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1. Introduction

RF-Track is a new tracking code developed at CERN for the optimization of particle accelerators,
which offers outstanding flexibility and rapid simulation speed.

RF-Track can simulate beams of particles with arbitrary energy, mass, and charge, even mixed,
solving fully relativistic equations of motion. It can simulate the effects of space-charge forces, both
in bunched and continuous-wave beams. It can transport the beams through common elements as
well as through “special” ones: 1D, 2D, and 3D static or oscillating radio-frequency electromagnetic
field maps (real and complex), flux concentrators, and electron coolers. It allows element overlap,
and direct and indirect space-charge calculation using fast parallel algorithms.

RF-Track is written in optimized and parallel C++ and uses the scripting languages Octave
and Python as user interfaces. This manual presents its functionalities and the underlying physical
models as well as their mathematical and numerical implementation. General knowledge of Octave
or Python is recommended to get the best out of RF-Track. For this, we recommend consulting the
documentation of these powerful tools.

1.1 Getting started

RF-Track was developed on macOS in C++14, but it runs on any GNU/Linux and other POSIX-
compliant systems. This section of the manual will describe how to prepare a suitable environment
for compiling and running RF-Track.

RF-Track is a binary module loadable within both the scientific language Octave [1], and
Python with its numerical package NumPy [4, 5]. The user interacts with RF-Track through Octave
or Pyhton scripts. Two libraries are necessary to compile and run RF-Track: the GNU Scientific
Library [3], and the FFTW library [2].

All the mentioned packages are open-source and readily available to most package managers,
both for macOS and various Linux distributions. In this section, we will use as examples MacPorts
on macOS, and APT on Ubuntu.
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1.1.1 Conventions used in this manual

This manual contains numerous examples which can be typed at the keyboard. Some of these
examples will refer to shell commands, others to Octave or Python scripts. For practical reasons,
all examples of RF-Track simulation scripts will be given in Octave. The conversion from Octave
to Python should be straightforward.

Color code

In this manual we use a color code to distinguish between shell, Octave, or Python commands.
Shell commands entered at the terminal are shown in light gray:

$ command

The first character on the line is the terminal prompt, and should not be typed. The dollar sign $ is
used as the standard shell prompt, although some systems may use a different character.
A command entered at the Octave command line is shown in a light ocher box:

octave:1> command

The first string is the standard Octave prompt and should not be typed. It will be, however, omitted
in most examples.
A command entered at the Python command line is shown in a light blue box:

>>> command

The three characters >>> are the standard Python prompt and should not be typed.
In the examples, variables whose name starts with a capital letter will normally refer to vectors

or matrices (e.g. X, XP, Tmatrix, . . . ), whereas variables whose name is in lowercase will refer to
scalars (e.g. mass, charge, time, . . . ).

1.1.2 Preparing the environment

On macOS

On macOS, package managers such as Fink, MacPorts, Spack, or Homebrew can provide a suitable
environment for compiling and running RF-Track. We use MacPorts as an example. Macports can
be installed following the instructions in https://www.macports.org/. If it is already installed
on your system, we recommend you update all packages before to install RF-Track:

$ sudo port selfupdate
$ sudo port upgrade outdated

Then, you must install the packages needed by RF-Track. You can give the following com-
mand:

$ sudo port install fftw-3 gsl clang

If you intend to use RF-Track within Octave, you should also install this package:

$ sudo port install octave

If you intend to use RF-Track within Python, you should make sure Python is installed on your
system, together with its library NumPy:

https://www.macports.org/
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$ sudo port install py-numpy

On Linux

We give the example Ubuntu, as it is a widely used Linux distribution. We assume the use of APT
as package manager.
It is good practice to update all packages before you install RF-Track:

$ sudo apt-get update
$ sudo apt-get upgrade

Then, you must install the packages needed by RF-Track. You can give the following com-
mand:

$ sudo apt install libgsl-dev fftw-dev

If you intend to use RF-Track within Octave, you should also install this package:

$ sudo apt install liboctave-dev

If you intend to use RF-Track within Python, you should make sure Python is installed on your
system, together with its library NumPy:

$ sudo apt install libpython3-dev python3-dev python3-numpy

1.1.3 Obtaining RF-Track

The source code for RF-Track can be downloaded from the RF-Track Gitlab repository:
https://gitlab.cern.ch/alatina/rf-track-2.0/
or using the command:

$ git clone https://gitlab.cern.ch/alatina/rf-track-2.0.git

1.1.4 Compiling RF-Track

Before you compile RF-Track you need to prepare a suitable environment and install the necessary
packages. This can be done using the standard command ./configure from the directory
rf-track-2.0:

$ cd rf-track-2.0

If you want to use RF-Track within Octave, you must give the following command:

$ ./configure --enable-octave

If you want to use RF-Track within Python, you must give command:

$ ./configure --enable-python

You can use both options simultaneously, if you intend to use RF-Track with both Python and
Octave. You can give the command ./configure --help for more options.
Now you can compile RF-Track:

$ make -jN

where N is the number of simultaneous threads your system can afford to use during compilation.

https://gitlab.cern.ch/alatina/rf-track-2.0/
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Using RF-Track
There is no need for RF-Track to be installed using commands such as make install. It is
enough that your Octave or Python scripts point to the directory rf-track-2.0, where RF-Track
was compiled and its binary files are located. For using RF-Track with Octave, you should start
your Octave scripts with the command:

octave:1> addpath(’/Users/alatina/Codes/rf-track-2.0’);

(you can just add this command to the file .octaverc in your home directory, to run it automatically
whenever Octave is launched).

