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Abstract—The possibility to use widespread and simple chest
X-ray (CXR) imaging for early screening of COVID-19 patients
is attracting much interest from both the clinical and the AI
community. In this study we provide insights and also raise
warnings on what is reasonable to expect by applying deep
learning to COVID classification of CXR images. We provide
a methodological guide and critical reading of an extensive set of
statistical results that can be obtained using currently available
datasets. In particular, we take the challenge posed by current
small size COVID data and show how significant can be the
bias introduced by transfer-learning using larger public non-
COVID CXR datasets. We also contribute by providing results
on a medium size COVID CXR dataset, just collected by one
of the major emergency hospitals in Northern Italy during the
peak of the COVID pandemic. These novel data allow us to
contribute to validate the generalization capacity of preliminary
results circulating in the scientific community. Our conclusions
shed some light into the possibility to effectively discriminate
COVID using CXR.

Index Terms—Chest X-ray, Deep Learning, classification,
COVID-19

I. INTRODUCTION

COVID-19 virus has rapidly spread in mainland China and
into multiple countries worldwide [1]. As of April 7th 2020
in Italy, one of the most severely affected countries, 135,586
Patients with COVID19 were recorded, and 17,127 of them
died; at the time of writing Piedmont is the 3rd most affected
region in Italy, with 13,343 recorded cases [2].

Early diagnosis is a key element for proper treatment of the
patients and prevention of the spread of the disease. Given
the high tropism of COVID-19 for respiratory airways and
lung epythelium, identification of lung involvement in infected
patients can be relevant for treatment and monitoring of the
disease.

Virus testing is currently considered the only specific
method of diagnosis. The Center for Disease Control (CDC)
in the US recommends collecting and testing specimens from
the upper respiratory tract (nasopharyngeal and oropharyngeal
swabs) or from the lower respiratory tract when available
(bronchoalveolar lavage, BAL) for viral testing with reverse
transcription polymerase chain reaction (RT-PCR) assay [3].
Testing on BAL samples provides higher accuracy, however
this test is unconfortable for the patient, possibly dangerous
for the operator due to aerosol emission during the procedure
and cannot be performed routinely. Nasopharingeal swabs are
instead easily executable and affortable and current standard
in diagnostic setting; their accuracy in literature is influenced
by the severity of the disease and the time from symptoms
onset and is reported up to 73.3% [4].

Current position papers from radiological societies (Fleis-
chner Society, SIRM, RSNA) [3], [5], [6] do not recommend
routine use of imaging for COVID-19 diagnosis.

However, it has been widely demonstrated that, even at
early stages of the disease, chest x-rays (CXR) and computed
tomography (CT) scans can show pathological findings. It
should be noted that they are actually non specific, and overlap
with other viral infections (such as influenza, H1N1, SARS
and MERS): most authors report peripheral bilateral ill-defined
and ground-glass opacities, mainly involving the lower lobes,
progressively increasing in extension as disease becomes more
severe and leading to diffuse parenchymal consolidation [7],
[8]. CT is a sensitive tool for early detection of peripheral
ground glass opacities; however routine role of CT imaging
in these Patients is logistically challenging in terms of safety
for health professionals and other patients, and can overwhelm
available resources [9].

Chest X-ray can be a useful tool, especially in emergency
settings: it can help exclude other possible lung “noxa”, allow
a first rough evaluation of the extent of lung involvement
and most importantly can be obtained at patient’s bed using
portable devices, limiting possible exposure in health care
workers and other patients. Furthermore, CXR can be repeated
over time to monitor the evolution of lung disease [5].

Wong et al. in a study recently published on Radiology
reported that x-ray has a sensitivity of 69% and that the
severity of CXR findings peaked at 10-12 days from the date
of symptom onset [8].

Because of their mostly peripheral distribution, subtle early
findings on CXRs may be a diagnostic challenge even for an
experienced thoracic radiologist: in fact, there are many factors
that should be taken into account in image interpretation
and that could alter diagnostic performance (such as patient
body type, compliance in breath-holding and positioning, type
of projection that can be executed i.e. antero-posterior in
more critical patients examined at bedside, postero-anterior
if the patient can be moved to radiology unit and is more
collaborating, presence of other medical devices on the thorax,
especially in x rays performed in intensive care units, etc.). In
the challenging and never-before seen scenario that rose to
attention in the last months, radiologists may look at Artificial
Intelligence and deep learning applications as a possible aid
for daily activity, in particular for identification of the more
subtle findings that could “escape” the human eye (i.e. reduce
false-negative x-rays) or, on the other side, could prompt swab
repetition of further diagnostic examinations when first virus
testing is negative (considering its sub-optimal sensitivity).



