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Chapter 4 

Energy efficient driving in dynamic 

environment: Considering other traffic 

participants and overtaking possibility 

Zlatan Ajanović1, Michael Stolz
1
, Martin Horn2 

Abstract: This chapter studies energy efficient driving of (semi)autonomous elec-

tric vehicles operating in a dynamic environment with other traffic participants on 

a unidirectional, multi-lane road. This scenario is considered to be a so called hard 

problem, as constraints imposed are varying in time and space. Neglecting the 

constraints imposed from the surrounding traffic, the generation of an energy op-

timal speed trajectory may lead to bad results, with the risk of low driver ac-

ceptance when applied in a real driving environment. An existing approach satis-

fies constraints from surrounding traffic by modifying an existing unconstrained 

trajectory. In contrast to this, the proposed approach incorporates a leading vehi-

cle’s motion as constraint in order to generate a new optimal speed trajectory in a 

global optimal sense.  

First simulation results show that energy optimal driving considering other ve-

hicle participants is important. Even in simple setups significantly (8%) less ener-

gy is consumed at only 1.3% travelling time prolongation compared to the best 

constant speed driving strategy. Additionally, the proposed driving strategy is us-

ing 4.5% less energy and leads to 1.6% shorter travelling time compared to the ex-

isting overtaking approach. 

Using simulation studies, the proposed energy optimal driving strategy is ana-

lyzed in different scenarios. 

Keywords: overtaking, car following, ecodriving, optimal speed trajectory 
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1.1 Introduction 

Increasing environmental awareness, strict regulations on greenhouse gas emis-

sions and constant desire to increase the range of electric vehicles as well as the 

big economic benefits drive a lot of research in the field of energy efficient driv-

ing. As a result, there are many different approaches addressing this topic. Some 

approaches are related to the vehicle design optimization, some to using alterna-

tive propulsion systems and some to the driving behavior optimization. In [1] the 

authors present a study which shows that the driving behavior has a rather big in-

fluence on energy consumption. It is shown that energy consumption may vary in 

a range of approx. 30% depending on moderate or aggressive driving behavior. 

Driving behavior related approaches for improving energy efficiency can be 

grouped into: “eco routing”, “using road slope information”, “traffic light assist”, 

“platooning” and “overtaking” as shown in Fig.1. 

 

  

Fig. 1: Approaches to increase driving energy efficiency. 

Eco routing is based on determining the most energy-efficient route for the trip, 

which may differ from the shortest or fastest one. E.g. [2] shows an example using 

historical data to determine an eco-route. 

Knowledge about the upcoming driving route, the road conditions and the abil-

ity to control the vehicle’s propulsion enables the optimization of the speed trajec-

tory of the vehicle with respect to the energy consumption. This problem has been 

extensively studied. Discrete dynamic programming (DP) for energy efficient 

driving has been used for over a decade now e.g. in research focused on heavy du-

ty vehicles [3] [4]. A comparison between different optimization methods (Euler-

Lagrange, Pontryagin’s Maximum Principle, DP, and Direct Multiple Shooting) 

was presented in [5]. The reader will find there an analysis on the DP grid choice, 

tips on backward and forward dynamic programming, and on how to incorporate 

traffic lights. By using model predictive control (MPC) to drive vehicles on free 
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roads with up and down slopes notable fuel savings are shown in [6]. MPC was al-

so used to control a hybrid vehicle driving over a hill and performing vehicle fol-

lowing in [7]. In [8] an overview of the existing approaches and current state of 

the art can be found. Optimized speed trajectories are usually proposed to advice a 

human driver via an appropriate human-machine-interface (HMI). Rarely opti-

mized speed trajectories are used to directly provide a reference value for underly-

ing low-level controllers such as cruise control. Increasing vehicle automation is 

expected to change this in the near future.  