In Python, you should give the commands:

>>> import os,sys
>>> BIN = os.path.expanduser("/Users/alatina/Codes/rf-track-2.0")
>>> sys.path.append(BIN)

1.1.5 Loading RF-Track
To load RF-Track in Octave, it is sufficient to give the command:

octave:1> RF_Track;

To load RF-Track in Python, it is sufficient to to give the command:

>>> import RF_Track

1.2 Using RF-Track

1.2.1 An example program
The following Octave script demonstrates how RF-Track works. In the example, a FODO cell is
created, and a beam is tracked through it to plot the Twiss parameters and the final phase space. The
FODO lattice is designed to have 90 degrees phase advance, and the beam is a bunch of electrons
matched to the cell. The bunch is then tracked through the cell and the Twiss parameters, βx and βy,
are plotted. The lines are numbered, and each block is commented on below.

1 %% Load RF-Track

2 RF_Track;

3

4 %% Beam parameters

5 mass = RF_Track.electronmass; % particle mass in MeV/c^2

6 population = 1e10; % number of particles per bunch

7 Q = -1; % particle charge in units of e

8 Pref = 5; % reference momentum in MeV/c

9 B_rho = Pref / Q; % beam magnetic rigidity in MV/c

10

11 %% FODO cell parameters

12 Lcell = 2; % cell length in m

13 Lquad = 0.0; % m, zero length quadrupole (we use a thin quadrupole)

14 Ldrift = Lcell/2 - Lquad; % drift space between the two quadrupoles



1.2 Using RF-Track 13

15 mu = 90; % phase advance per cell in deg

16 k1L = sind(mu/2) / (Lcell/4); % 1/m, quadrupole focusing strength

17 strength = k1L * B_rho; % MeV/m, quadrupole strength

18

19 %% Create the elements

20 Qf = Quadrupole(Lquad/2, strength/2); % half focusing thin quadrupole

21 Qd = Quadrupole(Lquad, -strength); % defocusing thin quadrupole

22 Dr = Drift(Ldrift); % drift space

23 Dr.set_tt_nsteps(100); % number of steps for the transport table

24

25 %% Create the lattice

26 FODO = Lattice(); % Create a new object Lattice() called FODO

27 FODO.append(Qf); % 1/2 F

28 FODO.append(Dr); % O

29 FODO.append(Qd); % D

30 FODO.append(Dr); % O

31 FODO.append(Qf); % 1/2 F

32

33 %% Define Twiss parameters

34 Twiss = Bunch6d_twiss();

35 Twiss.beta_x = Lcell * (1 + sind(mu/2)) / sind(mu); % m

36 Twiss.beta_y = Lcell * (1 - sind(mu/2)) / sind(mu); % m

37 Twiss.alpha_x = 0.0;

38 Twiss.alpha_y = 0.0;

39 Twiss.emitt_x = 1; % mm.mrad, normalized emittances

40 Twiss.emitt_y = 1; % mm.mrad

41

42 %% Create the bunch

43 B0 = Bunch6d(mass, population, Q, Pref, Twiss, 10000);

44

45 %% Perform tracking

46 B1 = FODO.track(B0);

47

48 %% Retrieve the Twiss plot and the phase space

49 T = FODO.get_transport_table(’%S %beta_x %beta_y’);

50 M = B1.get_phase_space(’%x %xp %y %yp’);

51

52 %% Make plots

53 figure(1)

54 hold on

55 plot(T(:,1), T(:,2), ’b-’)

56 plot(T(:,1), T(:,3), ’r-’)

57 legend({ ’\beta_x ’, ’\beta_y ’ })

58 xlabel(’S [m]’)

59 ylabel(’\beta [m]’)

60



14 Chapter 1. Introduction

61 figure(2)

62 scatter(M(:,1), M(:,2), ’*’)

63 xlabel(’x [mm]’)

64 ylabel(’x’’ [mrad]’)

Line 2 stars the games, loading RF-Track into Octave. RF-Track displays a welcome message that
includes some useful information: the version number, the libraries RF-Track was compiled
with, the contact information, and the copyright notice. This call has the function to make
available to Octave the entire set of RF-Track commands, as well as its predefined constants
(see the following section for details).

Lines 5-17 define some useful Octave constants related to our problem. Notice, in line 5, the use
of the RF-Track’s constant electronmass, which contains the mass of the electron, here
expressed in MeV/c2.

Lines 20-23 define the elements of our FODO cell: the focusing quadrupole, the defocusing
quadrupole, and the drift space between them. The quadrupoles are thin, and for practical
reasons, the focusing one is divided into two, so that our FODO cell starts with half a
focusing quadrupole and ends with the other half. This block of lines shows the first two
RF-Track commands we encountered: Quadrupole() and Drift(). These are two objects
that create a quadrupole magnet and a drift space. Line 23 uses a method of the object Drift,
which specifies that the drift must be divided into 100 steps. Dividing into steps, here, is just
for nicely tracking the Twiss parameters1.

Lines 26-31 define the FODO lattice itself. An object of type Lattice() is created, with name
FODO. At creation, a Lattice() is an empty sequence. Lines 27 through 31 append
to FODO the elements that compose the cell. It is important to understand that RF-Track,
internally, stores in FODO a copy of these elements, not the element themselves. Therefore,
modifying Qf, Qd, or Dr after the appending them will not affect FODO.

Lines 34-44 define the Twiss parameters and create the bunch B0, which is an instance of
the object Bunch6d(). The Twiss parameters are assigned to Twiss, an instance of
Bunch6d_twiss(). B0 is created with 10’000 macro-particles.