Given the intrinsic limits of CXR but at the same time
its potential relevant role in the fight against COVID 19,
in this work we set up a state of the art deep learning
pipeline to investigate if computer vision can unveil some
COVID fingerprints. It is evident that the answer will be
given only when publicly available large image datasets will
empower scientists to train complex neural models, to provide
reproducible and statistically solid results and to contribute to
the clinical discussion. Unfortunately, up to date, we are stuck
with few labelled images. Thanks to the collaboration with the
radiology unit of Città della Salute e della Scienza di Torino
(CDSS) hospital in Turin in the last days of March (at the
peak of epidemic in Italy), we managed to collect the Covid
Radiographic images Data-set for AI (CORDA), currently
comprising images from 386 Patients that underwent COVID
screening. The data are still limited but, using them to train
and test Convolutional Neural Network (CNN) architectures
such as resnet [10], we contribute to shed some light into the
problem. In this work we do not mean to answer whether and
how CXR can be used in the early diagnosis of COVID, but
to provide a methodological guide and critical reading of the
statistical results that can be obtained using currently available
datasets and learning mechanisms. Our main contribution is an
extensive experimental evaluation of different combinations of
usage of existing datasets for pre-training and transfer learning
of standard CNN models. Such analysis allows us to raise
some warnings on how to build datasets, pre-process data and
train deep models for COVID classification of X-ray images.
We show that, given the fact that datasets are still small and
geographically local, subtle biases in the pre-trained models
used for transfer learning can emerge, dramatically impacting
on the significance of the performance one achieves.

II. RELATED WORKS

It is evident that currently there is not yet a significant
amount of work devoted to automatic detection of covid
from medical imaging. Nonetheless, one can refer to previous
epidemics caused by novel strain of coronavirus such as severe
acute respiratory syndrome (SARS), first recognized in Canada
in March 2003, characterised by similar lung condition, i.e.
interstitial pneumonia [11]. Most results leverage on the use
of high resolution CT scans. As an example, in [12] CNN are
investigated for classification of interstitial lung disease (ILD).
Also [13], [14] show that deep learning can be used to detect
and classify ILD tissue. The authors of [14] focus on a design
a CNN tailored to match the ILD CT texture features, e.g.
small filters and no pooling to guarantee spatial locality.

Fewer contributions focus on classification of X-ray chest
images to help SARS diagnosis: in [15] lung segmentation,
followed by feature extraction and three classification algo-
rithms, namely decision tree, shallow neural network and
classification and regression tree are compared, the latter
yielding the higher accuracy on the SARS detection task.
However, on the pneumonia classification task, NN-based
approaches show encouraging results. In [16] texture features

for SARS identification in radiographic images are proposed
and designed using signal processing tools.

In the last days a number of preprints targeting covid
classification with CNN on radiographic images have begun
to circulate thanks to open access archives. Many approaches
have been taken to tackle the problem of classifying chest X-
ray scans to discriminate COVID-positive cases. For example,
Sethy et al. compare classification performances obtained
between some of the most famous convolutional architec-
tures [17]. In particular, they use a transfer learning-based
approach: they take pre-trained deep networks and they use
these models to extract features from images. Then, they train
a SVM on these “deep features” to the COVID classification
task. A similar approach is also used by Apostopolous et al.:
they pre-train a neural network on a similar task, and then they
use the trained convolutional filters to extract features, on top
of which a classifier attempts to select COVID features [18].
Narin et al. make use of resnet-based architectures and the
recent Inception v3 and then they use a 5-fold cross validation
strategy [19]. Finally, Wang et al. propose a new neural
network architecture to be trained on the COVID classification
task [20].
All of these approaches use a very small dataset, COVID-
ChestXRay [21], consisting of approximately 100 COVID
cases considering CXR only. Furthermore, in order to build
COVID negative cases, typically data are sampled from other
datasets (mostly, from ChestXRay). However, this introduces
a potential issue: if any bias is present in the dataset (a label
in the corners, a medical device, or other contingent factors
like similar age, same sex etc.) the deep model could learn to
recognize these dataset biases, instead of focusing on COVID-
related features.
These works present some potential issues to be investigated:

• Transfer learning: in the literature it is widely recognized
that transfer learning-based approaches prove to be ef-
fective, also for medical imaging [22]. However, it is
very important to be careful on the particular task the
feature extractor is trained on: if such task is very specific,
or contains biases, then the transfer learning approach
should be carefully carried on.

• Hidden biases in the dataset: most of the current works
rely on very small datasets, due to the limited availability
of public data on COVID positive cases. These few data,
then, contain little or even no metadata on age, gender,
different pathologies also present in these subjects, and
other necessary information necessary to spot on this kind
of biases. Besides these, there are other biases we can try
to correct. For example, every CXR has its own image
windowing parameters or other acquisition settings that
a deep model could potentially learn to discriminate. For
example, one model may cluster images according to
the scan tool used for the exam; if some scan settings
correspond to all COVID examples, these will generate
a spurious correlation that the model can exploit to
yield apparently optimal classification accuracy. Another



example is given by textual labeling in images: if all the
negative examples are sampled from the same dataset, the
deep model could learn to recognize such feature instead
of focusing on the lung content etc.

• Very small test sets: as a further consequence of having
very little data, test set sizes are extremely small and they
do not provide any statistical certainty on learning.

III. METHODOLOGY

In this section we are going to describe the proposed deep-
learining approach based on quite standard pipeline, namely
chest image pre-processing and lung segmentation followed
by classification model obtained with transfer learning. As we
will see in this section, data pre-processing is fundamental to
remove any bias present in the data. In particular, we will show
that it is easy for a deep model to recognize these biases which
drive the learning process. Given the small size of COVID
datasets, a key role is played by the larger datasets used for
pre-training. Therefore, we first discuss which datasets can be
used for our goals.