The integration of time varying constraints such as traffic lights has also been 

studied intensively. Incomplete knowledge about upcoming traffic lights’ timing 

was studied in [9], complete knowledge of the upcoming traffic lights’ timing to-

gether with Dijkstra’s algorithm was studied in [10] and an MPC based controller 

was developed with additional constraints imposed from a vehicle in front in [11]. 

MPC based controller proposed in [11] only considers vehicle following but not 

overtaking.  

A lot of research on a topic of platooning was done within the SATRE project 

generating benefits for heavy duty vehicles [12]. 

In [13] a possible solution for a vehicle following problem is presented show-

ing different concepts for safe vehicle following, defining helpful concepts such as 

the safe distance, time-inter-vehicular and time-to-collision. In [14] a possible so-

lution for comfort oriented vehicle following with leading vehicle movement pre-

diction treated as disturbance in MPC controller is presented. In publications deal-

ing with the execution of optimal overtaking [15] [16] [17] [18], speed trajectory 

planning is done in a way, that modifying an optimal speed trajectory leads to the 

smallest deviation from the desired speed while the vehicle is overtaking. These 

approaches are treating the problem locally and partially and don’t give an energy 

consumption based decision if a vehicle should overtake or not and where the best 

location is for overtaking. Up to now not enough attention is paid on considering 

other participants in traffic especially leading vehicles. 

If leading vehicles are neglected in the optimization, the unconstrained plan-

ning will not be fully achievable in real driving conditions, and may in some situa-

tions lead to drawbacks in energy consumption and very likely to bad driver ac-

ceptance. This work focuses on the integration of constraints imposed by leading 

vehicles and a global approach to optimize energy consumption.  

1.2 Problem definition 

This chapter shortly states the problem definition from a mathematical point of 

view as an optimal control problem. The aim is to determine a vehicle speed tra-

jectory (necessary motor torque) which results in optimal energy consumption for 

the given transportation task while taking into account additional constraints. First, 

a widely used, rather generic model of a vehicles longitudinal motion is defined. 
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Then an appropriate cost function and relevant constraints are outlined. Finally, 

incorporation of time and/or space varying constraints (e.g. leading traffic) is dis-

cussed. 

1.2.1 System model 

Since low model complexity is crucial for efficient optimization, the vehicle is 

modelled as particle-mass. This approach suits most applications and is the stand-

ard choice. The vehicle model (which we shortly call the system) is represented by 

two states: 𝑠 – the longitudinal distance travelled by the vehicle and 𝑣 – the longi-

tudinal velocity of the vehicle. The system input is the motor torque 𝑇𝑚. The 

mathematical model is described by 

 
�̇� = 𝑣 ,   (1) 

 
�̇� =

𝐹𝑚(𝑡)

𝑚
−

𝐹𝑟

𝑚
  , (2) 

 
𝐹𝑟 =

1

2
𝜌𝑎𝑐𝑑𝐴𝑓𝑣(𝑡)2 + 𝑐𝑟𝑚𝑔𝑐𝑜𝑠 (𝛼(𝑠(𝑡))) + 𝑚𝑔𝑠𝑖𝑛 (𝛼(𝑠(𝑡))) . (3) 

The upper equation (1) originates from kinematics. Equation (2) is derived from 

Newton’s second law with 𝐹𝑚 being the force produced by the propulsion motor, 

𝑚 denoting the vehicle mass and  𝐹𝑟 being the resistive force. This resistive force 

is defined in (3), with air density 𝜌𝑎, aerodynamic drag coefficient 𝑐𝑑 , the vehi-

cle’s frontal area 𝐴𝑓, rolling resistance coefficient 𝑐𝑟, gravity acceleration 𝑔 and 

the road slope angle 𝛼. The propulsion element (which is here considered to be an 

electric motor with inner torque 𝑇𝑚) is modelled statically by: 

 𝐹𝑚(𝑡) =
𝑘𝑇𝑚𝜂𝑠𝑖𝑔𝑛(𝑻𝑚(𝑡))

𝑟𝑤

, (4) 

using an efficiency coefficient 𝜂 scheduled by a map, a combined transmission 

ratio of the powertrain 𝑘 and the radius of the wheels 𝑟𝑤. The ratio between rota-

tional speed 𝜔 of the motor and vehicle speed is defined by 

 𝜔(𝑡) =
𝑘𝑣(𝑡)

2𝑟𝑤𝜋
   . (5) 

1.2.2 Cost function 

Based on the system, in a next step a cost function is defined. In this contribu-

tion the main focus is on energy efficiency, so the cost function will be designed 

to represent the overall energy consumption of the vehicle. 