Lines 47-51 track the bunch B0 through the FODO cell, and store the out-coming bunch in B1,
another object of type Bunch6d(). Lines 50 and 51 retrieve the Twiss parameters and the
phase space and store them in two Octave variables T and M.

Lines 53-65 plot the results using the standard Octave plotting commands.
Figure 1.1 shows the output of the example: the Twiss parameters, βx and βy, and the phase space
plot.

1.2.2 Physical units

Internally, RF-Track stores each physical quantity in the most suitable units for numerical computa-
tion in accelerator physics. Table 1.1 shows the units grouped by conceptual category. Regarding
positions and angles, notice that all beam-related quantities are in units of millimeters or milliradi-
ans, whereas all machine-related quantities are expressed in meters and radians.

1.2.3 Predefined constants

A number of constants are predefined within RF-Track, for the user’s convenience:

1The two letters “tt” mean that the specified number of steps refers to the so-called tracking table, a table created
during tracking to follow the evolution of various beam quantities along the lattice, including the Twiss parameters.
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Figure 1.1: The output of the example.

Table 1.1: RF-Track physical units.

Quantity Symbols Unit

Bunch population N number of particles
Particle mass m MeV/c2

Particle charge Q e
Particle positions x, y, z mm
Particle angles x′, y′ mrad
Particle momenta Px, Py, Pz, P MeV/c
Particle energy E MeV
Time t mm/c
Element offsets and positions Xo, Yo, Zo m
Element pitch X ′o rad
Element yaw Y ′o rad
Element roll Z′o rad

clight % speed of light, in m/s

muonmass % muon mass in MeV/c^2

protonmass % proton mass, in MeV/c^2

electronmass % electron mass, in MeV/c^2

s, ms, us, ns, ps, fs; % various units if time, in mm/c

C, mC, uC, nC, pC % various units of charge, in e

For example if one needs to define a time interval of 5 ps, say dt, one can simply write:

octave:1> dt = 5 * RF_Track.ps

dt = 1.4990 % 5 ps in mm/c
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1.2.4 Run-time parameters and options
Once RF-Track is loaded, a few variables become available to the user to customize the way
RF-Track operates.

Threads

number_of_threads % the number of threads that RF-Track must use

max_number_of_threads % the maximum number of threads available [read-only]

RF-Track is a parallel application. By default RF-Track uses the maximum number of threads on
your machine, max_number_of_threads, however the user can change this number (normally to
reduce it) by setting the variable number_of_threads.

Random Number Generator

rng_set(name) % change the random number generator (RNG)

rng_set_seed(seed) % set the seed for the RNG

rng_get() % return what is the current RNG

Random numbers are used in a multitude of contexts in scientific computation. RF-Track uses high-
quality random number generators. Using these three options the user can set the desired random
number generator and its initial seed. The full list of the available random number generators is
available in Appendix, Tab. A.2.

Version number

version % the RF-Track version number [read-only]

Returns the RF-Track version number.

1.3 Further information

1.3.1 Citing RF-Track in publications
We have invested a lot of time and effort in creating RF-Track, please cite it when using it.
To cite RF-Track in publications use:

Andrea Latina
"RF-Track Reference Manual", CERN, Geneva, Switzerland, June 2020
DOI: 10.5281/zenodo.3887085

A BibTeX entry for LaTeX users is:

@techreport{,
address = {Geneva, Switzerland},
author = {Latina, Andrea},
doi = {10.5281/zenodo.3887085},
institution = {CERN},
title = {RF-Track Reference Manual},
year = {2020}

}
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2. Beams

RF-Track implements two different particle tracking methods: tracking in time and tracking in
space. The tracking in time is preferable in space-charge-dominated regimes, where the relative
positions of the particles in space matters. The tracking in space suits better space-charge-free
regions, where particles are independent of each other and they can be transported simultaneously
from the entrance plane of an element to its end, element by element.

RF-Track provides two distinct beam types to implement these two models: Bunch6dT for
tracking in time, and Bunch6d for tracking in space. A dedicated tracking environment exists for
both of these two beam types: Lattice for Bunch6d, and Volume Bunch6dT. This chapter will
describe them in detail.

2.1 Beam models

2.1.1 Bunch6d

When Bunch6d is used, tracking is performed using the accelerator longitudinal coordinate, S, as
the integration variable. This corresponds to what one studies in accelerator physics textbooks,
and it is the base for matrix-based beam optics. In this model, all particles belong to the same
plane at a given longitudinal coordinate, S, and they are then transported to the element end using
the arrival time as the longitudinal coordinate. In Bunch6d, the beam is represented by a set of
macro-particles whose state vector is an extended trace space:

(
x, x′, y, y′, t, P, m, Q, N

)
The meaning of each symbol follows with the units used internally to store the information:
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x, y transverse coordinates [mm]
x′, y′ transverse angles [mrad]
t arrival time at S [mm/c]
P total momentum [MeV/c]
m mass [MeV/c2]
Q charge of the single particle [e]
N number of single particles in each macro-particle [#]

Bunch6d also stores the longitudinal coordinate S of the bunch.