A. Datasets

For the experiments we are going to show, three different
datasets will be used. Each of these contain CXR images, but
their purpose is different:

• COVID-ChestXRay: this dataset was developed by gath-
ering CXR and CT images from various website and
publications. At the time of writing, it comprises 287
images with different type of pneumonias (COVID-19,
SARS, MERS, Streptococcus spp., Pneumocystis spp.,
ARDS) [21]. Currently, a subset of 137 CXRs (PA)
containing 108 COVID positive images and 29 COVID
negatives is available.1

• CORDA: this dataset was created for this study by retro-
spectively selecting chest x-rays performed at a dedicated
Radiology Unit in a reference Hospital in Piedmont
(CDSS) in all patients with fever or respiratory symptoms
(cough, shortness of breath, dyspnea) that underwent
nasopharingeal swab to rule out COVID-19 infection.
Patients were collected over a 15-day period between
the 16th and 30th March, 2020. It contains 447 CXRs
from 386 patients, with 150 images coming from COVID-
negative patients and 297 from positive ones. Patients’
average age is 61 years (range 17-97 years old). The data
collection is still in progress, with other 5 hospitals in
Italy willing to contribute at time of writing. We plan to
make CORDA available for research purposes according
to EU regulations as soon as possible.

• Montgomery County X-ray Set: the X-ray images in
this dataset have been acquired under a tuberculosis
control program of the Department of Health and Human
Services of the Montgomery County, MD, USA. Such
a dataset contains 138 samples: 80 are normal patients

1https://github.com/ieee8023/covid-chestxray-dataset

Fig. 1: CXR pre-processing steps proposed.

and 58 are abnormal. In these images lungs have been
manually segmented. The dataset is open-sorce.2

• Shenzhen Hospital X-ray Set: the X-ray images in this
dataset have been collected by Shenzhen No.3 Hospital
in Shenzhen, Guangdong providence, China. This dataset
contains a total of 662 images: 326 images are from
healthy patients while 336 show abnormalities. Such a
dataset is also open-source.3 Ground truths for this dataset
have been provided by Stirenko et al. [23].

• ChestXRay: this dataset contains 5857 X-ray images col-
lected at the Guangzhou Women and Children’s Medical
Center, Guangzhou, China. In this dataset, three differ-
ent labels are provided: normal patients (1583), patients
affected by bacterial pneumonia (2780) and affected by
viral pneumonia (1493). This dataset is granted under
CC by 4.0 and is part of a work on Optical Coherence
Tomography [24].4

• RSNA: developed by the joint effort of the Radiologi-
cal Society of North America,US National Institues of
Health, The Society of Thoracic Radiology and MD.ai for
the RSNA Pneumonia Detection Challenge, this dataset
contains pneumonia cases found in the NIH Chest X-ray
dataset [25]. It comprises 20672 normal CXR scans and
6012 pneumonia cases, for a total of 26684 images.5

B. Pre-processing

For our simulations we propose a pre-processing strategy
aiming at removing bias in the data. This step is very important
in a setting in which we train to discriminate different classes
belonging to different datasets: a neural network-based model
might learn the distinction between the different dataset biases
and from them “learn” the classification task. The proposed
pre-processing chain is summarized in Fig. 1 and is based on
the following steps:

• Histogram equalization: when acquiring a CXR, the so-
called radiographic contrast depends on a large variety of
factors, typically depending on subject contrast, receptor
contrast or other factors like scatter radiations [26].
Hence, the raw acquisition has to be filtered through
Value Of Interest transformation. However, due to differ-
ent calibrations, different range dynamics can be covered,

2http://openi.nlm.nih.gov/imgs/collections/NLM-MontgomeryCXRSet.zip
3http://openi.nlm.nih.gov/imgs/collections/ChinaSet AllFiles.zip
4https://data.mendeley.com/datasets/rscbjbr9sj/2/files/f12eaf6d-6023-432f-

acc9-80c9d7393433
5https://www.kaggle.com/c/rsna-pneumonia-detection-challenge



(a) (b)

Fig. 2: Original image (a) and extracted lung segmented image
(b). Many possible bias sources like all the writings and
medical equipment is naturally removed.

and this potentially is a bias. Histogram equalization is a
simple mean to guarantee quite uniform image dynamic
in the data.

• Lung segmentation: the lung segmentation problem has
been already faced and successfully tackled [27]–[29].
Being able to segment the lungs only, discarding all the
rest of the CXRs, potentially prunes away possible bias
sources, like for example the presence of medical devices
(typically correlated to sick patients), various text which
might be embed in the scan etc. In order to address this
task, we train a U-Net [30] on Montgomery County X-
ray Set and Shenzhen Hospital X-ray Set. The lung masks
obtained are then blurred to avoid sharp edges using a 3
pixel radius. An example of the segmentation outcome is
shown in Fig. 2.

• Image intensity normalization in the range [0, 1].