If only energy used by the propulsion system of the vehicle is considered, the 

optimal solution generally speaking will most likely lead to rather slow move-
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ment. To avoid this, some authors additionally introduced a term to the cost func-

tion weighting travelling time [8] [13]. The weighting coefficient is then tuned 

such that the travel time is comparable to times achieved by human drivers. Alt-

hough such an approach avoids slow movement, it results in a suboptimal solution 

from an energy efficiency point of view. 

In the following, instead of introducing weighted travelling time we include 

power consumption from the auxiliary devices such as air conditioning system, in-

fotainment system, thermal management system, etc. leading to straight forward 

energy related cost function. These auxiliary consumptions are assumed to be a 

constant load 𝑃𝑏𝑛. The total power consumption of the vehicle is then the sum of 

boardnet power consumption and power consumption of the motor, which is cal-

culated from the product of the rotational speed of the motor 𝜔 and motor 

torque 𝑇𝑚. Consequently, the used energy is the integral of the power over time of 

the trip represented by 

 𝐸𝑚𝑖𝑛 = min
𝑇𝑚

∫(𝜔(𝑡)𝑇𝑚(𝑡) + 𝑃𝑎𝑢𝑥)

𝑇

0

𝑑𝑡 . (6) 

Instead of using time for integration, the distance can be used. This offers some 

distinct advantages for solving as final time is not known, but final distance is, and 

road slope appears as a function of distance [5]. 

1.2.3 Internal constraints 

Internal constraints in the optimization problem originate from constrained sys-

tem dynamics, constraints on states, initial and final conditions. The following in-

ternal system constraints are considered: 

Vehicle maximum speed and acceleration limits: 

 𝑣𝑚𝑖𝑛 < 𝑣(𝑡) < 𝑣𝑚𝑎𝑥 , (7) 

 �̇�𝑚𝑖𝑛 < �̇�(𝑡) < �̇�𝑚𝑎𝑥 , (8) 

Initial and final conditions for position and velocity: 

 𝑣(0) = 𝑣𝑖 , 𝑣(𝑇) = 𝑣𝑓 , (9) 

 𝑠(0) = 0, 𝑠(𝑇) = 𝑆, (10) 

Note that the complete behavior of the electric motor such as maximum availa-

ble torque, rotational speed and efficiency is modelled within the efficiency map. 

Apart from internal constraints, constraints which are imposed from environment 

and external factors exist. 
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1.2.4 External constraints 

External constraints can be classified according to the dependence on two vari-

ables relevant for the optimization problem. These are space and time. This means 

that external constraints can be grouped into four different groups summarized in 

Table 1. 

Tab. 1: External constraints classification. 

 Time variant Time invariant 

Space variant other traffic participants resting time (e.g. every 2h) 

Space invariant traffic lights 
traffic signs (e.g. speed limits), 

road curvature 

 

Generally speaking invariant constraints are easier to integrate into the optimi-

zation problem than variant constraints. In some cases time/space variant con-

straints can lead to tremendous efforts when considered. 

Time-and-space-invariant constraints 

This type of constraints is straight forward to integrate as it is constant in time 

and space. Examples are: Traffic signs, which limit maximum speed on some road 

segments or road curvature which also limits maximum speed because of the risk 

of roll-over. On curved segments a minimum longitudinal acceleration limit can 

also be imposed. The resulting acceleration would generate an inertial force push-

ing back the driver and improving the drivability feeling since it may partly com-

pensate the uncomfortable centrifugal forces. 

