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Abstract
The Goldbach’s conjecture is one of the most important and unsolved problems in number theory.
Nowadays, it is one of the open problems of Hilbert and Landau. We prove the Goldbach’s conjecture
is false using the Complexity Theory. An important complexity class is 1NSPACE(S(n)) for some
S(n). This proof is based on if some unary language belongs to 1NSPACE(S(log n)), then the binary
version of that language belongs to 1NSPACE(S(n)) and vice versa.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Regular languages; Theory of computation → Problems, reductions and completeness

Keywords and phrases complexity classes, regular languages, reduction, number theory, primes,
one-way

1 Introduction

The Goldbach’s original conjecture, written on 7 June 1742 in a letter to Leonhard Euler,
states: “... at least it seems that every number that is greater than 2 is the sum of three
primes” [5]. This is known as the ternary Goldbach conjecture. We call a prime as a natural
number that is greater than 1 and has exactly two divisors, 1 and the number itself [14].
However, the mathematician Christian Goldbach considered 1 as a prime number. Euler
replied in a letter dated 30 June 1742 the following statement: “Every even integer greater
than 2 can be written as the sum of two primes” [5]. This is known as the strong Goldbach
conjecture.

Using Vinogradov’s method, Van der Corput and Estermann showed that almost all even
numbers can be written as the sum of two primes (in the sense that the fraction of even
numbers which can be so written tends towards 1) [13], [6]. In 1973, Chen showed that
every sufficiently large even number can be written as the sum of some prime number and a
semi-prime [3]. The strong Goldbach conjecture implies the conjecture that all odd numbers
greater than 7 are the sum of three odd primes, which is known today as the weak Goldbach
conjecture [5]. In 2012 and 2013, Peruvian mathematician Harald Helfgott published a pair
of papers claiming to improve major and minor arc estimates sufficiently to unconditionally
prove the weak Goldbach conjecture [8], [9]. In this work, we prove the strong Goldbach’s
conjecture is false.

2 Theory and Methods

We use o-notation to denote an upper bound that is not asymptotically tight. We formally
define o(g(n)) as the set

o(g(n)) = {f(n) : for any positive constant c > 0, there exists a constant

n0 > 0 such that 0 ≤ f(n) < c× g(n) for all n ≥ n0}.

For example, 2 × n = o(n2), but 2 × n2 6= o(n2) [4]. In theoretical computer science and
formal language theory, a regular language is a formal language that can be expressed using
a regular expression [2]. The complexity class that contains all the regular languages is REG.
The two-way Turing machines may move their head on the input tape into two-way (left and
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right directions) while the one-way Turing machines are not allowed to move the head on
the input tape to the left [11]. The complexity class 1NSPACE(f(n)) is the set of decision
problems that can be solved by a nondeterministic one-way Turing machine M , using space
f(n), where n is the length of the input [11].

3 Results

The checking whether a number is prime can be decided in polynomial time by a deterministic
Turing machine [1]. This problem is known as PRIMES [1].

I Theorem 1. PRIMES /∈ 1NSPACE(S(n)) for all S(n) = o(log n).

Proof. If we assume that PRIMES ∈ 1NSPACE(o(log n)), then the unary version should
be regular. Certainly, the standard space translation between the unary and binary lan-
guages actually works for nondeterministic machines with small space [7]. This means
that if some language belongs to 1NSPACE(S(n)), then the unary version of that language
belongs to 1NSPACE(S(log n)) [7]. In this way, when PRIMES ∈ 1NSPACE(o(log n)),
then the unary version should be in 1NSPACE(o(log log n)) and we know that REG =
1NSPACE(o(log log n)) [11], [7]. Since we know that the unary version of PRIMES is non-
regular [10], then we obtain that PRIMES /∈ 1NSPACE(S(n)) for all S(n) = o(log n). J

I Definition 2. We define the unary Goldbach’s language LUG as follows:

LUG = {02×n0p0q : n ∈ N ∧ n > 2 ∧ p and q are odd primes ∧ 2× n = p + q}.