C. Training

After data have been pre-processed, a deep model will be
trained. Towards this end, the following choices have been
taken:

• Pre-training on the feature extractor, i.e. convolutional
layers of the CNN, will be performed. In particular,
the pre-training will be performed on a related task,
like pneumonia classification for CXRs. It has been
shown that such an approach can be effective for medical
imaging [12], in particular when the amount of available
data is limited as in our classification task. Clearly, pre-
training the feature extractor on a larger dataset con-
taining related features may allow us to exploit deeper
models, potentially exploiting richer image feature.

• The feature extractor will be fine-tuned on COVID data.
Freezing it will certainly prevent over-fitting the small
COVID data; however, we have no warranty that COVID
related features can be extracted at the output of a feature
extractor trained on a similar task. Of course, its initial-
ization on a similar task helps in the training process, but
in any case a fine-tuning is still necessary [31].

• Proper sizing of the encoder to-be-used is an issue to be
addressed. Despite many recent works use deeper archi-
tectures to extract features on the COVID classification

task, larger models are prone to over-fit data. Considering
the minimal amount of data available, the choice of the
appropriate deep network complexity significantly affects
the performance.

• Balancing the training data is yet another extremely
important issue to be considered. Unbalanced data favor
biases in the learning process. Such balancing issue can
be addressed in a number of ways: the most common and
simple way to solve this issue is adding or removing data
from the training-set. Removing data from a tiny dataset
is not a viable approach; considering that the COVID
datasets are built mainly of positive cases, one solution
is to augment them with negative cases from publicly-
available datasets. However, this is a very delicate op-
eration and needs to be done very carefully: if all the
negative cases are made of non-pathological patients, the
deep model will not necessarily learn COVID features. It
may simply discriminate between healthy and unhealthy
lung. Providing a good variety of conditions in the
negative data is not an easy task. The choice of the images
may turn to be critical and, just like in the pre-training
phase, one can include unwanted biases: again the model
can end up classifying new images (that are positive to
covid) exploiting discriminative biases present in different
datasets.

• Testing with different data than those used at training time
is also fundamental. Excluding from the test-set exams
taken from patients already present in the training-set is
important to correctly evaluate the performance and to
exclude the deep model has not learned a “patient’s lung
shape” feature.

• Of course many other issues have to be taken into account
at training time, like the use of a validation-set to tune
the hyper-parameters, using a good regularization policy
etc. but these very general issues have been exhaustively
discussed in many other works [32]–[34].

IV. DISCUSSION

In this section we present and comment the experimental
results obtained on a combination of different datasets (intro-
duced in Sec. III-A). All the simulations have been run on a
Tesla T4 GPU using PyTorch 1.4.6 The performance obtained
on a comprehensive number of experiments is presented in
Tab. II and Tab. III. In these tables, in particular, three factors
will be evaluated:

• Pre-training of the feature extractor: the feature extractor
can be pre-trained on large generic CXR datasets, or can
not be pre-trained.

• Composition of the training-set: the CORDA dataset is
un-balanced (in fact, there is a prevalence of positive
COVID cases) and some data balancing is possible,
borrowing samples from publicly available non-COVID
datasets. A summary of the dataset composition is de-
splayed in Table I. For all the datasets we used 70% of

6The source code is available at https://github.com/EIDOSlab/unveiling-
covid19-from-cxr



TABLE I: Datasets composition. The datasets used at training and test time are in the rows, and the total data are in the last
two columns.

COMPOSED DATASET
BORROWED DATA FROM ORIGINAL DATASETS

CORDA RSNA ChestXRay COVID-ChestXRay TOTAL
COVID+ COVID- COVID+ COVID- COVID+ COVID- COVID+ COVID- COVID+ COVID-

CORDA train 126 105 - - - - - - 126 105
test 90 45 - - - - - - 90 45

CORDA&ChestXRay train 207 105 - - - 102 - - 207 207
test 90 45 - - - 45 - - 90 90

CORDA&RSNA train 207 105 - 102 - - - - 207 207
test 90 45 - 45 - - - - 90 90

CORDA&COVID-ChestXRay train 116 105 - - - - 49 24 165 129
test 90 45 - - - - 10 5 100 50

COVID-ChestXRay train - - - - - - 98 24 98 24
test - - - - - - 10 5 10 5

data at training time and 30% as test-set. Training data are
then further divided in training-set (80%) and validation-
set (20%). Training-set data are finally balanced between
COVID+ and COVID-: where possible, we increased the
COVID- cases (CORDA&ChestXRay, CORDA&RSNA),
where not possible we subsampled the more populated
class. This percentages were not used for the COVID-
ChestXRay dataset: in this case only 15 samples are used
for testing in order to compare with other works [17]–
[19] that use the same partitioning.

• Testing on different datasets: in order to observe the
possible presence of hidden biases, testing on different,
qualitatively-similar datasets is a necessary step.

For all of these trained models, a number of metrics [35] will
be evaluated:

• Accuracy.
• AUC (area under the ROC curve), provides an aggregate

measure of performance across all possible classifica-
tion thresholds. For every other metric, the classification
threshold is set to 0.5.

• Sensitivity.
• Specificity.
• F-score.
• BA (balanced accuracy), since the test-set might be un-

balanced.
• DOR (diagnostic odds ratio).

Results are shown in Table II, Table III and Table IV.