Time-invariant-space-variant constraints  

An example of a constraint of this type could be resting time. Usually the driver 

has to make resting stops after continuously driving for longer periods. This gen-

erally doesn’t explicitly depend on space as there are more resting spots along the 

road. With some approximation, charging of the vehicle could be considered as a 

constraint of this type. 

Time-variant-space-invariant constraints 

Constraints of this type do not change in space but change with time. A typical 

example is a traffic light, which sets the maximum speed to zero when the red 

light is active. This happens in discrete time intervals at a fixed location in space. 

Time-and-space-variant constraints 

Constraints of this type are usually hard to consider, sometimes even impossi-

ble with reasonable effort. Typical examples for a constraint of this type are other 
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vehicles moving in the surrounding traffic. Constraints are on the speed and posi-

tion of the controlled vehicle. Time and space of such constraints are not fixed, 

since the velocity of the controlled vehicle itself influences the constraint. For ex-

ample if the controlled vehicle is moving faster, it will reach a leading vehicle 

sooner in time and space. Things get even more complicated when considering the 

possibility of overtaking. In this case the speed of the controlled vehicle has to be 

significantly higher than the speed of the leading vehicle, providing a speed dif-

ference to safely overtake. Such constraints can be mathematically expressed as: 

 |𝑠(𝑡) − 𝑠𝑙𝑒𝑎𝑑(𝑡)| >  𝑑𝑠𝑎𝑓𝑒  (11) 

 𝑣(𝑡) − 𝑣𝑙𝑒𝑎𝑑(𝑡) >  𝑣𝑠𝑎𝑓𝑒 . (12) 

Constraint (11) is active in case of vehicle following and constraint (12) in case 

of overtaking a leading vehicle. 

From a practical point of view, as the future movement of other vehicles is usu-

ally unknown, some assumptions must be made. In this work, the most simple 

movement prediction is used by assuming, that other vehicles will continue to 

move with their actual speed. Additionally, it will be assumed that other vehicles 

will not overtake the controlled vehicle and may slow down behind in order to 

avoid collisions once they have been overtaken. This assumption leads to the pos-

sibility of neglecting vehicles following the controlled vehicle. 

1.2.4 Challenges 

There are a few challenges connected to the discussed optimization, which are 

shortly highlighted in the following: 

Nonlinear problem 

The problem is nonlinear, as air drag resistance is proportional to the square of 

the velocity. Including the motor efficiency adds additional nonlinearity, as there 

is a sign function in motor torque calculation. 

Dynamic constraints 

The incorporation of the dynamic constraints increases the problem complexi-

ty. Many methods such as backward dynamic programming with free final time 

cannot cover them as these constraints depend on the trajectory from the start. 

Course of dimensionality 

If the optimization is solved numerically, state discretization is necessary. In-

creasing the number of system states considered in optimization problem dramati-

cally increases the number of possible state combinations. Each additional state 

multiplies the number of state combinations by the number of its discretization 

values. E.g. Considering multiple propulsion sources as in hybrid cars, or even 
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considering distinctive gear ratios will highly increase the computational effort for 

solving. 

Real-time computation vs precision 

As the focus is on real-time applications within a vehicle the general tradeoff 

between speed of computation and precision has to be taken into account. This 

will have an impact on the choice of methods. 

1.3 Optimal motion planner 

As explained above, publications considering road slope to generate energy ef-

ficient speed trajectory do not fully consider other vehicles in traffic and the pos-

sibility to overtake them. On the other hand publications dealing with optimal 

overtaking tackle the problem locally and consider efficiency only as deviation 

from a desired speed which leads to a local optimal solution.  

In contrary to existing approaches, this work aims to achieve a global optimal 

solution by generating a new optimal speed trajectory. A new optimal speed tra-

jectory has to be generated since the constraints are assumed to be violated. There-

fore, the unconstrained optimal speed trajectory in this case is not optimal and 

there is no argument in persisting to still track it. 