Constructors
A new Bunch6d can be created at least in two ways: from a set of Twiss parameters, or directly
from a beam matrix with the phase space. Multi-specie bunches can be created using a beam matrix
of the extended phase space. Follows the list of constructors:

B = Bunch6d(mass, population, charge, Pref, Twiss, nParticles, sigmaCut=0 );

B = Bunch6d(mass, population, charge, [ X XP Y YP T P ] );

B = Bunch6d( [ X XP Y YP T P MASS Q N ] );

B = Bunch6d( [ X XP Y YP T P MASS Q ] );

B = Bunch6d();

The possible arguments are:

mass the mass of the single particle [MeV/c2]
population the total number of real particles in the bunch [#]
charge charge of the single particle [e]
Pref reference momentum [MeV/c]

Twiss instance of object Bunch6d_twiss (see section 2.2.1)
nParticles number of macro-particles in bunch [#]
sigmaCut if > 0 cuts the distributions at sigma_cut sigmas [#]

X column vectors of the horizontal coordinates [mm]
Y column vectors of the vertical coordinates [mm]
T column vector of the arrival times [mm/c]
P column vector of the total momenta [MeV/c]

XP column vectors of the x′ angles [mrad]
YP column vectors of the y′ angles [mrad]

MASS column vector of masses [MeV/c2]
Q column vector of single-particle charges [e]
N column vector of numbers of single particles per macro particle [#]

A default constructor, with no arguments, allows creating an empty beam. The return value is an
object of type Bunch6d.

Reading the phase space
The particles coordinates can be inquired using the method get_phase_space(). This method
allows one to retrieve the bunch information in multiple ways.
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%x horizontal coordinate [mm]
%y vertical coordinate [mm]
%t arrival time, t [mm/c]
%dt relative arrival time, t− t0 [mm/c]

%z longitudinal coordinate w.r.t. the reference particle [mm]
%deg@MHz longitudinal coordinate in degrees at specified frequency in MHz,

e.g. %deg@750 for degrees at 750 MHz
[deg]

%K kinetic energy [MeV]
%E total energy [MeV]
%P total momentum [MeV/c]
%d relative momentum, δ = (P−P0)/P0 [permille]

%xp horizontal angle, Px/Pz [mrad]
%yp vertical angle, Py/Pz [mrad]

%Px horizontal momentum, Px [MeV/c]
%Py vertical momentum, Py [MeV/c]
%Pz longitudinal momentum, Pz [MeV/c]

%px normalized horizontal momentum, Px/P0 [mrad]
%py normalized vertical momentum, Py/P0 [mrad]
%pz normalized longitudinal momentum, Pz/P0 [mrad]
%pt normalized relative energy difference, pt = (E−E0)/P0c [permille]
%Vx horizontal velocity [c]
%Vy vertical velocity [c]
%Vz longitudinal velocity [c]

%m mass [MeV/c2]
%Q charge [e+]
%N number of particles per macro particle [#]

Table 2.1: List of identifiers accepted by Bunch6d::get_phase_space().

M = B.get_phase_space(format_fmt=’%x %xp %y %yp %t %Pc’, which=’good’);

The two arguments are:

format_fmt this parameter allows the user to specify what phase space repre-
sentation should be returned

which this parameter specified whether all particles should be returned,
including the lost ones, of just the ’good’ ones

The default values correspond to the internal representation of the beam, for all the “good” particles.
Table 2.1 shows all possible identifiers. The return value M contains the requested phase space.

Modifying the phase space

The particles coordinates can be inquired using the method get_phase_space(). This method
allows one to retrieve the bunch information in multiple ways.
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B.set_phase_space( [ X XP Y YP T P ] );

The only argument is a 6-column matrix containing the phase space.

2.1.2 Bunch6dT

Tracking “in time” uses directly the time, t, as the integration variable. When Bunch6dT is used,
the equations of motion are integrated in time. The 6d phase-space coordinates of each particle
are (x, y, S, Px, Py, Pz). Bunch6dT maintains the clock common to all particles, t, which each
integration step updates. In Bunch6dT, the beam is represented by a set of macro-particles whose
state vector is an extended phase space:

(
X , Px, Y, Py, S, Pz, m, Q, N, t0

)
In this model, all particles belong to the same plane at a given longitudinal coordinate, S, typically
located at the entrance of an element. They are then transported to the element end using the arrival
time as the longitudinal coordinate. The meaning of each symbol follows, with the units used to
store the information internally:

X , Y , S transverse and longitudinal coordinates [mm]
Px, Py, Pz transverse and longitudinal momenta [MeV/c]
m mass [MeV/c2]
Q charge of the single particle [e]
N number of single particles in each macro-particle [#]
t0 creation time [mm/c]

An important difference with respect to Bunch6d is the presence of t0, the creation time of each
particle. This enables, for instance, the simulation of cathodes and field emission. Bunch6dT also
stored the time t at which the bunch is taken.

Constructors

A new Bunch6dT can be created at least in two ways: from a set of Twiss parameters, or directly
from a beam matrix with the phase space. Multi-specie bunches can be created using a beam matrix
of the extended phase space. Follows the list of constructors:

B = Bunch6dT(mass, population, charge, Pref, Twiss, nParticles, sigma_cut=0 );

B = Bunch6dT(mass, population, charge, [ X Px Y Py S Pz ] );

B = Bunch6dT( [ X Px Y Py S Pz MASS Q N T0 ] );

B = Bunch6dT( [ X Px Y Py S Pz MASS Q N ] );

B = Bunch6dT( [ X Px Y Py S Pz MASS Q ] );

B = Bunch6dT();

The possible arguments are:
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mass the mass of the single particle [MeV/c2]
population the total number of real particles in the bunch [#]
charge charge of the single particle [e]
Pref reference momentum [MeV/c]

Twiss instance of object Bunch6d_twiss (see section 2.2.1)
nParticles number of macro-particles in bunch [#]
sigmaCut if > 0 cuts the distributions at sigma_cut sigmas [#]

X column vectors of the horizontal coordinates [mm]
Y column vectors of the vertical coordinates [mm]
S column vectors of the longitudinal coordinates [mm]
Px column vectors of the horizontal momenta [MeV/c]
Py column vectors of the vertical momenta [MeV/c]
Pz column vectors of the longitudinal momenta [MeV/c]
MASS column vector of masses [MeV/c2]
Q column vector of single-particle charges [e]
N column vector of numbers of single particles per macro particle [#]
T0 column vector of creation times [mm/c]

A default constructor allows creating an empty beam. The return value is an object of type
Bunch6dT.