A. To pre-train or not to pre-train?

One very important issue to pay attention to is whether
to pre-train the feature extractor or not. Given the large
availability of public data for pneumonia classification (for
example, in this scope we used ChestXRay and RSNA), it
could be a good move to pre-train the encoder, and effectively
this is what we observe looking at Table II. For example,
if we focus on the results obtained training on the CORDA
dataset, without a pre-trained encoder, BA and DOR are
lower than pre-training with ChestXRay or RSNA. Despite
the sensitivity remains very similar, pre-training the encoder
helps in improving the specificity: on the test-set extracted
from CORDA, using a pre-trained encoder on RSNA, the

specificity is 0.80, while it is only 0.58 with no pre-trained
feature extractor. Similar improvements in the specificity can
be observed also on test-sets extracted from all the other
datasets, except for ChestXRay. In general, a similar behavior
can be observed when comparing results for differently pre-
trained encoders trained on the same dataset.
Pre-training is important; however, we can not just “freeze”
the encoder on the pre-trained values. Since the encoder is pre-
trained on a similar, but different task, there is no warranty the
desired output features are optimal for the given classification
task, and a fine-tuning step is typically required [36].

B. Pre-training on different datasets

Focusing on pre-trained encoders, we show results for
encoders pre-trained on two different datasets: ChestXRay
and RSNA. While RSNA is a more generic pneumonia-
segmentation dataset, ChestXRay contains information also
about the type of pneumonia (bacterial or viral); so, at a first
glance it looks a better fit for the pre-training. However, if
we look at training on the CORDA dataset, we see that for
the same sensitivity value, we get typically higher specificity
scores for RSNA pre-training. This is not the same we observe
when we compare results on the publicly-available COVID-
ChestXRay: in this case, sensitivity and specificity are higher
when we pre-train on ChestXRay. Looking at the same pre-
trained encoder, let us say ChestXRay, we can compare results
training on CORDA and on COVID-ChestXRay, which are
the two COVID datasets: CORDA shows a lower sensitivity,
but in general a higher specificity, except for the ChestXRay
dataset. Having very little data at training time, pre-training
introduces some priors in the choice of the features to be used,
and depending on the final classification task, performance
changes, yielding very good metric in some cases. Pre-training
on more general datasets, like RSNA, in general looks a
slightly better choice than using a more specific dataset like
ChestXRay.

C. Augmenting COVID- data with different datasets

For each and every simulation, performance on different
test-sets is evaluated. This gives us hints on possible biases
introduced by different datasets used at training time.
A general trend can be observed for many COVID- augmented



TABLE II: Results obtained training ResNet-18.

Pre-trained encoder Training dataset Test dataset Sensitivity Specificity F-Score Accuracy BA AUC DOR

none

CORDA&RSNA

CORDA 0.56 0.42 0.60 0.51 0.49 0.52 0.91
CORDA&ChestXRay 0.56 0.22 0.15 0.26 0.39 0.33 0.36

CORDA&RSNA 0.56 0.96 0.49 0.95 0.76 0.95 34.23
CORDA&COVID-ChestXRay 0.52 0.48 0.58 0.51 0.50 0.53 1.00

CORDA

CORDA 0.56 0.58 0.63 0.56 0.57 0.59 1.71
CORDA&ChestXRay 0.56 0.37 0.18 0.39 0.46 0.43 0.74

CORDA&RSNA 0.56 0.38 0.08 0.39 0.47 0.46 0.76
CORDA&COVID-ChestXRay 0.56 0.58 0.63 0.57 0.57 0.59 1.76

CORDA&COVID-ChestXRay

CORDA 0.58 0.64 0.66 0.60 0.61 0.63 2.48
CORDA&ChestXRay 0.58 0.63 0.27 0.63 0.61 0.63 2.37

CORDA&RSNA 0.58 0.54 0.11 0.54 0.56 0.58 1.62
CORDA&COVID-ChestXRay 0.57 0.66 0.66 0.60 0.61 0.64 2.57

COVID-ChestXRay

CORDA 0.91 0.11 0.77 0.64 0.51 0.54 1.28
CORDA&ChestXRay 0.91 0.66 0.41 0.69 0.78 0.87 19.56

CORDA&RSNA 0.91 0.11 0.09 0.14 0.51 0.45 1.22
CORDA&COVID-ChestXRay 0.91 0.18 0.78 0.67 0.55 0.58 2.22

CORDA&ChestXRay

CORDA 0.88 0.18 0.77 0.64 0.53 0.58 1.55
CORDA&ChestXRay 0.88 0.94 0.76 0.93 0.91 0.97 112.93

CORDA&RSNA 0.88 0.14 0.09 0.17 0.51 0.42 1.14
CORDA&COVID-ChestXRay 0.87 0.20 0.77 0.65 0.54 0.60 1.67

RSNA

CORDA&RSNA

CORDA 0.68 0.44 0.69 0.60 0.56 0.61 1.68
CORDA&ChestXRay 0.68 0.22 0.18 0.27 0.45 0.49 0.59

CORDA&RSNA 0.68 0.90 0.37 0.89 0.79 0.90 19.82
CORDA&COVID-ChestXRay 0.67 0.50 0.70 0.61 0.58 0.63 2.03