The approach proposed in this work gives valid conclusion if it is more benefi-

cial (in terms of overall energy consumption) to overtake a leading vehicle or to 

slow down based on predicted energy usage for the trip and actual overtaking ma-

neuver and on which segment of the road to overtake. The planning is based on a 

motion prediction (assumption) of the leading vehicle moving in front and infor-

mation about the upcoming road.  

In this work dynamic programming is used as a method to derive the optimal 

control (here the speed trajectory) because of its broad range of applicability and 

the flexibility to integrate different constraints. 

1.3.1 Dynamic programming 

Dynamic programming is a very common method used for solving the optimal 

control problem discussed in this work. The main advantages are its flexibility and 

possibility to incorporate different kinds of models and constraints. It is based on 

the Principle of Optimality, and it was introduced by R. Bellman [19]. The inter-

ested reader is referred to [20]. 
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Principle of Optimality 

An optimal policy has the property that whatever the initial state and initial de-

cisions are, the remaining decisions must constitute an optimal policy with regard 

to the state resulting from the first decisions. [19] 

 

This principle enables iterative search for optimal solution starting from the end 

point and building an optimal trajectory to the start. In each step transitions from 

all possible current states to the all previous states with accumulated previous val-

ues are calculated and minimum costs and respective transitions are selected for 

each possible current state. In this way going backwards in time, trajectories are 

growing by using calculation results from the “previous” step.  

For this work a tailored and computationally optimized solution for optimal 

speed trajectory planning based on dynamic programming was developed in 

MATLAB making intensive use of matrix calculus. For a trip of 4200 m with dis-

cretization steps ds = 5m and dv = 0,1 m/s solving on a standard PC (intel i5) it 

takes 8.83 seconds to plan an optimal speed trajectory using energy efficiency 

maps for the electric motor and 4.81 seconds using a constant efficiency. 

To validate the implementation both, forward and backward dynamic pro-

gramming schemes were implemented. The achieved results are identical, as it 

was expected. The advantage of the backward calculation is that the calculated re-

sult can be reused during the trip as it only depends on the final state. This is not 

the case with the forward calculation, where results are related to the specific ini-

tial state. On the other hand the advantage of the forward calculation is that other 

states such as the position of other vehicles can be calculated as the initial time is 

always known.  

The implementation of dynamic programming can use time or distance as a ba-

sis for discretization. Using distance is useful in finding the energy optimal trajec-

tory as the final time is not fixed but it has several disadvantages such as, when 

the speed is zero it is impossible to calculate time. An additional disadvantage is 

that on high speeds time shortens and with fixed speed discretization steps the 

number of possible transitions which satisfy the maximum acceleration constraints 

decreases. Nevertheless, an appropriate selection of the discretization steps leads 

to a valid solution. Therefore, distance as a base is used in this implementation.  

In order to deeply understand the optimal control discussed in this work we in-

troduce two helpful concepts: the optimal trajectory tree and the cost-to-go map. 

1.3.2 Optimal speed trajectory tree 

We define the so called optimal speed trajectory tree as a tree like structure 

formed by connecting all optimal transitions by a line. This results in a nice repre-

sentation of the optimal control problem and together with a cost-to-go map it 

gives insight into an optimal behavior of the case without leading vehicles. This 

will be useful in understanding the advantage of the proposed approach compared 

to existing approaches, which are discussed in section 4.2. 
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What can be noted is that generally if two different trajectories have a common 

node they will continue on same trajectory towards the goal.  

An optimal speed trajectory tree for a problem considered in this work with 

discretization steps of 10 m for distance and 0.3 m/s for speed is shown on Fig. 3. 

This map is generated from end to front in backwards DP. Additionally to the op-

timal solution for the given initial condition, we can see optimal solutions for dif-

ferent initial conditions and the impact of different initial conditions. 

 

 

Fig. 3: Optimal speed trajectory tree in backward planning dynamic programming. 