Reading the phase space

The particles coordinates can be inquired using the method get_phase_space(). This method
allows one to retrieve the bunch information in multiple ways.

M = B.get_phase_space(format_fmt=’%X %Px %Y %Py %S %Pz’, which=’good’);

The two arguments are:

format_fmt this parameter allows the user to specify what phase space repre-
sentation should be returned

which this parameter specified whether all particles should be returned,
including the lost ones, of just the ’good’ ones

The default values correspond to the internal representation of the beam, for all the “good” particles.
Table 2.2 shows all possible identifiers. The return value M contains the requested phase space.

Modifying the phase space

The particles coordinates can be inquired using the method get_phase_space(). This method
allows one to retrieve the bunch information in multiple ways.

B.set_phase_space( [ X PX Y PY S PZ ] );

The only argument is a 6-column matrix containing the phase space.
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%X horizontal coordinate [mm]
%Y vertical coordinate [mm]
%S longitudinal coordinate [mm]
%Z longitudinal coordinate w.r.t. the reference particle [mm]
%deg@MHz longitudinal coordinate in degrees at specified frequency in MHz,

e.g. %deg@750 for degrees at 750 MHz
[deg]

%K kinetic energy [MeV]
%E total energy [MeV]
%P total momentum [MeV/c]
%d relative momentum, δ = (P−P0)/P0 [permille]
%t0 creation time [mm/c]

%xp horizontal angle, Px/Pz [mrad]
%yp vertical angle, Py/Pz [mrad]

%Px horizontal momentum, Px [MeV/c]
%Py vertical momentum, Py [MeV/c]
%Pz longitudinal momentum, Pz [MeV/c]

%px normalized horizontal momentum, Px/P0 [mrad]
%py normalized vertical momentum, Py/P0 [mrad]
%pz normalized longitudinal momentum, Pz/P0 [mrad]
%pt normalized relative energy difference, pt = (E−E0)/P0c [permille]

%Vx horizontal velocity [c]
%Vy vertical velocity [c]
%Vz longitudinal velocity [c]

%m mass [MeV/c2]
%Q charge [e+]
%N number of particles per macro particle [#]

Table 2.2: List of identifiers accepted by Bunch6dT::get_phase_space().

2.1.3 Conversion

From Bunch6d to Bunch6dT

An object of type Bunch6d can be converted into an object of type Bunch6dT by calling the
dedicated constructor:

B0T = Bunch6dT(B0);

Where B0 is an object of type Bunch6d and B0T an object of type Bunch6dT. When Bunch6d is
converted into Bunch6dT all particles are set to the same longitudinal coordinate, B0.S, and the
original longitudinal distribution, which B0 carries as distribution of arrival times, is transferred to
Bunch6dT as distribution of creation times.

From Bunch6dT to Bunch6d

An object of type Bunch6dT can be converted into an object of type Bunch6d by calling the
dedicated constructor:
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B0 = Bunch6d(B0T);

Where B0T is an object of type Bunch6dT and B0 an object of type Bunch6d. When Bunch6dT is
converted into Bunch6d all particles are projected to an average longitudinal plane. The projection
follows a straight line along each particle’s trajectory, and the time spent by each particle to reach
such plane determines the initial arrival time.

2.1.4 Coasting beams

Both types Bunch6d and Bunch6dT can represent coasting beams. The method set_coasting()
allows the user to specify that the beam is coasting:

B.set_coasting(L);

The only argument of this method is:

L the period length [mm]

If a beam is coasting each particle is followed and preceded by a virtually infinite number of
particles, separated by periods of length L. This property of the beam affects the space charge
calculation and has no other effect.

2.2 Twiss parameters

2.2.1 Bunch6d_twiss

The structure Bunch6d_twiss gathers all the information to generate a beam from the Twiss
parameters. This structure contains the following items:

T = Bunch6d_twiss();

T.emitt_x; % mm.mrad, normalised horizontal emittance

T.emitt_y; % mm.mrad, normalised vertical emittance

T.emitt_z; % mm.permille, normalised longitudinal emittance

T.alpha_x;

T.alpha_y;

T.alpha_z;

T.beta_x; % m, horizontal beta function

T.beta_y; % m, vertical beta function

T.beta_z; % m, longitudinal beta function

T.disp_x; % m, horizontal dispersion

T.disp_xp; % rad, horizontal dispersion prime

T.disp_y; % m, vertical dispersion

T.disp_yp; % rad, vertical dispersion prime

T.disp_z; % m, longitudinal dispersion

2.2.2 Bunch6d_info

The user can inquire the Twiss parameters of a bunch, by calling the method:
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I = B.get_info();

Two structures exist, one for Bunch6d and one for Bunch6dT respectively. If B is a Bunch6d:

I = B.get_info();