CORDA

CORDA 0.54 0.80 0.66 0.63 0.67 0.72 4.78
CORDA&ChestXRay 0.54 0.31 0.16 0.34 0.43 0.48 0.54

CORDA&RSNA 0.54 0.55 0.10 0.55 0.55 0.61 1.48
CORDA&COVID-ChestXRay 0.57 0.76 0.67 0.63 0.67 0.72 4.20

CORDA&COVID-ChestXRay

CORDA 0.70 0.49 0.72 0.63 0.59 0.67 2.23
CORDA&ChestXRay 0.70 0.30 0.20 0.34 0.50 0.59 0.98

CORDA&RSNA 0.70 0.37 0.10 0.39 0.53 0.61 1.37
CORDA&COVID-ChestXRay 0.71 0.52 0.73 0.65 0.61 0.70 2.65

COVID-ChestXRay

CORDA 0.94 0.09 0.79 0.66 0.52 0.57 1.66
CORDA&ChestXRay 0.94 0.61 0.39 0.65 0.78 0.92 26.24

CORDA&RSNA 0.94 0.08 0.09 0.12 0.51 0.58 1.50
CORDA&COVID-ChestXRay 0.95 0.14 0.80 0.68 0.54 0.62 3.09

CORDA&ChestXRay

CORDA 0.82 0.38 0.77 0.67 0.60 0.63 2.81
CORDA&ChestXRay 0.82 0.95 0.75 0.94 0.89 0.97 89.14

CORDA&RSNA 0.82 0.30 0.10 0.32 0.56 0.59 1.98
CORDA&COVID-ChestXRay 0.83 0.38 0.78 0.68 0.60 0.64 2.99

ChestXRay

CORDA&RSNA

CORDA 0.86 0.31 0.78 0.67 0.58 0.60 2.67
CORDA&ChestXRay 0.86 0.29 0.24 0.36 0.58 0.48 2.47

CORDA&RSNA 0.86 0.95 0.61 0.95 0.90 0.97 122.64
CORDA&COVID-ChestXRay 0.82 0.38 0.77 0.67 0.60 0.61 2.79

CORDA

CORDA 0.54 0.58 0.62 0.56 0.56 0.67 1.64
CORDA&ChestXRay 0.54 0.37 0.17 0.39 0.46 0.49 0.70

CORDA&RSNA 0.54 0.73 0.15 0.72 0.64 0.72 3.21
CORDA&COVID-ChestXRay 0.56 0.62 0.64 0.58 0.59 0.70 2.08

CORDA&COVID-ChestXRay

CORDA 0.71 0.49 0.72 0.64 0.60 0.67 2.35
CORDA&ChestXRay 0.71 0.25 0.20 0.31 0.48 0.51 0.83

CORDA&RSNA 0.71 0.47 0.11 0.48 0.59 0.64 2.16
CORDA&COVID-ChestXRay 0.73 0.52 0.74 0.66 0.62 0.70 2.93

COVID-ChestXRay

CORDA 0.91 0.20 0.79 0.67 0.56 0.61 2.56
CORDA&ChestXRay 0.91 0.70 0.44 0.73 0.81 0.89 24.38

CORDA&RSNA 0.91 0.15 0.09 0.19 0.53 0.55 1.83
CORDA&COVID-ChestXRay 0.92 0.28 0.81 0.71 0.60 0.66 4.47

CORDA&ChestXRay

CORDA 0.88 0.24 0.78 0.67 0.56 0.66 2.32
CORDA&ChestXRay 0.88 0.94 0.77 0.94 0.91 0.97 122.67

CORDA&RSNA 0.88 0.24 0.10 0.27 0.56 0.67 2.26
CORDA&COVID-ChestXRay 0.88 0.26 0.78 0.67 0.57 0.68 2.58



TABLE III: Results obtained training a ResNet-50 model.

Pre-trained encoder Training dataset Test dataset Sensitivity Specificity F-Score Accuracy BA AUC DOR

RSNA

CORDA&RSNA

CORDA 0.74 0.49 0.74 0.66 0.62 0.65 2.79
CORDA&ChestXRay 0.74 0.40 0.24 0.44 0.57 0.64 1.92

CORDA&RSNA 0.74 0.92 0.43 0.91 0.83 0.93 31.76
CORDA&COVID-ChestXRay 0.70 0.54 0.73 0.65 0.62 0.66 2.74

CORDA

CORDA 0.61 0.71 0.70 0.64 0.66 0.67 3.87
CORDA&ChestXRay 0.61 0.40 0.20 0.43 0.51 0.53 1.06

CORDA&RSNA 0.61 0.58 0.12 0.58 0.60 0.63 2.20
CORDA&COVID-ChestXRay 0.62 0.74 0.71 0.66 0.68 0.69 4.64

CORDA&COVID-ChestXRay

CORDA 0.53 0.64 0.62 0.57 0.59 0.64 2.07
CORDA&ChestXRay 0.53 0.56 0.22 0.56 0.55 0.58 1.47

CORDA&RSNA 0.53 0.57 0.10 0.57 0.55 0.58 1.53
CORDA&COVID-ChestXRay 0.55 0.68 0.64 0.59 0.61 0.66 2.60