1.3.3 Cost-to-go map 

The so called cost-to-go map represents the energy needed to finish a trip on an 

optimal trajectory from each point in distance-velocity plane. In Fig. 4 the cost-to-

go map for the same problem as in Fig.3 is shown for the backward DP approach. 

The characteristics of the cost to go map are closely related to the cost function 

and it can be noted that costs increase as distance is closer to the start. Additional-

ly, costs are smaller on higher speeds because of the bigger kinetic energy stored 

in a moving vehicle. Costs are also smaller on a hill and bigger in the valley be-

cause of the potential energy. 
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Fig. 4: Cost-to-go map of cumulative costs to travel to the end (backward planning). 

1.3.4 Considering external constraints 

Time-and-space-invariant constraints 

As mentioned in Section 2 examples of constraints of this type are: traffic 

signs, which limit the maximum speed on some road segment or due to road cur-

vature which also limits the maximum speed because of the risk of roll-over. 

These constraints can be easily incorporated into the optimization and can be han-

dled by in both, forward and backward DP, if distance is used as the integration 

variable. This type of constraint imposes that transitions to the speed values which 

are conflicting with a traffic sign are not allowed on the distance segments where 

the traffic sign is active. Impossible transitions are implemented by assigning an 

infinite cost value to that transition. 

Time-and-space-variant constraints 

Constraints of this type are a main focus of this work, since it deals with other 

vehicles moving in the leading traffic. These constraints are imposed on speed and 

position of the controlled vehicle. As mentioned previously, both time and space 

of such constraints are not fixed, because the velocity of the controlled vehicle it-

self influences this constraint.  

Due to this, forward DP is used here, enabling to calculate the distance between 

the controlled vehicle and the leading vehicle for each trajectory, which is possible 
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since the initial distance is known. The movement of the other vehicle is calculat-

ed using a simple prediction model that assumes that the leading vehicle is moving 

with constant speed and that it will slow down if it reaches the controlled vehicle 

(after being overtaken). Note that a more sophisticated model of the leading vehi-

cle’s choice of velocity which may depend on space, time and the controlled vehi-

cle can be easily included. 

Finally, the transitions which do not satisfy the constraints (11) or (12) ex-

plained in Section 2 are defined to be impossible. Disabling a transition will disa-

ble all trajectories leading to a collision. As a consequence only trajectories which 

do not lead to a collision will be checked and the best out of these will be selected.  

Time-variant-space-invariant constraints & time-invariant-space-variant con-

straints 

Constraints of this type are not considered now, they will be tackled in future 

works. These constraints can be considered as a special case of time-and-space-

variant constraints, therefore incorporating them should be straight forward once 

time-and-space-variant constraints are incorporated. 

1.4 Simulation results 

In this section, analyses and comparison to other approaches will be presented 

in order to highlight fundamental attributes and advantages of the proposed ap-

proach. Discussion of the results will be based on the vehicle trajectories in dis-

tance-velocity and time-distance plots, appropriate tables will show the differences 

in consumed energy as well as travelled time. 

In the first subsection, driving with constant speed is compared to optimal driv-

ing. In the second subsection, differences between the proposed and existing over-

taking approach will be investigated. In the third subsection, a short analysis of the 

influence of the road gradient on the overtaking event will be made. After that, the 

influence of the speed difference on overtaking event will be analyzed. 

For this purpose, a road segment of 500m with a hill and a valley will be used. 

The hill is 1.6 m high with maximum slope of 6 %; the valley has the same shape 

but negative. Discretization step size for distance is 1 m and for speed 0.03 m/s 

have been used. If not stated differently, this discretization applies to all simula-

tion experiments. 

1.4.1 Constant speed vs. optimized variable speed 

At first driving with constant speed is compared to driving at optimal variable 

speed. The example simulation is setup as follows: Three different speed set 

points (7 m/s, 9 m/s, 11 m/s) are used. The vehicle starts from standstill and accel-
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erates to reach the set speed. Then it continues to travel with this speed until it has 

to decelerate to finally stop at the end of the trip.  