I.S; % m

I.mean_x; % mm, average H position

I.mean_y; % mm, average V position

I.mean_t; % mm/c, average arrival time

I.mean_xp; % mrad, average H angle

I.mean_yp; % mrad, average V angle

I.mean_P; % average momentum in MeV/c

I.mean_K; % average kinetic energy in MeV

I.mean_E; % average total energy in MeV

I.sigma_x; % mm

I.sigma_y; % mm

I.sigma_z; % mm

I.sigma_t; % mm/c

I.sigma_xp; % mrad

I.sigma_yp; % mrad

I.sigma_xxp; % mm*mrad

I.sigma_yyp; % mm*mrad

I.sigma_zP; % mm*MeV

I.sigma_E; % kinetic-energy spread in MeV

I.sigma_P; % momentum spread in MeV

I.emitt_x; % mm.mrad normalised emittance

I.emitt_y; % mm.mrad normalised emittance

I.emitt_z; % mm.keV that is, emitt_z / mm.keV = sigmaz / mm * sigma_P / keV

I.emitt_4d; % mm.mrad, 4d normalised emittance

I.alpha_x;

I.alpha_y;

I.alpha_z;

I.beta_x; % m

I.beta_y; % m

I.beta_z; % m

I.rmax; % mm, largest particle’s xy distance from the origin

I.transmission; % percent

If B is a Bunch6dT:

I = B.get_info();

I.t; % mm/c

I.mean_X; % mm, average H position

I.mean_Y; % mm, average V position
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I.mean_S; % mm, average L position

I.mean_Px; % MeV/c, average H momentum

I.mean_Py; % MeV/c, average V momentum

I.mean_Pz; % MeV/c, average L momentum

I.mean_K; % average kinetic energy in MeV

I.mean_E; % average total energy in MeV

I.sigma_X; % mm

I.sigma_Y; % mm

I.sigma_Z; % mm

I.sigma_Px; % MeV/c

I.sigma_Py; % MeV/c

I.sigma_Pz; % MeV/c

I.sigma_XPx; % mm*MeV/c

I.sigma_YPy; % mm*MeV/c

I.sigma_ZPz; % mm*MeV/c

I.sigma_E; % kinetic-energy spread in MeV

I.emitt_x; % mm.mrad normalised emittance

I.emitt_y; % mm.mrad normalised emittance

I.emitt_z; % mm.keV that is, emitt_z / mm.keV = sigmaz / mm * sigma_P / keV

I.emitt_4d; % mm.mrad, 4d normalised emittance

I.alpha_x;

I.alpha_y;

I.alpha_z;

I.beta_x; % m

I.beta_y; % m

I.beta_z; % m

I.rmax; % mm, largest particle’s xy distance from the origin

I.transmission; % percent

2.3 Persistency

Both Bunch6d and Bunch6dT can be loaded and saved on disk, and exported, in multiple ways.

2.3.1 Saving and loading a beam
Two methods can be used to save and load the beam:

B.save(filename);

B.load(filename);

The beam is saved as a raw binary file. This guarantees that a beam loaded from disk is identical
to the original. Notice that binary format is machine-dependent. It might happen that a file saved
on one architecture cannot be read by another architecture, because their internal representation is
different.

2.3.2 Exporting as DST file
One can save the beam in DST binary format:
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B.save_as_dst_file(filename, frequency_in_MHz);

The RF frequency (expressed in MHz) is required.

2.3.3 Exporting as SDDS file
One can save the beam in binary format in SDDS files:

B.save_as_sdds_file(filename, description);

The string description is optional.
There exist also alternatives ways. For example, one can extract the phase space using

get_phase_space() and then save the matrix using dedicated Octave or Python commands.

2.4 Example

For an example of a bunch created from the Twiss parameters, see Chapter 1. The following
example creates a bunch from a matrix. The matrix has dimensions N×6, where 6 is the size of
the phase space, and N is the number of macroparticles in the bunch.

% creates a bunch of 1e12 electrons, using 1000 macroparticles

O = zeros(1000,1); % a column vector of zeros

X = randn(1000,1); % mm, column vector of normally distributed positions

Y = randn(1000,1); % mm, column vector of normally distributed positions

P = 100*ones(1000,1); % MeV/c, column vector of particles momenta

M = [ X O Y O O P ]; % the beam matrix, %x %xp %y %yp %t %P

% create a bunch

B0 = Bunch6d(RF_Track.electronmass, 1e12, -1, M);

% retrieve the phase space following MAD-X convention

T0 = B0.get_phase_space("%x %px %y %py %Z %pt");

% retrieve the phase space following the TRANSPORT convention

T0 = B0.get_phase_space("%x %xp %y %yp %dt %d");

% retrieve the phase space following PLACET convention

T0 = B0.get_phase_space("%E %x %y %dt %xp %yp");

% save on disk

B0.save(’my_bunch.dat’); % RF-Track binary format

B0.save_as_dst_file(’my_bunch.dst’, 750.0); % save as DST

B0.save_as_sdds_file(’my_bunch.sdds’, ’this is my bunch’); % save as SDDS

�



3. Beam lines

3.1 Environments

RF-Track offers two different environments to track particles: the Lattice and the Volume. The
environment Lattice represents the accelerator as a plain list of elements. Lattice works with
Bunch6d and transports the beam, element by element, from the entrance to the exit plane of each
element sequentially.

The environment Volume provides more flexibility than Lattice: it can simulate elements
with arbitrary position and orientation in the three-dimensional space, and allows elements to
overlap. Volume works with Bunch6dT, which is more suitable for space-charge calculations.
The possibility for Bunch6dT to handle particle creation at any time and location, also allows the
simulation of cathodes, field emission, and dark currents. In a Volume, particles can propagate in
any direction (even backwards). So that particles of the same bunch can happen to occupy different
elements simultaneously.

Several “special” elements, unavailable to Lattice, allow taking full advantage of the flex-
ibility of Volume: e.g., analytic coils and solenoids, where the magnetic field is computed from
analytic formulæand permeates the whole 3D space, allowing realistic fringe fields. The possibility
to overlap elements make Volume perfect for the simulation of injectors, where a solenoidal mag-
netic field usually surrounds the accelerating field of the gun, and the effects of space-charge are
critical.