We define the language coLUG as

coLUG = {02×n02×n : n ∈ N ∧ n > 2 ∧¬ ∃ odd primes p and q such that 2× n = p + q}

where coLUG is the complement language of LUG. On the other hand, the language SUG is
equal to LUG ∪ coLUG.

I Theorem 3. The language SUG is regular.

Proof. The language SUG can be stated as

SUG = {04×n : n ∈ N ∧ n > 2}.

Certainly, we can easily decide SUG in constant space using a deterministic Turing machine
and thus, SUG is a regular language [12]. J

I Definition 4. We define the binary Goldbach’s language LBG as follows:

LBG = {(2× n, p, q) : such that 02×n0p0q ∈ LUG}.

I Lemma 5. LUG is the unary representation of language LBG.

Proof. This is trivially true from the definition of these languages. J

I Theorem 6. LBG /∈ 1NSPACE(S(n)) for all S(n) = o(log n).
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Proof. The language LBG cannot be computed in 1NSPACE(S(n)) for some S(n) = o(log n),
because of this would imply that the problem PRIMES belongs to 1NSPACE(S(n)) for
some S(n) = o(log n) as well. Certainly, if this could be true, then we can take any number
p and check whether p is prime. This could be nondeterministically done on input p just
deterministically generating the numbers p + 3 and 3 and nondeterministically choosing an
arbitrary number q, but instead of putting in the work tapes, then we will put them to the
output tape just using constant space in one-way. After that, we use the space composition
reduction just using the previous output of (p + 3, 3, q) as input into a new nondeterministic
Turing machine that would decide whether the instance belongs to LBG in 1NSPACE(S(n))
for some S(n) = o(log n). Indeed, the nondeterministic one-way computation will accept
this input if and only if the nondeterministic generated number q is equal to p and p is
prime. In this reduction, we assume the initial string p has a binary representation with
the least significant bit in the first position within the input tape from left to right. In this
way, it will be possible to deterministically generate p + 3 in one-way using constant space.
Since 1NSPACE(S(n)) for some S(n) = o(log n) is closed under 1NSPACE-reductions with
constant space, then the whole computation could be done in 1NSPACE(S(n)) for some
S(n) = o(log n) . Nevertheless, this would be a contradiction according to Theorem 1, since
the language PRIMES /∈ 1NSPACE(S(n)) for all S(n) = o(log n). Consequently, we obtain
that LBG /∈ 1NSPACE(S(n)) for all S(n) = o(log n). J

I Theorem 7. The strong Goldbach’s conjecture is false.

Proof. We may have only two options: LUG ∈ REG or LUG is non-regular and its com-
plement coLUG is infinite, since for every finite set F , the language SUG − F is always
regular [12], because of SUG is regular due to Theorem 3. Certainly, if coLUG is finite,
then the language LUG = SUG − coLUG could never be non-regular [12]. Let’s assume the
possibility of LUG ∈ REG. However, this implies that the exponentially more succinct
version of LUG, that is LBG, should be in 1NSPACE(S(n)) for some S(n) = o(log n), because
we would have REG = 1NSPACE(o(log log n)) and the same algorithm that decides LUG

within the complexity 1NSPACE(o(log log n)) could be easily transformed into a slightly
modified algorithm that decides LBG within 1NSPACE(S(n)) for some S(n) = o(log n)
[11], [7]. Actually, LUG is the unary version of LBG due to Lemma 5. As we mentioned
before, the standard space translation between the unary and binary languages actually
works for nondeterministic machines with small space [7]. This means that if some unary
language belongs to 1NSPACE(S(log n)), then the binary version of that language belongs
to 1NSPACE(S(n)) [7]. Consequently, we obtain that LUG /∈ REG, since it is not possible
that LUG ∈ 1NSPACE(o(log log n)) under the result of LBG /∈ 1NSPACE(S(n)) for all
S(n) = o(log n) as result of Theorem 6. In this way, we obtain a contradiction just assuming
that LUG ∈ REG. Therefore, LUG is non-regular and this implies there is only one remaining
option: coLUG is infinite. Nevertheless, we have the strong Goldbach’s conjecture has an
infinite number of counterexamples when coLUG is infinite. Hence, we demonstrate the
strong Goldbach’s conjecture is false. J
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