In contrast to this, optimal driving, as described in Section 2 and 3, takes road 

slope, air resistance, roll coefficient, board net power consumption, and power-

train efficiency into consideration. An (in the sense of energy usage) optimal 

speed trajectory is generated for the given travel. 

 

 

Fig. 5: Constant speed vs. optimized variable speed. 

As can be seen in Fig. 5, this results in moving on a constant speed of round 

about 10 m/s (for this vehicle and air drag resistance) on a flat road, slowing down 

uphill and speeding up downhill. 

Tab. 2: Constant speed vs. optimized variable speed. 

 Energy used 

[kJ] 

difference 

[%] 

Time travelled 

[s] 

time difference 

[%] 

Optimal traj. 213.87 0 59.25 0 

speed 9 m/s 231.68 +8.3 58.49 -1.28 

speed 11 m/s 237.98 +11.3 49.06 -17.20 

speed 7 m/s 237.97 +11.3 73.75 +24.47 
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Table 2 summarizes the results from Fig. 5 with respect to energy consumption 

and traveling time. Concluding this example, an improvement in energy consump-

tion above 8% can be observed. Prolongation of the trip is only about 1.3%. 

1.4.2 Proposed vs. existing overtaking approach 

In this subsection, the proposed approach is compared to existing overtaking 

approach. As mentioned in the introduction in literature optimal overtaking is usu-

ally incorporated as a least quadratic (LQ) deviation from the desired vehicle tra-

jectory. This means that an unconstrained optimal speed trajectory is generated 

and then modified to satisfy safety requirements and avoid collisions. 

In the following simulation example, it is assumed that a leading vehicle will 

move with a constant speed of 8 m/s located initially 20m ahead of the controlled 

vehicle. In Fig. 6 the green speed trajectory represents the optimal speed trajectory 

for the unconstrained case. This trajectory is used as reference trajectory for gen-

erating a collision free trajectory (red color) as proposed in literature. In contrast 

to this, the blue trajectory is the optimal speed trajectory resulting from directly 

incorporating the constraint into the optimization problem. 

Tab. 3: Proposed vs. existing overtaking approach. Summary on energy consumption and travel-

ing time 

 Energy used 

[kJ] 

difference 

[%] 

Time travelled 

[s] 

difference 

[%] 

Unconstrained 213.87 0 59.25 0 

Constrained 215.45 + 0.74 57.34 -3.23 

LQ deviation 225.15 + 5.27 58.27 -1.66 

 

As expected from Fig. 6, Table 3 reveals that regarding the energy consump-

tion as well as traveling time considering the constraint in the optimization leads 

to better results. The constrained optimization leads to only slightly larger energy 

consumption (+0.74%) compared to the unconstrained case. The standard ap-

proach leads to a bigger difference (+5.27%). This implies that integration of the 

leading vehicle as a constraint into the optimization problem may play a consider-

able role in reducing energy consumption. Even there is the potential to addition-

ally save traveling time. 

Note that Fig. 7 shows that the location and point in time of the overtaking 

event for both approaches differ. In the case of constrained planning, the overtak-

ing event is at 224 meters. In the case of LQ deviation planning overtaking event 

is at 202 meters. 

Computation time for calculating LQ deviation trajectory can be approximated 

to be almost twice as big as necessary, because first the unconstrained planning 

has to be generated and then LQ deviation trajectory has to be calculated. 
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Fig. 6: Proposed vs. existing overtaking approach.  

 

 

Fig. 7: Different locations of overtaking events in proposed and existing overtaking approach. 
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1.4.3 Influence of the road gradient 

Within another simulation study the influence of the road gradient on a con-

strained trajectory will be analyzed. The leading vehicle’s initial position will be 

varied so that the leading vehicle trajectory crosses the unconstrained trajectory at 

different locations (possible collision at different locations). The leading vehicle 

will move with a constant speed of 8 m/s and its initial position will be set to 5m, 

10m, 15m, and 20m. 

 

 

Fig. 8: Influence of the road gradient. 