Notice that also the environment Lattice can take into account space-charge effects. However,
since Bunch6d maintains the distribution of the particles on the same longitudinal plane, the calcula-
tion of space-charge forces needs an on-the-fly extrapolation of each particle’s longitudinal position,
using the arrival time and the velocity, to reconstruct the three-dimensional distribution. Because of
this somehow artificial manipulation of the phase space, we judge Lattice as most suitable for
space-charge-free regions of the accelerator. Whereas Volume, which through Bunch6dT main-
tains the full spatial distribution of the beam, is the preferred choice for space-charge-dominated
regimes.

Lattice is straightforward and fast, but better limited to space-charge-free regions. Volume
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is extremely flexible and handles space-charge without extrapolations, but this additional flexibility
comes at the cost of being computationally more expensive. This chapter describes these two
environments, as well as all the elements available to the user.

3.1.1 The Lattice
Constructor
In order to setup a lattice, it is sufficient to create an object of type Lattice:

L = Lattice();

There are no input options.

Adding an element
To append elements to a lattice, you can use the method append, Which accepts elements as well
as lattices:

L.append(element);

L.append(lattice);

Notice that this method appends a copy of the new element, at the end of the lattice. In C++ jargon,
one would say that the elements are passed by value, not by reference.

Tracking the beam
To track a beam, e.g., B0 through a lattice, one can call the method track:

B1 = L.track(B0);

where the input argument is the beam to be tracked, and the return value is the beam at the exit of
the lattice.

3.1.2 The Volume
Constructor
In order to setup a volume, it is sufficient to create an object of type Volume:

V = Volume();

There are no input options.

Adding an element
To place elements into volume, you can use the method add, which comes in many flavors:

V.add(element, Xpos, Ypos, Zpos, reference=’entrance’);

V.add(element, Xpos, Ypos, Zpos, roll, pitch, yaw, reference=’entrance’);

V.add(lattice, Xpos, Ypos, Zpos, reference=’entrance’);

V.add(lattice, Xpos, Ypos, Zpos, roll, pitch, yaw, reference=’entrance’);
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V.add(volume, Xpos, Ypos, Zpos, reference=’entrance’);

V.add(volume, Xpos, Ypos, Zpos, roll, pitch, yaw, reference=’entrance’);

The possible arguments are:

element the element to be added
lattice the lattice to be added
volume the volume to be added

Xpos the horizontal position of the new element [m]
Ypos the vertical position of the new element [m]
Zpos the longitudinal position of the new element [m]

roll the rotation angle around the Z axis [rad]
pitch the rotation angle around the X axis [rad]
yaw the rotation angle around the Y axis [rad]
reference reference point for position and angles: it can be either

’entrance’, ’center’, or ’exit’

The angles follow the Tait–Bryan formalism. Like in Lattice, this method adds a copy of the new
element to the Volume.

Tracking the beam

To track a beam, e.g., B0 through a lattice, one can call the method track:

B1 = V.track(B0, options);

The possible arguments are:

B0 the beam to be tracked
options an instance of the object TrackingOptions. See next chapter

for the details.

The return value is B1, that is, the beam right after all particles leave the volume.

3.2 Elements

RF-Track provides with a large number of elements.

3.2.1 Drift

D = Drift(L=0); % L [m]

The only parameter, L, is the length of the drift space in meters.

3.2.2 Quadrupole

Q = Quadrupole(L, strength); % L [m] strength [MV/c/m]

Q = Quadrupole(L, P_Q, k1); % L [m] P_Q [MV/c] k1 [1/m^2]

The possible arguments are:
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L the quadrupole length [m]
strength the integrated focusing strength, S [MV/c/m]
P_Q the beam’s magnetic rigidity, P/q [MV/c]
k1 the focusing strength, k1 [1/m2]

Here follow a few formulæ to disentangle the relations between: the integrated strength, S; the
focusing strength, k1; the quadrupole gradient, G; and the beam rigidity, P/q or Bρ , with their
units:

S = P/q · k1 ·L =

(
P/q

MV/c

)(
k1

1/m2

)(
L
m

)
[MV/c/m]

= G ·L = 299.792458
(

G
T/m

)(
L
m

)

k1 =
G

Bρ
=

(
G

T/m

)(
T m
Bρ

)
[1/m2]

=
G

P/q
= 299.792458

(
G

T/m

)(
MV/c
P/q

)
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Examples
If one has a 20 cm long quadrupole, with k1 = 0.1 1/m2, for a proton beam with Pref = 200 MeV/c,
one can use the following lines:

Lquad = 0.2; % m, quadrupole length

P = 200; % MeV/c, reference momentum

k1 = 0.1; % 1/m^2, focusing strength

Q = Quadrupole(Lquad, P, k1);

Or, given the quadrupole gradient, G:

Lquad = 0.2; % m, quadrupole length

G = 1.2; % T/m, quadrupole gradient

strength = 299.792458 * G * Lquad; % quadrupole integrated strength

Q = Quadrupole(Lquad, strength);

3.2.3 Sector bending dipole
3.2.4 Transfer line
3.2.5 Field maps

One of the strengths of RF-Track is the tracking in field maps. One-, two-, or three- dimensional
field maps are accepted, both real and complex, to simulate static, standing-wave, or traveling-wave
electromagnetic fields, both backward and forward traveling.