COVID-ChestXRay

CORDA 0.97 0.04 0.79 0.66 0.51 0.57 1.35
CORDA&ChestXRay 0.97 0.45 0.32 0.51 0.71 0.89 23.29

CORDA&RSNA 0.97 0.09 0.09 0.13 0.53 0.56 2.91
CORDA&COVID-ChestXRay 0.97 0.10 0.80 0.68 0.54 0.62 3.59

CORDA&ChestXRay

CORDA 0.76 0.33 0.72 0.61 0.54 0.65 1.55
CORDA&ChestXRay 0.76 0.95 0.72 0.93 0.85 0.97 63.61

CORDA&RSNA 0.76 0.36 0.10 0.38 0.56 0.63 1.75
CORDA&COVID-ChestXRay 0.76 0.32 0.72 0.61 0.54 0.64 1.49

ChestXRay

CORDA&RSNA

CORDA 0.73 0.40 0.72 0.62 0.57 0.58 1.83
CORDA&ChestXRay 0.73 0.25 0.20 0.31 0.49 0.44 0.92

CORDA&RSNA 0.73 0.96 0.58 0.95 0.85 0.97 68.71
CORDA&COVID-ChestXRay 0.70 0.46 0.71 0.62 0.58 0.60 1.99

CORDA

CORDA 0.64 0.56 0.69 0.61 0.60 0.65 2.27
CORDA&ChestXRay 0.64 0.49 0.24 0.51 0.57 0.61 1.72

CORDA&RSNA 0.64 0.63 0.14 0.63 0.64 0.69 3.06
CORDA&COVID-ChestXRay 0.67 0.60 0.72 0.65 0.64 0.69 3.05

CORDA&COVID-ChestXRay

CORDA 0.63 0.38 0.65 0.55 0.51 0.63 1.05
CORDA&ChestXRay 0.63 0.46 0.22 0.48 0.55 0.61 1.46

CORDA&RSNA 0.63 0.62 0.14 0.62 0.63 0.70 2.86
CORDA&COVID-ChestXRay 0.65 0.44 0.67 0.58 0.55 0.66 1.46

COVID-ChestXRay

CORDA 0.98 0.13 0.81 0.70 0.56 0.61 6.77
CORDA&ChestXRay 0.98 0.72 0.48 0.75 0.85 0.90 112.57

CORDA&RSNA 0.98 0.11 0.10 0.15 0.55 0.61 5.59
CORDA&COVID-ChestXRay 0.98 0.20 0.82 0.72 0.59 0.65 12.25

CORDA&ChestXRay

CORDA 0.81 0.29 0.75 0.64 0.55 0.64 1.74
CORDA&ChestXRay 0.81 0.94 0.73 0.93 0.88 0.97 73.35

CORDA&RSNA 0.81 0.25 0.09 0.28 0.53 0.57 1.43
CORDA&COVID-ChestXRay 0.80 0.30 0.74 0.63 0.55 0.64 1.71

TABLE IV: Results of COVID-Net and ResNet-18 training on COVID-ChestXRay.

Architecture Test dataset Sensitivity Specificity F-Score Accuracy BA AUC DOR
COVID-Net CORDA 0.12 0.98 0.22 0.41 0.55 0.55 6.68
COVID-Net COVID-ChestXRay 0.90 0.80 0.90 0.85 0.85 0.85 36.00
ResNet-18 CORDA 0.91 0.20 0.79 0.67 0.56 0.61 2.56
ResNet-18 COVID-ChestXRay 1.00 1.00 1.00 1.00 1.00 1.00 ∞

training-sets: the BA and DOR scores measured on the test-
set built from the same dataset used at training time are
typically very high. Let us focus on the ChestXRay pre-
trained encoder. When we train on CORDA&ChestXRay, the
BA score measured on the test-set from the same dataset
is 0.9 and the DOR is 122.67. However, its generalization
capability for a different composition of the test-set, let us
say, CORDA&RSNA, is way lower: the BA is 0.56 and the
DOR 2.26 only. The same scenario can be observed when we
train on CORDA&RSNA: on its test-set the BA is 0.90 and
DOR 122.64, while on the test-set of CORDA&ChestXRay
the BA is 0.59 and DOR 2.47. The key to understand these
results lies again in the specificity score: this score is ex-
tremely high for the test-set of the same dataset the training
is performed on (for example, for CORDA&RSNA is 0.95

and for CORDA&ChestXRay is 0.94) while for the others
is extremely low. Such a behavior is due to the presence of
some common features in all the data belonging to the same
augmenting dataset. This can be observed, for example, in
Fig. 3a, where the extracted features from an encoder pre-
trained on ChestXRay and trained on CORDA&ChestXRay
are clustered using t-SNE [37] (blue and orange dots represent
ChestXray and CORDA data samples respectively, regardless
of the COVID label). It can be noted that CORDA samples,
regardless the COVID+ or COVID- label, are clearly separable
from ChestXRay data. Of course, all ChestXRay images have
COVID- label, so someone could argue that the COVID feature
has been captured. Unfortunately we have a counterexample:
in Fig. 3b we compare CORDA vs. RSNA samples, using
the same ChestXRay pre-trained encoder and now RSNA and



(a) (b)

Fig. 3: t-SNE on ChestXRay trained encoder. (a) shows ChestXRay data vs CORDA data, (b) instead shows RSNA vs CORDA.