As shown in Fig. 8 the algorithm doesn’t give uniform results for all cases and 

it seems that there are some preferred segments for overtaking. Either the vehicle 

speeds up and overtakes the leading vehicle before the hill or it slows down and 

waits until it passed the hill and overtakes on a downhill section (red trajectory). 

This complies with usual human driving behavior (at least when considering ener-

gy consumption). 

Table 4 shows that energy consumption in all of the cases is not much bigger 

than 1 % and time is smaller as a result of speeding up, compared to the uncon-

strained problem. 
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Tab. 4: Influence of the road gradient. 

 Energy used 

[kJ] 

difference 

[%] 

Time travelled 

[s] 

difference   [%] 

Unconstrained 213.87 0 59.25 0 

Init. pos.=0m 214.26 0.18 56.78 -4.17 

Init. pos.=10m 214.99 0.52 55.12 -6.98 

Init. pos.=15 m 216.07 1.03 53.85 -9.12 

Init. pos.=20m 215.45 0.74 57.34 -3.23 

 

1.4.4 Influence of the leading vehicle speed 

In a last simulation study the influence of the leading vehicle speed on a con-

strained trajectory will be analyzed. For this reason, the leading vehicle’s speed 

will be varied. The leading vehicle’s position is also adjusted so that the leading 

vehicle’s trajectory crosses the unconstrained trajectory always at 250 meters. The 

leading vehicle will have constant speeds with 7.5 m/s, 8 m/s, 8.5 m/s, and 9 m/s. 

  

Fig. 9: Influence of the leading vehicle speed. 

Fig. 9 shows the simulation results of the above described setup. It can be seen 

that the optimization again doesn’t give uniform results for all cases and that 

sometimes it is better to slow down and follow the leading vehicle (blue and red) 

and sometimes to speed up and overtake (magenta and cyan). This also complies 

with usual human driving behavior. Table 5 shows that differences in energy con-
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sumption in all of the cases are rather small and differences in travel time depend 

on following or overtaking. 

Tab. 5: Influence of the leading vehicle speed. 

 Energy used 

[kJ] 

difference 

[%] 

Time travelled 

[s] 

difference 

[%] 

Unconstrained 213.87 0 59.25 0 

LV velocity 7.5 213.94 0.03 58.07 -1.99 

LV velocity 8 215.02 0.53 56.80 -4.13 

LV velocity 8.5 215.61 0.81 63.49 7.16 

LV velocity 9 215.42 0.72 61.56 3.89 

Conclusion 

Forward dynamic programming, as a flexible approach, allows the considera-

tion of available movement prediction of leading vehicles as constraints within 

travel speed optimization. As a result, a global optimal solution in energy con-

sumption can be obtained. Sometimes additional travel time reduction compared 

to the existing overtaking approach reported in literature has been observed.  

The constrained problem showed up to require much smaller discretization 

steps to produce valid results compared to the unconstrained problem. A reason 

for this is that the optimal trajectory is usually very close to the constraints during 

an overtaking maneuver so a coarse grid can cause unwanted oscillations. As the 

minimum clearance between vehicles is only a few meters, it is also important that 

the space discretization step is at least one order smaller. Small space discretiza-

tion steps automatically imply small velocity discretization steps to provide 

enough possible transitions in each step. 

For the sake of simplicity, the presented work investigated one leading vehicle 

moving in the same direction on a two lane road. However, extending the optimi-

zation to handle more vehicles or vehicles moving in different directions is 

straight forward, since additional vehicles are represented by constraints of the 

same type. The additional constraints just increase the computational effort, but 

the calculation schema stays the same. The consideration of available lanes at cer-

tain segments can be accomplished by adding the lane as an additional state. 

Although considering other traffic participants within the optimization increas-

es the effort for solving compared to the original unconstrained problem, there is a 

big potential for improvements in both, energy consumption and travelling time. 

First simulation studies also show that driver acceptance will not be a problem 

since the behavior is intuitive. 
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