
12.3. DESIGN OF PROPHYLE 101

A) B) C)

!"" ""# "#!

"""

"#"

!!" !"" ""# "#!

"""

"#"

!!"

>contig_1
AACCGA
>contig_2
CCC
>contig_3
CGC

Figure 12.1: Assembly procedure in ProPhyle. Contigs are greedily assembled from
a set of 𝑘-mers. A) From a given set of 𝑘-mers, first a vertex-centric de-Bruijn graph
is constructed. B) Until the graph is empty, new contigs are assembled. Iteratively, a
random vertex is selected as a seed of the new contig and then greedily extended to both
directions. Whenever a node is used, it is immediately removed from the graph. C) Each
obtained contig is stored as a separate sequence with the same FASTA file.

enough to the best node. While the best-hit computation is faster, the all-hits mode
can help to improve the accuracy of quantitative methods working with provided
assignments.

7. Updating prior probabilities. As an option, the prior probabilities of assign-
ments to individual nodes should be automatically continuously adjusted according
to assignments computed so far.

12.3 Design of ProPhyle
In addition to the requirements of the previous section, we impose two more properties
that Prophyle should satisfy. First, the index should be lossless, i.e., it should be capable
to retrieve an exhaustive list of genomes that the queried 𝑘-mer occurs in. Then, we want
to support several distinct measures including the Jaccard index and the coverage criterion
(see the Chapter 11).

Even though we originally intended to use spaced seeds since we have shown that they
significantly improve the classification accuracy, we did not find any space efficient index
structure for spaced 𝑘-mers. So we had to eventually relax on this idea in ProPhyle and
the final method works with contiguous 𝑘-mers only.

12.3.1 Key algorithmic ideas

Representing a collection of 𝑘-mer sets using a BWT-index. Designing a 𝑘-mer
index for a metagenomic classifier (Figure 10.2) often corresponds to the task of creating
a data structure capable to store and retrieve a list of nodes for every 𝑘-mer from the
reference database, thus, a specific variant of an associative array. For instance, Kraken
index stores the lowest common ancestors of each 𝑘-mer in the database, so such a node
list contains exactly one node for every 𝑘-mer.

The most straightforward strategy to represent such associative arrays is based on
using hash-tables, but this leads to huge memory footprints (e.g., Kraken uses 12 bytes
per 𝑘-mer). In order to solve this obstacle, we suggest to replace hash-tables by BWT-
indexes [193], similarly to what was done for read mappers in 2009 [181, 182, 226].