CORDA samples no longer form clear clusters. Hence, the
deep model specializes not in recognizing COVID features, but
in learning the common features in the same dataset used at
training time. We would like to remark that for all the data used
at training or at test time, all the pre-processing presented in
Sec. III-B has been used. We ran the same experiments without
that pre-processing and performance on different datasets than
the one used at training time gets even worse. For example,
pre-training and training on CORDA&ChestXRay without pre-
processing lowers the BA to 0.73 and the DOR to 8.31 on
CORDA, while from Table II we have higher scores on the
test set (BA of 0.91 and DOR of 122.67).
Dealing with generality of the results is a very delicate matter:
what it is possible to see in Tab. II is that augmenting data
with COVID- data needs to be very thoughtful since the
classification performance may vary from very high accuracy
down to almost useless discriminative power. Nonetheless,
training using only COVID datasets yields some promising
scores: for example, using ChestXRay pre-trained encoder and
CORDA for training and testing, the BA we achieve is 0.56
and the DOR is 1.64. Including also COVID-ChestXRay for
training (which consists in having more COVID+ and COVID-
examples) improves the BA to 0.62 and the DOR to 2.93. In
this case, however, the specificity is an issue, since we lack
of COVID- data. However, these results show some promise
that can be confirmed only by collecting large amount of data
in the next months.

D. How deep should we go?

After reviewing results on ResNet-18, we move to similar
experiments run on the deeper ResNet-50 shown in ab. III. The
hope is that a deeper network could extract more representative
features for the classification task. Given the discussion in
Sec. IV-A, we show only the cases with pre-training of
the feature extractor. Using this deeper architecture, we can
observe that all the discussions made for ResNet-18 still
holds. In some cases performance impairs slightly: for ex-
ample, the DOR score on CORDA&ChestXRay for ResNet-
18 was 122.67 while for ResNet-50 drops to 73.35. This
is a sign of over-fitting: given the very small quantity of
data currently available, using a small convolutional neural
network is sufficient and safer. Taking an opposite approach,
we tried to use a smaller artificial neural network, made of 8
convolutional layers and a final fully-connected layer, which
takes inspiration from the ALL-CNN-C architecture [38].
We call this architecture Conv8. The results on this smaller
architecture are similar to those observed in Table II. For
example, training the model on CORDA dataset, on Conv8
we have a BA of 0.61 and DOR of 2.38 while for ResNet-18
with encoder pre-trained on RSNA we have BA of 0.67 and
DOR 4.78. We can conclude that using a smaller architecture
than ResNet-18 does not give relevant training advantages,
while by using larger architectures we might over-fit data.

E. Comparison between deep networks trained on COVID-
ChestXRay

All the observations on train and test data made above are
also valid for the recently published results on the COVID



classification from CXR [17]–[20]. One very promising ap-
proach is COVID-Net [20]. They also share the source
code and the trained model.7 In Tab. IV we compare the
classification metrics obtained with COVID-Net and our
ResNet-18 model: both models have been trained using
COVID-ChestXRay, and tested on both CORDA and COVID-
ChestXRay. In line with the discussion above we can note
that both COVID-Net and ResNet-18 yields surprising results
when the same dataset is used for traning and testing: The
performance of COVID-Net on the COVID-ChestXRay test-
set (the same dataset used at training time) is very high (BA
of 0.85 and DOR of 36.0) while it drops significantly when
tested on CORDA, where BA is 0.55 only and DOR is 6.68.
This drop is explained looking at sensitivity and specificity: it
is evident that the model classifies as COVID- almost all the
data. A similar behavior can be observed also in ResNet-18
model: the observed performance apparently looks incredible
(since that the BA on the test-set is 1.0), and in fact similar
numbers are also claimed in the other works on ResNet-
like architectures [17]–[19]. However, testing on CORDA
reveals that the deep model is likely to have learned some
hidden biases in COVID-ChestXRay and tends to mis-classify
COVID- samples as COVID+ (given that the specificity is here
0.20).

V. CONCLUSIONS

One of the very recent challenges for both clinical and
AI community is to use deep learning to learn to discrimi-
nate COVID from CXR. Some recent works highlighted the
possibility of successfully tackle this problem, despite the
currently small quantity of publicly available data. In this
work we have highlighted possible obstacles in successfully
training a deep model, ranging from the proper choice of
the architecture to-be-trained to handling removable biases in
medical datasets. Extensive experiments show that extracting
a “COVID” feature from CXR is not an easy task. Such a
problem should be addressed very carefully: it is very easy
to misinterpret very good results on test-data, still showing
poor generalization on new data in the same domain. We
could perform such a test thanks to the possibility of using
CORDA, a larger dataset comprising COVID cases. Of course,
the quantity of available data is still limited but allowed us
to find some promising seminal classification results. The
ongoing collection and sharing of large amount of CXR data
is the only way to further investigate if promising CNN results
can aid in the fight to COVID pandemic.
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