem

	6.5.2 Test problem for reduced basis method
	6.5.2.1 Thermal system
	6.5.2.2 Mechanical system
	6.5.2.3 Coupling system

	6..3 Hierarchy of thermal model
	6..4 Hierarchy of mechanical model

	Bibliography

	III Optimization methods
	7 A benchmark for atmospheric tomography
	7.1 Introduction
	7.2 Mathematical formulation
	7.2.1 Adaptive optics
	7.2.1.1 Guide stars
	7.2.1.2 Operating modes
	7.2.1.3 Turbulence statistic in the atmosphere
	7.2.1.4 Deformable mirror
	7.2.1.5 Wavefront sensor

	7.2.2 Problem formulation - atmospheric tomography
	7.2.3 Solution method - Matrix Vector Multiplication

	7.3 Implementation
	7.4 Computer requirements
	7.5 Numerical example
	7.5.1 Input parameters
	7.5.2 Ouput - DM commands

	Bibliography

	8 Acceleration of Sinkhorn Algorithm using scaling with applications to the Reflector Problem
	8.1 Introduction
	8.1.1 Optimal Transport model
	8.1.2 Entropic Regularization of Optimal Transport
	8.1.3 Sinkhorn Algorithm for Regularized Optimal Transport
	8.1.4 Benchmark Cases

	8.2 Hierarchical approach to Sinkhorn Algorithm
	8.2.1 scaling
	8.2.2 Discretization scaling

	8.3 Entropic Bias
	8.3.1 Entropic Bias and Sinkhorn Divergences

	8.4 Implementation
	8.5 Computer Requirements
	8.6 Numerical Demonstration
	Bibliography

	9 Data driven model adaptations of coil sensitivities in magnetic particle imaging
	9.1 Introduction and literature
	9.1.1 Magnetic Particle Imaging
	9.1.1.1 Scenarios in MPI

	9.1.2 Deep Learning and Inverse Problems
	9.1.2.1 A: Learned Penalty Terms
	9.1.2.2 B: Plug-and-Play Prior Methods
	9.1.2.3 C: Gradient-Descent-by-Gradient-Descent type Methods
	9.1.2.4 D: Regularization by Architecture
	9.1.2.5 E: Image Post-Processing via Deep Learning

	9.1.3 Applying Deep Learning to Magnetic Particle Imaging

	9.2 Implementation
	9.3 Computer requirements
	9.4 Numerical examples
	Bibliography

	10 A mixed-inter programming (MIP) model for a joint assignment of drivers and locomotives to trains at a rail freight company
	10.1 Introduction
	10.2 Methods
	10.3 Implementation
	10.4 Results
	10.5 Conclusions and Contributions
	Bibliography