One-dimensional field maps allow the simulations of three-dimensional fields, just proving the
field’s longitudinal component along the symmetry axis. RF-Track provides to expand the field
off-axis, in full respect of Maxwell’s equations. Two-dimensional field maps allow the simulation
of cylindrical-symmetric fields from just the field over one plane. Three-dimensional field maps
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allow tracking in the most generic electromagnetic fields. Two- and three- dimensional field maps
accept Cartesian 3D mesh grids with regular mesh spacing.

Structure walls in field maps
Three-dimensional field maps can carry additional information than the field itself. They can
contain information about the structure’s walls embedding the field, using the special numeric
quantity “Not-a-number” (NaN). In computing, NaN is a member of a numeric data type that can
be interpreted as a value that is undefined or unrepresentable, especially in floating-point arithmetic.
In RF-Track, the presence of NaNs in a field map is interpreted as walls and permits the detection of
looses when the particles hit the walls during tracking. This is an extremely useful feature because
it allows the computation of losses even in complicated geometries and detects the exact location
where particles impact the walls in three dimensions.

Interpolation methods
RF-Track offers two interpolation methods

• Linear interpolation (LINT)
• Cubing interpolation (CINT) - which is the default

In the case of LINT, the interpolation uses the 8 closest vertexes of the 3D mesh cell enclosing the
point of interest. Notice that in this case, the granularity of the loss detection coincides with the
mesh cell size. In the case of CINT, the interpolation uses the 64 closest vertexes, as it considers
the 3x3x3 mesh cells surrounding the point of interest. This means that the granularity of the loss
detection is effectively 3 times the size of a mesh cell.

Cubic interpolation is in general better than linear, because it provides a smooth field over the
entire volume, therefore more complying with the Maxwell’s equations. The price to pay for this
smoothness, is computational time.

3.2.6 Coil
3.2.7 Electron cooler
3.2.8 Standing wave structure
3.2.9 Traveling wave structure

3.2.10 Adiabatic Matching Device

3.3 Imperfections

3.3.1 Element misalignment





4. Particle Tracking

4.1 Tracking options

4.1.1 Integration algorithms
4.1.2 Transport table

Both Lattice() and Volume() offer the possibility to track average beam quantities such as
beam size, emittance, energy spread, etc., during tracking, and store them in a “transport table”.
Such a transport table can be retrieved using the method get_transport_table().

Like get_phase_space() for the beam, get_transport_table() allows the user to in-
quire about specific quantities. Table 4.1 lists all identifiers that are accepted.

To enable a transport table in Volume() it is sufficient to specify the option tt_dt_mm in
the tracking options, specifying the time interval, expressed in mm/c, between two consecutive
samplings.

4.2 Space-charge and beam-beam effects

4.2.1 Particle-to-particle algorithm
4.2.2 3D FFT algorithm
4.2.3 Mirror charges
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%mean_X average horizontal position [mm]
%mean_Y average vertical position [mm]
%mean_S average longitudinal coordinate [mm]

%mean_K average kinetic energy [MeV]
%mean_E average total energy [MeV]

%t time [mm/c]

%emitt_x normalized horizontal emittance [mm.mrad]
%emitt_y normalized vertical emittance [mm.mrad]
%emitt_z normalized longitudinal emittance [mm.permille]

%beta_x horizontal beta function [m]
%beta_y vertical beta function [m]
%beta_z longitudinal beta function [m]

%alpha_x horizontal alpha function [-]
%alpha_y vertical alpha function [-]
%alpha_z longitudinal alpha function [-]

%sigma_X horizontal spread [mm]
%sigma_Y vertical spread [mm]
%sigma_Z longitudinal spread [mm]

%sigma_Px horizontal momentum spread [MeV/c]
%sigma_Py vertical momentum spread [MeV/c]
%sigma_Pz longitudinal momentum spread [MeV/c]

%N transmission [#]

Table 4.1: List of identifiers accepted by Bunch6dT::get_phase_space().
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A. RF-Track Internals

A.1 Bean dynamics

A.1.1 Dynamical variables

Table A.1 lists the single-particle dynamical variables, their formal definition, and the suggested
variable name, often used in this manual.

Table A.1: RF-Track dynamical variables.

Name Symbol Definition Variable name

Reference momentum P0 P0
Momenta Px, Py, Pz Px, Py, Pz
Normalized momenta px, py, pz px = Px/P0, . . . px, py, pz
Transverse angles x′, y′ x′ = Px/Pz, . . . xp, yp
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A.1.2 Equations of motion

A.2 Space charge

A.2.1 Integrated Green’s functions

A.3 Numerical computing

A.3.1 Interpolation
Linear
Cubic

A.3.2 Discrete maps of vector fields
Divergence-Free
Curl-free

A.3.3 3D rotations
Quaternions

A.3.4 Random number generators
Table A.2 shows a list of the random number generators available to RF-Track. Consult [3]
for a detailed description of each of them. The default is mt19937, which is among the fastest
high-quality generators available.

Name Description

taus2 Maximally equidistributed combined Tausworthe generator by L’Ecuyer
mt19937 Makoto Matsumoto and Takuji Nishimura generator
gfsr4 Lagged-fibonacci generator
ranlxs0 Second-generation version of the RANLUX algorithm of Luscher
ranlxs1 Like the previous by with increased order of strength
ranlxs2 Like the previous by with increased order of strength
mrg Fifth-order multiple recursive generator by L’Ecuyer, Blouin and Coutre
ranlux Implementation of the original algorithm developed by Luscher
ranlux389 Like the previous but gives the highest level of randomness
ranlxd1 Double precision output (48 bits) from the RANLXS generator
ranlxd2 Like the previous by with increased order of strength

Table A.2: List of random number generators available to RF-Track
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